Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/cpuid.c
26444 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Kernel-based Virtual Machine driver for Linux
4
* cpuid support routines
5
*
6
* derived from arch/x86/kvm/x86.c
7
*
8
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
9
* Copyright IBM Corporation, 2008
10
*/
11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13
#include <linux/kvm_host.h>
14
#include "linux/lockdep.h"
15
#include <linux/export.h>
16
#include <linux/vmalloc.h>
17
#include <linux/uaccess.h>
18
#include <linux/sched/stat.h>
19
20
#include <asm/processor.h>
21
#include <asm/user.h>
22
#include <asm/fpu/xstate.h>
23
#include <asm/sgx.h>
24
#include <asm/cpuid/api.h>
25
#include "cpuid.h"
26
#include "lapic.h"
27
#include "mmu.h"
28
#include "trace.h"
29
#include "pmu.h"
30
#include "xen.h"
31
32
/*
33
* Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34
* aligned to sizeof(unsigned long) because it's not accessed via bitops.
35
*/
36
u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37
EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38
39
struct cpuid_xstate_sizes {
40
u32 eax;
41
u32 ebx;
42
u32 ecx;
43
};
44
45
static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
46
47
void __init kvm_init_xstate_sizes(void)
48
{
49
u32 ign;
50
int i;
51
52
for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
53
struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
54
55
cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
56
}
57
}
58
59
u32 xstate_required_size(u64 xstate_bv, bool compacted)
60
{
61
u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
62
int i;
63
64
xstate_bv &= XFEATURE_MASK_EXTEND;
65
for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes) && xstate_bv; i++) {
66
struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
67
u32 offset;
68
69
if (!(xstate_bv & BIT_ULL(i)))
70
continue;
71
72
/* ECX[1]: 64B alignment in compacted form */
73
if (compacted)
74
offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
75
else
76
offset = xs->ebx;
77
ret = max(ret, offset + xs->eax);
78
xstate_bv &= ~BIT_ULL(i);
79
}
80
81
return ret;
82
}
83
84
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry2(
85
struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
86
{
87
struct kvm_cpuid_entry2 *e;
88
int i;
89
90
/*
91
* KVM has a semi-arbitrary rule that querying the guest's CPUID model
92
* with IRQs disabled is disallowed. The CPUID model can legitimately
93
* have over one hundred entries, i.e. the lookup is slow, and IRQs are
94
* typically disabled in KVM only when KVM is in a performance critical
95
* path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break
96
* if this rule is violated, this assertion is purely to flag potential
97
* performance issues. If this fires, consider moving the lookup out
98
* of the hotpath, e.g. by caching information during CPUID updates.
99
*/
100
lockdep_assert_irqs_enabled();
101
102
for (i = 0; i < nent; i++) {
103
e = &entries[i];
104
105
if (e->function != function)
106
continue;
107
108
/*
109
* If the index isn't significant, use the first entry with a
110
* matching function. It's userspace's responsibility to not
111
* provide "duplicate" entries in all cases.
112
*/
113
if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
114
return e;
115
116
117
/*
118
* Similarly, use the first matching entry if KVM is doing a
119
* lookup (as opposed to emulating CPUID) for a function that's
120
* architecturally defined as not having a significant index.
121
*/
122
if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
123
/*
124
* Direct lookups from KVM should not diverge from what
125
* KVM defines internally (the architectural behavior).
126
*/
127
WARN_ON_ONCE(cpuid_function_is_indexed(function));
128
return e;
129
}
130
}
131
132
return NULL;
133
}
134
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry2);
135
136
static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
137
{
138
struct kvm_cpuid_entry2 *best;
139
u64 xfeatures;
140
141
/*
142
* The existing code assumes virtual address is 48-bit or 57-bit in the
143
* canonical address checks; exit if it is ever changed.
144
*/
145
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
146
if (best) {
147
int vaddr_bits = (best->eax & 0xff00) >> 8;
148
149
if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150
return -EINVAL;
151
}
152
153
/*
154
* Exposing dynamic xfeatures to the guest requires additional
155
* enabling in the FPU, e.g. to expand the guest XSAVE state size.
156
*/
157
best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
158
if (!best)
159
return 0;
160
161
xfeatures = best->eax | ((u64)best->edx << 32);
162
xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163
if (!xfeatures)
164
return 0;
165
166
return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167
}
168
169
static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu);
170
static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
171
172
/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
173
static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
174
int nent)
175
{
176
struct kvm_cpuid_entry2 *orig;
177
int i;
178
179
/*
180
* Apply runtime CPUID updates to the incoming CPUID entries to avoid
181
* false positives due mismatches on KVM-owned feature flags.
182
*
183
* Note! @e2 and @nent track the _old_ CPUID entries!
184
*/
185
kvm_update_cpuid_runtime(vcpu);
186
kvm_apply_cpuid_pv_features_quirk(vcpu);
187
188
if (nent != vcpu->arch.cpuid_nent)
189
return -EINVAL;
190
191
for (i = 0; i < nent; i++) {
192
orig = &vcpu->arch.cpuid_entries[i];
193
if (e2[i].function != orig->function ||
194
e2[i].index != orig->index ||
195
e2[i].flags != orig->flags ||
196
e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
197
e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
198
return -EINVAL;
199
}
200
201
return 0;
202
}
203
204
static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
205
const char *sig)
206
{
207
struct kvm_hypervisor_cpuid cpuid = {};
208
struct kvm_cpuid_entry2 *entry;
209
u32 base;
210
211
for_each_possible_cpuid_base_hypervisor(base) {
212
entry = kvm_find_cpuid_entry(vcpu, base);
213
214
if (entry) {
215
u32 signature[3];
216
217
signature[0] = entry->ebx;
218
signature[1] = entry->ecx;
219
signature[2] = entry->edx;
220
221
if (!memcmp(signature, sig, sizeof(signature))) {
222
cpuid.base = base;
223
cpuid.limit = entry->eax;
224
break;
225
}
226
}
227
}
228
229
return cpuid;
230
}
231
232
static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu)
233
{
234
struct kvm_hypervisor_cpuid kvm_cpuid;
235
struct kvm_cpuid_entry2 *best;
236
237
kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
238
if (!kvm_cpuid.base)
239
return 0;
240
241
best = kvm_find_cpuid_entry(vcpu, kvm_cpuid.base | KVM_CPUID_FEATURES);
242
if (!best)
243
return 0;
244
245
if (kvm_hlt_in_guest(vcpu->kvm))
246
best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
247
248
return best->eax;
249
}
250
251
/*
252
* Calculate guest's supported XCR0 taking into account guest CPUID data and
253
* KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
254
*/
255
static u64 cpuid_get_supported_xcr0(struct kvm_vcpu *vcpu)
256
{
257
struct kvm_cpuid_entry2 *best;
258
259
best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
260
if (!best)
261
return 0;
262
263
return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
264
}
265
266
static __always_inline void kvm_update_feature_runtime(struct kvm_vcpu *vcpu,
267
struct kvm_cpuid_entry2 *entry,
268
unsigned int x86_feature,
269
bool has_feature)
270
{
271
cpuid_entry_change(entry, x86_feature, has_feature);
272
guest_cpu_cap_change(vcpu, x86_feature, has_feature);
273
}
274
275
static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
276
{
277
struct kvm_cpuid_entry2 *best;
278
279
vcpu->arch.cpuid_dynamic_bits_dirty = false;
280
281
best = kvm_find_cpuid_entry(vcpu, 1);
282
if (best) {
283
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSXSAVE,
284
kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
285
286
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_APIC,
287
vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
288
289
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
290
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_MWAIT,
291
vcpu->arch.ia32_misc_enable_msr &
292
MSR_IA32_MISC_ENABLE_MWAIT);
293
}
294
295
best = kvm_find_cpuid_entry_index(vcpu, 7, 0);
296
if (best)
297
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSPKE,
298
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
299
300
301
best = kvm_find_cpuid_entry_index(vcpu, 0xD, 0);
302
if (best)
303
best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
304
305
best = kvm_find_cpuid_entry_index(vcpu, 0xD, 1);
306
if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
307
cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
308
best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
309
}
310
311
static bool kvm_cpuid_has_hyperv(struct kvm_vcpu *vcpu)
312
{
313
#ifdef CONFIG_KVM_HYPERV
314
struct kvm_cpuid_entry2 *entry;
315
316
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE);
317
return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
318
#else
319
return false;
320
#endif
321
}
322
323
static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
324
{
325
struct kvm_cpuid_entry2 *entry;
326
327
entry = kvm_find_cpuid_entry(vcpu, 0);
328
if (!entry)
329
return false;
330
331
return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
332
is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
333
}
334
335
/*
336
* This isn't truly "unsafe", but except for the cpu_caps initialization code,
337
* all register lookups should use __cpuid_entry_get_reg(), which provides
338
* compile-time validation of the input.
339
*/
340
static u32 cpuid_get_reg_unsafe(struct kvm_cpuid_entry2 *entry, u32 reg)
341
{
342
switch (reg) {
343
case CPUID_EAX:
344
return entry->eax;
345
case CPUID_EBX:
346
return entry->ebx;
347
case CPUID_ECX:
348
return entry->ecx;
349
case CPUID_EDX:
350
return entry->edx;
351
default:
352
WARN_ON_ONCE(1);
353
return 0;
354
}
355
}
356
357
static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
358
bool include_partially_emulated);
359
360
void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
361
{
362
struct kvm_lapic *apic = vcpu->arch.apic;
363
struct kvm_cpuid_entry2 *best;
364
struct kvm_cpuid_entry2 *entry;
365
bool allow_gbpages;
366
int i;
367
368
memset(vcpu->arch.cpu_caps, 0, sizeof(vcpu->arch.cpu_caps));
369
BUILD_BUG_ON(ARRAY_SIZE(reverse_cpuid) != NR_KVM_CPU_CAPS);
370
371
/*
372
* Reset guest capabilities to userspace's guest CPUID definition, i.e.
373
* honor userspace's definition for features that don't require KVM or
374
* hardware management/support (or that KVM simply doesn't care about).
375
*/
376
for (i = 0; i < NR_KVM_CPU_CAPS; i++) {
377
const struct cpuid_reg cpuid = reverse_cpuid[i];
378
struct kvm_cpuid_entry2 emulated;
379
380
if (!cpuid.function)
381
continue;
382
383
entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index);
384
if (!entry)
385
continue;
386
387
cpuid_func_emulated(&emulated, cpuid.function, true);
388
389
/*
390
* A vCPU has a feature if it's supported by KVM and is enabled
391
* in guest CPUID. Note, this includes features that are
392
* supported by KVM but aren't advertised to userspace!
393
*/
394
vcpu->arch.cpu_caps[i] = kvm_cpu_caps[i] |
395
cpuid_get_reg_unsafe(&emulated, cpuid.reg);
396
vcpu->arch.cpu_caps[i] &= cpuid_get_reg_unsafe(entry, cpuid.reg);
397
}
398
399
kvm_update_cpuid_runtime(vcpu);
400
401
/*
402
* If TDP is enabled, let the guest use GBPAGES if they're supported in
403
* hardware. The hardware page walker doesn't let KVM disable GBPAGES,
404
* i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
405
* walk for performance and complexity reasons. Not to mention KVM
406
* _can't_ solve the problem because GVA->GPA walks aren't visible to
407
* KVM once a TDP translation is installed. Mimic hardware behavior so
408
* that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
409
* If TDP is disabled, honor *only* guest CPUID as KVM has full control
410
* and can install smaller shadow pages if the host lacks 1GiB support.
411
*/
412
allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
413
guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES);
414
guest_cpu_cap_change(vcpu, X86_FEATURE_GBPAGES, allow_gbpages);
415
416
best = kvm_find_cpuid_entry(vcpu, 1);
417
if (best && apic) {
418
if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
419
apic->lapic_timer.timer_mode_mask = 3 << 17;
420
else
421
apic->lapic_timer.timer_mode_mask = 1 << 17;
422
423
kvm_apic_set_version(vcpu);
424
}
425
426
vcpu->arch.guest_supported_xcr0 = cpuid_get_supported_xcr0(vcpu);
427
428
vcpu->arch.pv_cpuid.features = kvm_apply_cpuid_pv_features_quirk(vcpu);
429
430
vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
431
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
432
vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
433
434
kvm_pmu_refresh(vcpu);
435
436
#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
437
vcpu->arch.cr4_guest_rsvd_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_) |
438
__cr4_reserved_bits(guest_cpu_cap_has, vcpu);
439
#undef __kvm_cpu_cap_has
440
441
kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu));
442
443
/* Invoke the vendor callback only after the above state is updated. */
444
kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
445
446
/*
447
* Except for the MMU, which needs to do its thing any vendor specific
448
* adjustments to the reserved GPA bits.
449
*/
450
kvm_mmu_after_set_cpuid(vcpu);
451
}
452
453
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
454
{
455
struct kvm_cpuid_entry2 *best;
456
457
best = kvm_find_cpuid_entry(vcpu, 0x80000000);
458
if (!best || best->eax < 0x80000008)
459
goto not_found;
460
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
461
if (best)
462
return best->eax & 0xff;
463
not_found:
464
return 36;
465
}
466
467
int cpuid_query_maxguestphyaddr(struct kvm_vcpu *vcpu)
468
{
469
struct kvm_cpuid_entry2 *best;
470
471
best = kvm_find_cpuid_entry(vcpu, 0x80000000);
472
if (!best || best->eax < 0x80000008)
473
goto not_found;
474
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
475
if (best)
476
return (best->eax >> 16) & 0xff;
477
not_found:
478
return 0;
479
}
480
481
/*
482
* This "raw" version returns the reserved GPA bits without any adjustments for
483
* encryption technologies that usurp bits. The raw mask should be used if and
484
* only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
485
*/
486
u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
487
{
488
return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
489
}
490
491
static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
492
int nent)
493
{
494
u32 vcpu_caps[NR_KVM_CPU_CAPS];
495
int r;
496
497
/*
498
* Swap the existing (old) entries with the incoming (new) entries in
499
* order to massage the new entries, e.g. to account for dynamic bits
500
* that KVM controls, without clobbering the current guest CPUID, which
501
* KVM needs to preserve in order to unwind on failure.
502
*
503
* Similarly, save the vCPU's current cpu_caps so that the capabilities
504
* can be updated alongside the CPUID entries when performing runtime
505
* updates. Full initialization is done if and only if the vCPU hasn't
506
* run, i.e. only if userspace is potentially changing CPUID features.
507
*/
508
swap(vcpu->arch.cpuid_entries, e2);
509
swap(vcpu->arch.cpuid_nent, nent);
510
511
memcpy(vcpu_caps, vcpu->arch.cpu_caps, sizeof(vcpu_caps));
512
BUILD_BUG_ON(sizeof(vcpu_caps) != sizeof(vcpu->arch.cpu_caps));
513
514
/*
515
* KVM does not correctly handle changing guest CPUID after KVM_RUN, as
516
* MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
517
* tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
518
* faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
519
* the core vCPU model on the fly. It would've been better to forbid any
520
* KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
521
* some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
522
* KVM_SET_CPUID{,2} again. To support this legacy behavior, check
523
* whether the supplied CPUID data is equal to what's already set.
524
*/
525
if (kvm_vcpu_has_run(vcpu)) {
526
r = kvm_cpuid_check_equal(vcpu, e2, nent);
527
if (r)
528
goto err;
529
goto success;
530
}
531
532
#ifdef CONFIG_KVM_HYPERV
533
if (kvm_cpuid_has_hyperv(vcpu)) {
534
r = kvm_hv_vcpu_init(vcpu);
535
if (r)
536
goto err;
537
}
538
#endif
539
540
r = kvm_check_cpuid(vcpu);
541
if (r)
542
goto err;
543
544
#ifdef CONFIG_KVM_XEN
545
vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
546
#endif
547
kvm_vcpu_after_set_cpuid(vcpu);
548
549
success:
550
kvfree(e2);
551
return 0;
552
553
err:
554
memcpy(vcpu->arch.cpu_caps, vcpu_caps, sizeof(vcpu_caps));
555
swap(vcpu->arch.cpuid_entries, e2);
556
swap(vcpu->arch.cpuid_nent, nent);
557
return r;
558
}
559
560
/* when an old userspace process fills a new kernel module */
561
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
562
struct kvm_cpuid *cpuid,
563
struct kvm_cpuid_entry __user *entries)
564
{
565
int r, i;
566
struct kvm_cpuid_entry *e = NULL;
567
struct kvm_cpuid_entry2 *e2 = NULL;
568
569
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
570
return -E2BIG;
571
572
if (cpuid->nent) {
573
e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
574
if (IS_ERR(e))
575
return PTR_ERR(e);
576
577
e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
578
if (!e2) {
579
r = -ENOMEM;
580
goto out_free_cpuid;
581
}
582
}
583
for (i = 0; i < cpuid->nent; i++) {
584
e2[i].function = e[i].function;
585
e2[i].eax = e[i].eax;
586
e2[i].ebx = e[i].ebx;
587
e2[i].ecx = e[i].ecx;
588
e2[i].edx = e[i].edx;
589
e2[i].index = 0;
590
e2[i].flags = 0;
591
e2[i].padding[0] = 0;
592
e2[i].padding[1] = 0;
593
e2[i].padding[2] = 0;
594
}
595
596
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
597
if (r)
598
kvfree(e2);
599
600
out_free_cpuid:
601
kvfree(e);
602
603
return r;
604
}
605
606
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
607
struct kvm_cpuid2 *cpuid,
608
struct kvm_cpuid_entry2 __user *entries)
609
{
610
struct kvm_cpuid_entry2 *e2 = NULL;
611
int r;
612
613
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
614
return -E2BIG;
615
616
if (cpuid->nent) {
617
e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
618
if (IS_ERR(e2))
619
return PTR_ERR(e2);
620
}
621
622
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
623
if (r)
624
kvfree(e2);
625
626
return r;
627
}
628
629
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
630
struct kvm_cpuid2 *cpuid,
631
struct kvm_cpuid_entry2 __user *entries)
632
{
633
if (cpuid->nent < vcpu->arch.cpuid_nent)
634
return -E2BIG;
635
636
if (vcpu->arch.cpuid_dynamic_bits_dirty)
637
kvm_update_cpuid_runtime(vcpu);
638
639
if (copy_to_user(entries, vcpu->arch.cpuid_entries,
640
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
641
return -EFAULT;
642
643
cpuid->nent = vcpu->arch.cpuid_nent;
644
return 0;
645
}
646
647
static __always_inline u32 raw_cpuid_get(struct cpuid_reg cpuid)
648
{
649
struct kvm_cpuid_entry2 entry;
650
u32 base;
651
652
/*
653
* KVM only supports features defined by Intel (0x0), AMD (0x80000000),
654
* and Centaur (0xc0000000). WARN if a feature for new vendor base is
655
* defined, as this and other code would need to be updated.
656
*/
657
base = cpuid.function & 0xffff0000;
658
if (WARN_ON_ONCE(base && base != 0x80000000 && base != 0xc0000000))
659
return 0;
660
661
if (cpuid_eax(base) < cpuid.function)
662
return 0;
663
664
cpuid_count(cpuid.function, cpuid.index,
665
&entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
666
667
return *__cpuid_entry_get_reg(&entry, cpuid.reg);
668
}
669
670
/*
671
* For kernel-defined leafs, mask KVM's supported feature set with the kernel's
672
* capabilities as well as raw CPUID. For KVM-defined leafs, consult only raw
673
* CPUID, as KVM is the one and only authority (in the kernel).
674
*/
675
#define kvm_cpu_cap_init(leaf, feature_initializers...) \
676
do { \
677
const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32); \
678
const u32 __maybe_unused kvm_cpu_cap_init_in_progress = leaf; \
679
const u32 *kernel_cpu_caps = boot_cpu_data.x86_capability; \
680
u32 kvm_cpu_cap_passthrough = 0; \
681
u32 kvm_cpu_cap_synthesized = 0; \
682
u32 kvm_cpu_cap_emulated = 0; \
683
u32 kvm_cpu_cap_features = 0; \
684
\
685
feature_initializers \
686
\
687
kvm_cpu_caps[leaf] = kvm_cpu_cap_features; \
688
\
689
if (leaf < NCAPINTS) \
690
kvm_cpu_caps[leaf] &= kernel_cpu_caps[leaf]; \
691
\
692
kvm_cpu_caps[leaf] |= kvm_cpu_cap_passthrough; \
693
kvm_cpu_caps[leaf] &= (raw_cpuid_get(cpuid) | \
694
kvm_cpu_cap_synthesized); \
695
kvm_cpu_caps[leaf] |= kvm_cpu_cap_emulated; \
696
} while (0)
697
698
/*
699
* Assert that the feature bit being declared, e.g. via F(), is in the CPUID
700
* word that's being initialized. Exempt 0x8000_0001.EDX usage of 0x1.EDX
701
* features, as AMD duplicated many 0x1.EDX features into 0x8000_0001.EDX.
702
*/
703
#define KVM_VALIDATE_CPU_CAP_USAGE(name) \
704
do { \
705
u32 __leaf = __feature_leaf(X86_FEATURE_##name); \
706
\
707
BUILD_BUG_ON(__leaf != kvm_cpu_cap_init_in_progress); \
708
} while (0)
709
710
#define F(name) \
711
({ \
712
KVM_VALIDATE_CPU_CAP_USAGE(name); \
713
kvm_cpu_cap_features |= feature_bit(name); \
714
})
715
716
/* Scattered Flag - For features that are scattered by cpufeatures.h. */
717
#define SCATTERED_F(name) \
718
({ \
719
BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \
720
KVM_VALIDATE_CPU_CAP_USAGE(name); \
721
if (boot_cpu_has(X86_FEATURE_##name)) \
722
F(name); \
723
})
724
725
/* Features that KVM supports only on 64-bit kernels. */
726
#define X86_64_F(name) \
727
({ \
728
KVM_VALIDATE_CPU_CAP_USAGE(name); \
729
if (IS_ENABLED(CONFIG_X86_64)) \
730
F(name); \
731
})
732
733
/*
734
* Emulated Feature - For features that KVM emulates in software irrespective
735
* of host CPU/kernel support.
736
*/
737
#define EMULATED_F(name) \
738
({ \
739
kvm_cpu_cap_emulated |= feature_bit(name); \
740
F(name); \
741
})
742
743
/*
744
* Synthesized Feature - For features that are synthesized into boot_cpu_data,
745
* i.e. may not be present in the raw CPUID, but can still be advertised to
746
* userspace. Primarily used for mitigation related feature flags.
747
*/
748
#define SYNTHESIZED_F(name) \
749
({ \
750
kvm_cpu_cap_synthesized |= feature_bit(name); \
751
F(name); \
752
})
753
754
/*
755
* Passthrough Feature - For features that KVM supports based purely on raw
756
* hardware CPUID, i.e. that KVM virtualizes even if the host kernel doesn't
757
* use the feature. Simply force set the feature in KVM's capabilities, raw
758
* CPUID support will be factored in by kvm_cpu_cap_mask().
759
*/
760
#define PASSTHROUGH_F(name) \
761
({ \
762
kvm_cpu_cap_passthrough |= feature_bit(name); \
763
F(name); \
764
})
765
766
/*
767
* Aliased Features - For features in 0x8000_0001.EDX that are duplicates of
768
* identical 0x1.EDX features, and thus are aliased from 0x1 to 0x8000_0001.
769
*/
770
#define ALIASED_1_EDX_F(name) \
771
({ \
772
BUILD_BUG_ON(__feature_leaf(X86_FEATURE_##name) != CPUID_1_EDX); \
773
BUILD_BUG_ON(kvm_cpu_cap_init_in_progress != CPUID_8000_0001_EDX); \
774
kvm_cpu_cap_features |= feature_bit(name); \
775
})
776
777
/*
778
* Vendor Features - For features that KVM supports, but are added in later
779
* because they require additional vendor enabling.
780
*/
781
#define VENDOR_F(name) \
782
({ \
783
KVM_VALIDATE_CPU_CAP_USAGE(name); \
784
})
785
786
/*
787
* Runtime Features - For features that KVM dynamically sets/clears at runtime,
788
* e.g. when CR4 changes, but which are never advertised to userspace.
789
*/
790
#define RUNTIME_F(name) \
791
({ \
792
KVM_VALIDATE_CPU_CAP_USAGE(name); \
793
})
794
795
/*
796
* Undefine the MSR bit macro to avoid token concatenation issues when
797
* processing X86_FEATURE_SPEC_CTRL_SSBD.
798
*/
799
#undef SPEC_CTRL_SSBD
800
801
/* DS is defined by ptrace-abi.h on 32-bit builds. */
802
#undef DS
803
804
void kvm_set_cpu_caps(void)
805
{
806
memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
807
808
BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
809
sizeof(boot_cpu_data.x86_capability));
810
811
kvm_cpu_cap_init(CPUID_1_ECX,
812
F(XMM3),
813
F(PCLMULQDQ),
814
VENDOR_F(DTES64),
815
/*
816
* NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
817
* advertised to guests via CPUID! MWAIT is also technically a
818
* runtime flag thanks to IA32_MISC_ENABLES; mark it as such so
819
* that KVM is aware that it's a known, unadvertised flag.
820
*/
821
RUNTIME_F(MWAIT),
822
/* DS-CPL */
823
VENDOR_F(VMX),
824
/* SMX, EST */
825
/* TM2 */
826
F(SSSE3),
827
/* CNXT-ID */
828
/* Reserved */
829
F(FMA),
830
F(CX16),
831
/* xTPR Update */
832
F(PDCM),
833
F(PCID),
834
/* Reserved, DCA */
835
F(XMM4_1),
836
F(XMM4_2),
837
EMULATED_F(X2APIC),
838
F(MOVBE),
839
F(POPCNT),
840
EMULATED_F(TSC_DEADLINE_TIMER),
841
F(AES),
842
F(XSAVE),
843
RUNTIME_F(OSXSAVE),
844
F(AVX),
845
F(F16C),
846
F(RDRAND),
847
EMULATED_F(HYPERVISOR),
848
);
849
850
kvm_cpu_cap_init(CPUID_1_EDX,
851
F(FPU),
852
F(VME),
853
F(DE),
854
F(PSE),
855
F(TSC),
856
F(MSR),
857
F(PAE),
858
F(MCE),
859
F(CX8),
860
F(APIC),
861
/* Reserved */
862
F(SEP),
863
F(MTRR),
864
F(PGE),
865
F(MCA),
866
F(CMOV),
867
F(PAT),
868
F(PSE36),
869
/* PSN */
870
F(CLFLUSH),
871
/* Reserved */
872
VENDOR_F(DS),
873
/* ACPI */
874
F(MMX),
875
F(FXSR),
876
F(XMM),
877
F(XMM2),
878
F(SELFSNOOP),
879
/* HTT, TM, Reserved, PBE */
880
);
881
882
kvm_cpu_cap_init(CPUID_7_0_EBX,
883
F(FSGSBASE),
884
EMULATED_F(TSC_ADJUST),
885
F(SGX),
886
F(BMI1),
887
F(HLE),
888
F(AVX2),
889
F(FDP_EXCPTN_ONLY),
890
F(SMEP),
891
F(BMI2),
892
F(ERMS),
893
F(INVPCID),
894
F(RTM),
895
F(ZERO_FCS_FDS),
896
VENDOR_F(MPX),
897
F(AVX512F),
898
F(AVX512DQ),
899
F(RDSEED),
900
F(ADX),
901
F(SMAP),
902
F(AVX512IFMA),
903
F(CLFLUSHOPT),
904
F(CLWB),
905
VENDOR_F(INTEL_PT),
906
F(AVX512PF),
907
F(AVX512ER),
908
F(AVX512CD),
909
F(SHA_NI),
910
F(AVX512BW),
911
F(AVX512VL),
912
);
913
914
kvm_cpu_cap_init(CPUID_7_ECX,
915
F(AVX512VBMI),
916
PASSTHROUGH_F(LA57),
917
F(PKU),
918
RUNTIME_F(OSPKE),
919
F(RDPID),
920
F(AVX512_VPOPCNTDQ),
921
F(UMIP),
922
F(AVX512_VBMI2),
923
F(GFNI),
924
F(VAES),
925
F(VPCLMULQDQ),
926
F(AVX512_VNNI),
927
F(AVX512_BITALG),
928
F(CLDEMOTE),
929
F(MOVDIRI),
930
F(MOVDIR64B),
931
VENDOR_F(WAITPKG),
932
F(SGX_LC),
933
F(BUS_LOCK_DETECT),
934
);
935
936
/*
937
* PKU not yet implemented for shadow paging and requires OSPKE
938
* to be set on the host. Clear it if that is not the case
939
*/
940
if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
941
kvm_cpu_cap_clear(X86_FEATURE_PKU);
942
943
kvm_cpu_cap_init(CPUID_7_EDX,
944
F(AVX512_4VNNIW),
945
F(AVX512_4FMAPS),
946
F(SPEC_CTRL),
947
F(SPEC_CTRL_SSBD),
948
EMULATED_F(ARCH_CAPABILITIES),
949
F(INTEL_STIBP),
950
F(MD_CLEAR),
951
F(AVX512_VP2INTERSECT),
952
F(FSRM),
953
F(SERIALIZE),
954
F(TSXLDTRK),
955
F(AVX512_FP16),
956
F(AMX_TILE),
957
F(AMX_INT8),
958
F(AMX_BF16),
959
F(FLUSH_L1D),
960
);
961
962
if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
963
boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
964
boot_cpu_has(X86_FEATURE_AMD_IBRS))
965
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
966
if (boot_cpu_has(X86_FEATURE_STIBP))
967
kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
968
if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
969
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
970
971
kvm_cpu_cap_init(CPUID_7_1_EAX,
972
F(SHA512),
973
F(SM3),
974
F(SM4),
975
F(AVX_VNNI),
976
F(AVX512_BF16),
977
F(CMPCCXADD),
978
F(FZRM),
979
F(FSRS),
980
F(FSRC),
981
F(WRMSRNS),
982
X86_64_F(LKGS),
983
F(AMX_FP16),
984
F(AVX_IFMA),
985
F(LAM),
986
);
987
988
kvm_cpu_cap_init(CPUID_7_1_EDX,
989
F(AVX_VNNI_INT8),
990
F(AVX_NE_CONVERT),
991
F(AMX_COMPLEX),
992
F(AVX_VNNI_INT16),
993
F(PREFETCHITI),
994
F(AVX10),
995
);
996
997
kvm_cpu_cap_init(CPUID_7_2_EDX,
998
F(INTEL_PSFD),
999
F(IPRED_CTRL),
1000
F(RRSBA_CTRL),
1001
F(DDPD_U),
1002
F(BHI_CTRL),
1003
F(MCDT_NO),
1004
);
1005
1006
kvm_cpu_cap_init(CPUID_D_1_EAX,
1007
F(XSAVEOPT),
1008
F(XSAVEC),
1009
F(XGETBV1),
1010
F(XSAVES),
1011
X86_64_F(XFD),
1012
);
1013
1014
kvm_cpu_cap_init(CPUID_12_EAX,
1015
SCATTERED_F(SGX1),
1016
SCATTERED_F(SGX2),
1017
SCATTERED_F(SGX_EDECCSSA),
1018
);
1019
1020
kvm_cpu_cap_init(CPUID_24_0_EBX,
1021
F(AVX10_128),
1022
F(AVX10_256),
1023
F(AVX10_512),
1024
);
1025
1026
kvm_cpu_cap_init(CPUID_8000_0001_ECX,
1027
F(LAHF_LM),
1028
F(CMP_LEGACY),
1029
VENDOR_F(SVM),
1030
/* ExtApicSpace */
1031
F(CR8_LEGACY),
1032
F(ABM),
1033
F(SSE4A),
1034
F(MISALIGNSSE),
1035
F(3DNOWPREFETCH),
1036
F(OSVW),
1037
/* IBS */
1038
F(XOP),
1039
/* SKINIT, WDT, LWP */
1040
F(FMA4),
1041
F(TBM),
1042
F(TOPOEXT),
1043
VENDOR_F(PERFCTR_CORE),
1044
);
1045
1046
kvm_cpu_cap_init(CPUID_8000_0001_EDX,
1047
ALIASED_1_EDX_F(FPU),
1048
ALIASED_1_EDX_F(VME),
1049
ALIASED_1_EDX_F(DE),
1050
ALIASED_1_EDX_F(PSE),
1051
ALIASED_1_EDX_F(TSC),
1052
ALIASED_1_EDX_F(MSR),
1053
ALIASED_1_EDX_F(PAE),
1054
ALIASED_1_EDX_F(MCE),
1055
ALIASED_1_EDX_F(CX8),
1056
ALIASED_1_EDX_F(APIC),
1057
/* Reserved */
1058
F(SYSCALL),
1059
ALIASED_1_EDX_F(MTRR),
1060
ALIASED_1_EDX_F(PGE),
1061
ALIASED_1_EDX_F(MCA),
1062
ALIASED_1_EDX_F(CMOV),
1063
ALIASED_1_EDX_F(PAT),
1064
ALIASED_1_EDX_F(PSE36),
1065
/* Reserved */
1066
F(NX),
1067
/* Reserved */
1068
F(MMXEXT),
1069
ALIASED_1_EDX_F(MMX),
1070
ALIASED_1_EDX_F(FXSR),
1071
F(FXSR_OPT),
1072
X86_64_F(GBPAGES),
1073
F(RDTSCP),
1074
/* Reserved */
1075
X86_64_F(LM),
1076
F(3DNOWEXT),
1077
F(3DNOW),
1078
);
1079
1080
if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
1081
kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
1082
1083
kvm_cpu_cap_init(CPUID_8000_0007_EDX,
1084
SCATTERED_F(CONSTANT_TSC),
1085
);
1086
1087
kvm_cpu_cap_init(CPUID_8000_0008_EBX,
1088
F(CLZERO),
1089
F(XSAVEERPTR),
1090
F(WBNOINVD),
1091
F(AMD_IBPB),
1092
F(AMD_IBRS),
1093
F(AMD_SSBD),
1094
F(VIRT_SSBD),
1095
F(AMD_SSB_NO),
1096
F(AMD_STIBP),
1097
F(AMD_STIBP_ALWAYS_ON),
1098
F(AMD_IBRS_SAME_MODE),
1099
F(AMD_PSFD),
1100
F(AMD_IBPB_RET),
1101
);
1102
1103
/*
1104
* AMD has separate bits for each SPEC_CTRL bit.
1105
* arch/x86/kernel/cpu/bugs.c is kind enough to
1106
* record that in cpufeatures so use them.
1107
*/
1108
if (boot_cpu_has(X86_FEATURE_IBPB)) {
1109
kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
1110
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
1111
!boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
1112
kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
1113
}
1114
if (boot_cpu_has(X86_FEATURE_IBRS))
1115
kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
1116
if (boot_cpu_has(X86_FEATURE_STIBP))
1117
kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
1118
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
1119
kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
1120
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1121
kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
1122
/*
1123
* The preference is to use SPEC CTRL MSR instead of the
1124
* VIRT_SPEC MSR.
1125
*/
1126
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
1127
!boot_cpu_has(X86_FEATURE_AMD_SSBD))
1128
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
1129
1130
/* All SVM features required additional vendor module enabling. */
1131
kvm_cpu_cap_init(CPUID_8000_000A_EDX,
1132
VENDOR_F(NPT),
1133
VENDOR_F(VMCBCLEAN),
1134
VENDOR_F(FLUSHBYASID),
1135
VENDOR_F(NRIPS),
1136
VENDOR_F(TSCRATEMSR),
1137
VENDOR_F(V_VMSAVE_VMLOAD),
1138
VENDOR_F(LBRV),
1139
VENDOR_F(PAUSEFILTER),
1140
VENDOR_F(PFTHRESHOLD),
1141
VENDOR_F(VGIF),
1142
VENDOR_F(VNMI),
1143
VENDOR_F(SVME_ADDR_CHK),
1144
);
1145
1146
kvm_cpu_cap_init(CPUID_8000_001F_EAX,
1147
VENDOR_F(SME),
1148
VENDOR_F(SEV),
1149
/* VM_PAGE_FLUSH */
1150
VENDOR_F(SEV_ES),
1151
F(SME_COHERENT),
1152
);
1153
1154
kvm_cpu_cap_init(CPUID_8000_0021_EAX,
1155
F(NO_NESTED_DATA_BP),
1156
F(WRMSR_XX_BASE_NS),
1157
/*
1158
* Synthesize "LFENCE is serializing" into the AMD-defined entry
1159
* in KVM's supported CPUID, i.e. if the feature is reported as
1160
* supported by the kernel. LFENCE_RDTSC was a Linux-defined
1161
* synthetic feature long before AMD joined the bandwagon, e.g.
1162
* LFENCE is serializing on most CPUs that support SSE2. On
1163
* CPUs that don't support AMD's leaf, ANDing with the raw host
1164
* CPUID will drop the flags, and reporting support in AMD's
1165
* leaf can make it easier for userspace to detect the feature.
1166
*/
1167
SYNTHESIZED_F(LFENCE_RDTSC),
1168
/* SmmPgCfgLock */
1169
/* 4: Resv */
1170
SYNTHESIZED_F(VERW_CLEAR),
1171
F(NULL_SEL_CLR_BASE),
1172
/* UpperAddressIgnore */
1173
F(AUTOIBRS),
1174
F(PREFETCHI),
1175
EMULATED_F(NO_SMM_CTL_MSR),
1176
/* PrefetchCtlMsr */
1177
/* GpOnUserCpuid */
1178
/* EPSF */
1179
SYNTHESIZED_F(SBPB),
1180
SYNTHESIZED_F(IBPB_BRTYPE),
1181
SYNTHESIZED_F(SRSO_NO),
1182
F(SRSO_USER_KERNEL_NO),
1183
);
1184
1185
kvm_cpu_cap_init(CPUID_8000_0021_ECX,
1186
SYNTHESIZED_F(TSA_SQ_NO),
1187
SYNTHESIZED_F(TSA_L1_NO),
1188
);
1189
1190
kvm_cpu_cap_init(CPUID_8000_0022_EAX,
1191
F(PERFMON_V2),
1192
);
1193
1194
if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1195
kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
1196
1197
kvm_cpu_cap_init(CPUID_C000_0001_EDX,
1198
F(XSTORE),
1199
F(XSTORE_EN),
1200
F(XCRYPT),
1201
F(XCRYPT_EN),
1202
F(ACE2),
1203
F(ACE2_EN),
1204
F(PHE),
1205
F(PHE_EN),
1206
F(PMM),
1207
F(PMM_EN),
1208
);
1209
1210
/*
1211
* Hide RDTSCP and RDPID if either feature is reported as supported but
1212
* probing MSR_TSC_AUX failed. This is purely a sanity check and
1213
* should never happen, but the guest will likely crash if RDTSCP or
1214
* RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
1215
* the past. For example, the sanity check may fire if this instance of
1216
* KVM is running as L1 on top of an older, broken KVM.
1217
*/
1218
if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
1219
kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
1220
!kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
1221
kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
1222
kvm_cpu_cap_clear(X86_FEATURE_RDPID);
1223
}
1224
}
1225
EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
1226
1227
#undef F
1228
#undef SCATTERED_F
1229
#undef X86_64_F
1230
#undef EMULATED_F
1231
#undef SYNTHESIZED_F
1232
#undef PASSTHROUGH_F
1233
#undef ALIASED_1_EDX_F
1234
#undef VENDOR_F
1235
#undef RUNTIME_F
1236
1237
struct kvm_cpuid_array {
1238
struct kvm_cpuid_entry2 *entries;
1239
int maxnent;
1240
int nent;
1241
};
1242
1243
static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
1244
{
1245
if (array->nent >= array->maxnent)
1246
return NULL;
1247
1248
return &array->entries[array->nent++];
1249
}
1250
1251
static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
1252
u32 function, u32 index)
1253
{
1254
struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
1255
1256
if (!entry)
1257
return NULL;
1258
1259
memset(entry, 0, sizeof(*entry));
1260
entry->function = function;
1261
entry->index = index;
1262
switch (function & 0xC0000000) {
1263
case 0x40000000:
1264
/* Hypervisor leaves are always synthesized by __do_cpuid_func. */
1265
return entry;
1266
1267
case 0x80000000:
1268
/*
1269
* 0x80000021 is sometimes synthesized by __do_cpuid_func, which
1270
* would result in out-of-bounds calls to do_host_cpuid.
1271
*/
1272
{
1273
static int max_cpuid_80000000;
1274
if (!READ_ONCE(max_cpuid_80000000))
1275
WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
1276
if (function > READ_ONCE(max_cpuid_80000000))
1277
return entry;
1278
}
1279
break;
1280
1281
default:
1282
break;
1283
}
1284
1285
cpuid_count(entry->function, entry->index,
1286
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1287
1288
if (cpuid_function_is_indexed(function))
1289
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1290
1291
return entry;
1292
}
1293
1294
static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
1295
bool include_partially_emulated)
1296
{
1297
memset(entry, 0, sizeof(*entry));
1298
1299
entry->function = func;
1300
entry->index = 0;
1301
entry->flags = 0;
1302
1303
switch (func) {
1304
case 0:
1305
entry->eax = 7;
1306
return 1;
1307
case 1:
1308
entry->ecx = feature_bit(MOVBE);
1309
/*
1310
* KVM allows userspace to enumerate MONITOR+MWAIT support to
1311
* the guest, but the MWAIT feature flag is never advertised
1312
* to userspace because MONITOR+MWAIT aren't virtualized by
1313
* hardware, can't be faithfully emulated in software (KVM
1314
* emulates them as NOPs), and allowing the guest to execute
1315
* them natively requires enabling a per-VM capability.
1316
*/
1317
if (include_partially_emulated)
1318
entry->ecx |= feature_bit(MWAIT);
1319
return 1;
1320
case 7:
1321
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1322
entry->eax = 0;
1323
if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
1324
entry->ecx = feature_bit(RDPID);
1325
return 1;
1326
default:
1327
return 0;
1328
}
1329
}
1330
1331
static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
1332
{
1333
if (array->nent >= array->maxnent)
1334
return -E2BIG;
1335
1336
array->nent += cpuid_func_emulated(&array->entries[array->nent], func, false);
1337
return 0;
1338
}
1339
1340
static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
1341
{
1342
struct kvm_cpuid_entry2 *entry;
1343
int r, i, max_idx;
1344
1345
/* all calls to cpuid_count() should be made on the same cpu */
1346
get_cpu();
1347
1348
r = -E2BIG;
1349
1350
entry = do_host_cpuid(array, function, 0);
1351
if (!entry)
1352
goto out;
1353
1354
switch (function) {
1355
case 0:
1356
/* Limited to the highest leaf implemented in KVM. */
1357
entry->eax = min(entry->eax, 0x24U);
1358
break;
1359
case 1:
1360
cpuid_entry_override(entry, CPUID_1_EDX);
1361
cpuid_entry_override(entry, CPUID_1_ECX);
1362
break;
1363
case 2:
1364
/*
1365
* On ancient CPUs, function 2 entries are STATEFUL. That is,
1366
* CPUID(function=2, index=0) may return different results each
1367
* time, with the least-significant byte in EAX enumerating the
1368
* number of times software should do CPUID(2, 0).
1369
*
1370
* Modern CPUs, i.e. every CPU KVM has *ever* run on are less
1371
* idiotic. Intel's SDM states that EAX & 0xff "will always
1372
* return 01H. Software should ignore this value and not
1373
* interpret it as an informational descriptor", while AMD's
1374
* APM states that CPUID(2) is reserved.
1375
*
1376
* WARN if a frankenstein CPU that supports virtualization and
1377
* a stateful CPUID.0x2 is encountered.
1378
*/
1379
WARN_ON_ONCE((entry->eax & 0xff) > 1);
1380
break;
1381
/* functions 4 and 0x8000001d have additional index. */
1382
case 4:
1383
case 0x8000001d:
1384
/*
1385
* Read entries until the cache type in the previous entry is
1386
* zero, i.e. indicates an invalid entry.
1387
*/
1388
for (i = 1; entry->eax & 0x1f; ++i) {
1389
entry = do_host_cpuid(array, function, i);
1390
if (!entry)
1391
goto out;
1392
}
1393
break;
1394
case 6: /* Thermal management */
1395
entry->eax = 0x4; /* allow ARAT */
1396
entry->ebx = 0;
1397
entry->ecx = 0;
1398
entry->edx = 0;
1399
break;
1400
/* function 7 has additional index. */
1401
case 7:
1402
max_idx = entry->eax = min(entry->eax, 2u);
1403
cpuid_entry_override(entry, CPUID_7_0_EBX);
1404
cpuid_entry_override(entry, CPUID_7_ECX);
1405
cpuid_entry_override(entry, CPUID_7_EDX);
1406
1407
/* KVM only supports up to 0x7.2, capped above via min(). */
1408
if (max_idx >= 1) {
1409
entry = do_host_cpuid(array, function, 1);
1410
if (!entry)
1411
goto out;
1412
1413
cpuid_entry_override(entry, CPUID_7_1_EAX);
1414
cpuid_entry_override(entry, CPUID_7_1_EDX);
1415
entry->ebx = 0;
1416
entry->ecx = 0;
1417
}
1418
if (max_idx >= 2) {
1419
entry = do_host_cpuid(array, function, 2);
1420
if (!entry)
1421
goto out;
1422
1423
cpuid_entry_override(entry, CPUID_7_2_EDX);
1424
entry->ecx = 0;
1425
entry->ebx = 0;
1426
entry->eax = 0;
1427
}
1428
break;
1429
case 0xa: { /* Architectural Performance Monitoring */
1430
union cpuid10_eax eax = { };
1431
union cpuid10_edx edx = { };
1432
1433
if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1434
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1435
break;
1436
}
1437
1438
eax.split.version_id = kvm_pmu_cap.version;
1439
eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1440
eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1441
eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1442
edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1443
edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1444
1445
if (kvm_pmu_cap.version)
1446
edx.split.anythread_deprecated = 1;
1447
1448
entry->eax = eax.full;
1449
entry->ebx = kvm_pmu_cap.events_mask;
1450
entry->ecx = 0;
1451
entry->edx = edx.full;
1452
break;
1453
}
1454
case 0x1f:
1455
case 0xb:
1456
/*
1457
* No topology; a valid topology is indicated by the presence
1458
* of subleaf 1.
1459
*/
1460
entry->eax = entry->ebx = entry->ecx = 0;
1461
break;
1462
case 0xd: {
1463
u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1464
u64 permitted_xss = kvm_caps.supported_xss;
1465
1466
entry->eax &= permitted_xcr0;
1467
entry->ebx = xstate_required_size(permitted_xcr0, false);
1468
entry->ecx = entry->ebx;
1469
entry->edx &= permitted_xcr0 >> 32;
1470
if (!permitted_xcr0)
1471
break;
1472
1473
entry = do_host_cpuid(array, function, 1);
1474
if (!entry)
1475
goto out;
1476
1477
cpuid_entry_override(entry, CPUID_D_1_EAX);
1478
if (entry->eax & (feature_bit(XSAVES) | feature_bit(XSAVEC)))
1479
entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1480
true);
1481
else {
1482
WARN_ON_ONCE(permitted_xss != 0);
1483
entry->ebx = 0;
1484
}
1485
entry->ecx &= permitted_xss;
1486
entry->edx &= permitted_xss >> 32;
1487
1488
for (i = 2; i < 64; ++i) {
1489
bool s_state;
1490
if (permitted_xcr0 & BIT_ULL(i))
1491
s_state = false;
1492
else if (permitted_xss & BIT_ULL(i))
1493
s_state = true;
1494
else
1495
continue;
1496
1497
entry = do_host_cpuid(array, function, i);
1498
if (!entry)
1499
goto out;
1500
1501
/*
1502
* The supported check above should have filtered out
1503
* invalid sub-leafs. Only valid sub-leafs should
1504
* reach this point, and they should have a non-zero
1505
* save state size. Furthermore, check whether the
1506
* processor agrees with permitted_xcr0/permitted_xss
1507
* on whether this is an XCR0- or IA32_XSS-managed area.
1508
*/
1509
if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1510
--array->nent;
1511
continue;
1512
}
1513
1514
if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1515
entry->ecx &= ~BIT_ULL(2);
1516
entry->edx = 0;
1517
}
1518
break;
1519
}
1520
case 0x12:
1521
/* Intel SGX */
1522
if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1523
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1524
break;
1525
}
1526
1527
/*
1528
* Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1529
* and max enclave sizes. The SGX sub-features and MISCSELECT
1530
* are restricted by kernel and KVM capabilities (like most
1531
* feature flags), while enclave size is unrestricted.
1532
*/
1533
cpuid_entry_override(entry, CPUID_12_EAX);
1534
entry->ebx &= SGX_MISC_EXINFO;
1535
1536
entry = do_host_cpuid(array, function, 1);
1537
if (!entry)
1538
goto out;
1539
1540
/*
1541
* Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
1542
* feature flags. Advertise all supported flags, including
1543
* privileged attributes that require explicit opt-in from
1544
* userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
1545
* expected to derive it from supported XCR0.
1546
*/
1547
entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1548
entry->ebx &= 0;
1549
break;
1550
/* Intel PT */
1551
case 0x14:
1552
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1553
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1554
break;
1555
}
1556
1557
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1558
if (!do_host_cpuid(array, function, i))
1559
goto out;
1560
}
1561
break;
1562
/* Intel AMX TILE */
1563
case 0x1d:
1564
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1565
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1566
break;
1567
}
1568
1569
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1570
if (!do_host_cpuid(array, function, i))
1571
goto out;
1572
}
1573
break;
1574
case 0x1e: /* TMUL information */
1575
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1576
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1577
break;
1578
}
1579
break;
1580
case 0x24: {
1581
u8 avx10_version;
1582
1583
if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
1584
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1585
break;
1586
}
1587
1588
/*
1589
* The AVX10 version is encoded in EBX[7:0]. Note, the version
1590
* is guaranteed to be >=1 if AVX10 is supported. Note #2, the
1591
* version needs to be captured before overriding EBX features!
1592
*/
1593
avx10_version = min_t(u8, entry->ebx & 0xff, 1);
1594
cpuid_entry_override(entry, CPUID_24_0_EBX);
1595
entry->ebx |= avx10_version;
1596
1597
entry->eax = 0;
1598
entry->ecx = 0;
1599
entry->edx = 0;
1600
break;
1601
}
1602
case KVM_CPUID_SIGNATURE: {
1603
const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1604
entry->eax = KVM_CPUID_FEATURES;
1605
entry->ebx = sigptr[0];
1606
entry->ecx = sigptr[1];
1607
entry->edx = sigptr[2];
1608
break;
1609
}
1610
case KVM_CPUID_FEATURES:
1611
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1612
(1 << KVM_FEATURE_NOP_IO_DELAY) |
1613
(1 << KVM_FEATURE_CLOCKSOURCE2) |
1614
(1 << KVM_FEATURE_ASYNC_PF) |
1615
(1 << KVM_FEATURE_PV_EOI) |
1616
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1617
(1 << KVM_FEATURE_PV_UNHALT) |
1618
(1 << KVM_FEATURE_PV_TLB_FLUSH) |
1619
(1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1620
(1 << KVM_FEATURE_PV_SEND_IPI) |
1621
(1 << KVM_FEATURE_POLL_CONTROL) |
1622
(1 << KVM_FEATURE_PV_SCHED_YIELD) |
1623
(1 << KVM_FEATURE_ASYNC_PF_INT);
1624
1625
if (sched_info_on())
1626
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1627
1628
entry->ebx = 0;
1629
entry->ecx = 0;
1630
entry->edx = 0;
1631
break;
1632
case 0x80000000:
1633
entry->eax = min(entry->eax, 0x80000022);
1634
/*
1635
* Serializing LFENCE is reported in a multitude of ways, and
1636
* NullSegClearsBase is not reported in CPUID on Zen2; help
1637
* userspace by providing the CPUID leaf ourselves.
1638
*
1639
* However, only do it if the host has CPUID leaf 0x8000001d.
1640
* QEMU thinks that it can query the host blindly for that
1641
* CPUID leaf if KVM reports that it supports 0x8000001d or
1642
* above. The processor merrily returns values from the
1643
* highest Intel leaf which QEMU tries to use as the guest's
1644
* 0x8000001d. Even worse, this can result in an infinite
1645
* loop if said highest leaf has no subleaves indexed by ECX.
1646
*/
1647
if (entry->eax >= 0x8000001d &&
1648
(static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1649
|| !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1650
entry->eax = max(entry->eax, 0x80000021);
1651
break;
1652
case 0x80000001:
1653
entry->ebx &= ~GENMASK(27, 16);
1654
cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1655
cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1656
break;
1657
case 0x80000005:
1658
/* Pass host L1 cache and TLB info. */
1659
break;
1660
case 0x80000006:
1661
/* Drop reserved bits, pass host L2 cache and TLB info. */
1662
entry->edx &= ~GENMASK(17, 16);
1663
break;
1664
case 0x80000007: /* Advanced power management */
1665
cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1666
1667
/* mask against host */
1668
entry->edx &= boot_cpu_data.x86_power;
1669
entry->eax = entry->ebx = entry->ecx = 0;
1670
break;
1671
case 0x80000008: {
1672
/*
1673
* GuestPhysAddrSize (EAX[23:16]) is intended for software
1674
* use.
1675
*
1676
* KVM's ABI is to report the effective MAXPHYADDR for the
1677
* guest in PhysAddrSize (phys_as), and the maximum
1678
* *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1679
*
1680
* GuestPhysAddrSize is valid if and only if TDP is enabled,
1681
* in which case the max GPA that can be addressed by KVM may
1682
* be less than the max GPA that can be legally generated by
1683
* the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1684
* support 5-level TDP.
1685
*/
1686
unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1687
unsigned int phys_as, g_phys_as;
1688
1689
/*
1690
* If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1691
* the guest operates in the same PA space as the host, i.e.
1692
* reductions in MAXPHYADDR for memory encryption affect shadow
1693
* paging, too.
1694
*
1695
* If TDP is enabled, use the raw bare metal MAXPHYADDR as
1696
* reductions to the HPAs do not affect GPAs. The max
1697
* addressable GPA is the same as the max effective GPA, except
1698
* that it's capped at 48 bits if 5-level TDP isn't supported
1699
* (hardware processes bits 51:48 only when walking the fifth
1700
* level page table).
1701
*/
1702
if (!tdp_enabled) {
1703
phys_as = boot_cpu_data.x86_phys_bits;
1704
g_phys_as = 0;
1705
} else {
1706
phys_as = entry->eax & 0xff;
1707
g_phys_as = phys_as;
1708
if (kvm_mmu_get_max_tdp_level() < 5)
1709
g_phys_as = min(g_phys_as, 48U);
1710
}
1711
1712
entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1713
entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1714
entry->edx = 0;
1715
cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1716
break;
1717
}
1718
case 0x8000000A:
1719
if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1720
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1721
break;
1722
}
1723
entry->eax = 1; /* SVM revision 1 */
1724
entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1725
ASID emulation to nested SVM */
1726
entry->ecx = 0; /* Reserved */
1727
cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1728
break;
1729
case 0x80000019:
1730
entry->ecx = entry->edx = 0;
1731
break;
1732
case 0x8000001a:
1733
entry->eax &= GENMASK(2, 0);
1734
entry->ebx = entry->ecx = entry->edx = 0;
1735
break;
1736
case 0x8000001e:
1737
/* Do not return host topology information. */
1738
entry->eax = entry->ebx = entry->ecx = 0;
1739
entry->edx = 0; /* reserved */
1740
break;
1741
case 0x8000001F:
1742
if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1743
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1744
} else {
1745
cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1746
/* Clear NumVMPL since KVM does not support VMPL. */
1747
entry->ebx &= ~GENMASK(31, 12);
1748
/*
1749
* Enumerate '0' for "PA bits reduction", the adjusted
1750
* MAXPHYADDR is enumerated directly (see 0x80000008).
1751
*/
1752
entry->ebx &= ~GENMASK(11, 6);
1753
}
1754
break;
1755
case 0x80000020:
1756
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1757
break;
1758
case 0x80000021:
1759
entry->ebx = entry->edx = 0;
1760
cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1761
cpuid_entry_override(entry, CPUID_8000_0021_ECX);
1762
break;
1763
/* AMD Extended Performance Monitoring and Debug */
1764
case 0x80000022: {
1765
union cpuid_0x80000022_ebx ebx = { };
1766
1767
entry->ecx = entry->edx = 0;
1768
if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1769
entry->eax = entry->ebx = 0;
1770
break;
1771
}
1772
1773
cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1774
1775
ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1776
entry->ebx = ebx.full;
1777
break;
1778
}
1779
/*Add support for Centaur's CPUID instruction*/
1780
case 0xC0000000:
1781
/*Just support up to 0xC0000004 now*/
1782
entry->eax = min(entry->eax, 0xC0000004);
1783
break;
1784
case 0xC0000001:
1785
cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1786
break;
1787
case 3: /* Processor serial number */
1788
case 5: /* MONITOR/MWAIT */
1789
case 0xC0000002:
1790
case 0xC0000003:
1791
case 0xC0000004:
1792
default:
1793
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1794
break;
1795
}
1796
1797
r = 0;
1798
1799
out:
1800
put_cpu();
1801
1802
return r;
1803
}
1804
1805
static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1806
unsigned int type)
1807
{
1808
if (type == KVM_GET_EMULATED_CPUID)
1809
return __do_cpuid_func_emulated(array, func);
1810
1811
return __do_cpuid_func(array, func);
1812
}
1813
1814
#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1815
1816
static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1817
unsigned int type)
1818
{
1819
u32 limit;
1820
int r;
1821
1822
if (func == CENTAUR_CPUID_SIGNATURE &&
1823
boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1824
return 0;
1825
1826
r = do_cpuid_func(array, func, type);
1827
if (r)
1828
return r;
1829
1830
limit = array->entries[array->nent - 1].eax;
1831
for (func = func + 1; func <= limit; ++func) {
1832
r = do_cpuid_func(array, func, type);
1833
if (r)
1834
break;
1835
}
1836
1837
return r;
1838
}
1839
1840
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1841
__u32 num_entries, unsigned int ioctl_type)
1842
{
1843
int i;
1844
__u32 pad[3];
1845
1846
if (ioctl_type != KVM_GET_EMULATED_CPUID)
1847
return false;
1848
1849
/*
1850
* We want to make sure that ->padding is being passed clean from
1851
* userspace in case we want to use it for something in the future.
1852
*
1853
* Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1854
* have to give ourselves satisfied only with the emulated side. /me
1855
* sheds a tear.
1856
*/
1857
for (i = 0; i < num_entries; i++) {
1858
if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1859
return true;
1860
1861
if (pad[0] || pad[1] || pad[2])
1862
return true;
1863
}
1864
return false;
1865
}
1866
1867
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1868
struct kvm_cpuid_entry2 __user *entries,
1869
unsigned int type)
1870
{
1871
static const u32 funcs[] = {
1872
0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1873
};
1874
1875
struct kvm_cpuid_array array = {
1876
.nent = 0,
1877
};
1878
int r, i;
1879
1880
if (cpuid->nent < 1)
1881
return -E2BIG;
1882
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1883
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1884
1885
if (sanity_check_entries(entries, cpuid->nent, type))
1886
return -EINVAL;
1887
1888
array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1889
if (!array.entries)
1890
return -ENOMEM;
1891
1892
array.maxnent = cpuid->nent;
1893
1894
for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1895
r = get_cpuid_func(&array, funcs[i], type);
1896
if (r)
1897
goto out_free;
1898
}
1899
cpuid->nent = array.nent;
1900
1901
if (copy_to_user(entries, array.entries,
1902
array.nent * sizeof(struct kvm_cpuid_entry2)))
1903
r = -EFAULT;
1904
1905
out_free:
1906
kvfree(array.entries);
1907
return r;
1908
}
1909
1910
/*
1911
* Intel CPUID semantics treats any query for an out-of-range leaf as if the
1912
* highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
1913
* returns all zeroes for any undefined leaf, whether or not the leaf is in
1914
* range. Centaur/VIA follows Intel semantics.
1915
*
1916
* A leaf is considered out-of-range if its function is higher than the maximum
1917
* supported leaf of its associated class or if its associated class does not
1918
* exist.
1919
*
1920
* There are three primary classes to be considered, with their respective
1921
* ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
1922
* class exists if a guest CPUID entry for its <base> leaf exists. For a given
1923
* class, CPUID.<base>.EAX contains the max supported leaf for the class.
1924
*
1925
* - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1926
* - Hypervisor: 0x40000000 - 0x4fffffff
1927
* - Extended: 0x80000000 - 0xbfffffff
1928
* - Centaur: 0xc0000000 - 0xcfffffff
1929
*
1930
* The Hypervisor class is further subdivided into sub-classes that each act as
1931
* their own independent class associated with a 0x100 byte range. E.g. if Qemu
1932
* is advertising support for both HyperV and KVM, the resulting Hypervisor
1933
* CPUID sub-classes are:
1934
*
1935
* - HyperV: 0x40000000 - 0x400000ff
1936
* - KVM: 0x40000100 - 0x400001ff
1937
*/
1938
static struct kvm_cpuid_entry2 *
1939
get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1940
{
1941
struct kvm_cpuid_entry2 *basic, *class;
1942
u32 function = *fn_ptr;
1943
1944
basic = kvm_find_cpuid_entry(vcpu, 0);
1945
if (!basic)
1946
return NULL;
1947
1948
if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1949
is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1950
return NULL;
1951
1952
if (function >= 0x40000000 && function <= 0x4fffffff)
1953
class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1954
else if (function >= 0xc0000000)
1955
class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1956
else
1957
class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1958
1959
if (class && function <= class->eax)
1960
return NULL;
1961
1962
/*
1963
* Leaf specific adjustments are also applied when redirecting to the
1964
* max basic entry, e.g. if the max basic leaf is 0xb but there is no
1965
* entry for CPUID.0xb.index (see below), then the output value for EDX
1966
* needs to be pulled from CPUID.0xb.1.
1967
*/
1968
*fn_ptr = basic->eax;
1969
1970
/*
1971
* The class does not exist or the requested function is out of range;
1972
* the effective CPUID entry is the max basic leaf. Note, the index of
1973
* the original requested leaf is observed!
1974
*/
1975
return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1976
}
1977
1978
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1979
u32 *ecx, u32 *edx, bool exact_only)
1980
{
1981
u32 orig_function = *eax, function = *eax, index = *ecx;
1982
struct kvm_cpuid_entry2 *entry;
1983
bool exact, used_max_basic = false;
1984
1985
if (vcpu->arch.cpuid_dynamic_bits_dirty)
1986
kvm_update_cpuid_runtime(vcpu);
1987
1988
entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1989
exact = !!entry;
1990
1991
if (!entry && !exact_only) {
1992
entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1993
used_max_basic = !!entry;
1994
}
1995
1996
if (entry) {
1997
*eax = entry->eax;
1998
*ebx = entry->ebx;
1999
*ecx = entry->ecx;
2000
*edx = entry->edx;
2001
if (function == 7 && index == 0) {
2002
u64 data;
2003
if ((*ebx & (feature_bit(RTM) | feature_bit(HLE))) &&
2004
!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
2005
(data & TSX_CTRL_CPUID_CLEAR))
2006
*ebx &= ~(feature_bit(RTM) | feature_bit(HLE));
2007
} else if (function == 0x80000007) {
2008
if (kvm_hv_invtsc_suppressed(vcpu))
2009
*edx &= ~feature_bit(CONSTANT_TSC);
2010
} else if (IS_ENABLED(CONFIG_KVM_XEN) &&
2011
kvm_xen_is_tsc_leaf(vcpu, function)) {
2012
/*
2013
* Update guest TSC frequency information if necessary.
2014
* Ignore failures, there is no sane value that can be
2015
* provided if KVM can't get the TSC frequency.
2016
*/
2017
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu))
2018
kvm_guest_time_update(vcpu);
2019
2020
if (index == 1) {
2021
*ecx = vcpu->arch.pvclock_tsc_mul;
2022
*edx = vcpu->arch.pvclock_tsc_shift;
2023
} else if (index == 2) {
2024
*eax = vcpu->arch.hw_tsc_khz;
2025
}
2026
}
2027
} else {
2028
*eax = *ebx = *ecx = *edx = 0;
2029
/*
2030
* When leaf 0BH or 1FH is defined, CL is pass-through
2031
* and EDX is always the x2APIC ID, even for undefined
2032
* subleaves. Index 1 will exist iff the leaf is
2033
* implemented, so we pass through CL iff leaf 1
2034
* exists. EDX can be copied from any existing index.
2035
*/
2036
if (function == 0xb || function == 0x1f) {
2037
entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2038
if (entry) {
2039
*ecx = index & 0xff;
2040
*edx = entry->edx;
2041
}
2042
}
2043
}
2044
trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
2045
used_max_basic);
2046
return exact;
2047
}
2048
EXPORT_SYMBOL_GPL(kvm_cpuid);
2049
2050
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2051
{
2052
u32 eax, ebx, ecx, edx;
2053
2054
if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
2055
return 1;
2056
2057
eax = kvm_rax_read(vcpu);
2058
ecx = kvm_rcx_read(vcpu);
2059
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
2060
kvm_rax_write(vcpu, eax);
2061
kvm_rbx_write(vcpu, ebx);
2062
kvm_rcx_write(vcpu, ecx);
2063
kvm_rdx_write(vcpu, edx);
2064
return kvm_skip_emulated_instruction(vcpu);
2065
}
2066
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2067
2068