Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/fpu/core.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 1994 Linus Torvalds
4
*
5
* Pentium III FXSR, SSE support
6
* General FPU state handling cleanups
7
* Gareth Hughes <[email protected]>, May 2000
8
*/
9
#include <asm/fpu/api.h>
10
#include <asm/fpu/regset.h>
11
#include <asm/fpu/sched.h>
12
#include <asm/fpu/signal.h>
13
#include <asm/fpu/types.h>
14
#include <asm/msr.h>
15
#include <asm/traps.h>
16
#include <asm/irq_regs.h>
17
18
#include <uapi/asm/kvm.h>
19
20
#include <linux/hardirq.h>
21
#include <linux/pkeys.h>
22
#include <linux/vmalloc.h>
23
24
#include "context.h"
25
#include "internal.h"
26
#include "legacy.h"
27
#include "xstate.h"
28
29
#define CREATE_TRACE_POINTS
30
#include <asm/trace/fpu.h>
31
32
#ifdef CONFIG_X86_64
33
DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
34
DEFINE_PER_CPU(u64, xfd_state);
35
#endif
36
37
/* The FPU state configuration data for kernel and user space */
38
struct fpu_state_config fpu_kernel_cfg __ro_after_init;
39
struct fpu_state_config fpu_user_cfg __ro_after_init;
40
struct vcpu_fpu_config guest_default_cfg __ro_after_init;
41
42
/*
43
* Represents the initial FPU state. It's mostly (but not completely) zeroes,
44
* depending on the FPU hardware format:
45
*/
46
struct fpstate init_fpstate __ro_after_init;
47
48
/*
49
* Track FPU initialization and kernel-mode usage. 'true' means the FPU is
50
* initialized and is not currently being used by the kernel:
51
*/
52
DEFINE_PER_CPU(bool, kernel_fpu_allowed);
53
54
/*
55
* Track which context is using the FPU on the CPU:
56
*/
57
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
58
59
#ifdef CONFIG_X86_DEBUG_FPU
60
struct fpu *x86_task_fpu(struct task_struct *task)
61
{
62
if (WARN_ON_ONCE(task->flags & PF_KTHREAD))
63
return NULL;
64
65
return (void *)task + sizeof(*task);
66
}
67
#endif
68
69
/*
70
* Can we use the FPU in kernel mode with the
71
* whole "kernel_fpu_begin/end()" sequence?
72
*/
73
bool irq_fpu_usable(void)
74
{
75
if (WARN_ON_ONCE(in_nmi()))
76
return false;
77
78
/*
79
* Return false in the following cases:
80
*
81
* - FPU is not yet initialized. This can happen only when the call is
82
* coming from CPU onlining, for example for microcode checksumming.
83
* - The kernel is already using the FPU, either because of explicit
84
* nesting (which should never be done), or because of implicit
85
* nesting when a hardirq interrupted a kernel-mode FPU section.
86
*
87
* The single boolean check below handles both cases:
88
*/
89
if (!this_cpu_read(kernel_fpu_allowed))
90
return false;
91
92
/*
93
* When not in NMI or hard interrupt context, FPU can be used in:
94
*
95
* - Task context except from within fpregs_lock()'ed critical
96
* regions.
97
*
98
* - Soft interrupt processing context which cannot happen
99
* while in a fpregs_lock()'ed critical region.
100
*/
101
if (!in_hardirq())
102
return true;
103
104
/*
105
* In hard interrupt context it's safe when soft interrupts
106
* are enabled, which means the interrupt did not hit in
107
* a fpregs_lock()'ed critical region.
108
*/
109
return !softirq_count();
110
}
111
EXPORT_SYMBOL(irq_fpu_usable);
112
113
/*
114
* Track AVX512 state use because it is known to slow the max clock
115
* speed of the core.
116
*/
117
static void update_avx_timestamp(struct fpu *fpu)
118
{
119
120
#define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
121
122
if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
123
fpu->avx512_timestamp = jiffies;
124
}
125
126
/*
127
* Save the FPU register state in fpu->fpstate->regs. The register state is
128
* preserved.
129
*
130
* Must be called with fpregs_lock() held.
131
*
132
* The legacy FNSAVE instruction clears all FPU state unconditionally, so
133
* register state has to be reloaded. That might be a pointless exercise
134
* when the FPU is going to be used by another task right after that. But
135
* this only affects 20+ years old 32bit systems and avoids conditionals all
136
* over the place.
137
*
138
* FXSAVE and all XSAVE variants preserve the FPU register state.
139
*/
140
void save_fpregs_to_fpstate(struct fpu *fpu)
141
{
142
if (likely(use_xsave())) {
143
os_xsave(fpu->fpstate);
144
update_avx_timestamp(fpu);
145
return;
146
}
147
148
if (likely(use_fxsr())) {
149
fxsave(&fpu->fpstate->regs.fxsave);
150
return;
151
}
152
153
/*
154
* Legacy FPU register saving, FNSAVE always clears FPU registers,
155
* so we have to reload them from the memory state.
156
*/
157
asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
158
frstor(&fpu->fpstate->regs.fsave);
159
}
160
161
void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
162
{
163
/*
164
* AMD K7/K8 and later CPUs up to Zen don't save/restore
165
* FDP/FIP/FOP unless an exception is pending. Clear the x87 state
166
* here by setting it to fixed values. "m" is a random variable
167
* that should be in L1.
168
*/
169
if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
170
asm volatile(
171
"fnclex\n\t"
172
"emms\n\t"
173
"fildl %[addr]" /* set F?P to defined value */
174
: : [addr] "m" (*fpstate));
175
}
176
177
if (use_xsave()) {
178
/*
179
* Dynamically enabled features are enabled in XCR0, but
180
* usage requires also that the corresponding bits in XFD
181
* are cleared. If the bits are set then using a related
182
* instruction will raise #NM. This allows to do the
183
* allocation of the larger FPU buffer lazy from #NM or if
184
* the task has no permission to kill it which would happen
185
* via #UD if the feature is disabled in XCR0.
186
*
187
* XFD state is following the same life time rules as
188
* XSTATE and to restore state correctly XFD has to be
189
* updated before XRSTORS otherwise the component would
190
* stay in or go into init state even if the bits are set
191
* in fpstate::regs::xsave::xfeatures.
192
*/
193
xfd_update_state(fpstate);
194
195
/*
196
* Restoring state always needs to modify all features
197
* which are in @mask even if the current task cannot use
198
* extended features.
199
*
200
* So fpstate->xfeatures cannot be used here, because then
201
* a feature for which the task has no permission but was
202
* used by the previous task would not go into init state.
203
*/
204
mask = fpu_kernel_cfg.max_features & mask;
205
206
os_xrstor(fpstate, mask);
207
} else {
208
if (use_fxsr())
209
fxrstor(&fpstate->regs.fxsave);
210
else
211
frstor(&fpstate->regs.fsave);
212
}
213
}
214
215
void fpu_reset_from_exception_fixup(void)
216
{
217
restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
218
}
219
220
#if IS_ENABLED(CONFIG_KVM)
221
static void __fpstate_reset(struct fpstate *fpstate);
222
223
static void fpu_lock_guest_permissions(void)
224
{
225
struct fpu_state_perm *fpuperm;
226
u64 perm;
227
228
if (!IS_ENABLED(CONFIG_X86_64))
229
return;
230
231
spin_lock_irq(&current->sighand->siglock);
232
fpuperm = &x86_task_fpu(current->group_leader)->guest_perm;
233
perm = fpuperm->__state_perm;
234
235
/* First fpstate allocation locks down permissions. */
236
WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
237
238
spin_unlock_irq(&current->sighand->siglock);
239
}
240
241
bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
242
{
243
struct fpstate *fpstate;
244
unsigned int size;
245
246
size = guest_default_cfg.size + ALIGN(offsetof(struct fpstate, regs), 64);
247
248
fpstate = vzalloc(size);
249
if (!fpstate)
250
return false;
251
252
/* Initialize indicators to reflect properties of the fpstate */
253
fpstate->is_valloc = true;
254
fpstate->is_guest = true;
255
256
__fpstate_reset(fpstate);
257
fpstate_init_user(fpstate);
258
259
gfpu->fpstate = fpstate;
260
gfpu->xfeatures = guest_default_cfg.features;
261
262
/*
263
* KVM sets the FP+SSE bits in the XSAVE header when copying FPU state
264
* to userspace, even when XSAVE is unsupported, so that restoring FPU
265
* state on a different CPU that does support XSAVE can cleanly load
266
* the incoming state using its natural XSAVE. In other words, KVM's
267
* uABI size may be larger than this host's default size. Conversely,
268
* the default size should never be larger than KVM's base uABI size;
269
* all features that can expand the uABI size must be opt-in.
270
*/
271
gfpu->uabi_size = sizeof(struct kvm_xsave);
272
if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size))
273
gfpu->uabi_size = fpu_user_cfg.default_size;
274
275
fpu_lock_guest_permissions();
276
277
return true;
278
}
279
EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
280
281
void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
282
{
283
struct fpstate *fpstate = gfpu->fpstate;
284
285
if (!fpstate)
286
return;
287
288
if (WARN_ON_ONCE(!fpstate->is_valloc || !fpstate->is_guest || fpstate->in_use))
289
return;
290
291
gfpu->fpstate = NULL;
292
vfree(fpstate);
293
}
294
EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
295
296
/*
297
* fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
298
* @guest_fpu: Pointer to the guest FPU container
299
* @xfeatures: Features requested by guest CPUID
300
*
301
* Enable all dynamic xfeatures according to guest perm and requested CPUID.
302
*
303
* Return: 0 on success, error code otherwise
304
*/
305
int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
306
{
307
lockdep_assert_preemption_enabled();
308
309
/* Nothing to do if all requested features are already enabled. */
310
xfeatures &= ~guest_fpu->xfeatures;
311
if (!xfeatures)
312
return 0;
313
314
return __xfd_enable_feature(xfeatures, guest_fpu);
315
}
316
EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features);
317
318
#ifdef CONFIG_X86_64
319
void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
320
{
321
fpregs_lock();
322
guest_fpu->fpstate->xfd = xfd;
323
if (guest_fpu->fpstate->in_use)
324
xfd_update_state(guest_fpu->fpstate);
325
fpregs_unlock();
326
}
327
EXPORT_SYMBOL_GPL(fpu_update_guest_xfd);
328
329
/**
330
* fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
331
*
332
* Must be invoked from KVM after a VMEXIT before enabling interrupts when
333
* XFD write emulation is disabled. This is required because the guest can
334
* freely modify XFD and the state at VMEXIT is not guaranteed to be the
335
* same as the state on VMENTER. So software state has to be updated before
336
* any operation which depends on it can take place.
337
*
338
* Note: It can be invoked unconditionally even when write emulation is
339
* enabled for the price of a then pointless MSR read.
340
*/
341
void fpu_sync_guest_vmexit_xfd_state(void)
342
{
343
struct fpstate *fpstate = x86_task_fpu(current)->fpstate;
344
345
lockdep_assert_irqs_disabled();
346
if (fpu_state_size_dynamic()) {
347
rdmsrq(MSR_IA32_XFD, fpstate->xfd);
348
__this_cpu_write(xfd_state, fpstate->xfd);
349
}
350
}
351
EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state);
352
#endif /* CONFIG_X86_64 */
353
354
int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
355
{
356
struct fpstate *guest_fps = guest_fpu->fpstate;
357
struct fpu *fpu = x86_task_fpu(current);
358
struct fpstate *cur_fps = fpu->fpstate;
359
360
fpregs_lock();
361
if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
362
save_fpregs_to_fpstate(fpu);
363
364
/* Swap fpstate */
365
if (enter_guest) {
366
fpu->__task_fpstate = cur_fps;
367
fpu->fpstate = guest_fps;
368
guest_fps->in_use = true;
369
} else {
370
guest_fps->in_use = false;
371
fpu->fpstate = fpu->__task_fpstate;
372
fpu->__task_fpstate = NULL;
373
}
374
375
cur_fps = fpu->fpstate;
376
377
if (!cur_fps->is_confidential) {
378
/* Includes XFD update */
379
restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
380
} else {
381
/*
382
* XSTATE is restored by firmware from encrypted
383
* memory. Make sure XFD state is correct while
384
* running with guest fpstate
385
*/
386
xfd_update_state(cur_fps);
387
}
388
389
fpregs_mark_activate();
390
fpregs_unlock();
391
return 0;
392
}
393
EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
394
395
void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
396
unsigned int size, u64 xfeatures, u32 pkru)
397
{
398
struct fpstate *kstate = gfpu->fpstate;
399
union fpregs_state *ustate = buf;
400
struct membuf mb = { .p = buf, .left = size };
401
402
if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
403
__copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru,
404
XSTATE_COPY_XSAVE);
405
} else {
406
memcpy(&ustate->fxsave, &kstate->regs.fxsave,
407
sizeof(ustate->fxsave));
408
/* Make it restorable on a XSAVE enabled host */
409
ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
410
}
411
}
412
EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
413
414
int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
415
u64 xcr0, u32 *vpkru)
416
{
417
struct fpstate *kstate = gfpu->fpstate;
418
const union fpregs_state *ustate = buf;
419
420
if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
421
if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
422
return -EINVAL;
423
if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
424
return -EINVAL;
425
memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
426
return 0;
427
}
428
429
if (ustate->xsave.header.xfeatures & ~xcr0)
430
return -EINVAL;
431
432
/*
433
* Nullify @vpkru to preserve its current value if PKRU's bit isn't set
434
* in the header. KVM's odd ABI is to leave PKRU untouched in this
435
* case (all other components are eventually re-initialized).
436
*/
437
if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU))
438
vpkru = NULL;
439
440
return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru);
441
}
442
EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
443
#endif /* CONFIG_KVM */
444
445
void kernel_fpu_begin_mask(unsigned int kfpu_mask)
446
{
447
if (!irqs_disabled())
448
fpregs_lock();
449
450
WARN_ON_FPU(!irq_fpu_usable());
451
452
/* Toggle kernel_fpu_allowed to false: */
453
WARN_ON_FPU(!this_cpu_read(kernel_fpu_allowed));
454
this_cpu_write(kernel_fpu_allowed, false);
455
456
if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
457
!test_thread_flag(TIF_NEED_FPU_LOAD)) {
458
set_thread_flag(TIF_NEED_FPU_LOAD);
459
save_fpregs_to_fpstate(x86_task_fpu(current));
460
}
461
__cpu_invalidate_fpregs_state();
462
463
/* Put sane initial values into the control registers. */
464
if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
465
ldmxcsr(MXCSR_DEFAULT);
466
467
if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
468
asm volatile ("fninit");
469
}
470
EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
471
472
void kernel_fpu_end(void)
473
{
474
/* Toggle kernel_fpu_allowed back to true: */
475
WARN_ON_FPU(this_cpu_read(kernel_fpu_allowed));
476
this_cpu_write(kernel_fpu_allowed, true);
477
478
if (!irqs_disabled())
479
fpregs_unlock();
480
}
481
EXPORT_SYMBOL_GPL(kernel_fpu_end);
482
483
/*
484
* Sync the FPU register state to current's memory register state when the
485
* current task owns the FPU. The hardware register state is preserved.
486
*/
487
void fpu_sync_fpstate(struct fpu *fpu)
488
{
489
WARN_ON_FPU(fpu != x86_task_fpu(current));
490
491
fpregs_lock();
492
trace_x86_fpu_before_save(fpu);
493
494
if (!test_thread_flag(TIF_NEED_FPU_LOAD))
495
save_fpregs_to_fpstate(fpu);
496
497
trace_x86_fpu_after_save(fpu);
498
fpregs_unlock();
499
}
500
501
static inline unsigned int init_fpstate_copy_size(void)
502
{
503
if (!use_xsave())
504
return fpu_kernel_cfg.default_size;
505
506
/* XSAVE(S) just needs the legacy and the xstate header part */
507
return sizeof(init_fpstate.regs.xsave);
508
}
509
510
static inline void fpstate_init_fxstate(struct fpstate *fpstate)
511
{
512
fpstate->regs.fxsave.cwd = 0x37f;
513
fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
514
}
515
516
/*
517
* Legacy x87 fpstate state init:
518
*/
519
static inline void fpstate_init_fstate(struct fpstate *fpstate)
520
{
521
fpstate->regs.fsave.cwd = 0xffff037fu;
522
fpstate->regs.fsave.swd = 0xffff0000u;
523
fpstate->regs.fsave.twd = 0xffffffffu;
524
fpstate->regs.fsave.fos = 0xffff0000u;
525
}
526
527
/*
528
* Used in two places:
529
* 1) Early boot to setup init_fpstate for non XSAVE systems
530
* 2) fpu_alloc_guest_fpstate() which is invoked from KVM
531
*/
532
void fpstate_init_user(struct fpstate *fpstate)
533
{
534
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
535
fpstate_init_soft(&fpstate->regs.soft);
536
return;
537
}
538
539
xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
540
541
if (cpu_feature_enabled(X86_FEATURE_FXSR))
542
fpstate_init_fxstate(fpstate);
543
else
544
fpstate_init_fstate(fpstate);
545
}
546
547
static void __fpstate_reset(struct fpstate *fpstate)
548
{
549
/*
550
* Supervisor features (and thus sizes) may diverge between guest
551
* FPUs and host FPUs, as some supervisor features are supported
552
* for guests despite not being utilized by the host. User
553
* features and sizes are always identical, which allows for
554
* common guest and userspace ABI.
555
*
556
* For the host, set XFD to the kernel's desired initialization
557
* value. For guests, set XFD to its architectural RESET value.
558
*/
559
if (fpstate->is_guest) {
560
fpstate->size = guest_default_cfg.size;
561
fpstate->xfeatures = guest_default_cfg.features;
562
fpstate->xfd = 0;
563
} else {
564
fpstate->size = fpu_kernel_cfg.default_size;
565
fpstate->xfeatures = fpu_kernel_cfg.default_features;
566
fpstate->xfd = init_fpstate.xfd;
567
}
568
569
fpstate->user_size = fpu_user_cfg.default_size;
570
fpstate->user_xfeatures = fpu_user_cfg.default_features;
571
}
572
573
void fpstate_reset(struct fpu *fpu)
574
{
575
/* Set the fpstate pointer to the default fpstate */
576
fpu->fpstate = &fpu->__fpstate;
577
__fpstate_reset(fpu->fpstate);
578
579
/* Initialize the permission related info in fpu */
580
fpu->perm.__state_perm = fpu_kernel_cfg.default_features;
581
fpu->perm.__state_size = fpu_kernel_cfg.default_size;
582
fpu->perm.__user_state_size = fpu_user_cfg.default_size;
583
584
fpu->guest_perm.__state_perm = guest_default_cfg.features;
585
fpu->guest_perm.__state_size = guest_default_cfg.size;
586
/*
587
* User features and sizes are always identical between host and
588
* guest FPUs, which allows for common guest and userspace ABI.
589
*/
590
fpu->guest_perm.__user_state_size = fpu_user_cfg.default_size;
591
}
592
593
static inline void fpu_inherit_perms(struct fpu *dst_fpu)
594
{
595
if (fpu_state_size_dynamic()) {
596
struct fpu *src_fpu = x86_task_fpu(current->group_leader);
597
598
spin_lock_irq(&current->sighand->siglock);
599
/* Fork also inherits the permissions of the parent */
600
dst_fpu->perm = src_fpu->perm;
601
dst_fpu->guest_perm = src_fpu->guest_perm;
602
spin_unlock_irq(&current->sighand->siglock);
603
}
604
}
605
606
/* A passed ssp of zero will not cause any update */
607
static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp)
608
{
609
#ifdef CONFIG_X86_USER_SHADOW_STACK
610
struct cet_user_state *xstate;
611
612
/* If ssp update is not needed. */
613
if (!ssp)
614
return 0;
615
616
xstate = get_xsave_addr(&x86_task_fpu(dst)->fpstate->regs.xsave,
617
XFEATURE_CET_USER);
618
619
/*
620
* If there is a non-zero ssp, then 'dst' must be configured with a shadow
621
* stack and the fpu state should be up to date since it was just copied
622
* from the parent in fpu_clone(). So there must be a valid non-init CET
623
* state location in the buffer.
624
*/
625
if (WARN_ON_ONCE(!xstate))
626
return 1;
627
628
xstate->user_ssp = (u64)ssp;
629
#endif
630
return 0;
631
}
632
633
/* Clone current's FPU state on fork */
634
int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal,
635
unsigned long ssp)
636
{
637
/*
638
* We allocate the new FPU structure right after the end of the task struct.
639
* task allocation size already took this into account.
640
*
641
* This is safe because task_struct size is a multiple of cacheline size,
642
* thus x86_task_fpu() will always be cacheline aligned as well.
643
*/
644
struct fpu *dst_fpu = (void *)dst + sizeof(*dst);
645
646
BUILD_BUG_ON(sizeof(*dst) % SMP_CACHE_BYTES != 0);
647
648
/* The new task's FPU state cannot be valid in the hardware. */
649
dst_fpu->last_cpu = -1;
650
651
fpstate_reset(dst_fpu);
652
653
if (!cpu_feature_enabled(X86_FEATURE_FPU))
654
return 0;
655
656
/*
657
* Enforce reload for user space tasks and prevent kernel threads
658
* from trying to save the FPU registers on context switch.
659
*/
660
set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
661
662
/*
663
* No FPU state inheritance for kernel threads and IO
664
* worker threads.
665
*/
666
if (minimal) {
667
/* Clear out the minimal state */
668
memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
669
init_fpstate_copy_size());
670
return 0;
671
}
672
673
/*
674
* If a new feature is added, ensure all dynamic features are
675
* caller-saved from here!
676
*/
677
BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
678
679
/*
680
* Save the default portion of the current FPU state into the
681
* clone. Assume all dynamic features to be defined as caller-
682
* saved, which enables skipping both the expansion of fpstate
683
* and the copying of any dynamic state.
684
*
685
* Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
686
* copying is not valid when current uses non-default states.
687
*/
688
fpregs_lock();
689
if (test_thread_flag(TIF_NEED_FPU_LOAD))
690
fpregs_restore_userregs();
691
save_fpregs_to_fpstate(dst_fpu);
692
fpregs_unlock();
693
if (!(clone_flags & CLONE_THREAD))
694
fpu_inherit_perms(dst_fpu);
695
696
/*
697
* Children never inherit PASID state.
698
* Force it to have its init value:
699
*/
700
if (use_xsave())
701
dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
702
703
/*
704
* Update shadow stack pointer, in case it changed during clone.
705
*/
706
if (update_fpu_shstk(dst, ssp))
707
return 1;
708
709
trace_x86_fpu_copy_dst(dst_fpu);
710
711
return 0;
712
}
713
714
/*
715
* While struct fpu is no longer part of struct thread_struct, it is still
716
* allocated after struct task_struct in the "task_struct" kmem cache. But
717
* since FPU is expected to be part of struct thread_struct, we have to
718
* adjust for it here.
719
*/
720
void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
721
{
722
/* The allocation follows struct task_struct. */
723
*offset = sizeof(struct task_struct) - offsetof(struct task_struct, thread);
724
*offset += offsetof(struct fpu, __fpstate.regs);
725
*size = fpu_kernel_cfg.default_size;
726
}
727
728
/*
729
* Drops current FPU state: deactivates the fpregs and
730
* the fpstate. NOTE: it still leaves previous contents
731
* in the fpregs in the eager-FPU case.
732
*
733
* This function can be used in cases where we know that
734
* a state-restore is coming: either an explicit one,
735
* or a reschedule.
736
*/
737
void fpu__drop(struct task_struct *tsk)
738
{
739
struct fpu *fpu;
740
741
if (test_tsk_thread_flag(tsk, TIF_NEED_FPU_LOAD))
742
return;
743
744
fpu = x86_task_fpu(tsk);
745
746
preempt_disable();
747
748
if (fpu == x86_task_fpu(current)) {
749
/* Ignore delayed exceptions from user space */
750
asm volatile("1: fwait\n"
751
"2:\n"
752
_ASM_EXTABLE(1b, 2b));
753
fpregs_deactivate(fpu);
754
}
755
756
trace_x86_fpu_dropped(fpu);
757
758
preempt_enable();
759
}
760
761
/*
762
* Clear FPU registers by setting them up from the init fpstate.
763
* Caller must do fpregs_[un]lock() around it.
764
*/
765
static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
766
{
767
if (use_xsave())
768
os_xrstor(&init_fpstate, features_mask);
769
else if (use_fxsr())
770
fxrstor(&init_fpstate.regs.fxsave);
771
else
772
frstor(&init_fpstate.regs.fsave);
773
774
pkru_write_default();
775
}
776
777
/*
778
* Reset current->fpu memory state to the init values.
779
*/
780
static void fpu_reset_fpstate_regs(void)
781
{
782
struct fpu *fpu = x86_task_fpu(current);
783
784
fpregs_lock();
785
__fpu_invalidate_fpregs_state(fpu);
786
/*
787
* This does not change the actual hardware registers. It just
788
* resets the memory image and sets TIF_NEED_FPU_LOAD so a
789
* subsequent return to usermode will reload the registers from the
790
* task's memory image.
791
*
792
* Do not use fpstate_init() here. Just copy init_fpstate which has
793
* the correct content already except for PKRU.
794
*
795
* PKRU handling does not rely on the xstate when restoring for
796
* user space as PKRU is eagerly written in switch_to() and
797
* flush_thread().
798
*/
799
memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
800
set_thread_flag(TIF_NEED_FPU_LOAD);
801
fpregs_unlock();
802
}
803
804
/*
805
* Reset current's user FPU states to the init states. current's
806
* supervisor states, if any, are not modified by this function. The
807
* caller guarantees that the XSTATE header in memory is intact.
808
*/
809
void fpu__clear_user_states(struct fpu *fpu)
810
{
811
WARN_ON_FPU(fpu != x86_task_fpu(current));
812
813
fpregs_lock();
814
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
815
fpu_reset_fpstate_regs();
816
fpregs_unlock();
817
return;
818
}
819
820
/*
821
* Ensure that current's supervisor states are loaded into their
822
* corresponding registers.
823
*/
824
if (xfeatures_mask_supervisor() &&
825
!fpregs_state_valid(fpu, smp_processor_id()))
826
os_xrstor_supervisor(fpu->fpstate);
827
828
/* Reset user states in registers. */
829
restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
830
831
/*
832
* Now all FPU registers have their desired values. Inform the FPU
833
* state machine that current's FPU registers are in the hardware
834
* registers. The memory image does not need to be updated because
835
* any operation relying on it has to save the registers first when
836
* current's FPU is marked active.
837
*/
838
fpregs_mark_activate();
839
fpregs_unlock();
840
}
841
842
void fpu_flush_thread(void)
843
{
844
fpstate_reset(x86_task_fpu(current));
845
fpu_reset_fpstate_regs();
846
}
847
/*
848
* Load FPU context before returning to userspace.
849
*/
850
void switch_fpu_return(void)
851
{
852
if (!static_cpu_has(X86_FEATURE_FPU))
853
return;
854
855
fpregs_restore_userregs();
856
}
857
EXPORT_SYMBOL_GPL(switch_fpu_return);
858
859
void fpregs_lock_and_load(void)
860
{
861
/*
862
* fpregs_lock() only disables preemption (mostly). So modifying state
863
* in an interrupt could screw up some in progress fpregs operation.
864
* Warn about it.
865
*/
866
WARN_ON_ONCE(!irq_fpu_usable());
867
WARN_ON_ONCE(current->flags & PF_KTHREAD);
868
869
fpregs_lock();
870
871
fpregs_assert_state_consistent();
872
873
if (test_thread_flag(TIF_NEED_FPU_LOAD))
874
fpregs_restore_userregs();
875
}
876
877
#ifdef CONFIG_X86_DEBUG_FPU
878
/*
879
* If current FPU state according to its tracking (loaded FPU context on this
880
* CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
881
* loaded on return to userland.
882
*/
883
void fpregs_assert_state_consistent(void)
884
{
885
struct fpu *fpu = x86_task_fpu(current);
886
887
if (test_thread_flag(TIF_NEED_FPU_LOAD))
888
return;
889
890
WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
891
}
892
EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
893
#endif
894
895
void fpregs_mark_activate(void)
896
{
897
struct fpu *fpu = x86_task_fpu(current);
898
899
fpregs_activate(fpu);
900
fpu->last_cpu = smp_processor_id();
901
clear_thread_flag(TIF_NEED_FPU_LOAD);
902
}
903
904
/*
905
* x87 math exception handling:
906
*/
907
908
int fpu__exception_code(struct fpu *fpu, int trap_nr)
909
{
910
int err;
911
912
if (trap_nr == X86_TRAP_MF) {
913
unsigned short cwd, swd;
914
/*
915
* (~cwd & swd) will mask out exceptions that are not set to unmasked
916
* status. 0x3f is the exception bits in these regs, 0x200 is the
917
* C1 reg you need in case of a stack fault, 0x040 is the stack
918
* fault bit. We should only be taking one exception at a time,
919
* so if this combination doesn't produce any single exception,
920
* then we have a bad program that isn't synchronizing its FPU usage
921
* and it will suffer the consequences since we won't be able to
922
* fully reproduce the context of the exception.
923
*/
924
if (boot_cpu_has(X86_FEATURE_FXSR)) {
925
cwd = fpu->fpstate->regs.fxsave.cwd;
926
swd = fpu->fpstate->regs.fxsave.swd;
927
} else {
928
cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
929
swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
930
}
931
932
err = swd & ~cwd;
933
} else {
934
/*
935
* The SIMD FPU exceptions are handled a little differently, as there
936
* is only a single status/control register. Thus, to determine which
937
* unmasked exception was caught we must mask the exception mask bits
938
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
939
*/
940
unsigned short mxcsr = MXCSR_DEFAULT;
941
942
if (boot_cpu_has(X86_FEATURE_XMM))
943
mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
944
945
err = ~(mxcsr >> 7) & mxcsr;
946
}
947
948
if (err & 0x001) { /* Invalid op */
949
/*
950
* swd & 0x240 == 0x040: Stack Underflow
951
* swd & 0x240 == 0x240: Stack Overflow
952
* User must clear the SF bit (0x40) if set
953
*/
954
return FPE_FLTINV;
955
} else if (err & 0x004) { /* Divide by Zero */
956
return FPE_FLTDIV;
957
} else if (err & 0x008) { /* Overflow */
958
return FPE_FLTOVF;
959
} else if (err & 0x012) { /* Denormal, Underflow */
960
return FPE_FLTUND;
961
} else if (err & 0x020) { /* Precision */
962
return FPE_FLTRES;
963
}
964
965
/*
966
* If we're using IRQ 13, or supposedly even some trap
967
* X86_TRAP_MF implementations, it's possible
968
* we get a spurious trap, which is not an error.
969
*/
970
return 0;
971
}
972
973
/*
974
* Initialize register state that may prevent from entering low-power idle.
975
* This function will be invoked from the cpuidle driver only when needed.
976
*/
977
noinstr void fpu_idle_fpregs(void)
978
{
979
/* Note: AMX_TILE being enabled implies XGETBV1 support */
980
if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) &&
981
(xfeatures_in_use() & XFEATURE_MASK_XTILE)) {
982
tile_release();
983
__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
984
}
985
}
986
987