Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/fpu/core.c
49961 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 1994 Linus Torvalds
4
*
5
* Pentium III FXSR, SSE support
6
* General FPU state handling cleanups
7
* Gareth Hughes <[email protected]>, May 2000
8
*/
9
#include <asm/fpu/api.h>
10
#include <asm/fpu/regset.h>
11
#include <asm/fpu/sched.h>
12
#include <asm/fpu/signal.h>
13
#include <asm/fpu/types.h>
14
#include <asm/msr.h>
15
#include <asm/traps.h>
16
#include <asm/irq_regs.h>
17
18
#include <uapi/asm/kvm.h>
19
20
#include <linux/hardirq.h>
21
#include <linux/kvm_types.h>
22
#include <linux/pkeys.h>
23
#include <linux/vmalloc.h>
24
25
#include "context.h"
26
#include "internal.h"
27
#include "legacy.h"
28
#include "xstate.h"
29
30
#define CREATE_TRACE_POINTS
31
#include <asm/trace/fpu.h>
32
33
#ifdef CONFIG_X86_64
34
DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
35
DEFINE_PER_CPU(u64, xfd_state);
36
#endif
37
38
/* The FPU state configuration data for kernel and user space */
39
struct fpu_state_config fpu_kernel_cfg __ro_after_init;
40
struct fpu_state_config fpu_user_cfg __ro_after_init;
41
struct vcpu_fpu_config guest_default_cfg __ro_after_init;
42
43
/*
44
* Represents the initial FPU state. It's mostly (but not completely) zeroes,
45
* depending on the FPU hardware format:
46
*/
47
struct fpstate init_fpstate __ro_after_init;
48
49
/*
50
* Track FPU initialization and kernel-mode usage. 'true' means the FPU is
51
* initialized and is not currently being used by the kernel:
52
*/
53
DEFINE_PER_CPU(bool, kernel_fpu_allowed);
54
55
/*
56
* Track which context is using the FPU on the CPU:
57
*/
58
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
59
60
#ifdef CONFIG_X86_DEBUG_FPU
61
struct fpu *x86_task_fpu(struct task_struct *task)
62
{
63
if (WARN_ON_ONCE(task->flags & PF_KTHREAD))
64
return NULL;
65
66
return (void *)task + sizeof(*task);
67
}
68
#endif
69
70
/*
71
* Can we use the FPU in kernel mode with the
72
* whole "kernel_fpu_begin/end()" sequence?
73
*/
74
bool irq_fpu_usable(void)
75
{
76
if (WARN_ON_ONCE(in_nmi()))
77
return false;
78
79
/*
80
* Return false in the following cases:
81
*
82
* - FPU is not yet initialized. This can happen only when the call is
83
* coming from CPU onlining, for example for microcode checksumming.
84
* - The kernel is already using the FPU, either because of explicit
85
* nesting (which should never be done), or because of implicit
86
* nesting when a hardirq interrupted a kernel-mode FPU section.
87
*
88
* The single boolean check below handles both cases:
89
*/
90
if (!this_cpu_read(kernel_fpu_allowed))
91
return false;
92
93
/*
94
* When not in NMI or hard interrupt context, FPU can be used in:
95
*
96
* - Task context except from within fpregs_lock()'ed critical
97
* regions.
98
*
99
* - Soft interrupt processing context which cannot happen
100
* while in a fpregs_lock()'ed critical region.
101
*/
102
if (!in_hardirq())
103
return true;
104
105
/*
106
* In hard interrupt context it's safe when soft interrupts
107
* are enabled, which means the interrupt did not hit in
108
* a fpregs_lock()'ed critical region.
109
*/
110
return !softirq_count();
111
}
112
EXPORT_SYMBOL(irq_fpu_usable);
113
114
/*
115
* Track AVX512 state use because it is known to slow the max clock
116
* speed of the core.
117
*/
118
static void update_avx_timestamp(struct fpu *fpu)
119
{
120
121
#define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
122
123
if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
124
fpu->avx512_timestamp = jiffies;
125
}
126
127
/*
128
* Save the FPU register state in fpu->fpstate->regs. The register state is
129
* preserved.
130
*
131
* Must be called with fpregs_lock() held.
132
*
133
* The legacy FNSAVE instruction clears all FPU state unconditionally, so
134
* register state has to be reloaded. That might be a pointless exercise
135
* when the FPU is going to be used by another task right after that. But
136
* this only affects 20+ years old 32bit systems and avoids conditionals all
137
* over the place.
138
*
139
* FXSAVE and all XSAVE variants preserve the FPU register state.
140
*/
141
void save_fpregs_to_fpstate(struct fpu *fpu)
142
{
143
if (likely(use_xsave())) {
144
os_xsave(fpu->fpstate);
145
update_avx_timestamp(fpu);
146
return;
147
}
148
149
if (likely(use_fxsr())) {
150
fxsave(&fpu->fpstate->regs.fxsave);
151
return;
152
}
153
154
/*
155
* Legacy FPU register saving, FNSAVE always clears FPU registers,
156
* so we have to reload them from the memory state.
157
*/
158
asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
159
frstor(&fpu->fpstate->regs.fsave);
160
}
161
162
void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
163
{
164
/*
165
* AMD K7/K8 and later CPUs up to Zen don't save/restore
166
* FDP/FIP/FOP unless an exception is pending. Clear the x87 state
167
* here by setting it to fixed values. "m" is a random variable
168
* that should be in L1.
169
*/
170
if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
171
asm volatile(
172
"fnclex\n\t"
173
"emms\n\t"
174
"fildl %[addr]" /* set F?P to defined value */
175
: : [addr] "m" (*fpstate));
176
}
177
178
if (use_xsave()) {
179
/*
180
* Dynamically enabled features are enabled in XCR0, but
181
* usage requires also that the corresponding bits in XFD
182
* are cleared. If the bits are set then using a related
183
* instruction will raise #NM. This allows to do the
184
* allocation of the larger FPU buffer lazy from #NM or if
185
* the task has no permission to kill it which would happen
186
* via #UD if the feature is disabled in XCR0.
187
*
188
* XFD state is following the same life time rules as
189
* XSTATE and to restore state correctly XFD has to be
190
* updated before XRSTORS otherwise the component would
191
* stay in or go into init state even if the bits are set
192
* in fpstate::regs::xsave::xfeatures.
193
*/
194
xfd_update_state(fpstate);
195
196
/*
197
* Restoring state always needs to modify all features
198
* which are in @mask even if the current task cannot use
199
* extended features.
200
*
201
* So fpstate->xfeatures cannot be used here, because then
202
* a feature for which the task has no permission but was
203
* used by the previous task would not go into init state.
204
*/
205
mask = fpu_kernel_cfg.max_features & mask;
206
207
os_xrstor(fpstate, mask);
208
} else {
209
if (use_fxsr())
210
fxrstor(&fpstate->regs.fxsave);
211
else
212
frstor(&fpstate->regs.fsave);
213
}
214
}
215
216
void fpu_reset_from_exception_fixup(void)
217
{
218
restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
219
}
220
221
#if IS_ENABLED(CONFIG_KVM)
222
static void __fpstate_reset(struct fpstate *fpstate);
223
224
static void fpu_lock_guest_permissions(void)
225
{
226
struct fpu_state_perm *fpuperm;
227
u64 perm;
228
229
if (!IS_ENABLED(CONFIG_X86_64))
230
return;
231
232
spin_lock_irq(&current->sighand->siglock);
233
fpuperm = &x86_task_fpu(current->group_leader)->guest_perm;
234
perm = fpuperm->__state_perm;
235
236
/* First fpstate allocation locks down permissions. */
237
WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
238
239
spin_unlock_irq(&current->sighand->siglock);
240
}
241
242
bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
243
{
244
struct fpstate *fpstate;
245
unsigned int size;
246
247
size = guest_default_cfg.size + ALIGN(offsetof(struct fpstate, regs), 64);
248
249
fpstate = vzalloc(size);
250
if (!fpstate)
251
return false;
252
253
/* Initialize indicators to reflect properties of the fpstate */
254
fpstate->is_valloc = true;
255
fpstate->is_guest = true;
256
257
__fpstate_reset(fpstate);
258
fpstate_init_user(fpstate);
259
260
gfpu->fpstate = fpstate;
261
gfpu->xfeatures = guest_default_cfg.features;
262
263
/*
264
* KVM sets the FP+SSE bits in the XSAVE header when copying FPU state
265
* to userspace, even when XSAVE is unsupported, so that restoring FPU
266
* state on a different CPU that does support XSAVE can cleanly load
267
* the incoming state using its natural XSAVE. In other words, KVM's
268
* uABI size may be larger than this host's default size. Conversely,
269
* the default size should never be larger than KVM's base uABI size;
270
* all features that can expand the uABI size must be opt-in.
271
*/
272
gfpu->uabi_size = sizeof(struct kvm_xsave);
273
if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size))
274
gfpu->uabi_size = fpu_user_cfg.default_size;
275
276
fpu_lock_guest_permissions();
277
278
return true;
279
}
280
EXPORT_SYMBOL_FOR_KVM(fpu_alloc_guest_fpstate);
281
282
void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
283
{
284
struct fpstate *fpstate = gfpu->fpstate;
285
286
if (!fpstate)
287
return;
288
289
if (WARN_ON_ONCE(!fpstate->is_valloc || !fpstate->is_guest || fpstate->in_use))
290
return;
291
292
gfpu->fpstate = NULL;
293
vfree(fpstate);
294
}
295
EXPORT_SYMBOL_FOR_KVM(fpu_free_guest_fpstate);
296
297
/*
298
* fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
299
* @guest_fpu: Pointer to the guest FPU container
300
* @xfeatures: Features requested by guest CPUID
301
*
302
* Enable all dynamic xfeatures according to guest perm and requested CPUID.
303
*
304
* Return: 0 on success, error code otherwise
305
*/
306
int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
307
{
308
lockdep_assert_preemption_enabled();
309
310
/* Nothing to do if all requested features are already enabled. */
311
xfeatures &= ~guest_fpu->xfeatures;
312
if (!xfeatures)
313
return 0;
314
315
return __xfd_enable_feature(xfeatures, guest_fpu);
316
}
317
EXPORT_SYMBOL_FOR_KVM(fpu_enable_guest_xfd_features);
318
319
#ifdef CONFIG_X86_64
320
void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
321
{
322
struct fpstate *fpstate = guest_fpu->fpstate;
323
324
fpregs_lock();
325
326
/*
327
* KVM's guest ABI is that setting XFD[i]=1 *can* immediately revert the
328
* save state to its initial configuration. Likewise, KVM_GET_XSAVE does
329
* the same as XSAVE and returns XSTATE_BV[i]=0 whenever XFD[i]=1.
330
*
331
* If the guest's FPU state is in hardware, just update XFD: the XSAVE
332
* in fpu_swap_kvm_fpstate will clear XSTATE_BV[i] whenever XFD[i]=1.
333
*
334
* If however the guest's FPU state is NOT resident in hardware, clear
335
* disabled components in XSTATE_BV now, or a subsequent XRSTOR will
336
* attempt to load disabled components and generate #NM _in the host_.
337
*/
338
if (xfd && test_thread_flag(TIF_NEED_FPU_LOAD))
339
fpstate->regs.xsave.header.xfeatures &= ~xfd;
340
341
fpstate->xfd = xfd;
342
if (fpstate->in_use)
343
xfd_update_state(fpstate);
344
345
fpregs_unlock();
346
}
347
EXPORT_SYMBOL_FOR_KVM(fpu_update_guest_xfd);
348
349
/**
350
* fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
351
*
352
* Must be invoked from KVM after a VMEXIT before enabling interrupts when
353
* XFD write emulation is disabled. This is required because the guest can
354
* freely modify XFD and the state at VMEXIT is not guaranteed to be the
355
* same as the state on VMENTER. So software state has to be updated before
356
* any operation which depends on it can take place.
357
*
358
* Note: It can be invoked unconditionally even when write emulation is
359
* enabled for the price of a then pointless MSR read.
360
*/
361
void fpu_sync_guest_vmexit_xfd_state(void)
362
{
363
struct fpstate *fpstate = x86_task_fpu(current)->fpstate;
364
365
lockdep_assert_irqs_disabled();
366
if (fpu_state_size_dynamic()) {
367
rdmsrq(MSR_IA32_XFD, fpstate->xfd);
368
__this_cpu_write(xfd_state, fpstate->xfd);
369
}
370
}
371
EXPORT_SYMBOL_FOR_KVM(fpu_sync_guest_vmexit_xfd_state);
372
#endif /* CONFIG_X86_64 */
373
374
int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
375
{
376
struct fpstate *guest_fps = guest_fpu->fpstate;
377
struct fpu *fpu = x86_task_fpu(current);
378
struct fpstate *cur_fps = fpu->fpstate;
379
380
fpregs_lock();
381
if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
382
save_fpregs_to_fpstate(fpu);
383
384
/* Swap fpstate */
385
if (enter_guest) {
386
fpu->__task_fpstate = cur_fps;
387
fpu->fpstate = guest_fps;
388
guest_fps->in_use = true;
389
} else {
390
guest_fps->in_use = false;
391
fpu->fpstate = fpu->__task_fpstate;
392
fpu->__task_fpstate = NULL;
393
}
394
395
cur_fps = fpu->fpstate;
396
397
if (!cur_fps->is_confidential) {
398
/* Includes XFD update */
399
restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
400
} else {
401
/*
402
* XSTATE is restored by firmware from encrypted
403
* memory. Make sure XFD state is correct while
404
* running with guest fpstate
405
*/
406
xfd_update_state(cur_fps);
407
}
408
409
fpregs_mark_activate();
410
fpregs_unlock();
411
return 0;
412
}
413
EXPORT_SYMBOL_FOR_KVM(fpu_swap_kvm_fpstate);
414
415
void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
416
unsigned int size, u64 xfeatures, u32 pkru)
417
{
418
struct fpstate *kstate = gfpu->fpstate;
419
union fpregs_state *ustate = buf;
420
struct membuf mb = { .p = buf, .left = size };
421
422
if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
423
__copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru,
424
XSTATE_COPY_XSAVE);
425
} else {
426
memcpy(&ustate->fxsave, &kstate->regs.fxsave,
427
sizeof(ustate->fxsave));
428
/* Make it restorable on a XSAVE enabled host */
429
ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
430
}
431
}
432
EXPORT_SYMBOL_FOR_KVM(fpu_copy_guest_fpstate_to_uabi);
433
434
int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
435
u64 xcr0, u32 *vpkru)
436
{
437
struct fpstate *kstate = gfpu->fpstate;
438
const union fpregs_state *ustate = buf;
439
440
if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
441
if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
442
return -EINVAL;
443
if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
444
return -EINVAL;
445
memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
446
return 0;
447
}
448
449
if (ustate->xsave.header.xfeatures & ~xcr0)
450
return -EINVAL;
451
452
/*
453
* Disabled features must be in their initial state, otherwise XRSTOR
454
* causes an exception.
455
*/
456
if (WARN_ON_ONCE(ustate->xsave.header.xfeatures & kstate->xfd))
457
return -EINVAL;
458
459
/*
460
* Nullify @vpkru to preserve its current value if PKRU's bit isn't set
461
* in the header. KVM's odd ABI is to leave PKRU untouched in this
462
* case (all other components are eventually re-initialized).
463
*/
464
if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU))
465
vpkru = NULL;
466
467
return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru);
468
}
469
EXPORT_SYMBOL_FOR_KVM(fpu_copy_uabi_to_guest_fpstate);
470
#endif /* CONFIG_KVM */
471
472
void kernel_fpu_begin_mask(unsigned int kfpu_mask)
473
{
474
if (!irqs_disabled())
475
fpregs_lock();
476
477
WARN_ON_FPU(!irq_fpu_usable());
478
479
/* Toggle kernel_fpu_allowed to false: */
480
WARN_ON_FPU(!this_cpu_read(kernel_fpu_allowed));
481
this_cpu_write(kernel_fpu_allowed, false);
482
483
if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
484
!test_thread_flag(TIF_NEED_FPU_LOAD)) {
485
set_thread_flag(TIF_NEED_FPU_LOAD);
486
save_fpregs_to_fpstate(x86_task_fpu(current));
487
}
488
__cpu_invalidate_fpregs_state();
489
490
/* Put sane initial values into the control registers. */
491
if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
492
ldmxcsr(MXCSR_DEFAULT);
493
494
if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
495
asm volatile ("fninit");
496
}
497
EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
498
499
void kernel_fpu_end(void)
500
{
501
/* Toggle kernel_fpu_allowed back to true: */
502
WARN_ON_FPU(this_cpu_read(kernel_fpu_allowed));
503
this_cpu_write(kernel_fpu_allowed, true);
504
505
if (!irqs_disabled())
506
fpregs_unlock();
507
}
508
EXPORT_SYMBOL_GPL(kernel_fpu_end);
509
510
/*
511
* Sync the FPU register state to current's memory register state when the
512
* current task owns the FPU. The hardware register state is preserved.
513
*/
514
void fpu_sync_fpstate(struct fpu *fpu)
515
{
516
WARN_ON_FPU(fpu != x86_task_fpu(current));
517
518
fpregs_lock();
519
trace_x86_fpu_before_save(fpu);
520
521
if (!test_thread_flag(TIF_NEED_FPU_LOAD))
522
save_fpregs_to_fpstate(fpu);
523
524
trace_x86_fpu_after_save(fpu);
525
fpregs_unlock();
526
}
527
528
static inline unsigned int init_fpstate_copy_size(void)
529
{
530
if (!use_xsave())
531
return fpu_kernel_cfg.default_size;
532
533
/* XSAVE(S) just needs the legacy and the xstate header part */
534
return sizeof(init_fpstate.regs.xsave);
535
}
536
537
static inline void fpstate_init_fxstate(struct fpstate *fpstate)
538
{
539
fpstate->regs.fxsave.cwd = 0x37f;
540
fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
541
}
542
543
/*
544
* Legacy x87 fpstate state init:
545
*/
546
static inline void fpstate_init_fstate(struct fpstate *fpstate)
547
{
548
fpstate->regs.fsave.cwd = 0xffff037fu;
549
fpstate->regs.fsave.swd = 0xffff0000u;
550
fpstate->regs.fsave.twd = 0xffffffffu;
551
fpstate->regs.fsave.fos = 0xffff0000u;
552
}
553
554
/*
555
* Used in two places:
556
* 1) Early boot to setup init_fpstate for non XSAVE systems
557
* 2) fpu_alloc_guest_fpstate() which is invoked from KVM
558
*/
559
void fpstate_init_user(struct fpstate *fpstate)
560
{
561
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
562
fpstate_init_soft(&fpstate->regs.soft);
563
return;
564
}
565
566
xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
567
568
if (cpu_feature_enabled(X86_FEATURE_FXSR))
569
fpstate_init_fxstate(fpstate);
570
else
571
fpstate_init_fstate(fpstate);
572
}
573
574
static void __fpstate_reset(struct fpstate *fpstate)
575
{
576
/*
577
* Supervisor features (and thus sizes) may diverge between guest
578
* FPUs and host FPUs, as some supervisor features are supported
579
* for guests despite not being utilized by the host. User
580
* features and sizes are always identical, which allows for
581
* common guest and userspace ABI.
582
*
583
* For the host, set XFD to the kernel's desired initialization
584
* value. For guests, set XFD to its architectural RESET value.
585
*/
586
if (fpstate->is_guest) {
587
fpstate->size = guest_default_cfg.size;
588
fpstate->xfeatures = guest_default_cfg.features;
589
fpstate->xfd = 0;
590
} else {
591
fpstate->size = fpu_kernel_cfg.default_size;
592
fpstate->xfeatures = fpu_kernel_cfg.default_features;
593
fpstate->xfd = init_fpstate.xfd;
594
}
595
596
fpstate->user_size = fpu_user_cfg.default_size;
597
fpstate->user_xfeatures = fpu_user_cfg.default_features;
598
}
599
600
void fpstate_reset(struct fpu *fpu)
601
{
602
/* Set the fpstate pointer to the default fpstate */
603
fpu->fpstate = &fpu->__fpstate;
604
__fpstate_reset(fpu->fpstate);
605
606
/* Initialize the permission related info in fpu */
607
fpu->perm.__state_perm = fpu_kernel_cfg.default_features;
608
fpu->perm.__state_size = fpu_kernel_cfg.default_size;
609
fpu->perm.__user_state_size = fpu_user_cfg.default_size;
610
611
fpu->guest_perm.__state_perm = guest_default_cfg.features;
612
fpu->guest_perm.__state_size = guest_default_cfg.size;
613
/*
614
* User features and sizes are always identical between host and
615
* guest FPUs, which allows for common guest and userspace ABI.
616
*/
617
fpu->guest_perm.__user_state_size = fpu_user_cfg.default_size;
618
}
619
620
static inline void fpu_inherit_perms(struct fpu *dst_fpu)
621
{
622
if (fpu_state_size_dynamic()) {
623
struct fpu *src_fpu = x86_task_fpu(current->group_leader);
624
625
spin_lock_irq(&current->sighand->siglock);
626
/* Fork also inherits the permissions of the parent */
627
dst_fpu->perm = src_fpu->perm;
628
dst_fpu->guest_perm = src_fpu->guest_perm;
629
spin_unlock_irq(&current->sighand->siglock);
630
}
631
}
632
633
/* A passed ssp of zero will not cause any update */
634
static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp)
635
{
636
#ifdef CONFIG_X86_USER_SHADOW_STACK
637
struct cet_user_state *xstate;
638
639
/* If ssp update is not needed. */
640
if (!ssp)
641
return 0;
642
643
xstate = get_xsave_addr(&x86_task_fpu(dst)->fpstate->regs.xsave,
644
XFEATURE_CET_USER);
645
646
/*
647
* If there is a non-zero ssp, then 'dst' must be configured with a shadow
648
* stack and the fpu state should be up to date since it was just copied
649
* from the parent in fpu_clone(). So there must be a valid non-init CET
650
* state location in the buffer.
651
*/
652
if (WARN_ON_ONCE(!xstate))
653
return 1;
654
655
xstate->user_ssp = (u64)ssp;
656
#endif
657
return 0;
658
}
659
660
/* Clone current's FPU state on fork */
661
int fpu_clone(struct task_struct *dst, u64 clone_flags, bool minimal,
662
unsigned long ssp)
663
{
664
/*
665
* We allocate the new FPU structure right after the end of the task struct.
666
* task allocation size already took this into account.
667
*
668
* This is safe because task_struct size is a multiple of cacheline size,
669
* thus x86_task_fpu() will always be cacheline aligned as well.
670
*/
671
struct fpu *dst_fpu = (void *)dst + sizeof(*dst);
672
673
BUILD_BUG_ON(sizeof(*dst) % SMP_CACHE_BYTES != 0);
674
675
/* The new task's FPU state cannot be valid in the hardware. */
676
dst_fpu->last_cpu = -1;
677
678
fpstate_reset(dst_fpu);
679
680
if (!cpu_feature_enabled(X86_FEATURE_FPU))
681
return 0;
682
683
/*
684
* Enforce reload for user space tasks and prevent kernel threads
685
* from trying to save the FPU registers on context switch.
686
*/
687
set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
688
689
/*
690
* No FPU state inheritance for kernel threads and IO
691
* worker threads.
692
*/
693
if (minimal) {
694
/* Clear out the minimal state */
695
memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
696
init_fpstate_copy_size());
697
return 0;
698
}
699
700
/*
701
* If a new feature is added, ensure all dynamic features are
702
* caller-saved from here!
703
*/
704
BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
705
706
/*
707
* Save the default portion of the current FPU state into the
708
* clone. Assume all dynamic features to be defined as caller-
709
* saved, which enables skipping both the expansion of fpstate
710
* and the copying of any dynamic state.
711
*
712
* Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
713
* copying is not valid when current uses non-default states.
714
*/
715
fpregs_lock();
716
if (test_thread_flag(TIF_NEED_FPU_LOAD))
717
fpregs_restore_userregs();
718
save_fpregs_to_fpstate(dst_fpu);
719
fpregs_unlock();
720
if (!(clone_flags & CLONE_THREAD))
721
fpu_inherit_perms(dst_fpu);
722
723
/*
724
* Children never inherit PASID state.
725
* Force it to have its init value:
726
*/
727
if (use_xsave())
728
dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
729
730
/*
731
* Update shadow stack pointer, in case it changed during clone.
732
*/
733
if (update_fpu_shstk(dst, ssp))
734
return 1;
735
736
trace_x86_fpu_copy_dst(dst_fpu);
737
738
return 0;
739
}
740
741
/*
742
* While struct fpu is no longer part of struct thread_struct, it is still
743
* allocated after struct task_struct in the "task_struct" kmem cache. But
744
* since FPU is expected to be part of struct thread_struct, we have to
745
* adjust for it here.
746
*/
747
void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
748
{
749
/* The allocation follows struct task_struct. */
750
*offset = sizeof(struct task_struct) - offsetof(struct task_struct, thread);
751
*offset += offsetof(struct fpu, __fpstate.regs);
752
*size = fpu_kernel_cfg.default_size;
753
}
754
755
/*
756
* Drops current FPU state: deactivates the fpregs and
757
* the fpstate. NOTE: it still leaves previous contents
758
* in the fpregs in the eager-FPU case.
759
*
760
* This function can be used in cases where we know that
761
* a state-restore is coming: either an explicit one,
762
* or a reschedule.
763
*/
764
void fpu__drop(struct task_struct *tsk)
765
{
766
struct fpu *fpu;
767
768
if (test_tsk_thread_flag(tsk, TIF_NEED_FPU_LOAD))
769
return;
770
771
fpu = x86_task_fpu(tsk);
772
773
preempt_disable();
774
775
if (fpu == x86_task_fpu(current)) {
776
/* Ignore delayed exceptions from user space */
777
asm volatile("1: fwait\n"
778
"2:\n"
779
_ASM_EXTABLE(1b, 2b));
780
fpregs_deactivate(fpu);
781
}
782
783
trace_x86_fpu_dropped(fpu);
784
785
preempt_enable();
786
}
787
788
/*
789
* Clear FPU registers by setting them up from the init fpstate.
790
* Caller must do fpregs_[un]lock() around it.
791
*/
792
static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
793
{
794
if (use_xsave())
795
os_xrstor(&init_fpstate, features_mask);
796
else if (use_fxsr())
797
fxrstor(&init_fpstate.regs.fxsave);
798
else
799
frstor(&init_fpstate.regs.fsave);
800
801
pkru_write_default();
802
}
803
804
/*
805
* Reset current->fpu memory state to the init values.
806
*/
807
static void fpu_reset_fpstate_regs(void)
808
{
809
struct fpu *fpu = x86_task_fpu(current);
810
811
fpregs_lock();
812
__fpu_invalidate_fpregs_state(fpu);
813
/*
814
* This does not change the actual hardware registers. It just
815
* resets the memory image and sets TIF_NEED_FPU_LOAD so a
816
* subsequent return to usermode will reload the registers from the
817
* task's memory image.
818
*
819
* Do not use fpstate_init() here. Just copy init_fpstate which has
820
* the correct content already except for PKRU.
821
*
822
* PKRU handling does not rely on the xstate when restoring for
823
* user space as PKRU is eagerly written in switch_to() and
824
* flush_thread().
825
*/
826
memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
827
set_thread_flag(TIF_NEED_FPU_LOAD);
828
fpregs_unlock();
829
}
830
831
/*
832
* Reset current's user FPU states to the init states. current's
833
* supervisor states, if any, are not modified by this function. The
834
* caller guarantees that the XSTATE header in memory is intact.
835
*/
836
void fpu__clear_user_states(struct fpu *fpu)
837
{
838
WARN_ON_FPU(fpu != x86_task_fpu(current));
839
840
fpregs_lock();
841
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
842
fpu_reset_fpstate_regs();
843
fpregs_unlock();
844
return;
845
}
846
847
/*
848
* Ensure that current's supervisor states are loaded into their
849
* corresponding registers.
850
*/
851
if (xfeatures_mask_supervisor() &&
852
!fpregs_state_valid(fpu, smp_processor_id()))
853
os_xrstor_supervisor(fpu->fpstate);
854
855
/* Ensure XFD state is in sync before reloading XSTATE */
856
xfd_update_state(fpu->fpstate);
857
858
/* Reset user states in registers. */
859
restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
860
861
/*
862
* Now all FPU registers have their desired values. Inform the FPU
863
* state machine that current's FPU registers are in the hardware
864
* registers. The memory image does not need to be updated because
865
* any operation relying on it has to save the registers first when
866
* current's FPU is marked active.
867
*/
868
fpregs_mark_activate();
869
fpregs_unlock();
870
}
871
872
void fpu_flush_thread(void)
873
{
874
fpstate_reset(x86_task_fpu(current));
875
fpu_reset_fpstate_regs();
876
}
877
/*
878
* Load FPU context before returning to userspace.
879
*/
880
void switch_fpu_return(void)
881
{
882
if (!static_cpu_has(X86_FEATURE_FPU))
883
return;
884
885
fpregs_restore_userregs();
886
}
887
EXPORT_SYMBOL_FOR_KVM(switch_fpu_return);
888
889
void fpregs_lock_and_load(void)
890
{
891
/*
892
* fpregs_lock() only disables preemption (mostly). So modifying state
893
* in an interrupt could screw up some in progress fpregs operation.
894
* Warn about it.
895
*/
896
WARN_ON_ONCE(!irq_fpu_usable());
897
WARN_ON_ONCE(current->flags & PF_KTHREAD);
898
899
fpregs_lock();
900
901
fpregs_assert_state_consistent();
902
903
if (test_thread_flag(TIF_NEED_FPU_LOAD))
904
fpregs_restore_userregs();
905
}
906
907
#ifdef CONFIG_X86_DEBUG_FPU
908
/*
909
* If current FPU state according to its tracking (loaded FPU context on this
910
* CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
911
* loaded on return to userland.
912
*/
913
void fpregs_assert_state_consistent(void)
914
{
915
struct fpu *fpu = x86_task_fpu(current);
916
917
if (test_thread_flag(TIF_NEED_FPU_LOAD))
918
return;
919
920
WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
921
}
922
EXPORT_SYMBOL_FOR_KVM(fpregs_assert_state_consistent);
923
#endif
924
925
void fpregs_mark_activate(void)
926
{
927
struct fpu *fpu = x86_task_fpu(current);
928
929
fpregs_activate(fpu);
930
fpu->last_cpu = smp_processor_id();
931
clear_thread_flag(TIF_NEED_FPU_LOAD);
932
}
933
934
/*
935
* x87 math exception handling:
936
*/
937
938
int fpu__exception_code(struct fpu *fpu, int trap_nr)
939
{
940
int err;
941
942
if (trap_nr == X86_TRAP_MF) {
943
unsigned short cwd, swd;
944
/*
945
* (~cwd & swd) will mask out exceptions that are not set to unmasked
946
* status. 0x3f is the exception bits in these regs, 0x200 is the
947
* C1 reg you need in case of a stack fault, 0x040 is the stack
948
* fault bit. We should only be taking one exception at a time,
949
* so if this combination doesn't produce any single exception,
950
* then we have a bad program that isn't synchronizing its FPU usage
951
* and it will suffer the consequences since we won't be able to
952
* fully reproduce the context of the exception.
953
*/
954
if (boot_cpu_has(X86_FEATURE_FXSR)) {
955
cwd = fpu->fpstate->regs.fxsave.cwd;
956
swd = fpu->fpstate->regs.fxsave.swd;
957
} else {
958
cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
959
swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
960
}
961
962
err = swd & ~cwd;
963
} else {
964
/*
965
* The SIMD FPU exceptions are handled a little differently, as there
966
* is only a single status/control register. Thus, to determine which
967
* unmasked exception was caught we must mask the exception mask bits
968
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
969
*/
970
unsigned short mxcsr = MXCSR_DEFAULT;
971
972
if (boot_cpu_has(X86_FEATURE_XMM))
973
mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
974
975
err = ~(mxcsr >> 7) & mxcsr;
976
}
977
978
if (err & 0x001) { /* Invalid op */
979
/*
980
* swd & 0x240 == 0x040: Stack Underflow
981
* swd & 0x240 == 0x240: Stack Overflow
982
* User must clear the SF bit (0x40) if set
983
*/
984
return FPE_FLTINV;
985
} else if (err & 0x004) { /* Divide by Zero */
986
return FPE_FLTDIV;
987
} else if (err & 0x008) { /* Overflow */
988
return FPE_FLTOVF;
989
} else if (err & 0x012) { /* Denormal, Underflow */
990
return FPE_FLTUND;
991
} else if (err & 0x020) { /* Precision */
992
return FPE_FLTRES;
993
}
994
995
/*
996
* If we're using IRQ 13, or supposedly even some trap
997
* X86_TRAP_MF implementations, it's possible
998
* we get a spurious trap, which is not an error.
999
*/
1000
return 0;
1001
}
1002
1003
/*
1004
* Initialize register state that may prevent from entering low-power idle.
1005
* This function will be invoked from the cpuidle driver only when needed.
1006
*/
1007
noinstr void fpu_idle_fpregs(void)
1008
{
1009
/* Note: AMX_TILE being enabled implies XGETBV1 support */
1010
if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) &&
1011
(xfeatures_in_use() & XFEATURE_MASK_XTILE)) {
1012
tile_release();
1013
__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
1014
}
1015
}
1016
1017