Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/hw_breakpoint.c
49622 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
*
4
* Copyright (C) 2007 Alan Stern
5
* Copyright (C) 2009 IBM Corporation
6
* Copyright (C) 2009 Frederic Weisbecker <[email protected]>
7
*
8
* Authors: Alan Stern <[email protected]>
9
* K.Prasad <[email protected]>
10
* Frederic Weisbecker <[email protected]>
11
*/
12
13
/*
14
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
15
* using the CPU's debug registers.
16
*/
17
18
#include <linux/perf_event.h>
19
#include <linux/hw_breakpoint.h>
20
#include <linux/irqflags.h>
21
#include <linux/notifier.h>
22
#include <linux/kallsyms.h>
23
#include <linux/kprobes.h>
24
#include <linux/percpu.h>
25
#include <linux/kdebug.h>
26
#include <linux/kernel.h>
27
#include <linux/kvm_types.h>
28
#include <linux/export.h>
29
#include <linux/sched.h>
30
#include <linux/smp.h>
31
32
#include <asm/hw_breakpoint.h>
33
#include <asm/processor.h>
34
#include <asm/debugreg.h>
35
#include <asm/user.h>
36
#include <asm/desc.h>
37
#include <asm/tlbflush.h>
38
39
/* Per cpu debug control register value */
40
DEFINE_PER_CPU(unsigned long, cpu_dr7);
41
EXPORT_PER_CPU_SYMBOL(cpu_dr7);
42
43
/* Per cpu debug address registers values */
44
static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
45
46
/*
47
* Stores the breakpoints currently in use on each breakpoint address
48
* register for each cpus
49
*/
50
static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
51
52
53
static inline unsigned long
54
__encode_dr7(int drnum, unsigned int len, unsigned int type)
55
{
56
unsigned long bp_info;
57
58
bp_info = (len | type) & 0xf;
59
bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
60
bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
61
62
return bp_info;
63
}
64
65
/*
66
* Encode the length, type, Exact, and Enable bits for a particular breakpoint
67
* as stored in debug register 7.
68
*/
69
unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
70
{
71
return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
72
}
73
74
/*
75
* Decode the length and type bits for a particular breakpoint as
76
* stored in debug register 7. Return the "enabled" status.
77
*/
78
int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
79
{
80
int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
81
82
*len = (bp_info & 0xc) | 0x40;
83
*type = (bp_info & 0x3) | 0x80;
84
85
return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
86
}
87
88
/*
89
* Install a perf counter breakpoint.
90
*
91
* We seek a free debug address register and use it for this
92
* breakpoint. Eventually we enable it in the debug control register.
93
*
94
* Atomic: we hold the counter->ctx->lock and we only handle variables
95
* and registers local to this cpu.
96
*/
97
int arch_install_hw_breakpoint(struct perf_event *bp)
98
{
99
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
100
unsigned long *dr7;
101
int i;
102
103
lockdep_assert_irqs_disabled();
104
105
for (i = 0; i < HBP_NUM; i++) {
106
struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
107
108
if (!*slot) {
109
*slot = bp;
110
break;
111
}
112
}
113
114
if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
115
return -EBUSY;
116
117
set_debugreg(info->address, i);
118
__this_cpu_write(cpu_debugreg[i], info->address);
119
120
dr7 = this_cpu_ptr(&cpu_dr7);
121
*dr7 |= encode_dr7(i, info->len, info->type);
122
123
/*
124
* Ensure we first write cpu_dr7 before we set the DR7 register.
125
* This ensures an NMI never see cpu_dr7 0 when DR7 is not.
126
*/
127
barrier();
128
129
set_debugreg(*dr7, 7);
130
if (info->mask)
131
amd_set_dr_addr_mask(info->mask, i);
132
133
return 0;
134
}
135
136
/*
137
* Uninstall the breakpoint contained in the given counter.
138
*
139
* First we search the debug address register it uses and then we disable
140
* it.
141
*
142
* Atomic: we hold the counter->ctx->lock and we only handle variables
143
* and registers local to this cpu.
144
*/
145
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
146
{
147
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
148
unsigned long dr7;
149
int i;
150
151
lockdep_assert_irqs_disabled();
152
153
for (i = 0; i < HBP_NUM; i++) {
154
struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
155
156
if (*slot == bp) {
157
*slot = NULL;
158
break;
159
}
160
}
161
162
if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
163
return;
164
165
dr7 = this_cpu_read(cpu_dr7);
166
dr7 &= ~__encode_dr7(i, info->len, info->type);
167
168
set_debugreg(dr7, 7);
169
if (info->mask)
170
amd_set_dr_addr_mask(0, i);
171
172
/*
173
* Ensure the write to cpu_dr7 is after we've set the DR7 register.
174
* This ensures an NMI never see cpu_dr7 0 when DR7 is not.
175
*/
176
barrier();
177
178
this_cpu_write(cpu_dr7, dr7);
179
}
180
181
static int arch_bp_generic_len(int x86_len)
182
{
183
switch (x86_len) {
184
case X86_BREAKPOINT_LEN_1:
185
return HW_BREAKPOINT_LEN_1;
186
case X86_BREAKPOINT_LEN_2:
187
return HW_BREAKPOINT_LEN_2;
188
case X86_BREAKPOINT_LEN_4:
189
return HW_BREAKPOINT_LEN_4;
190
#ifdef CONFIG_X86_64
191
case X86_BREAKPOINT_LEN_8:
192
return HW_BREAKPOINT_LEN_8;
193
#endif
194
default:
195
return -EINVAL;
196
}
197
}
198
199
int arch_bp_generic_fields(int x86_len, int x86_type,
200
int *gen_len, int *gen_type)
201
{
202
int len;
203
204
/* Type */
205
switch (x86_type) {
206
case X86_BREAKPOINT_EXECUTE:
207
if (x86_len != X86_BREAKPOINT_LEN_X)
208
return -EINVAL;
209
210
*gen_type = HW_BREAKPOINT_X;
211
*gen_len = sizeof(long);
212
return 0;
213
case X86_BREAKPOINT_WRITE:
214
*gen_type = HW_BREAKPOINT_W;
215
break;
216
case X86_BREAKPOINT_RW:
217
*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
218
break;
219
default:
220
return -EINVAL;
221
}
222
223
/* Len */
224
len = arch_bp_generic_len(x86_len);
225
if (len < 0)
226
return -EINVAL;
227
*gen_len = len;
228
229
return 0;
230
}
231
232
/*
233
* Check for virtual address in kernel space.
234
*/
235
int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
236
{
237
unsigned long va;
238
int len;
239
240
va = hw->address;
241
len = arch_bp_generic_len(hw->len);
242
WARN_ON_ONCE(len < 0);
243
244
/*
245
* We don't need to worry about va + len - 1 overflowing:
246
* we already require that va is aligned to a multiple of len.
247
*/
248
return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
249
}
250
251
/*
252
* Checks whether the range [addr, end], overlaps the area [base, base + size).
253
*/
254
static inline bool within_area(unsigned long addr, unsigned long end,
255
unsigned long base, unsigned long size)
256
{
257
return end >= base && addr < (base + size);
258
}
259
260
/*
261
* Checks whether the range from addr to end, inclusive, overlaps the fixed
262
* mapped CPU entry area range or other ranges used for CPU entry.
263
*/
264
static inline bool within_cpu_entry(unsigned long addr, unsigned long end)
265
{
266
int cpu;
267
268
/* CPU entry erea is always used for CPU entry */
269
if (within_area(addr, end, CPU_ENTRY_AREA_BASE,
270
CPU_ENTRY_AREA_MAP_SIZE))
271
return true;
272
273
/*
274
* When FSGSBASE is enabled, paranoid_entry() fetches the per-CPU
275
* GSBASE value via __per_cpu_offset or pcpu_unit_offsets.
276
*/
277
#ifdef CONFIG_SMP
278
if (within_area(addr, end, (unsigned long)__per_cpu_offset,
279
sizeof(unsigned long) * nr_cpu_ids))
280
return true;
281
#else
282
if (within_area(addr, end, (unsigned long)&pcpu_unit_offsets,
283
sizeof(pcpu_unit_offsets)))
284
return true;
285
#endif
286
287
for_each_possible_cpu(cpu) {
288
/* The original rw GDT is being used after load_direct_gdt() */
289
if (within_area(addr, end, (unsigned long)get_cpu_gdt_rw(cpu),
290
GDT_SIZE))
291
return true;
292
293
/*
294
* cpu_tss_rw is not directly referenced by hardware, but
295
* cpu_tss_rw is also used in CPU entry code,
296
*/
297
if (within_area(addr, end,
298
(unsigned long)&per_cpu(cpu_tss_rw, cpu),
299
sizeof(struct tss_struct)))
300
return true;
301
302
/*
303
* cpu_tlbstate.user_pcid_flush_mask is used for CPU entry.
304
* If a data breakpoint on it, it will cause an unwanted #DB.
305
* Protect the full cpu_tlbstate structure to be sure.
306
*/
307
if (within_area(addr, end,
308
(unsigned long)&per_cpu(cpu_tlbstate, cpu),
309
sizeof(struct tlb_state)))
310
return true;
311
312
/*
313
* When in guest (X86_FEATURE_HYPERVISOR), local_db_save()
314
* will read per-cpu cpu_dr7 before clear dr7 register.
315
*/
316
if (within_area(addr, end, (unsigned long)&per_cpu(cpu_dr7, cpu),
317
sizeof(cpu_dr7)))
318
return true;
319
}
320
321
return false;
322
}
323
324
static int arch_build_bp_info(struct perf_event *bp,
325
const struct perf_event_attr *attr,
326
struct arch_hw_breakpoint *hw)
327
{
328
unsigned long bp_end;
329
330
bp_end = attr->bp_addr + attr->bp_len - 1;
331
if (bp_end < attr->bp_addr)
332
return -EINVAL;
333
334
/*
335
* Prevent any breakpoint of any type that overlaps the CPU
336
* entry area and data. This protects the IST stacks and also
337
* reduces the chance that we ever find out what happens if
338
* there's a data breakpoint on the GDT, IDT, or TSS.
339
*/
340
if (within_cpu_entry(attr->bp_addr, bp_end))
341
return -EINVAL;
342
343
hw->address = attr->bp_addr;
344
hw->mask = 0;
345
346
/* Type */
347
switch (attr->bp_type) {
348
case HW_BREAKPOINT_W:
349
hw->type = X86_BREAKPOINT_WRITE;
350
break;
351
case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
352
hw->type = X86_BREAKPOINT_RW;
353
break;
354
case HW_BREAKPOINT_X:
355
/*
356
* We don't allow kernel breakpoints in places that are not
357
* acceptable for kprobes. On non-kprobes kernels, we don't
358
* allow kernel breakpoints at all.
359
*/
360
if (attr->bp_addr >= TASK_SIZE_MAX) {
361
if (within_kprobe_blacklist(attr->bp_addr))
362
return -EINVAL;
363
}
364
365
hw->type = X86_BREAKPOINT_EXECUTE;
366
/*
367
* x86 inst breakpoints need to have a specific undefined len.
368
* But we still need to check userspace is not trying to setup
369
* an unsupported length, to get a range breakpoint for example.
370
*/
371
if (attr->bp_len == sizeof(long)) {
372
hw->len = X86_BREAKPOINT_LEN_X;
373
return 0;
374
}
375
fallthrough;
376
default:
377
return -EINVAL;
378
}
379
380
/* Len */
381
switch (attr->bp_len) {
382
case HW_BREAKPOINT_LEN_1:
383
hw->len = X86_BREAKPOINT_LEN_1;
384
break;
385
case HW_BREAKPOINT_LEN_2:
386
hw->len = X86_BREAKPOINT_LEN_2;
387
break;
388
case HW_BREAKPOINT_LEN_4:
389
hw->len = X86_BREAKPOINT_LEN_4;
390
break;
391
#ifdef CONFIG_X86_64
392
case HW_BREAKPOINT_LEN_8:
393
hw->len = X86_BREAKPOINT_LEN_8;
394
break;
395
#endif
396
default:
397
/* AMD range breakpoint */
398
if (!is_power_of_2(attr->bp_len))
399
return -EINVAL;
400
if (attr->bp_addr & (attr->bp_len - 1))
401
return -EINVAL;
402
403
if (!boot_cpu_has(X86_FEATURE_BPEXT))
404
return -EOPNOTSUPP;
405
406
/*
407
* It's impossible to use a range breakpoint to fake out
408
* user vs kernel detection because bp_len - 1 can't
409
* have the high bit set. If we ever allow range instruction
410
* breakpoints, then we'll have to check for kprobe-blacklisted
411
* addresses anywhere in the range.
412
*/
413
hw->mask = attr->bp_len - 1;
414
hw->len = X86_BREAKPOINT_LEN_1;
415
}
416
417
return 0;
418
}
419
420
/*
421
* Validate the arch-specific HW Breakpoint register settings
422
*/
423
int hw_breakpoint_arch_parse(struct perf_event *bp,
424
const struct perf_event_attr *attr,
425
struct arch_hw_breakpoint *hw)
426
{
427
unsigned int align;
428
int ret;
429
430
431
ret = arch_build_bp_info(bp, attr, hw);
432
if (ret)
433
return ret;
434
435
switch (hw->len) {
436
case X86_BREAKPOINT_LEN_1:
437
align = 0;
438
if (hw->mask)
439
align = hw->mask;
440
break;
441
case X86_BREAKPOINT_LEN_2:
442
align = 1;
443
break;
444
case X86_BREAKPOINT_LEN_4:
445
align = 3;
446
break;
447
#ifdef CONFIG_X86_64
448
case X86_BREAKPOINT_LEN_8:
449
align = 7;
450
break;
451
#endif
452
default:
453
WARN_ON_ONCE(1);
454
return -EINVAL;
455
}
456
457
/*
458
* Check that the low-order bits of the address are appropriate
459
* for the alignment implied by len.
460
*/
461
if (hw->address & align)
462
return -EINVAL;
463
464
return 0;
465
}
466
467
/*
468
* Release the user breakpoints used by ptrace
469
*/
470
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
471
{
472
int i;
473
struct thread_struct *t = &tsk->thread;
474
475
for (i = 0; i < HBP_NUM; i++) {
476
unregister_hw_breakpoint(t->ptrace_bps[i]);
477
t->ptrace_bps[i] = NULL;
478
}
479
480
t->virtual_dr6 = 0;
481
t->ptrace_dr7 = 0;
482
}
483
484
void hw_breakpoint_restore(void)
485
{
486
set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
487
set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
488
set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
489
set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
490
set_debugreg(DR6_RESERVED, 6);
491
set_debugreg(__this_cpu_read(cpu_dr7), 7);
492
}
493
EXPORT_SYMBOL_FOR_KVM(hw_breakpoint_restore);
494
495
/*
496
* Handle debug exception notifications.
497
*
498
* Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
499
*
500
* NOTIFY_DONE returned if one of the following conditions is true.
501
* i) When the causative address is from user-space and the exception
502
* is a valid one, i.e. not triggered as a result of lazy debug register
503
* switching
504
* ii) When there are more bits than trap<n> set in DR6 register (such
505
* as BD, BS or BT) indicating that more than one debug condition is
506
* met and requires some more action in do_debug().
507
*
508
* NOTIFY_STOP returned for all other cases
509
*
510
*/
511
static int hw_breakpoint_handler(struct die_args *args)
512
{
513
int i, rc = NOTIFY_STOP;
514
struct perf_event *bp;
515
unsigned long *dr6_p;
516
unsigned long dr6;
517
bool bpx;
518
519
/* The DR6 value is pointed by args->err */
520
dr6_p = (unsigned long *)ERR_PTR(args->err);
521
dr6 = *dr6_p;
522
523
/* Do an early return if no trap bits are set in DR6 */
524
if ((dr6 & DR_TRAP_BITS) == 0)
525
return NOTIFY_DONE;
526
527
/* Handle all the breakpoints that were triggered */
528
for (i = 0; i < HBP_NUM; ++i) {
529
if (likely(!(dr6 & (DR_TRAP0 << i))))
530
continue;
531
532
bp = this_cpu_read(bp_per_reg[i]);
533
if (!bp)
534
continue;
535
536
bpx = bp->hw.info.type == X86_BREAKPOINT_EXECUTE;
537
538
/*
539
* TF and data breakpoints are traps and can be merged, however
540
* instruction breakpoints are faults and will be raised
541
* separately.
542
*
543
* However DR6 can indicate both TF and instruction
544
* breakpoints. In that case take TF as that has precedence and
545
* delay the instruction breakpoint for the next exception.
546
*/
547
if (bpx && (dr6 & DR_STEP))
548
continue;
549
550
/*
551
* Reset the 'i'th TRAP bit in dr6 to denote completion of
552
* exception handling
553
*/
554
(*dr6_p) &= ~(DR_TRAP0 << i);
555
556
perf_bp_event(bp, args->regs);
557
558
/*
559
* Set up resume flag to avoid breakpoint recursion when
560
* returning back to origin.
561
*/
562
if (bpx)
563
args->regs->flags |= X86_EFLAGS_RF;
564
}
565
566
/*
567
* Further processing in do_debug() is needed for a) user-space
568
* breakpoints (to generate signals) and b) when the system has
569
* taken exception due to multiple causes
570
*/
571
if ((current->thread.virtual_dr6 & DR_TRAP_BITS) ||
572
(dr6 & (~DR_TRAP_BITS)))
573
rc = NOTIFY_DONE;
574
575
return rc;
576
}
577
578
/*
579
* Handle debug exception notifications.
580
*/
581
int hw_breakpoint_exceptions_notify(
582
struct notifier_block *unused, unsigned long val, void *data)
583
{
584
if (val != DIE_DEBUG)
585
return NOTIFY_DONE;
586
587
return hw_breakpoint_handler(data);
588
}
589
590
void hw_breakpoint_pmu_read(struct perf_event *bp)
591
{
592
/* TODO */
593
}
594
595