Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/cpuid.c
50620 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Kernel-based Virtual Machine driver for Linux
4
* cpuid support routines
5
*
6
* derived from arch/x86/kvm/x86.c
7
*
8
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
9
* Copyright IBM Corporation, 2008
10
*/
11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13
#include <linux/kvm_host.h>
14
#include "linux/lockdep.h"
15
#include <linux/export.h>
16
#include <linux/vmalloc.h>
17
#include <linux/uaccess.h>
18
#include <linux/sched/stat.h>
19
20
#include <asm/processor.h>
21
#include <asm/user.h>
22
#include <asm/fpu/xstate.h>
23
#include <asm/sgx.h>
24
#include <asm/cpuid/api.h>
25
#include "cpuid.h"
26
#include "lapic.h"
27
#include "mmu.h"
28
#include "trace.h"
29
#include "pmu.h"
30
#include "xen.h"
31
32
/*
33
* Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34
* aligned to sizeof(unsigned long) because it's not accessed via bitops.
35
*/
36
u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_cpu_caps);
38
39
struct cpuid_xstate_sizes {
40
u32 eax;
41
u32 ebx;
42
u32 ecx;
43
};
44
45
static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
46
47
void __init kvm_init_xstate_sizes(void)
48
{
49
u32 ign;
50
int i;
51
52
for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
53
struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
54
55
cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
56
}
57
}
58
59
u32 xstate_required_size(u64 xstate_bv, bool compacted)
60
{
61
u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
62
int i;
63
64
xstate_bv &= XFEATURE_MASK_EXTEND;
65
for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes) && xstate_bv; i++) {
66
struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
67
u32 offset;
68
69
if (!(xstate_bv & BIT_ULL(i)))
70
continue;
71
72
/* ECX[1]: 64B alignment in compacted form */
73
if (compacted)
74
offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
75
else
76
offset = xs->ebx;
77
ret = max(ret, offset + xs->eax);
78
xstate_bv &= ~BIT_ULL(i);
79
}
80
81
return ret;
82
}
83
84
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry2(
85
struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
86
{
87
struct kvm_cpuid_entry2 *e;
88
int i;
89
90
/*
91
* KVM has a semi-arbitrary rule that querying the guest's CPUID model
92
* with IRQs disabled is disallowed. The CPUID model can legitimately
93
* have over one hundred entries, i.e. the lookup is slow, and IRQs are
94
* typically disabled in KVM only when KVM is in a performance critical
95
* path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break
96
* if this rule is violated, this assertion is purely to flag potential
97
* performance issues. If this fires, consider moving the lookup out
98
* of the hotpath, e.g. by caching information during CPUID updates.
99
*/
100
lockdep_assert_irqs_enabled();
101
102
for (i = 0; i < nent; i++) {
103
e = &entries[i];
104
105
if (e->function != function)
106
continue;
107
108
/*
109
* If the index isn't significant, use the first entry with a
110
* matching function. It's userspace's responsibility to not
111
* provide "duplicate" entries in all cases.
112
*/
113
if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
114
return e;
115
116
117
/*
118
* Similarly, use the first matching entry if KVM is doing a
119
* lookup (as opposed to emulating CPUID) for a function that's
120
* architecturally defined as not having a significant index.
121
*/
122
if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
123
/*
124
* Direct lookups from KVM should not diverge from what
125
* KVM defines internally (the architectural behavior).
126
*/
127
WARN_ON_ONCE(cpuid_function_is_indexed(function));
128
return e;
129
}
130
}
131
132
return NULL;
133
}
134
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_cpuid_entry2);
135
136
static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
137
{
138
struct kvm_cpuid_entry2 *best;
139
u64 xfeatures;
140
141
/*
142
* The existing code assumes virtual address is 48-bit or 57-bit in the
143
* canonical address checks; exit if it is ever changed.
144
*/
145
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
146
if (best) {
147
int vaddr_bits = (best->eax & 0xff00) >> 8;
148
149
if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150
return -EINVAL;
151
}
152
153
/*
154
* Exposing dynamic xfeatures to the guest requires additional
155
* enabling in the FPU, e.g. to expand the guest XSAVE state size.
156
*/
157
best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
158
if (!best)
159
return 0;
160
161
xfeatures = best->eax | ((u64)best->edx << 32);
162
xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163
if (!xfeatures)
164
return 0;
165
166
return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167
}
168
169
static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu);
170
static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
171
172
/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
173
static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
174
int nent)
175
{
176
struct kvm_cpuid_entry2 *orig;
177
int i;
178
179
/*
180
* Apply runtime CPUID updates to the incoming CPUID entries to avoid
181
* false positives due mismatches on KVM-owned feature flags.
182
*
183
* Note! @e2 and @nent track the _old_ CPUID entries!
184
*/
185
kvm_update_cpuid_runtime(vcpu);
186
kvm_apply_cpuid_pv_features_quirk(vcpu);
187
188
if (nent != vcpu->arch.cpuid_nent)
189
return -EINVAL;
190
191
for (i = 0; i < nent; i++) {
192
orig = &vcpu->arch.cpuid_entries[i];
193
if (e2[i].function != orig->function ||
194
e2[i].index != orig->index ||
195
e2[i].flags != orig->flags ||
196
e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
197
e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
198
return -EINVAL;
199
}
200
201
return 0;
202
}
203
204
static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
205
const char *sig)
206
{
207
struct kvm_hypervisor_cpuid cpuid = {};
208
struct kvm_cpuid_entry2 *entry;
209
u32 base;
210
211
for_each_possible_cpuid_base_hypervisor(base) {
212
entry = kvm_find_cpuid_entry(vcpu, base);
213
214
if (entry) {
215
u32 signature[3];
216
217
signature[0] = entry->ebx;
218
signature[1] = entry->ecx;
219
signature[2] = entry->edx;
220
221
if (!memcmp(signature, sig, sizeof(signature))) {
222
cpuid.base = base;
223
cpuid.limit = entry->eax;
224
break;
225
}
226
}
227
}
228
229
return cpuid;
230
}
231
232
static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu)
233
{
234
struct kvm_hypervisor_cpuid kvm_cpuid;
235
struct kvm_cpuid_entry2 *best;
236
237
kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
238
if (!kvm_cpuid.base)
239
return 0;
240
241
best = kvm_find_cpuid_entry(vcpu, kvm_cpuid.base | KVM_CPUID_FEATURES);
242
if (!best)
243
return 0;
244
245
if (kvm_hlt_in_guest(vcpu->kvm))
246
best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
247
248
return best->eax;
249
}
250
251
/*
252
* Calculate guest's supported XCR0 taking into account guest CPUID data and
253
* KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
254
*/
255
static u64 cpuid_get_supported_xcr0(struct kvm_vcpu *vcpu)
256
{
257
struct kvm_cpuid_entry2 *best;
258
259
best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
260
if (!best)
261
return 0;
262
263
return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
264
}
265
266
static u64 cpuid_get_supported_xss(struct kvm_vcpu *vcpu)
267
{
268
struct kvm_cpuid_entry2 *best;
269
270
best = kvm_find_cpuid_entry_index(vcpu, 0xd, 1);
271
if (!best)
272
return 0;
273
274
return (best->ecx | ((u64)best->edx << 32)) & kvm_caps.supported_xss;
275
}
276
277
static __always_inline void kvm_update_feature_runtime(struct kvm_vcpu *vcpu,
278
struct kvm_cpuid_entry2 *entry,
279
unsigned int x86_feature,
280
bool has_feature)
281
{
282
cpuid_entry_change(entry, x86_feature, has_feature);
283
guest_cpu_cap_change(vcpu, x86_feature, has_feature);
284
}
285
286
static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
287
{
288
struct kvm_cpuid_entry2 *best;
289
290
vcpu->arch.cpuid_dynamic_bits_dirty = false;
291
292
best = kvm_find_cpuid_entry(vcpu, 1);
293
if (best) {
294
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSXSAVE,
295
kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
296
297
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_APIC,
298
vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
299
300
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
301
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_MWAIT,
302
vcpu->arch.ia32_misc_enable_msr &
303
MSR_IA32_MISC_ENABLE_MWAIT);
304
}
305
306
best = kvm_find_cpuid_entry_index(vcpu, 7, 0);
307
if (best)
308
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSPKE,
309
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
310
311
312
best = kvm_find_cpuid_entry_index(vcpu, 0xD, 0);
313
if (best)
314
best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
315
316
best = kvm_find_cpuid_entry_index(vcpu, 0xD, 1);
317
if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
318
cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
319
best->ebx = xstate_required_size(vcpu->arch.xcr0 |
320
vcpu->arch.ia32_xss, true);
321
}
322
323
static bool kvm_cpuid_has_hyperv(struct kvm_vcpu *vcpu)
324
{
325
#ifdef CONFIG_KVM_HYPERV
326
struct kvm_cpuid_entry2 *entry;
327
328
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE);
329
return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
330
#else
331
return false;
332
#endif
333
}
334
335
static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
336
{
337
struct kvm_cpuid_entry2 *entry;
338
339
entry = kvm_find_cpuid_entry(vcpu, 0);
340
if (!entry)
341
return false;
342
343
return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
344
is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
345
}
346
347
/*
348
* This isn't truly "unsafe", but except for the cpu_caps initialization code,
349
* all register lookups should use __cpuid_entry_get_reg(), which provides
350
* compile-time validation of the input.
351
*/
352
static u32 cpuid_get_reg_unsafe(struct kvm_cpuid_entry2 *entry, u32 reg)
353
{
354
switch (reg) {
355
case CPUID_EAX:
356
return entry->eax;
357
case CPUID_EBX:
358
return entry->ebx;
359
case CPUID_ECX:
360
return entry->ecx;
361
case CPUID_EDX:
362
return entry->edx;
363
default:
364
WARN_ON_ONCE(1);
365
return 0;
366
}
367
}
368
369
static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
370
bool include_partially_emulated);
371
372
void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
373
{
374
struct kvm_lapic *apic = vcpu->arch.apic;
375
struct kvm_cpuid_entry2 *best;
376
struct kvm_cpuid_entry2 *entry;
377
bool allow_gbpages;
378
int i;
379
380
memset(vcpu->arch.cpu_caps, 0, sizeof(vcpu->arch.cpu_caps));
381
BUILD_BUG_ON(ARRAY_SIZE(reverse_cpuid) != NR_KVM_CPU_CAPS);
382
383
/*
384
* Reset guest capabilities to userspace's guest CPUID definition, i.e.
385
* honor userspace's definition for features that don't require KVM or
386
* hardware management/support (or that KVM simply doesn't care about).
387
*/
388
for (i = 0; i < NR_KVM_CPU_CAPS; i++) {
389
const struct cpuid_reg cpuid = reverse_cpuid[i];
390
struct kvm_cpuid_entry2 emulated;
391
392
if (!cpuid.function)
393
continue;
394
395
entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index);
396
if (!entry)
397
continue;
398
399
cpuid_func_emulated(&emulated, cpuid.function, true);
400
401
/*
402
* A vCPU has a feature if it's supported by KVM and is enabled
403
* in guest CPUID. Note, this includes features that are
404
* supported by KVM but aren't advertised to userspace!
405
*/
406
vcpu->arch.cpu_caps[i] = kvm_cpu_caps[i] |
407
cpuid_get_reg_unsafe(&emulated, cpuid.reg);
408
vcpu->arch.cpu_caps[i] &= cpuid_get_reg_unsafe(entry, cpuid.reg);
409
}
410
411
kvm_update_cpuid_runtime(vcpu);
412
413
/*
414
* If TDP is enabled, let the guest use GBPAGES if they're supported in
415
* hardware. The hardware page walker doesn't let KVM disable GBPAGES,
416
* i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
417
* walk for performance and complexity reasons. Not to mention KVM
418
* _can't_ solve the problem because GVA->GPA walks aren't visible to
419
* KVM once a TDP translation is installed. Mimic hardware behavior so
420
* that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
421
* If TDP is disabled, honor *only* guest CPUID as KVM has full control
422
* and can install smaller shadow pages if the host lacks 1GiB support.
423
*/
424
allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
425
guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES);
426
guest_cpu_cap_change(vcpu, X86_FEATURE_GBPAGES, allow_gbpages);
427
428
best = kvm_find_cpuid_entry(vcpu, 1);
429
if (best && apic) {
430
if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
431
apic->lapic_timer.timer_mode_mask = 3 << 17;
432
else
433
apic->lapic_timer.timer_mode_mask = 1 << 17;
434
435
kvm_apic_set_version(vcpu);
436
}
437
438
vcpu->arch.guest_supported_xcr0 = cpuid_get_supported_xcr0(vcpu);
439
vcpu->arch.guest_supported_xss = cpuid_get_supported_xss(vcpu);
440
441
vcpu->arch.pv_cpuid.features = kvm_apply_cpuid_pv_features_quirk(vcpu);
442
443
vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
444
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
445
vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
446
447
kvm_pmu_refresh(vcpu);
448
449
#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
450
vcpu->arch.cr4_guest_rsvd_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_) |
451
__cr4_reserved_bits(guest_cpu_cap_has, vcpu);
452
#undef __kvm_cpu_cap_has
453
454
kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu));
455
456
/* Invoke the vendor callback only after the above state is updated. */
457
kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
458
459
/*
460
* Except for the MMU, which needs to do its thing any vendor specific
461
* adjustments to the reserved GPA bits.
462
*/
463
kvm_mmu_after_set_cpuid(vcpu);
464
465
kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu);
466
}
467
468
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
469
{
470
struct kvm_cpuid_entry2 *best;
471
472
best = kvm_find_cpuid_entry(vcpu, 0x80000000);
473
if (!best || best->eax < 0x80000008)
474
goto not_found;
475
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
476
if (best)
477
return best->eax & 0xff;
478
not_found:
479
return 36;
480
}
481
482
int cpuid_query_maxguestphyaddr(struct kvm_vcpu *vcpu)
483
{
484
struct kvm_cpuid_entry2 *best;
485
486
best = kvm_find_cpuid_entry(vcpu, 0x80000000);
487
if (!best || best->eax < 0x80000008)
488
goto not_found;
489
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
490
if (best)
491
return (best->eax >> 16) & 0xff;
492
not_found:
493
return 0;
494
}
495
496
/*
497
* This "raw" version returns the reserved GPA bits without any adjustments for
498
* encryption technologies that usurp bits. The raw mask should be used if and
499
* only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
500
*/
501
u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
502
{
503
return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
504
}
505
506
static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
507
int nent)
508
{
509
u32 vcpu_caps[NR_KVM_CPU_CAPS];
510
int r;
511
512
/*
513
* Apply pending runtime CPUID updates to the current CPUID entries to
514
* avoid false positives due to mismatches on KVM-owned feature flags.
515
*/
516
if (vcpu->arch.cpuid_dynamic_bits_dirty)
517
kvm_update_cpuid_runtime(vcpu);
518
519
/*
520
* Swap the existing (old) entries with the incoming (new) entries in
521
* order to massage the new entries, e.g. to account for dynamic bits
522
* that KVM controls, without losing the current guest CPUID, which KVM
523
* needs to preserve in order to unwind on failure.
524
*
525
* Similarly, save the vCPU's current cpu_caps so that the capabilities
526
* can be updated alongside the CPUID entries when performing runtime
527
* updates. Full initialization is done if and only if the vCPU hasn't
528
* run, i.e. only if userspace is potentially changing CPUID features.
529
*/
530
swap(vcpu->arch.cpuid_entries, e2);
531
swap(vcpu->arch.cpuid_nent, nent);
532
533
memcpy(vcpu_caps, vcpu->arch.cpu_caps, sizeof(vcpu_caps));
534
BUILD_BUG_ON(sizeof(vcpu_caps) != sizeof(vcpu->arch.cpu_caps));
535
536
/*
537
* KVM does not correctly handle changing guest CPUID after KVM_RUN, as
538
* MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
539
* tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
540
* faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
541
* the core vCPU model on the fly. It would've been better to forbid any
542
* KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
543
* some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
544
* KVM_SET_CPUID{,2} again. To support this legacy behavior, check
545
* whether the supplied CPUID data is equal to what's already set.
546
*/
547
if (kvm_vcpu_has_run(vcpu)) {
548
r = kvm_cpuid_check_equal(vcpu, e2, nent);
549
if (r)
550
goto err;
551
goto success;
552
}
553
554
#ifdef CONFIG_KVM_HYPERV
555
if (kvm_cpuid_has_hyperv(vcpu)) {
556
r = kvm_hv_vcpu_init(vcpu);
557
if (r)
558
goto err;
559
}
560
#endif
561
562
r = kvm_check_cpuid(vcpu);
563
if (r)
564
goto err;
565
566
#ifdef CONFIG_KVM_XEN
567
vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
568
#endif
569
kvm_vcpu_after_set_cpuid(vcpu);
570
571
success:
572
kvfree(e2);
573
return 0;
574
575
err:
576
memcpy(vcpu->arch.cpu_caps, vcpu_caps, sizeof(vcpu_caps));
577
swap(vcpu->arch.cpuid_entries, e2);
578
swap(vcpu->arch.cpuid_nent, nent);
579
return r;
580
}
581
582
/* when an old userspace process fills a new kernel module */
583
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
584
struct kvm_cpuid *cpuid,
585
struct kvm_cpuid_entry __user *entries)
586
{
587
int r, i;
588
struct kvm_cpuid_entry *e = NULL;
589
struct kvm_cpuid_entry2 *e2 = NULL;
590
591
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
592
return -E2BIG;
593
594
if (cpuid->nent) {
595
e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
596
if (IS_ERR(e))
597
return PTR_ERR(e);
598
599
e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
600
if (!e2) {
601
r = -ENOMEM;
602
goto out_free_cpuid;
603
}
604
}
605
for (i = 0; i < cpuid->nent; i++) {
606
e2[i].function = e[i].function;
607
e2[i].eax = e[i].eax;
608
e2[i].ebx = e[i].ebx;
609
e2[i].ecx = e[i].ecx;
610
e2[i].edx = e[i].edx;
611
e2[i].index = 0;
612
e2[i].flags = 0;
613
e2[i].padding[0] = 0;
614
e2[i].padding[1] = 0;
615
e2[i].padding[2] = 0;
616
}
617
618
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
619
if (r)
620
kvfree(e2);
621
622
out_free_cpuid:
623
kvfree(e);
624
625
return r;
626
}
627
628
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
629
struct kvm_cpuid2 *cpuid,
630
struct kvm_cpuid_entry2 __user *entries)
631
{
632
struct kvm_cpuid_entry2 *e2 = NULL;
633
int r;
634
635
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
636
return -E2BIG;
637
638
if (cpuid->nent) {
639
e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
640
if (IS_ERR(e2))
641
return PTR_ERR(e2);
642
}
643
644
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
645
if (r)
646
kvfree(e2);
647
648
return r;
649
}
650
651
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
652
struct kvm_cpuid2 *cpuid,
653
struct kvm_cpuid_entry2 __user *entries)
654
{
655
if (cpuid->nent < vcpu->arch.cpuid_nent)
656
return -E2BIG;
657
658
if (vcpu->arch.cpuid_dynamic_bits_dirty)
659
kvm_update_cpuid_runtime(vcpu);
660
661
if (copy_to_user(entries, vcpu->arch.cpuid_entries,
662
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
663
return -EFAULT;
664
665
cpuid->nent = vcpu->arch.cpuid_nent;
666
return 0;
667
}
668
669
static __always_inline u32 raw_cpuid_get(struct cpuid_reg cpuid)
670
{
671
struct kvm_cpuid_entry2 entry;
672
u32 base;
673
674
/*
675
* KVM only supports features defined by Intel (0x0), AMD (0x80000000),
676
* and Centaur (0xc0000000). WARN if a feature for new vendor base is
677
* defined, as this and other code would need to be updated.
678
*/
679
base = cpuid.function & 0xffff0000;
680
if (WARN_ON_ONCE(base && base != 0x80000000 && base != 0xc0000000))
681
return 0;
682
683
if (cpuid_eax(base) < cpuid.function)
684
return 0;
685
686
cpuid_count(cpuid.function, cpuid.index,
687
&entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
688
689
return *__cpuid_entry_get_reg(&entry, cpuid.reg);
690
}
691
692
/*
693
* For kernel-defined leafs, mask KVM's supported feature set with the kernel's
694
* capabilities as well as raw CPUID. For KVM-defined leafs, consult only raw
695
* CPUID, as KVM is the one and only authority (in the kernel).
696
*/
697
#define kvm_cpu_cap_init(leaf, feature_initializers...) \
698
do { \
699
const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32); \
700
const u32 __maybe_unused kvm_cpu_cap_init_in_progress = leaf; \
701
const u32 *kernel_cpu_caps = boot_cpu_data.x86_capability; \
702
u32 kvm_cpu_cap_passthrough = 0; \
703
u32 kvm_cpu_cap_synthesized = 0; \
704
u32 kvm_cpu_cap_emulated = 0; \
705
u32 kvm_cpu_cap_features = 0; \
706
\
707
feature_initializers \
708
\
709
kvm_cpu_caps[leaf] = kvm_cpu_cap_features; \
710
\
711
if (leaf < NCAPINTS) \
712
kvm_cpu_caps[leaf] &= kernel_cpu_caps[leaf]; \
713
\
714
kvm_cpu_caps[leaf] |= kvm_cpu_cap_passthrough; \
715
kvm_cpu_caps[leaf] &= (raw_cpuid_get(cpuid) | \
716
kvm_cpu_cap_synthesized); \
717
kvm_cpu_caps[leaf] |= kvm_cpu_cap_emulated; \
718
} while (0)
719
720
/*
721
* Assert that the feature bit being declared, e.g. via F(), is in the CPUID
722
* word that's being initialized. Exempt 0x8000_0001.EDX usage of 0x1.EDX
723
* features, as AMD duplicated many 0x1.EDX features into 0x8000_0001.EDX.
724
*/
725
#define KVM_VALIDATE_CPU_CAP_USAGE(name) \
726
do { \
727
u32 __leaf = __feature_leaf(X86_FEATURE_##name); \
728
\
729
BUILD_BUG_ON(__leaf != kvm_cpu_cap_init_in_progress); \
730
} while (0)
731
732
#define F(name) \
733
({ \
734
KVM_VALIDATE_CPU_CAP_USAGE(name); \
735
kvm_cpu_cap_features |= feature_bit(name); \
736
})
737
738
/* Scattered Flag - For features that are scattered by cpufeatures.h. */
739
#define SCATTERED_F(name) \
740
({ \
741
BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \
742
KVM_VALIDATE_CPU_CAP_USAGE(name); \
743
if (boot_cpu_has(X86_FEATURE_##name)) \
744
F(name); \
745
})
746
747
/* Features that KVM supports only on 64-bit kernels. */
748
#define X86_64_F(name) \
749
({ \
750
KVM_VALIDATE_CPU_CAP_USAGE(name); \
751
if (IS_ENABLED(CONFIG_X86_64)) \
752
F(name); \
753
})
754
755
/*
756
* Emulated Feature - For features that KVM emulates in software irrespective
757
* of host CPU/kernel support.
758
*/
759
#define EMULATED_F(name) \
760
({ \
761
kvm_cpu_cap_emulated |= feature_bit(name); \
762
F(name); \
763
})
764
765
/*
766
* Synthesized Feature - For features that are synthesized into boot_cpu_data,
767
* i.e. may not be present in the raw CPUID, but can still be advertised to
768
* userspace. Primarily used for mitigation related feature flags.
769
*/
770
#define SYNTHESIZED_F(name) \
771
({ \
772
kvm_cpu_cap_synthesized |= feature_bit(name); \
773
F(name); \
774
})
775
776
/*
777
* Passthrough Feature - For features that KVM supports based purely on raw
778
* hardware CPUID, i.e. that KVM virtualizes even if the host kernel doesn't
779
* use the feature. Simply force set the feature in KVM's capabilities, raw
780
* CPUID support will be factored in by kvm_cpu_cap_mask().
781
*/
782
#define PASSTHROUGH_F(name) \
783
({ \
784
kvm_cpu_cap_passthrough |= feature_bit(name); \
785
F(name); \
786
})
787
788
/*
789
* Aliased Features - For features in 0x8000_0001.EDX that are duplicates of
790
* identical 0x1.EDX features, and thus are aliased from 0x1 to 0x8000_0001.
791
*/
792
#define ALIASED_1_EDX_F(name) \
793
({ \
794
BUILD_BUG_ON(__feature_leaf(X86_FEATURE_##name) != CPUID_1_EDX); \
795
BUILD_BUG_ON(kvm_cpu_cap_init_in_progress != CPUID_8000_0001_EDX); \
796
kvm_cpu_cap_features |= feature_bit(name); \
797
})
798
799
/*
800
* Vendor Features - For features that KVM supports, but are added in later
801
* because they require additional vendor enabling.
802
*/
803
#define VENDOR_F(name) \
804
({ \
805
KVM_VALIDATE_CPU_CAP_USAGE(name); \
806
})
807
808
/*
809
* Runtime Features - For features that KVM dynamically sets/clears at runtime,
810
* e.g. when CR4 changes, but which are never advertised to userspace.
811
*/
812
#define RUNTIME_F(name) \
813
({ \
814
KVM_VALIDATE_CPU_CAP_USAGE(name); \
815
})
816
817
/*
818
* Undefine the MSR bit macro to avoid token concatenation issues when
819
* processing X86_FEATURE_SPEC_CTRL_SSBD.
820
*/
821
#undef SPEC_CTRL_SSBD
822
823
/* DS is defined by ptrace-abi.h on 32-bit builds. */
824
#undef DS
825
826
void kvm_set_cpu_caps(void)
827
{
828
memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
829
830
BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
831
sizeof(boot_cpu_data.x86_capability));
832
833
kvm_cpu_cap_init(CPUID_1_ECX,
834
F(XMM3),
835
F(PCLMULQDQ),
836
VENDOR_F(DTES64),
837
/*
838
* NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
839
* advertised to guests via CPUID! MWAIT is also technically a
840
* runtime flag thanks to IA32_MISC_ENABLES; mark it as such so
841
* that KVM is aware that it's a known, unadvertised flag.
842
*/
843
RUNTIME_F(MWAIT),
844
/* DS-CPL */
845
VENDOR_F(VMX),
846
/* SMX, EST */
847
/* TM2 */
848
F(SSSE3),
849
/* CNXT-ID */
850
/* Reserved */
851
F(FMA),
852
F(CX16),
853
/* xTPR Update */
854
F(PDCM),
855
F(PCID),
856
/* Reserved, DCA */
857
F(XMM4_1),
858
F(XMM4_2),
859
EMULATED_F(X2APIC),
860
F(MOVBE),
861
F(POPCNT),
862
EMULATED_F(TSC_DEADLINE_TIMER),
863
F(AES),
864
F(XSAVE),
865
RUNTIME_F(OSXSAVE),
866
F(AVX),
867
F(F16C),
868
F(RDRAND),
869
EMULATED_F(HYPERVISOR),
870
);
871
872
kvm_cpu_cap_init(CPUID_1_EDX,
873
F(FPU),
874
F(VME),
875
F(DE),
876
F(PSE),
877
F(TSC),
878
F(MSR),
879
F(PAE),
880
F(MCE),
881
F(CX8),
882
F(APIC),
883
/* Reserved */
884
F(SEP),
885
F(MTRR),
886
F(PGE),
887
F(MCA),
888
F(CMOV),
889
F(PAT),
890
F(PSE36),
891
/* PSN */
892
F(CLFLUSH),
893
/* Reserved */
894
VENDOR_F(DS),
895
/* ACPI */
896
F(MMX),
897
F(FXSR),
898
F(XMM),
899
F(XMM2),
900
F(SELFSNOOP),
901
/* HTT, TM, Reserved, PBE */
902
);
903
904
kvm_cpu_cap_init(CPUID_7_0_EBX,
905
F(FSGSBASE),
906
EMULATED_F(TSC_ADJUST),
907
F(SGX),
908
F(BMI1),
909
F(HLE),
910
F(AVX2),
911
F(FDP_EXCPTN_ONLY),
912
F(SMEP),
913
F(BMI2),
914
F(ERMS),
915
F(INVPCID),
916
F(RTM),
917
F(ZERO_FCS_FDS),
918
VENDOR_F(MPX),
919
F(AVX512F),
920
F(AVX512DQ),
921
F(RDSEED),
922
F(ADX),
923
F(SMAP),
924
F(AVX512IFMA),
925
F(CLFLUSHOPT),
926
F(CLWB),
927
VENDOR_F(INTEL_PT),
928
F(AVX512PF),
929
F(AVX512ER),
930
F(AVX512CD),
931
F(SHA_NI),
932
F(AVX512BW),
933
F(AVX512VL),
934
);
935
936
kvm_cpu_cap_init(CPUID_7_ECX,
937
F(AVX512VBMI),
938
PASSTHROUGH_F(LA57),
939
F(PKU),
940
RUNTIME_F(OSPKE),
941
F(RDPID),
942
F(AVX512_VPOPCNTDQ),
943
F(UMIP),
944
F(AVX512_VBMI2),
945
F(GFNI),
946
F(VAES),
947
F(VPCLMULQDQ),
948
F(AVX512_VNNI),
949
F(AVX512_BITALG),
950
F(CLDEMOTE),
951
F(MOVDIRI),
952
F(MOVDIR64B),
953
VENDOR_F(WAITPKG),
954
F(SGX_LC),
955
F(BUS_LOCK_DETECT),
956
X86_64_F(SHSTK),
957
);
958
959
/*
960
* PKU not yet implemented for shadow paging and requires OSPKE
961
* to be set on the host. Clear it if that is not the case
962
*/
963
if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
964
kvm_cpu_cap_clear(X86_FEATURE_PKU);
965
966
/*
967
* Shadow Stacks aren't implemented in the Shadow MMU. Shadow Stack
968
* accesses require "magic" Writable=0,Dirty=1 protection, which KVM
969
* doesn't know how to emulate or map.
970
*/
971
if (!tdp_enabled)
972
kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
973
974
kvm_cpu_cap_init(CPUID_7_EDX,
975
F(AVX512_4VNNIW),
976
F(AVX512_4FMAPS),
977
F(SPEC_CTRL),
978
F(SPEC_CTRL_SSBD),
979
EMULATED_F(ARCH_CAPABILITIES),
980
F(INTEL_STIBP),
981
F(MD_CLEAR),
982
F(AVX512_VP2INTERSECT),
983
F(FSRM),
984
F(SERIALIZE),
985
F(TSXLDTRK),
986
F(AVX512_FP16),
987
F(AMX_TILE),
988
F(AMX_INT8),
989
F(AMX_BF16),
990
F(FLUSH_L1D),
991
F(IBT),
992
);
993
994
/*
995
* Disable support for IBT and SHSTK if KVM is configured to emulate
996
* accesses to reserved GPAs, as KVM's emulator doesn't support IBT or
997
* SHSTK, nor does KVM handle Shadow Stack #PFs (see above).
998
*/
999
if (allow_smaller_maxphyaddr) {
1000
kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
1001
kvm_cpu_cap_clear(X86_FEATURE_IBT);
1002
}
1003
1004
if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
1005
boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
1006
boot_cpu_has(X86_FEATURE_AMD_IBRS))
1007
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
1008
if (boot_cpu_has(X86_FEATURE_STIBP))
1009
kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
1010
if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
1011
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
1012
1013
kvm_cpu_cap_init(CPUID_7_1_EAX,
1014
F(SHA512),
1015
F(SM3),
1016
F(SM4),
1017
F(AVX_VNNI),
1018
F(AVX512_BF16),
1019
F(CMPCCXADD),
1020
F(FZRM),
1021
F(FSRS),
1022
F(FSRC),
1023
F(WRMSRNS),
1024
X86_64_F(LKGS),
1025
F(AMX_FP16),
1026
F(AVX_IFMA),
1027
F(LAM),
1028
);
1029
1030
kvm_cpu_cap_init(CPUID_7_1_ECX,
1031
SCATTERED_F(MSR_IMM),
1032
);
1033
1034
kvm_cpu_cap_init(CPUID_7_1_EDX,
1035
F(AVX_VNNI_INT8),
1036
F(AVX_NE_CONVERT),
1037
F(AMX_COMPLEX),
1038
F(AVX_VNNI_INT16),
1039
F(PREFETCHITI),
1040
F(AVX10),
1041
);
1042
1043
kvm_cpu_cap_init(CPUID_7_2_EDX,
1044
F(INTEL_PSFD),
1045
F(IPRED_CTRL),
1046
F(RRSBA_CTRL),
1047
F(DDPD_U),
1048
F(BHI_CTRL),
1049
F(MCDT_NO),
1050
);
1051
1052
kvm_cpu_cap_init(CPUID_D_1_EAX,
1053
F(XSAVEOPT),
1054
F(XSAVEC),
1055
F(XGETBV1),
1056
F(XSAVES),
1057
X86_64_F(XFD),
1058
);
1059
1060
kvm_cpu_cap_init(CPUID_12_EAX,
1061
SCATTERED_F(SGX1),
1062
SCATTERED_F(SGX2),
1063
SCATTERED_F(SGX_EDECCSSA),
1064
);
1065
1066
kvm_cpu_cap_init(CPUID_24_0_EBX,
1067
F(AVX10_128),
1068
F(AVX10_256),
1069
F(AVX10_512),
1070
);
1071
1072
kvm_cpu_cap_init(CPUID_8000_0001_ECX,
1073
F(LAHF_LM),
1074
F(CMP_LEGACY),
1075
VENDOR_F(SVM),
1076
/* ExtApicSpace */
1077
F(CR8_LEGACY),
1078
F(ABM),
1079
F(SSE4A),
1080
F(MISALIGNSSE),
1081
F(3DNOWPREFETCH),
1082
F(OSVW),
1083
/* IBS */
1084
F(XOP),
1085
/* SKINIT, WDT, LWP */
1086
F(FMA4),
1087
F(TBM),
1088
F(TOPOEXT),
1089
VENDOR_F(PERFCTR_CORE),
1090
);
1091
1092
kvm_cpu_cap_init(CPUID_8000_0001_EDX,
1093
ALIASED_1_EDX_F(FPU),
1094
ALIASED_1_EDX_F(VME),
1095
ALIASED_1_EDX_F(DE),
1096
ALIASED_1_EDX_F(PSE),
1097
ALIASED_1_EDX_F(TSC),
1098
ALIASED_1_EDX_F(MSR),
1099
ALIASED_1_EDX_F(PAE),
1100
ALIASED_1_EDX_F(MCE),
1101
ALIASED_1_EDX_F(CX8),
1102
ALIASED_1_EDX_F(APIC),
1103
/* Reserved */
1104
F(SYSCALL),
1105
ALIASED_1_EDX_F(MTRR),
1106
ALIASED_1_EDX_F(PGE),
1107
ALIASED_1_EDX_F(MCA),
1108
ALIASED_1_EDX_F(CMOV),
1109
ALIASED_1_EDX_F(PAT),
1110
ALIASED_1_EDX_F(PSE36),
1111
/* Reserved */
1112
F(NX),
1113
/* Reserved */
1114
F(MMXEXT),
1115
ALIASED_1_EDX_F(MMX),
1116
ALIASED_1_EDX_F(FXSR),
1117
F(FXSR_OPT),
1118
X86_64_F(GBPAGES),
1119
F(RDTSCP),
1120
/* Reserved */
1121
X86_64_F(LM),
1122
F(3DNOWEXT),
1123
F(3DNOW),
1124
);
1125
1126
if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
1127
kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
1128
1129
kvm_cpu_cap_init(CPUID_8000_0007_EDX,
1130
SCATTERED_F(CONSTANT_TSC),
1131
);
1132
1133
kvm_cpu_cap_init(CPUID_8000_0008_EBX,
1134
F(CLZERO),
1135
F(XSAVEERPTR),
1136
F(WBNOINVD),
1137
F(AMD_IBPB),
1138
F(AMD_IBRS),
1139
F(AMD_SSBD),
1140
F(VIRT_SSBD),
1141
F(AMD_SSB_NO),
1142
F(AMD_STIBP),
1143
F(AMD_STIBP_ALWAYS_ON),
1144
F(AMD_IBRS_SAME_MODE),
1145
PASSTHROUGH_F(EFER_LMSLE_MBZ),
1146
F(AMD_PSFD),
1147
F(AMD_IBPB_RET),
1148
);
1149
1150
/*
1151
* AMD has separate bits for each SPEC_CTRL bit.
1152
* arch/x86/kernel/cpu/bugs.c is kind enough to
1153
* record that in cpufeatures so use them.
1154
*/
1155
if (boot_cpu_has(X86_FEATURE_IBPB)) {
1156
kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
1157
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
1158
!boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
1159
kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
1160
}
1161
if (boot_cpu_has(X86_FEATURE_IBRS))
1162
kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
1163
if (boot_cpu_has(X86_FEATURE_STIBP))
1164
kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
1165
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
1166
kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
1167
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1168
kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
1169
/*
1170
* The preference is to use SPEC CTRL MSR instead of the
1171
* VIRT_SPEC MSR.
1172
*/
1173
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
1174
!boot_cpu_has(X86_FEATURE_AMD_SSBD))
1175
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
1176
1177
/* All SVM features required additional vendor module enabling. */
1178
kvm_cpu_cap_init(CPUID_8000_000A_EDX,
1179
VENDOR_F(NPT),
1180
VENDOR_F(VMCBCLEAN),
1181
VENDOR_F(FLUSHBYASID),
1182
VENDOR_F(NRIPS),
1183
VENDOR_F(TSCRATEMSR),
1184
VENDOR_F(V_VMSAVE_VMLOAD),
1185
VENDOR_F(LBRV),
1186
VENDOR_F(PAUSEFILTER),
1187
VENDOR_F(PFTHRESHOLD),
1188
VENDOR_F(VGIF),
1189
VENDOR_F(VNMI),
1190
VENDOR_F(SVME_ADDR_CHK),
1191
);
1192
1193
kvm_cpu_cap_init(CPUID_8000_001F_EAX,
1194
VENDOR_F(SME),
1195
VENDOR_F(SEV),
1196
/* VM_PAGE_FLUSH */
1197
VENDOR_F(SEV_ES),
1198
F(SME_COHERENT),
1199
);
1200
1201
kvm_cpu_cap_init(CPUID_8000_0021_EAX,
1202
F(NO_NESTED_DATA_BP),
1203
F(WRMSR_XX_BASE_NS),
1204
/*
1205
* Synthesize "LFENCE is serializing" into the AMD-defined entry
1206
* in KVM's supported CPUID, i.e. if the feature is reported as
1207
* supported by the kernel. LFENCE_RDTSC was a Linux-defined
1208
* synthetic feature long before AMD joined the bandwagon, e.g.
1209
* LFENCE is serializing on most CPUs that support SSE2. On
1210
* CPUs that don't support AMD's leaf, ANDing with the raw host
1211
* CPUID will drop the flags, and reporting support in AMD's
1212
* leaf can make it easier for userspace to detect the feature.
1213
*/
1214
SYNTHESIZED_F(LFENCE_RDTSC),
1215
/* SmmPgCfgLock */
1216
/* 4: Resv */
1217
SYNTHESIZED_F(VERW_CLEAR),
1218
F(NULL_SEL_CLR_BASE),
1219
/* UpperAddressIgnore */
1220
F(AUTOIBRS),
1221
F(PREFETCHI),
1222
EMULATED_F(NO_SMM_CTL_MSR),
1223
/* PrefetchCtlMsr */
1224
/* GpOnUserCpuid */
1225
/* EPSF */
1226
SYNTHESIZED_F(SBPB),
1227
SYNTHESIZED_F(IBPB_BRTYPE),
1228
SYNTHESIZED_F(SRSO_NO),
1229
F(SRSO_USER_KERNEL_NO),
1230
);
1231
1232
kvm_cpu_cap_init(CPUID_8000_0021_ECX,
1233
SYNTHESIZED_F(TSA_SQ_NO),
1234
SYNTHESIZED_F(TSA_L1_NO),
1235
);
1236
1237
kvm_cpu_cap_init(CPUID_8000_0022_EAX,
1238
F(PERFMON_V2),
1239
);
1240
1241
if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1242
kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
1243
1244
kvm_cpu_cap_init(CPUID_C000_0001_EDX,
1245
F(XSTORE),
1246
F(XSTORE_EN),
1247
F(XCRYPT),
1248
F(XCRYPT_EN),
1249
F(ACE2),
1250
F(ACE2_EN),
1251
F(PHE),
1252
F(PHE_EN),
1253
F(PMM),
1254
F(PMM_EN),
1255
);
1256
1257
/*
1258
* Hide RDTSCP and RDPID if either feature is reported as supported but
1259
* probing MSR_TSC_AUX failed. This is purely a sanity check and
1260
* should never happen, but the guest will likely crash if RDTSCP or
1261
* RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
1262
* the past. For example, the sanity check may fire if this instance of
1263
* KVM is running as L1 on top of an older, broken KVM.
1264
*/
1265
if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
1266
kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
1267
!kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
1268
kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
1269
kvm_cpu_cap_clear(X86_FEATURE_RDPID);
1270
}
1271
}
1272
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cpu_caps);
1273
1274
#undef F
1275
#undef SCATTERED_F
1276
#undef X86_64_F
1277
#undef EMULATED_F
1278
#undef SYNTHESIZED_F
1279
#undef PASSTHROUGH_F
1280
#undef ALIASED_1_EDX_F
1281
#undef VENDOR_F
1282
#undef RUNTIME_F
1283
1284
struct kvm_cpuid_array {
1285
struct kvm_cpuid_entry2 *entries;
1286
int maxnent;
1287
int nent;
1288
};
1289
1290
static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
1291
{
1292
if (array->nent >= array->maxnent)
1293
return NULL;
1294
1295
return &array->entries[array->nent++];
1296
}
1297
1298
static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
1299
u32 function, u32 index)
1300
{
1301
struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
1302
1303
if (!entry)
1304
return NULL;
1305
1306
memset(entry, 0, sizeof(*entry));
1307
entry->function = function;
1308
entry->index = index;
1309
switch (function & 0xC0000000) {
1310
case 0x40000000:
1311
/* Hypervisor leaves are always synthesized by __do_cpuid_func. */
1312
return entry;
1313
1314
case 0x80000000:
1315
/*
1316
* 0x80000021 is sometimes synthesized by __do_cpuid_func, which
1317
* would result in out-of-bounds calls to do_host_cpuid.
1318
*/
1319
{
1320
static int max_cpuid_80000000;
1321
if (!READ_ONCE(max_cpuid_80000000))
1322
WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
1323
if (function > READ_ONCE(max_cpuid_80000000))
1324
return entry;
1325
}
1326
break;
1327
1328
default:
1329
break;
1330
}
1331
1332
cpuid_count(entry->function, entry->index,
1333
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1334
1335
if (cpuid_function_is_indexed(function))
1336
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1337
1338
return entry;
1339
}
1340
1341
static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
1342
bool include_partially_emulated)
1343
{
1344
memset(entry, 0, sizeof(*entry));
1345
1346
entry->function = func;
1347
entry->index = 0;
1348
entry->flags = 0;
1349
1350
switch (func) {
1351
case 0:
1352
entry->eax = 7;
1353
return 1;
1354
case 1:
1355
entry->ecx = feature_bit(MOVBE);
1356
/*
1357
* KVM allows userspace to enumerate MONITOR+MWAIT support to
1358
* the guest, but the MWAIT feature flag is never advertised
1359
* to userspace because MONITOR+MWAIT aren't virtualized by
1360
* hardware, can't be faithfully emulated in software (KVM
1361
* emulates them as NOPs), and allowing the guest to execute
1362
* them natively requires enabling a per-VM capability.
1363
*/
1364
if (include_partially_emulated)
1365
entry->ecx |= feature_bit(MWAIT);
1366
return 1;
1367
case 7:
1368
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1369
entry->eax = 0;
1370
if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
1371
entry->ecx = feature_bit(RDPID);
1372
return 1;
1373
default:
1374
return 0;
1375
}
1376
}
1377
1378
static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
1379
{
1380
if (array->nent >= array->maxnent)
1381
return -E2BIG;
1382
1383
array->nent += cpuid_func_emulated(&array->entries[array->nent], func, false);
1384
return 0;
1385
}
1386
1387
static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
1388
{
1389
struct kvm_cpuid_entry2 *entry;
1390
int r, i, max_idx;
1391
1392
/* all calls to cpuid_count() should be made on the same cpu */
1393
get_cpu();
1394
1395
r = -E2BIG;
1396
1397
entry = do_host_cpuid(array, function, 0);
1398
if (!entry)
1399
goto out;
1400
1401
switch (function) {
1402
case 0:
1403
/* Limited to the highest leaf implemented in KVM. */
1404
entry->eax = min(entry->eax, 0x24U);
1405
break;
1406
case 1:
1407
cpuid_entry_override(entry, CPUID_1_EDX);
1408
cpuid_entry_override(entry, CPUID_1_ECX);
1409
break;
1410
case 2:
1411
/*
1412
* On ancient CPUs, function 2 entries are STATEFUL. That is,
1413
* CPUID(function=2, index=0) may return different results each
1414
* time, with the least-significant byte in EAX enumerating the
1415
* number of times software should do CPUID(2, 0).
1416
*
1417
* Modern CPUs, i.e. every CPU KVM has *ever* run on are less
1418
* idiotic. Intel's SDM states that EAX & 0xff "will always
1419
* return 01H. Software should ignore this value and not
1420
* interpret it as an informational descriptor", while AMD's
1421
* APM states that CPUID(2) is reserved.
1422
*
1423
* WARN if a frankenstein CPU that supports virtualization and
1424
* a stateful CPUID.0x2 is encountered.
1425
*/
1426
WARN_ON_ONCE((entry->eax & 0xff) > 1);
1427
break;
1428
/* functions 4 and 0x8000001d have additional index. */
1429
case 4:
1430
case 0x8000001d:
1431
/*
1432
* Read entries until the cache type in the previous entry is
1433
* zero, i.e. indicates an invalid entry.
1434
*/
1435
for (i = 1; entry->eax & 0x1f; ++i) {
1436
entry = do_host_cpuid(array, function, i);
1437
if (!entry)
1438
goto out;
1439
}
1440
break;
1441
case 6: /* Thermal management */
1442
entry->eax = 0x4; /* allow ARAT */
1443
entry->ebx = 0;
1444
entry->ecx = 0;
1445
entry->edx = 0;
1446
break;
1447
/* function 7 has additional index. */
1448
case 7:
1449
max_idx = entry->eax = min(entry->eax, 2u);
1450
cpuid_entry_override(entry, CPUID_7_0_EBX);
1451
cpuid_entry_override(entry, CPUID_7_ECX);
1452
cpuid_entry_override(entry, CPUID_7_EDX);
1453
1454
/* KVM only supports up to 0x7.2, capped above via min(). */
1455
if (max_idx >= 1) {
1456
entry = do_host_cpuid(array, function, 1);
1457
if (!entry)
1458
goto out;
1459
1460
cpuid_entry_override(entry, CPUID_7_1_EAX);
1461
cpuid_entry_override(entry, CPUID_7_1_ECX);
1462
cpuid_entry_override(entry, CPUID_7_1_EDX);
1463
entry->ebx = 0;
1464
}
1465
if (max_idx >= 2) {
1466
entry = do_host_cpuid(array, function, 2);
1467
if (!entry)
1468
goto out;
1469
1470
cpuid_entry_override(entry, CPUID_7_2_EDX);
1471
entry->ecx = 0;
1472
entry->ebx = 0;
1473
entry->eax = 0;
1474
}
1475
break;
1476
case 0xa: { /* Architectural Performance Monitoring */
1477
union cpuid10_eax eax = { };
1478
union cpuid10_edx edx = { };
1479
1480
if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1481
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1482
break;
1483
}
1484
1485
eax.split.version_id = kvm_pmu_cap.version;
1486
eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1487
eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1488
eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1489
edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1490
edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1491
1492
if (kvm_pmu_cap.version)
1493
edx.split.anythread_deprecated = 1;
1494
1495
entry->eax = eax.full;
1496
entry->ebx = kvm_pmu_cap.events_mask;
1497
entry->ecx = 0;
1498
entry->edx = edx.full;
1499
break;
1500
}
1501
case 0x1f:
1502
case 0xb:
1503
/*
1504
* No topology; a valid topology is indicated by the presence
1505
* of subleaf 1.
1506
*/
1507
entry->eax = entry->ebx = entry->ecx = 0;
1508
break;
1509
case 0xd: {
1510
u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1511
u64 permitted_xss = kvm_caps.supported_xss;
1512
1513
entry->eax &= permitted_xcr0;
1514
entry->ebx = xstate_required_size(permitted_xcr0, false);
1515
entry->ecx = entry->ebx;
1516
entry->edx &= permitted_xcr0 >> 32;
1517
if (!permitted_xcr0)
1518
break;
1519
1520
entry = do_host_cpuid(array, function, 1);
1521
if (!entry)
1522
goto out;
1523
1524
cpuid_entry_override(entry, CPUID_D_1_EAX);
1525
if (entry->eax & (feature_bit(XSAVES) | feature_bit(XSAVEC)))
1526
entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1527
true);
1528
else {
1529
WARN_ON_ONCE(permitted_xss != 0);
1530
entry->ebx = 0;
1531
}
1532
entry->ecx &= permitted_xss;
1533
entry->edx &= permitted_xss >> 32;
1534
1535
for (i = 2; i < 64; ++i) {
1536
bool s_state;
1537
if (permitted_xcr0 & BIT_ULL(i))
1538
s_state = false;
1539
else if (permitted_xss & BIT_ULL(i))
1540
s_state = true;
1541
else
1542
continue;
1543
1544
entry = do_host_cpuid(array, function, i);
1545
if (!entry)
1546
goto out;
1547
1548
/*
1549
* The supported check above should have filtered out
1550
* invalid sub-leafs. Only valid sub-leafs should
1551
* reach this point, and they should have a non-zero
1552
* save state size. Furthermore, check whether the
1553
* processor agrees with permitted_xcr0/permitted_xss
1554
* on whether this is an XCR0- or IA32_XSS-managed area.
1555
*/
1556
if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1557
--array->nent;
1558
continue;
1559
}
1560
1561
if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1562
entry->ecx &= ~BIT_ULL(2);
1563
entry->edx = 0;
1564
}
1565
break;
1566
}
1567
case 0x12:
1568
/* Intel SGX */
1569
if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1570
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1571
break;
1572
}
1573
1574
/*
1575
* Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1576
* and max enclave sizes. The SGX sub-features and MISCSELECT
1577
* are restricted by kernel and KVM capabilities (like most
1578
* feature flags), while enclave size is unrestricted.
1579
*/
1580
cpuid_entry_override(entry, CPUID_12_EAX);
1581
entry->ebx &= SGX_MISC_EXINFO;
1582
1583
entry = do_host_cpuid(array, function, 1);
1584
if (!entry)
1585
goto out;
1586
1587
/*
1588
* Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
1589
* feature flags. Advertise all supported flags, including
1590
* privileged attributes that require explicit opt-in from
1591
* userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
1592
* expected to derive it from supported XCR0.
1593
*/
1594
entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1595
entry->ebx &= 0;
1596
break;
1597
/* Intel PT */
1598
case 0x14:
1599
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1600
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1601
break;
1602
}
1603
1604
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1605
if (!do_host_cpuid(array, function, i))
1606
goto out;
1607
}
1608
break;
1609
/* Intel AMX TILE */
1610
case 0x1d:
1611
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1612
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1613
break;
1614
}
1615
1616
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1617
if (!do_host_cpuid(array, function, i))
1618
goto out;
1619
}
1620
break;
1621
case 0x1e: /* TMUL information */
1622
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1623
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1624
break;
1625
}
1626
break;
1627
case 0x24: {
1628
u8 avx10_version;
1629
1630
if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
1631
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1632
break;
1633
}
1634
1635
/*
1636
* The AVX10 version is encoded in EBX[7:0]. Note, the version
1637
* is guaranteed to be >=1 if AVX10 is supported. Note #2, the
1638
* version needs to be captured before overriding EBX features!
1639
*/
1640
avx10_version = min_t(u8, entry->ebx & 0xff, 1);
1641
cpuid_entry_override(entry, CPUID_24_0_EBX);
1642
entry->ebx |= avx10_version;
1643
1644
entry->eax = 0;
1645
entry->ecx = 0;
1646
entry->edx = 0;
1647
break;
1648
}
1649
case KVM_CPUID_SIGNATURE: {
1650
const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1651
entry->eax = KVM_CPUID_FEATURES;
1652
entry->ebx = sigptr[0];
1653
entry->ecx = sigptr[1];
1654
entry->edx = sigptr[2];
1655
break;
1656
}
1657
case KVM_CPUID_FEATURES:
1658
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1659
(1 << KVM_FEATURE_NOP_IO_DELAY) |
1660
(1 << KVM_FEATURE_CLOCKSOURCE2) |
1661
(1 << KVM_FEATURE_ASYNC_PF) |
1662
(1 << KVM_FEATURE_PV_EOI) |
1663
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1664
(1 << KVM_FEATURE_PV_UNHALT) |
1665
(1 << KVM_FEATURE_PV_TLB_FLUSH) |
1666
(1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1667
(1 << KVM_FEATURE_PV_SEND_IPI) |
1668
(1 << KVM_FEATURE_POLL_CONTROL) |
1669
(1 << KVM_FEATURE_PV_SCHED_YIELD) |
1670
(1 << KVM_FEATURE_ASYNC_PF_INT);
1671
1672
if (sched_info_on())
1673
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1674
1675
entry->ebx = 0;
1676
entry->ecx = 0;
1677
entry->edx = 0;
1678
break;
1679
case 0x80000000:
1680
entry->eax = min(entry->eax, 0x80000022);
1681
/*
1682
* Serializing LFENCE is reported in a multitude of ways, and
1683
* NullSegClearsBase is not reported in CPUID on Zen2; help
1684
* userspace by providing the CPUID leaf ourselves.
1685
*
1686
* However, only do it if the host has CPUID leaf 0x8000001d.
1687
* QEMU thinks that it can query the host blindly for that
1688
* CPUID leaf if KVM reports that it supports 0x8000001d or
1689
* above. The processor merrily returns values from the
1690
* highest Intel leaf which QEMU tries to use as the guest's
1691
* 0x8000001d. Even worse, this can result in an infinite
1692
* loop if said highest leaf has no subleaves indexed by ECX.
1693
*/
1694
if (entry->eax >= 0x8000001d &&
1695
(static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1696
|| !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1697
entry->eax = max(entry->eax, 0x80000021);
1698
break;
1699
case 0x80000001:
1700
entry->ebx &= ~GENMASK(27, 16);
1701
cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1702
cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1703
break;
1704
case 0x80000005:
1705
/* Pass host L1 cache and TLB info. */
1706
break;
1707
case 0x80000006:
1708
/* Drop reserved bits, pass host L2 cache and TLB info. */
1709
entry->edx &= ~GENMASK(17, 16);
1710
break;
1711
case 0x80000007: /* Advanced power management */
1712
cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1713
1714
/* mask against host */
1715
entry->edx &= boot_cpu_data.x86_power;
1716
entry->eax = entry->ebx = entry->ecx = 0;
1717
break;
1718
case 0x80000008: {
1719
/*
1720
* GuestPhysAddrSize (EAX[23:16]) is intended for software
1721
* use.
1722
*
1723
* KVM's ABI is to report the effective MAXPHYADDR for the
1724
* guest in PhysAddrSize (phys_as), and the maximum
1725
* *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1726
*
1727
* GuestPhysAddrSize is valid if and only if TDP is enabled,
1728
* in which case the max GPA that can be addressed by KVM may
1729
* be less than the max GPA that can be legally generated by
1730
* the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1731
* support 5-level TDP.
1732
*/
1733
unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1734
unsigned int phys_as, g_phys_as;
1735
1736
/*
1737
* If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1738
* the guest operates in the same PA space as the host, i.e.
1739
* reductions in MAXPHYADDR for memory encryption affect shadow
1740
* paging, too.
1741
*
1742
* If TDP is enabled, use the raw bare metal MAXPHYADDR as
1743
* reductions to the HPAs do not affect GPAs. The max
1744
* addressable GPA is the same as the max effective GPA, except
1745
* that it's capped at 48 bits if 5-level TDP isn't supported
1746
* (hardware processes bits 51:48 only when walking the fifth
1747
* level page table).
1748
*/
1749
if (!tdp_enabled) {
1750
phys_as = boot_cpu_data.x86_phys_bits;
1751
g_phys_as = 0;
1752
} else {
1753
phys_as = entry->eax & 0xff;
1754
g_phys_as = phys_as;
1755
if (kvm_mmu_get_max_tdp_level() < 5)
1756
g_phys_as = min(g_phys_as, 48U);
1757
}
1758
1759
entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1760
entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1761
entry->edx = 0;
1762
cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1763
break;
1764
}
1765
case 0x8000000A:
1766
if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1767
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1768
break;
1769
}
1770
entry->eax = 1; /* SVM revision 1 */
1771
entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1772
ASID emulation to nested SVM */
1773
entry->ecx = 0; /* Reserved */
1774
cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1775
break;
1776
case 0x80000019:
1777
entry->ecx = entry->edx = 0;
1778
break;
1779
case 0x8000001a:
1780
entry->eax &= GENMASK(2, 0);
1781
entry->ebx = entry->ecx = entry->edx = 0;
1782
break;
1783
case 0x8000001e:
1784
/* Do not return host topology information. */
1785
entry->eax = entry->ebx = entry->ecx = 0;
1786
entry->edx = 0; /* reserved */
1787
break;
1788
case 0x8000001F:
1789
if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1790
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1791
} else {
1792
cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1793
/* Clear NumVMPL since KVM does not support VMPL. */
1794
entry->ebx &= ~GENMASK(31, 12);
1795
/*
1796
* Enumerate '0' for "PA bits reduction", the adjusted
1797
* MAXPHYADDR is enumerated directly (see 0x80000008).
1798
*/
1799
entry->ebx &= ~GENMASK(11, 6);
1800
}
1801
break;
1802
case 0x80000020:
1803
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1804
break;
1805
case 0x80000021:
1806
entry->ebx = entry->edx = 0;
1807
cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1808
cpuid_entry_override(entry, CPUID_8000_0021_ECX);
1809
break;
1810
/* AMD Extended Performance Monitoring and Debug */
1811
case 0x80000022: {
1812
union cpuid_0x80000022_ebx ebx = { };
1813
1814
entry->ecx = entry->edx = 0;
1815
if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1816
entry->eax = entry->ebx = 0;
1817
break;
1818
}
1819
1820
cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1821
1822
ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1823
entry->ebx = ebx.full;
1824
break;
1825
}
1826
/*Add support for Centaur's CPUID instruction*/
1827
case 0xC0000000:
1828
/*Just support up to 0xC0000004 now*/
1829
entry->eax = min(entry->eax, 0xC0000004);
1830
break;
1831
case 0xC0000001:
1832
cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1833
break;
1834
case 3: /* Processor serial number */
1835
case 5: /* MONITOR/MWAIT */
1836
case 0xC0000002:
1837
case 0xC0000003:
1838
case 0xC0000004:
1839
default:
1840
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1841
break;
1842
}
1843
1844
r = 0;
1845
1846
out:
1847
put_cpu();
1848
1849
return r;
1850
}
1851
1852
static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1853
unsigned int type)
1854
{
1855
if (type == KVM_GET_EMULATED_CPUID)
1856
return __do_cpuid_func_emulated(array, func);
1857
1858
return __do_cpuid_func(array, func);
1859
}
1860
1861
#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1862
1863
static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1864
unsigned int type)
1865
{
1866
u32 limit;
1867
int r;
1868
1869
if (func == CENTAUR_CPUID_SIGNATURE &&
1870
boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR &&
1871
boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
1872
return 0;
1873
1874
r = do_cpuid_func(array, func, type);
1875
if (r)
1876
return r;
1877
1878
limit = array->entries[array->nent - 1].eax;
1879
for (func = func + 1; func <= limit; ++func) {
1880
r = do_cpuid_func(array, func, type);
1881
if (r)
1882
break;
1883
}
1884
1885
return r;
1886
}
1887
1888
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1889
__u32 num_entries, unsigned int ioctl_type)
1890
{
1891
int i;
1892
__u32 pad[3];
1893
1894
if (ioctl_type != KVM_GET_EMULATED_CPUID)
1895
return false;
1896
1897
/*
1898
* We want to make sure that ->padding is being passed clean from
1899
* userspace in case we want to use it for something in the future.
1900
*
1901
* Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1902
* have to give ourselves satisfied only with the emulated side. /me
1903
* sheds a tear.
1904
*/
1905
for (i = 0; i < num_entries; i++) {
1906
if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1907
return true;
1908
1909
if (pad[0] || pad[1] || pad[2])
1910
return true;
1911
}
1912
return false;
1913
}
1914
1915
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1916
struct kvm_cpuid_entry2 __user *entries,
1917
unsigned int type)
1918
{
1919
static const u32 funcs[] = {
1920
0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1921
};
1922
1923
struct kvm_cpuid_array array = {
1924
.nent = 0,
1925
};
1926
int r, i;
1927
1928
if (cpuid->nent < 1)
1929
return -E2BIG;
1930
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1931
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1932
1933
if (sanity_check_entries(entries, cpuid->nent, type))
1934
return -EINVAL;
1935
1936
array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1937
if (!array.entries)
1938
return -ENOMEM;
1939
1940
array.maxnent = cpuid->nent;
1941
1942
for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1943
r = get_cpuid_func(&array, funcs[i], type);
1944
if (r)
1945
goto out_free;
1946
}
1947
cpuid->nent = array.nent;
1948
1949
if (copy_to_user(entries, array.entries,
1950
array.nent * sizeof(struct kvm_cpuid_entry2)))
1951
r = -EFAULT;
1952
1953
out_free:
1954
kvfree(array.entries);
1955
return r;
1956
}
1957
1958
/*
1959
* Intel CPUID semantics treats any query for an out-of-range leaf as if the
1960
* highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
1961
* returns all zeroes for any undefined leaf, whether or not the leaf is in
1962
* range. Centaur/VIA follows Intel semantics.
1963
*
1964
* A leaf is considered out-of-range if its function is higher than the maximum
1965
* supported leaf of its associated class or if its associated class does not
1966
* exist.
1967
*
1968
* There are three primary classes to be considered, with their respective
1969
* ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
1970
* class exists if a guest CPUID entry for its <base> leaf exists. For a given
1971
* class, CPUID.<base>.EAX contains the max supported leaf for the class.
1972
*
1973
* - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1974
* - Hypervisor: 0x40000000 - 0x4fffffff
1975
* - Extended: 0x80000000 - 0xbfffffff
1976
* - Centaur: 0xc0000000 - 0xcfffffff
1977
*
1978
* The Hypervisor class is further subdivided into sub-classes that each act as
1979
* their own independent class associated with a 0x100 byte range. E.g. if Qemu
1980
* is advertising support for both HyperV and KVM, the resulting Hypervisor
1981
* CPUID sub-classes are:
1982
*
1983
* - HyperV: 0x40000000 - 0x400000ff
1984
* - KVM: 0x40000100 - 0x400001ff
1985
*/
1986
static struct kvm_cpuid_entry2 *
1987
get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1988
{
1989
struct kvm_cpuid_entry2 *basic, *class;
1990
u32 function = *fn_ptr;
1991
1992
basic = kvm_find_cpuid_entry(vcpu, 0);
1993
if (!basic)
1994
return NULL;
1995
1996
if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1997
is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1998
return NULL;
1999
2000
if (function >= 0x40000000 && function <= 0x4fffffff)
2001
class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
2002
else if (function >= 0xc0000000)
2003
class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
2004
else
2005
class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
2006
2007
if (class && function <= class->eax)
2008
return NULL;
2009
2010
/*
2011
* Leaf specific adjustments are also applied when redirecting to the
2012
* max basic entry, e.g. if the max basic leaf is 0xb but there is no
2013
* entry for CPUID.0xb.index (see below), then the output value for EDX
2014
* needs to be pulled from CPUID.0xb.1.
2015
*/
2016
*fn_ptr = basic->eax;
2017
2018
/*
2019
* The class does not exist or the requested function is out of range;
2020
* the effective CPUID entry is the max basic leaf. Note, the index of
2021
* the original requested leaf is observed!
2022
*/
2023
return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
2024
}
2025
2026
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
2027
u32 *ecx, u32 *edx, bool exact_only)
2028
{
2029
u32 orig_function = *eax, function = *eax, index = *ecx;
2030
struct kvm_cpuid_entry2 *entry;
2031
bool exact, used_max_basic = false;
2032
2033
if (vcpu->arch.cpuid_dynamic_bits_dirty)
2034
kvm_update_cpuid_runtime(vcpu);
2035
2036
entry = kvm_find_cpuid_entry_index(vcpu, function, index);
2037
exact = !!entry;
2038
2039
if (!entry && !exact_only) {
2040
entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
2041
used_max_basic = !!entry;
2042
}
2043
2044
if (entry) {
2045
*eax = entry->eax;
2046
*ebx = entry->ebx;
2047
*ecx = entry->ecx;
2048
*edx = entry->edx;
2049
if (function == 7 && index == 0) {
2050
u64 data;
2051
if ((*ebx & (feature_bit(RTM) | feature_bit(HLE))) &&
2052
!kvm_msr_read(vcpu, MSR_IA32_TSX_CTRL, &data) &&
2053
(data & TSX_CTRL_CPUID_CLEAR))
2054
*ebx &= ~(feature_bit(RTM) | feature_bit(HLE));
2055
} else if (function == 0x80000007) {
2056
if (kvm_hv_invtsc_suppressed(vcpu))
2057
*edx &= ~feature_bit(CONSTANT_TSC);
2058
} else if (IS_ENABLED(CONFIG_KVM_XEN) &&
2059
kvm_xen_is_tsc_leaf(vcpu, function)) {
2060
/*
2061
* Update guest TSC frequency information if necessary.
2062
* Ignore failures, there is no sane value that can be
2063
* provided if KVM can't get the TSC frequency.
2064
*/
2065
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu))
2066
kvm_guest_time_update(vcpu);
2067
2068
if (index == 1) {
2069
*ecx = vcpu->arch.pvclock_tsc_mul;
2070
*edx = vcpu->arch.pvclock_tsc_shift;
2071
} else if (index == 2) {
2072
*eax = vcpu->arch.hw_tsc_khz;
2073
}
2074
}
2075
} else {
2076
*eax = *ebx = *ecx = *edx = 0;
2077
/*
2078
* When leaf 0BH or 1FH is defined, CL is pass-through
2079
* and EDX is always the x2APIC ID, even for undefined
2080
* subleaves. Index 1 will exist iff the leaf is
2081
* implemented, so we pass through CL iff leaf 1
2082
* exists. EDX can be copied from any existing index.
2083
*/
2084
if (function == 0xb || function == 0x1f) {
2085
entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2086
if (entry) {
2087
*ecx = index & 0xff;
2088
*edx = entry->edx;
2089
}
2090
}
2091
}
2092
trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
2093
used_max_basic);
2094
return exact;
2095
}
2096
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_cpuid);
2097
2098
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2099
{
2100
u32 eax, ebx, ecx, edx;
2101
2102
if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
2103
return 1;
2104
2105
eax = kvm_rax_read(vcpu);
2106
ecx = kvm_rcx_read(vcpu);
2107
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
2108
kvm_rax_write(vcpu, eax);
2109
kvm_rbx_write(vcpu, ebx);
2110
kvm_rcx_write(vcpu, ecx);
2111
kvm_rdx_write(vcpu, edx);
2112
return kvm_skip_emulated_instruction(vcpu);
2113
}
2114
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_cpuid);
2115
2116