Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/emulate.c
26444 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/******************************************************************************
3
* emulate.c
4
*
5
* Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
6
*
7
* Copyright (c) 2005 Keir Fraser
8
*
9
* Linux coding style, mod r/m decoder, segment base fixes, real-mode
10
* privileged instructions:
11
*
12
* Copyright (C) 2006 Qumranet
13
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
14
*
15
* Avi Kivity <[email protected]>
16
* Yaniv Kamay <[email protected]>
17
*
18
* From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
19
*/
20
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22
#include <linux/kvm_host.h>
23
#include "kvm_cache_regs.h"
24
#include "kvm_emulate.h"
25
#include <linux/stringify.h>
26
#include <asm/debugreg.h>
27
#include <asm/nospec-branch.h>
28
#include <asm/ibt.h>
29
30
#include "x86.h"
31
#include "tss.h"
32
#include "mmu.h"
33
#include "pmu.h"
34
35
/*
36
* Operand types
37
*/
38
#define OpNone 0ull
39
#define OpImplicit 1ull /* No generic decode */
40
#define OpReg 2ull /* Register */
41
#define OpMem 3ull /* Memory */
42
#define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
43
#define OpDI 5ull /* ES:DI/EDI/RDI */
44
#define OpMem64 6ull /* Memory, 64-bit */
45
#define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
46
#define OpDX 8ull /* DX register */
47
#define OpCL 9ull /* CL register (for shifts) */
48
#define OpImmByte 10ull /* 8-bit sign extended immediate */
49
#define OpOne 11ull /* Implied 1 */
50
#define OpImm 12ull /* Sign extended up to 32-bit immediate */
51
#define OpMem16 13ull /* Memory operand (16-bit). */
52
#define OpMem32 14ull /* Memory operand (32-bit). */
53
#define OpImmU 15ull /* Immediate operand, zero extended */
54
#define OpSI 16ull /* SI/ESI/RSI */
55
#define OpImmFAddr 17ull /* Immediate far address */
56
#define OpMemFAddr 18ull /* Far address in memory */
57
#define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
58
#define OpES 20ull /* ES */
59
#define OpCS 21ull /* CS */
60
#define OpSS 22ull /* SS */
61
#define OpDS 23ull /* DS */
62
#define OpFS 24ull /* FS */
63
#define OpGS 25ull /* GS */
64
#define OpMem8 26ull /* 8-bit zero extended memory operand */
65
#define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
66
#define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
67
#define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
68
#define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
69
70
#define OpBits 5 /* Width of operand field */
71
#define OpMask ((1ull << OpBits) - 1)
72
73
/*
74
* Opcode effective-address decode tables.
75
* Note that we only emulate instructions that have at least one memory
76
* operand (excluding implicit stack references). We assume that stack
77
* references and instruction fetches will never occur in special memory
78
* areas that require emulation. So, for example, 'mov <imm>,<reg>' need
79
* not be handled.
80
*/
81
82
/* Operand sizes: 8-bit operands or specified/overridden size. */
83
#define ByteOp (1<<0) /* 8-bit operands. */
84
/* Destination operand type. */
85
#define DstShift 1
86
#define ImplicitOps (OpImplicit << DstShift)
87
#define DstReg (OpReg << DstShift)
88
#define DstMem (OpMem << DstShift)
89
#define DstAcc (OpAcc << DstShift)
90
#define DstDI (OpDI << DstShift)
91
#define DstMem64 (OpMem64 << DstShift)
92
#define DstMem16 (OpMem16 << DstShift)
93
#define DstImmUByte (OpImmUByte << DstShift)
94
#define DstDX (OpDX << DstShift)
95
#define DstAccLo (OpAccLo << DstShift)
96
#define DstMask (OpMask << DstShift)
97
/* Source operand type. */
98
#define SrcShift 6
99
#define SrcNone (OpNone << SrcShift)
100
#define SrcReg (OpReg << SrcShift)
101
#define SrcMem (OpMem << SrcShift)
102
#define SrcMem16 (OpMem16 << SrcShift)
103
#define SrcMem32 (OpMem32 << SrcShift)
104
#define SrcImm (OpImm << SrcShift)
105
#define SrcImmByte (OpImmByte << SrcShift)
106
#define SrcOne (OpOne << SrcShift)
107
#define SrcImmUByte (OpImmUByte << SrcShift)
108
#define SrcImmU (OpImmU << SrcShift)
109
#define SrcSI (OpSI << SrcShift)
110
#define SrcXLat (OpXLat << SrcShift)
111
#define SrcImmFAddr (OpImmFAddr << SrcShift)
112
#define SrcMemFAddr (OpMemFAddr << SrcShift)
113
#define SrcAcc (OpAcc << SrcShift)
114
#define SrcImmU16 (OpImmU16 << SrcShift)
115
#define SrcImm64 (OpImm64 << SrcShift)
116
#define SrcDX (OpDX << SrcShift)
117
#define SrcMem8 (OpMem8 << SrcShift)
118
#define SrcAccHi (OpAccHi << SrcShift)
119
#define SrcMask (OpMask << SrcShift)
120
#define BitOp (1<<11)
121
#define MemAbs (1<<12) /* Memory operand is absolute displacement */
122
#define String (1<<13) /* String instruction (rep capable) */
123
#define Stack (1<<14) /* Stack instruction (push/pop) */
124
#define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
125
#define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
126
#define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
127
#define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
128
#define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
129
#define Escape (5<<15) /* Escape to coprocessor instruction */
130
#define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
131
#define ModeDual (7<<15) /* Different instruction for 32/64 bit */
132
#define Sse (1<<18) /* SSE Vector instruction */
133
/* Generic ModRM decode. */
134
#define ModRM (1<<19)
135
/* Destination is only written; never read. */
136
#define Mov (1<<20)
137
/* Misc flags */
138
#define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
139
#define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
140
#define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
141
#define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
142
#define Undefined (1<<25) /* No Such Instruction */
143
#define Lock (1<<26) /* lock prefix is allowed for the instruction */
144
#define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
145
#define No64 (1<<28)
146
#define PageTable (1 << 29) /* instruction used to write page table */
147
#define NotImpl (1 << 30) /* instruction is not implemented */
148
/* Source 2 operand type */
149
#define Src2Shift (31)
150
#define Src2None (OpNone << Src2Shift)
151
#define Src2Mem (OpMem << Src2Shift)
152
#define Src2CL (OpCL << Src2Shift)
153
#define Src2ImmByte (OpImmByte << Src2Shift)
154
#define Src2One (OpOne << Src2Shift)
155
#define Src2Imm (OpImm << Src2Shift)
156
#define Src2ES (OpES << Src2Shift)
157
#define Src2CS (OpCS << Src2Shift)
158
#define Src2SS (OpSS << Src2Shift)
159
#define Src2DS (OpDS << Src2Shift)
160
#define Src2FS (OpFS << Src2Shift)
161
#define Src2GS (OpGS << Src2Shift)
162
#define Src2Mask (OpMask << Src2Shift)
163
#define Mmx ((u64)1 << 40) /* MMX Vector instruction */
164
#define AlignMask ((u64)7 << 41)
165
#define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
166
#define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */
167
#define Avx ((u64)3 << 41) /* Advanced Vector Extensions */
168
#define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */
169
#define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
170
#define NoWrite ((u64)1 << 45) /* No writeback */
171
#define SrcWrite ((u64)1 << 46) /* Write back src operand */
172
#define NoMod ((u64)1 << 47) /* Mod field is ignored */
173
#define Intercept ((u64)1 << 48) /* Has valid intercept field */
174
#define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
175
#define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
176
#define NearBranch ((u64)1 << 52) /* Near branches */
177
#define No16 ((u64)1 << 53) /* No 16 bit operand */
178
#define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
179
#define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */
180
#define IsBranch ((u64)1 << 56) /* Instruction is considered a branch. */
181
182
#define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
183
184
#define X2(x...) x, x
185
#define X3(x...) X2(x), x
186
#define X4(x...) X2(x), X2(x)
187
#define X5(x...) X4(x), x
188
#define X6(x...) X4(x), X2(x)
189
#define X7(x...) X4(x), X3(x)
190
#define X8(x...) X4(x), X4(x)
191
#define X16(x...) X8(x), X8(x)
192
193
struct opcode {
194
u64 flags;
195
u8 intercept;
196
u8 pad[7];
197
union {
198
int (*execute)(struct x86_emulate_ctxt *ctxt);
199
const struct opcode *group;
200
const struct group_dual *gdual;
201
const struct gprefix *gprefix;
202
const struct escape *esc;
203
const struct instr_dual *idual;
204
const struct mode_dual *mdual;
205
void (*fastop)(struct fastop *fake);
206
} u;
207
int (*check_perm)(struct x86_emulate_ctxt *ctxt);
208
};
209
210
struct group_dual {
211
struct opcode mod012[8];
212
struct opcode mod3[8];
213
};
214
215
struct gprefix {
216
struct opcode pfx_no;
217
struct opcode pfx_66;
218
struct opcode pfx_f2;
219
struct opcode pfx_f3;
220
};
221
222
struct escape {
223
struct opcode op[8];
224
struct opcode high[64];
225
};
226
227
struct instr_dual {
228
struct opcode mod012;
229
struct opcode mod3;
230
};
231
232
struct mode_dual {
233
struct opcode mode32;
234
struct opcode mode64;
235
};
236
237
#define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
238
239
enum x86_transfer_type {
240
X86_TRANSFER_NONE,
241
X86_TRANSFER_CALL_JMP,
242
X86_TRANSFER_RET,
243
X86_TRANSFER_TASK_SWITCH,
244
};
245
246
static void writeback_registers(struct x86_emulate_ctxt *ctxt)
247
{
248
unsigned long dirty = ctxt->regs_dirty;
249
unsigned reg;
250
251
for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS)
252
ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
253
}
254
255
static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
256
{
257
ctxt->regs_dirty = 0;
258
ctxt->regs_valid = 0;
259
}
260
261
/*
262
* These EFLAGS bits are restored from saved value during emulation, and
263
* any changes are written back to the saved value after emulation.
264
*/
265
#define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
266
X86_EFLAGS_PF|X86_EFLAGS_CF)
267
268
#ifdef CONFIG_X86_64
269
#define ON64(x) x
270
#else
271
#define ON64(x)
272
#endif
273
274
/*
275
* fastop functions have a special calling convention:
276
*
277
* dst: rax (in/out)
278
* src: rdx (in/out)
279
* src2: rcx (in)
280
* flags: rflags (in/out)
281
* ex: rsi (in:fastop pointer, out:zero if exception)
282
*
283
* Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
284
* different operand sizes can be reached by calculation, rather than a jump
285
* table (which would be bigger than the code).
286
*
287
* The 16 byte alignment, considering 5 bytes for the RET thunk, 3 for ENDBR
288
* and 1 for the straight line speculation INT3, leaves 7 bytes for the
289
* body of the function. Currently none is larger than 4.
290
*/
291
static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop);
292
293
#define FASTOP_SIZE 16
294
295
#define __FOP_FUNC(name) \
296
".align " __stringify(FASTOP_SIZE) " \n\t" \
297
".type " name ", @function \n\t" \
298
name ":\n\t" \
299
ASM_ENDBR \
300
IBT_NOSEAL(name)
301
302
#define FOP_FUNC(name) \
303
__FOP_FUNC(#name)
304
305
#define __FOP_RET(name) \
306
"11: " ASM_RET \
307
".size " name ", .-" name "\n\t"
308
309
#define FOP_RET(name) \
310
__FOP_RET(#name)
311
312
#define __FOP_START(op, align) \
313
extern void em_##op(struct fastop *fake); \
314
asm(".pushsection .text, \"ax\" \n\t" \
315
".global em_" #op " \n\t" \
316
".align " __stringify(align) " \n\t" \
317
"em_" #op ":\n\t"
318
319
#define FOP_START(op) __FOP_START(op, FASTOP_SIZE)
320
321
#define FOP_END \
322
".popsection")
323
324
#define __FOPNOP(name) \
325
__FOP_FUNC(name) \
326
__FOP_RET(name)
327
328
#define FOPNOP() \
329
__FOPNOP(__stringify(__UNIQUE_ID(nop)))
330
331
#define FOP1E(op, dst) \
332
__FOP_FUNC(#op "_" #dst) \
333
"10: " #op " %" #dst " \n\t" \
334
__FOP_RET(#op "_" #dst)
335
336
#define FOP1EEX(op, dst) \
337
FOP1E(op, dst) _ASM_EXTABLE_TYPE_REG(10b, 11b, EX_TYPE_ZERO_REG, %%esi)
338
339
#define FASTOP1(op) \
340
FOP_START(op) \
341
FOP1E(op##b, al) \
342
FOP1E(op##w, ax) \
343
FOP1E(op##l, eax) \
344
ON64(FOP1E(op##q, rax)) \
345
FOP_END
346
347
/* 1-operand, using src2 (for MUL/DIV r/m) */
348
#define FASTOP1SRC2(op, name) \
349
FOP_START(name) \
350
FOP1E(op, cl) \
351
FOP1E(op, cx) \
352
FOP1E(op, ecx) \
353
ON64(FOP1E(op, rcx)) \
354
FOP_END
355
356
/* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
357
#define FASTOP1SRC2EX(op, name) \
358
FOP_START(name) \
359
FOP1EEX(op, cl) \
360
FOP1EEX(op, cx) \
361
FOP1EEX(op, ecx) \
362
ON64(FOP1EEX(op, rcx)) \
363
FOP_END
364
365
#define FOP2E(op, dst, src) \
366
__FOP_FUNC(#op "_" #dst "_" #src) \
367
#op " %" #src ", %" #dst " \n\t" \
368
__FOP_RET(#op "_" #dst "_" #src)
369
370
#define FASTOP2(op) \
371
FOP_START(op) \
372
FOP2E(op##b, al, dl) \
373
FOP2E(op##w, ax, dx) \
374
FOP2E(op##l, eax, edx) \
375
ON64(FOP2E(op##q, rax, rdx)) \
376
FOP_END
377
378
/* 2 operand, word only */
379
#define FASTOP2W(op) \
380
FOP_START(op) \
381
FOPNOP() \
382
FOP2E(op##w, ax, dx) \
383
FOP2E(op##l, eax, edx) \
384
ON64(FOP2E(op##q, rax, rdx)) \
385
FOP_END
386
387
/* 2 operand, src is CL */
388
#define FASTOP2CL(op) \
389
FOP_START(op) \
390
FOP2E(op##b, al, cl) \
391
FOP2E(op##w, ax, cl) \
392
FOP2E(op##l, eax, cl) \
393
ON64(FOP2E(op##q, rax, cl)) \
394
FOP_END
395
396
/* 2 operand, src and dest are reversed */
397
#define FASTOP2R(op, name) \
398
FOP_START(name) \
399
FOP2E(op##b, dl, al) \
400
FOP2E(op##w, dx, ax) \
401
FOP2E(op##l, edx, eax) \
402
ON64(FOP2E(op##q, rdx, rax)) \
403
FOP_END
404
405
#define FOP3E(op, dst, src, src2) \
406
__FOP_FUNC(#op "_" #dst "_" #src "_" #src2) \
407
#op " %" #src2 ", %" #src ", %" #dst " \n\t"\
408
__FOP_RET(#op "_" #dst "_" #src "_" #src2)
409
410
/* 3-operand, word-only, src2=cl */
411
#define FASTOP3WCL(op) \
412
FOP_START(op) \
413
FOPNOP() \
414
FOP3E(op##w, ax, dx, cl) \
415
FOP3E(op##l, eax, edx, cl) \
416
ON64(FOP3E(op##q, rax, rdx, cl)) \
417
FOP_END
418
419
/* Special case for SETcc - 1 instruction per cc */
420
#define FOP_SETCC(op) \
421
FOP_FUNC(op) \
422
#op " %al \n\t" \
423
FOP_RET(op)
424
425
FOP_START(setcc)
426
FOP_SETCC(seto)
427
FOP_SETCC(setno)
428
FOP_SETCC(setc)
429
FOP_SETCC(setnc)
430
FOP_SETCC(setz)
431
FOP_SETCC(setnz)
432
FOP_SETCC(setbe)
433
FOP_SETCC(setnbe)
434
FOP_SETCC(sets)
435
FOP_SETCC(setns)
436
FOP_SETCC(setp)
437
FOP_SETCC(setnp)
438
FOP_SETCC(setl)
439
FOP_SETCC(setnl)
440
FOP_SETCC(setle)
441
FOP_SETCC(setnle)
442
FOP_END;
443
444
FOP_START(salc)
445
FOP_FUNC(salc)
446
"pushf; sbb %al, %al; popf \n\t"
447
FOP_RET(salc)
448
FOP_END;
449
450
/*
451
* XXX: inoutclob user must know where the argument is being expanded.
452
* Using asm goto would allow us to remove _fault.
453
*/
454
#define asm_safe(insn, inoutclob...) \
455
({ \
456
int _fault = 0; \
457
\
458
asm volatile("1:" insn "\n" \
459
"2:\n" \
460
_ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \
461
: [_fault] "+r"(_fault) inoutclob ); \
462
\
463
_fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
464
})
465
466
static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
467
enum x86_intercept intercept,
468
enum x86_intercept_stage stage)
469
{
470
struct x86_instruction_info info = {
471
.intercept = intercept,
472
.rep_prefix = ctxt->rep_prefix,
473
.modrm_mod = ctxt->modrm_mod,
474
.modrm_reg = ctxt->modrm_reg,
475
.modrm_rm = ctxt->modrm_rm,
476
.src_val = ctxt->src.val64,
477
.dst_val = ctxt->dst.val64,
478
.src_bytes = ctxt->src.bytes,
479
.dst_bytes = ctxt->dst.bytes,
480
.src_type = ctxt->src.type,
481
.dst_type = ctxt->dst.type,
482
.ad_bytes = ctxt->ad_bytes,
483
.rip = ctxt->eip,
484
.next_rip = ctxt->_eip,
485
};
486
487
return ctxt->ops->intercept(ctxt, &info, stage);
488
}
489
490
static void assign_masked(ulong *dest, ulong src, ulong mask)
491
{
492
*dest = (*dest & ~mask) | (src & mask);
493
}
494
495
static void assign_register(unsigned long *reg, u64 val, int bytes)
496
{
497
/* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
498
switch (bytes) {
499
case 1:
500
*(u8 *)reg = (u8)val;
501
break;
502
case 2:
503
*(u16 *)reg = (u16)val;
504
break;
505
case 4:
506
*reg = (u32)val;
507
break; /* 64b: zero-extend */
508
case 8:
509
*reg = val;
510
break;
511
}
512
}
513
514
static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
515
{
516
return (1UL << (ctxt->ad_bytes << 3)) - 1;
517
}
518
519
static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
520
{
521
u16 sel;
522
struct desc_struct ss;
523
524
if (ctxt->mode == X86EMUL_MODE_PROT64)
525
return ~0UL;
526
ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
527
return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
528
}
529
530
static int stack_size(struct x86_emulate_ctxt *ctxt)
531
{
532
return (__fls(stack_mask(ctxt)) + 1) >> 3;
533
}
534
535
/* Access/update address held in a register, based on addressing mode. */
536
static inline unsigned long
537
address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
538
{
539
if (ctxt->ad_bytes == sizeof(unsigned long))
540
return reg;
541
else
542
return reg & ad_mask(ctxt);
543
}
544
545
static inline unsigned long
546
register_address(struct x86_emulate_ctxt *ctxt, int reg)
547
{
548
return address_mask(ctxt, reg_read(ctxt, reg));
549
}
550
551
static void masked_increment(ulong *reg, ulong mask, int inc)
552
{
553
assign_masked(reg, *reg + inc, mask);
554
}
555
556
static inline void
557
register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
558
{
559
ulong *preg = reg_rmw(ctxt, reg);
560
561
assign_register(preg, *preg + inc, ctxt->ad_bytes);
562
}
563
564
static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
565
{
566
masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
567
}
568
569
static u32 desc_limit_scaled(struct desc_struct *desc)
570
{
571
u32 limit = get_desc_limit(desc);
572
573
return desc->g ? (limit << 12) | 0xfff : limit;
574
}
575
576
static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
577
{
578
if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
579
return 0;
580
581
return ctxt->ops->get_cached_segment_base(ctxt, seg);
582
}
583
584
static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
585
u32 error, bool valid)
586
{
587
if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt))
588
return X86EMUL_UNHANDLEABLE;
589
590
ctxt->exception.vector = vec;
591
ctxt->exception.error_code = error;
592
ctxt->exception.error_code_valid = valid;
593
return X86EMUL_PROPAGATE_FAULT;
594
}
595
596
static int emulate_db(struct x86_emulate_ctxt *ctxt)
597
{
598
return emulate_exception(ctxt, DB_VECTOR, 0, false);
599
}
600
601
static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
602
{
603
return emulate_exception(ctxt, GP_VECTOR, err, true);
604
}
605
606
static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
607
{
608
return emulate_exception(ctxt, SS_VECTOR, err, true);
609
}
610
611
static int emulate_ud(struct x86_emulate_ctxt *ctxt)
612
{
613
return emulate_exception(ctxt, UD_VECTOR, 0, false);
614
}
615
616
static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
617
{
618
return emulate_exception(ctxt, TS_VECTOR, err, true);
619
}
620
621
static int emulate_de(struct x86_emulate_ctxt *ctxt)
622
{
623
return emulate_exception(ctxt, DE_VECTOR, 0, false);
624
}
625
626
static int emulate_nm(struct x86_emulate_ctxt *ctxt)
627
{
628
return emulate_exception(ctxt, NM_VECTOR, 0, false);
629
}
630
631
static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
632
{
633
u16 selector;
634
struct desc_struct desc;
635
636
ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
637
return selector;
638
}
639
640
static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
641
unsigned seg)
642
{
643
u16 dummy;
644
u32 base3;
645
struct desc_struct desc;
646
647
ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
648
ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
649
}
650
651
static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
652
{
653
return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
654
}
655
656
static inline bool emul_is_noncanonical_address(u64 la,
657
struct x86_emulate_ctxt *ctxt,
658
unsigned int flags)
659
{
660
return !ctxt->ops->is_canonical_addr(ctxt, la, flags);
661
}
662
663
/*
664
* x86 defines three classes of vector instructions: explicitly
665
* aligned, explicitly unaligned, and the rest, which change behaviour
666
* depending on whether they're AVX encoded or not.
667
*
668
* Also included is CMPXCHG16B which is not a vector instruction, yet it is
669
* subject to the same check. FXSAVE and FXRSTOR are checked here too as their
670
* 512 bytes of data must be aligned to a 16 byte boundary.
671
*/
672
static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
673
{
674
u64 alignment = ctxt->d & AlignMask;
675
676
if (likely(size < 16))
677
return 1;
678
679
switch (alignment) {
680
case Unaligned:
681
case Avx:
682
return 1;
683
case Aligned16:
684
return 16;
685
case Aligned:
686
default:
687
return size;
688
}
689
}
690
691
static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
692
struct segmented_address addr,
693
unsigned *max_size, unsigned size,
694
enum x86emul_mode mode, ulong *linear,
695
unsigned int flags)
696
{
697
struct desc_struct desc;
698
bool usable;
699
ulong la;
700
u32 lim;
701
u16 sel;
702
u8 va_bits;
703
704
la = seg_base(ctxt, addr.seg) + addr.ea;
705
*max_size = 0;
706
switch (mode) {
707
case X86EMUL_MODE_PROT64:
708
*linear = la = ctxt->ops->get_untagged_addr(ctxt, la, flags);
709
va_bits = ctxt_virt_addr_bits(ctxt);
710
if (!__is_canonical_address(la, va_bits))
711
goto bad;
712
713
*max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
714
if (size > *max_size)
715
goto bad;
716
break;
717
default:
718
*linear = la = (u32)la;
719
usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
720
addr.seg);
721
if (!usable)
722
goto bad;
723
/* code segment in protected mode or read-only data segment */
724
if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) || !(desc.type & 2)) &&
725
(flags & X86EMUL_F_WRITE))
726
goto bad;
727
/* unreadable code segment */
728
if (!(flags & X86EMUL_F_FETCH) && (desc.type & 8) && !(desc.type & 2))
729
goto bad;
730
lim = desc_limit_scaled(&desc);
731
if (!(desc.type & 8) && (desc.type & 4)) {
732
/* expand-down segment */
733
if (addr.ea <= lim)
734
goto bad;
735
lim = desc.d ? 0xffffffff : 0xffff;
736
}
737
if (addr.ea > lim)
738
goto bad;
739
if (lim == 0xffffffff)
740
*max_size = ~0u;
741
else {
742
*max_size = (u64)lim + 1 - addr.ea;
743
if (size > *max_size)
744
goto bad;
745
}
746
break;
747
}
748
if (la & (insn_alignment(ctxt, size) - 1))
749
return emulate_gp(ctxt, 0);
750
return X86EMUL_CONTINUE;
751
bad:
752
if (addr.seg == VCPU_SREG_SS)
753
return emulate_ss(ctxt, 0);
754
else
755
return emulate_gp(ctxt, 0);
756
}
757
758
static int linearize(struct x86_emulate_ctxt *ctxt,
759
struct segmented_address addr,
760
unsigned size, bool write,
761
ulong *linear)
762
{
763
unsigned max_size;
764
return __linearize(ctxt, addr, &max_size, size, ctxt->mode, linear,
765
write ? X86EMUL_F_WRITE : 0);
766
}
767
768
static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst)
769
{
770
ulong linear;
771
int rc;
772
unsigned max_size;
773
struct segmented_address addr = { .seg = VCPU_SREG_CS,
774
.ea = dst };
775
776
if (ctxt->op_bytes != sizeof(unsigned long))
777
addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
778
rc = __linearize(ctxt, addr, &max_size, 1, ctxt->mode, &linear,
779
X86EMUL_F_FETCH);
780
if (rc == X86EMUL_CONTINUE)
781
ctxt->_eip = addr.ea;
782
return rc;
783
}
784
785
static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt)
786
{
787
u64 efer;
788
struct desc_struct cs;
789
u16 selector;
790
u32 base3;
791
792
ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
793
794
if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) {
795
/* Real mode. cpu must not have long mode active */
796
if (efer & EFER_LMA)
797
return X86EMUL_UNHANDLEABLE;
798
ctxt->mode = X86EMUL_MODE_REAL;
799
return X86EMUL_CONTINUE;
800
}
801
802
if (ctxt->eflags & X86_EFLAGS_VM) {
803
/* Protected/VM86 mode. cpu must not have long mode active */
804
if (efer & EFER_LMA)
805
return X86EMUL_UNHANDLEABLE;
806
ctxt->mode = X86EMUL_MODE_VM86;
807
return X86EMUL_CONTINUE;
808
}
809
810
if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS))
811
return X86EMUL_UNHANDLEABLE;
812
813
if (efer & EFER_LMA) {
814
if (cs.l) {
815
/* Proper long mode */
816
ctxt->mode = X86EMUL_MODE_PROT64;
817
} else if (cs.d) {
818
/* 32 bit compatibility mode*/
819
ctxt->mode = X86EMUL_MODE_PROT32;
820
} else {
821
ctxt->mode = X86EMUL_MODE_PROT16;
822
}
823
} else {
824
/* Legacy 32 bit / 16 bit mode */
825
ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
826
}
827
828
return X86EMUL_CONTINUE;
829
}
830
831
static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
832
{
833
return assign_eip(ctxt, dst);
834
}
835
836
static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst)
837
{
838
int rc = emulator_recalc_and_set_mode(ctxt);
839
840
if (rc != X86EMUL_CONTINUE)
841
return rc;
842
843
return assign_eip(ctxt, dst);
844
}
845
846
static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
847
{
848
return assign_eip_near(ctxt, ctxt->_eip + rel);
849
}
850
851
static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear,
852
void *data, unsigned size)
853
{
854
return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true);
855
}
856
857
static int linear_write_system(struct x86_emulate_ctxt *ctxt,
858
ulong linear, void *data,
859
unsigned int size)
860
{
861
return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true);
862
}
863
864
static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
865
struct segmented_address addr,
866
void *data,
867
unsigned size)
868
{
869
int rc;
870
ulong linear;
871
872
rc = linearize(ctxt, addr, size, false, &linear);
873
if (rc != X86EMUL_CONTINUE)
874
return rc;
875
return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false);
876
}
877
878
static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
879
struct segmented_address addr,
880
void *data,
881
unsigned int size)
882
{
883
int rc;
884
ulong linear;
885
886
rc = linearize(ctxt, addr, size, true, &linear);
887
if (rc != X86EMUL_CONTINUE)
888
return rc;
889
return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false);
890
}
891
892
/*
893
* Prefetch the remaining bytes of the instruction without crossing page
894
* boundary if they are not in fetch_cache yet.
895
*/
896
static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
897
{
898
int rc;
899
unsigned size, max_size;
900
unsigned long linear;
901
int cur_size = ctxt->fetch.end - ctxt->fetch.data;
902
struct segmented_address addr = { .seg = VCPU_SREG_CS,
903
.ea = ctxt->eip + cur_size };
904
905
/*
906
* We do not know exactly how many bytes will be needed, and
907
* __linearize is expensive, so fetch as much as possible. We
908
* just have to avoid going beyond the 15 byte limit, the end
909
* of the segment, or the end of the page.
910
*
911
* __linearize is called with size 0 so that it does not do any
912
* boundary check itself. Instead, we use max_size to check
913
* against op_size.
914
*/
915
rc = __linearize(ctxt, addr, &max_size, 0, ctxt->mode, &linear,
916
X86EMUL_F_FETCH);
917
if (unlikely(rc != X86EMUL_CONTINUE))
918
return rc;
919
920
size = min_t(unsigned, 15UL ^ cur_size, max_size);
921
size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
922
923
/*
924
* One instruction can only straddle two pages,
925
* and one has been loaded at the beginning of
926
* x86_decode_insn. So, if not enough bytes
927
* still, we must have hit the 15-byte boundary.
928
*/
929
if (unlikely(size < op_size))
930
return emulate_gp(ctxt, 0);
931
932
rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
933
size, &ctxt->exception);
934
if (unlikely(rc != X86EMUL_CONTINUE))
935
return rc;
936
ctxt->fetch.end += size;
937
return X86EMUL_CONTINUE;
938
}
939
940
static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
941
unsigned size)
942
{
943
unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
944
945
if (unlikely(done_size < size))
946
return __do_insn_fetch_bytes(ctxt, size - done_size);
947
else
948
return X86EMUL_CONTINUE;
949
}
950
951
/* Fetch next part of the instruction being emulated. */
952
#define insn_fetch(_type, _ctxt) \
953
({ _type _x; \
954
\
955
rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
956
if (rc != X86EMUL_CONTINUE) \
957
goto done; \
958
ctxt->_eip += sizeof(_type); \
959
memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \
960
ctxt->fetch.ptr += sizeof(_type); \
961
_x; \
962
})
963
964
#define insn_fetch_arr(_arr, _size, _ctxt) \
965
({ \
966
rc = do_insn_fetch_bytes(_ctxt, _size); \
967
if (rc != X86EMUL_CONTINUE) \
968
goto done; \
969
ctxt->_eip += (_size); \
970
memcpy(_arr, ctxt->fetch.ptr, _size); \
971
ctxt->fetch.ptr += (_size); \
972
})
973
974
/*
975
* Given the 'reg' portion of a ModRM byte, and a register block, return a
976
* pointer into the block that addresses the relevant register.
977
* @highbyte_regs specifies whether to decode AH,CH,DH,BH.
978
*/
979
static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
980
int byteop)
981
{
982
void *p;
983
int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
984
985
if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
986
p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
987
else
988
p = reg_rmw(ctxt, modrm_reg);
989
return p;
990
}
991
992
static int read_descriptor(struct x86_emulate_ctxt *ctxt,
993
struct segmented_address addr,
994
u16 *size, unsigned long *address, int op_bytes)
995
{
996
int rc;
997
998
if (op_bytes == 2)
999
op_bytes = 3;
1000
*address = 0;
1001
rc = segmented_read_std(ctxt, addr, size, 2);
1002
if (rc != X86EMUL_CONTINUE)
1003
return rc;
1004
addr.ea += 2;
1005
rc = segmented_read_std(ctxt, addr, address, op_bytes);
1006
return rc;
1007
}
1008
1009
FASTOP2(add);
1010
FASTOP2(or);
1011
FASTOP2(adc);
1012
FASTOP2(sbb);
1013
FASTOP2(and);
1014
FASTOP2(sub);
1015
FASTOP2(xor);
1016
FASTOP2(cmp);
1017
FASTOP2(test);
1018
1019
FASTOP1SRC2(mul, mul_ex);
1020
FASTOP1SRC2(imul, imul_ex);
1021
FASTOP1SRC2EX(div, div_ex);
1022
FASTOP1SRC2EX(idiv, idiv_ex);
1023
1024
FASTOP3WCL(shld);
1025
FASTOP3WCL(shrd);
1026
1027
FASTOP2W(imul);
1028
1029
FASTOP1(not);
1030
FASTOP1(neg);
1031
FASTOP1(inc);
1032
FASTOP1(dec);
1033
1034
FASTOP2CL(rol);
1035
FASTOP2CL(ror);
1036
FASTOP2CL(rcl);
1037
FASTOP2CL(rcr);
1038
FASTOP2CL(shl);
1039
FASTOP2CL(shr);
1040
FASTOP2CL(sar);
1041
1042
FASTOP2W(bsf);
1043
FASTOP2W(bsr);
1044
FASTOP2W(bt);
1045
FASTOP2W(bts);
1046
FASTOP2W(btr);
1047
FASTOP2W(btc);
1048
1049
FASTOP2(xadd);
1050
1051
FASTOP2R(cmp, cmp_r);
1052
1053
static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
1054
{
1055
/* If src is zero, do not writeback, but update flags */
1056
if (ctxt->src.val == 0)
1057
ctxt->dst.type = OP_NONE;
1058
return fastop(ctxt, em_bsf);
1059
}
1060
1061
static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
1062
{
1063
/* If src is zero, do not writeback, but update flags */
1064
if (ctxt->src.val == 0)
1065
ctxt->dst.type = OP_NONE;
1066
return fastop(ctxt, em_bsr);
1067
}
1068
1069
static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
1070
{
1071
u8 rc;
1072
void (*fop)(void) = (void *)em_setcc + FASTOP_SIZE * (condition & 0xf);
1073
1074
flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
1075
asm("push %[flags]; popf; " CALL_NOSPEC
1076
: "=a"(rc), ASM_CALL_CONSTRAINT : [thunk_target]"r"(fop), [flags]"r"(flags));
1077
return rc;
1078
}
1079
1080
static void fetch_register_operand(struct operand *op)
1081
{
1082
switch (op->bytes) {
1083
case 1:
1084
op->val = *(u8 *)op->addr.reg;
1085
break;
1086
case 2:
1087
op->val = *(u16 *)op->addr.reg;
1088
break;
1089
case 4:
1090
op->val = *(u32 *)op->addr.reg;
1091
break;
1092
case 8:
1093
op->val = *(u64 *)op->addr.reg;
1094
break;
1095
}
1096
}
1097
1098
static int em_fninit(struct x86_emulate_ctxt *ctxt)
1099
{
1100
if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1101
return emulate_nm(ctxt);
1102
1103
kvm_fpu_get();
1104
asm volatile("fninit");
1105
kvm_fpu_put();
1106
return X86EMUL_CONTINUE;
1107
}
1108
1109
static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1110
{
1111
u16 fcw;
1112
1113
if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1114
return emulate_nm(ctxt);
1115
1116
kvm_fpu_get();
1117
asm volatile("fnstcw %0": "+m"(fcw));
1118
kvm_fpu_put();
1119
1120
ctxt->dst.val = fcw;
1121
1122
return X86EMUL_CONTINUE;
1123
}
1124
1125
static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1126
{
1127
u16 fsw;
1128
1129
if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1130
return emulate_nm(ctxt);
1131
1132
kvm_fpu_get();
1133
asm volatile("fnstsw %0": "+m"(fsw));
1134
kvm_fpu_put();
1135
1136
ctxt->dst.val = fsw;
1137
1138
return X86EMUL_CONTINUE;
1139
}
1140
1141
static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1142
struct operand *op)
1143
{
1144
unsigned int reg;
1145
1146
if (ctxt->d & ModRM)
1147
reg = ctxt->modrm_reg;
1148
else
1149
reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
1150
1151
if (ctxt->d & Sse) {
1152
op->type = OP_XMM;
1153
op->bytes = 16;
1154
op->addr.xmm = reg;
1155
kvm_read_sse_reg(reg, &op->vec_val);
1156
return;
1157
}
1158
if (ctxt->d & Mmx) {
1159
reg &= 7;
1160
op->type = OP_MM;
1161
op->bytes = 8;
1162
op->addr.mm = reg;
1163
return;
1164
}
1165
1166
op->type = OP_REG;
1167
op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1168
op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1169
1170
fetch_register_operand(op);
1171
op->orig_val = op->val;
1172
}
1173
1174
static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1175
{
1176
if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1177
ctxt->modrm_seg = VCPU_SREG_SS;
1178
}
1179
1180
static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1181
struct operand *op)
1182
{
1183
u8 sib;
1184
int index_reg, base_reg, scale;
1185
int rc = X86EMUL_CONTINUE;
1186
ulong modrm_ea = 0;
1187
1188
ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
1189
index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
1190
base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
1191
1192
ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1193
ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1194
ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1195
ctxt->modrm_seg = VCPU_SREG_DS;
1196
1197
if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1198
op->type = OP_REG;
1199
op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1200
op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
1201
ctxt->d & ByteOp);
1202
if (ctxt->d & Sse) {
1203
op->type = OP_XMM;
1204
op->bytes = 16;
1205
op->addr.xmm = ctxt->modrm_rm;
1206
kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val);
1207
return rc;
1208
}
1209
if (ctxt->d & Mmx) {
1210
op->type = OP_MM;
1211
op->bytes = 8;
1212
op->addr.mm = ctxt->modrm_rm & 7;
1213
return rc;
1214
}
1215
fetch_register_operand(op);
1216
return rc;
1217
}
1218
1219
op->type = OP_MEM;
1220
1221
if (ctxt->ad_bytes == 2) {
1222
unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1223
unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1224
unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1225
unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1226
1227
/* 16-bit ModR/M decode. */
1228
switch (ctxt->modrm_mod) {
1229
case 0:
1230
if (ctxt->modrm_rm == 6)
1231
modrm_ea += insn_fetch(u16, ctxt);
1232
break;
1233
case 1:
1234
modrm_ea += insn_fetch(s8, ctxt);
1235
break;
1236
case 2:
1237
modrm_ea += insn_fetch(u16, ctxt);
1238
break;
1239
}
1240
switch (ctxt->modrm_rm) {
1241
case 0:
1242
modrm_ea += bx + si;
1243
break;
1244
case 1:
1245
modrm_ea += bx + di;
1246
break;
1247
case 2:
1248
modrm_ea += bp + si;
1249
break;
1250
case 3:
1251
modrm_ea += bp + di;
1252
break;
1253
case 4:
1254
modrm_ea += si;
1255
break;
1256
case 5:
1257
modrm_ea += di;
1258
break;
1259
case 6:
1260
if (ctxt->modrm_mod != 0)
1261
modrm_ea += bp;
1262
break;
1263
case 7:
1264
modrm_ea += bx;
1265
break;
1266
}
1267
if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1268
(ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1269
ctxt->modrm_seg = VCPU_SREG_SS;
1270
modrm_ea = (u16)modrm_ea;
1271
} else {
1272
/* 32/64-bit ModR/M decode. */
1273
if ((ctxt->modrm_rm & 7) == 4) {
1274
sib = insn_fetch(u8, ctxt);
1275
index_reg |= (sib >> 3) & 7;
1276
base_reg |= sib & 7;
1277
scale = sib >> 6;
1278
1279
if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1280
modrm_ea += insn_fetch(s32, ctxt);
1281
else {
1282
modrm_ea += reg_read(ctxt, base_reg);
1283
adjust_modrm_seg(ctxt, base_reg);
1284
/* Increment ESP on POP [ESP] */
1285
if ((ctxt->d & IncSP) &&
1286
base_reg == VCPU_REGS_RSP)
1287
modrm_ea += ctxt->op_bytes;
1288
}
1289
if (index_reg != 4)
1290
modrm_ea += reg_read(ctxt, index_reg) << scale;
1291
} else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1292
modrm_ea += insn_fetch(s32, ctxt);
1293
if (ctxt->mode == X86EMUL_MODE_PROT64)
1294
ctxt->rip_relative = 1;
1295
} else {
1296
base_reg = ctxt->modrm_rm;
1297
modrm_ea += reg_read(ctxt, base_reg);
1298
adjust_modrm_seg(ctxt, base_reg);
1299
}
1300
switch (ctxt->modrm_mod) {
1301
case 1:
1302
modrm_ea += insn_fetch(s8, ctxt);
1303
break;
1304
case 2:
1305
modrm_ea += insn_fetch(s32, ctxt);
1306
break;
1307
}
1308
}
1309
op->addr.mem.ea = modrm_ea;
1310
if (ctxt->ad_bytes != 8)
1311
ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1312
1313
done:
1314
return rc;
1315
}
1316
1317
static int decode_abs(struct x86_emulate_ctxt *ctxt,
1318
struct operand *op)
1319
{
1320
int rc = X86EMUL_CONTINUE;
1321
1322
op->type = OP_MEM;
1323
switch (ctxt->ad_bytes) {
1324
case 2:
1325
op->addr.mem.ea = insn_fetch(u16, ctxt);
1326
break;
1327
case 4:
1328
op->addr.mem.ea = insn_fetch(u32, ctxt);
1329
break;
1330
case 8:
1331
op->addr.mem.ea = insn_fetch(u64, ctxt);
1332
break;
1333
}
1334
done:
1335
return rc;
1336
}
1337
1338
static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1339
{
1340
long sv = 0, mask;
1341
1342
if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1343
mask = ~((long)ctxt->dst.bytes * 8 - 1);
1344
1345
if (ctxt->src.bytes == 2)
1346
sv = (s16)ctxt->src.val & (s16)mask;
1347
else if (ctxt->src.bytes == 4)
1348
sv = (s32)ctxt->src.val & (s32)mask;
1349
else
1350
sv = (s64)ctxt->src.val & (s64)mask;
1351
1352
ctxt->dst.addr.mem.ea = address_mask(ctxt,
1353
ctxt->dst.addr.mem.ea + (sv >> 3));
1354
}
1355
1356
/* only subword offset */
1357
ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1358
}
1359
1360
static int read_emulated(struct x86_emulate_ctxt *ctxt,
1361
unsigned long addr, void *dest, unsigned size)
1362
{
1363
int rc;
1364
struct read_cache *mc = &ctxt->mem_read;
1365
1366
if (mc->pos < mc->end)
1367
goto read_cached;
1368
1369
if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt))
1370
return X86EMUL_UNHANDLEABLE;
1371
1372
rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1373
&ctxt->exception);
1374
if (rc != X86EMUL_CONTINUE)
1375
return rc;
1376
1377
mc->end += size;
1378
1379
read_cached:
1380
memcpy(dest, mc->data + mc->pos, size);
1381
mc->pos += size;
1382
return X86EMUL_CONTINUE;
1383
}
1384
1385
static int segmented_read(struct x86_emulate_ctxt *ctxt,
1386
struct segmented_address addr,
1387
void *data,
1388
unsigned size)
1389
{
1390
int rc;
1391
ulong linear;
1392
1393
rc = linearize(ctxt, addr, size, false, &linear);
1394
if (rc != X86EMUL_CONTINUE)
1395
return rc;
1396
return read_emulated(ctxt, linear, data, size);
1397
}
1398
1399
static int segmented_write(struct x86_emulate_ctxt *ctxt,
1400
struct segmented_address addr,
1401
const void *data,
1402
unsigned size)
1403
{
1404
int rc;
1405
ulong linear;
1406
1407
rc = linearize(ctxt, addr, size, true, &linear);
1408
if (rc != X86EMUL_CONTINUE)
1409
return rc;
1410
return ctxt->ops->write_emulated(ctxt, linear, data, size,
1411
&ctxt->exception);
1412
}
1413
1414
static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1415
struct segmented_address addr,
1416
const void *orig_data, const void *data,
1417
unsigned size)
1418
{
1419
int rc;
1420
ulong linear;
1421
1422
rc = linearize(ctxt, addr, size, true, &linear);
1423
if (rc != X86EMUL_CONTINUE)
1424
return rc;
1425
return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1426
size, &ctxt->exception);
1427
}
1428
1429
static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1430
unsigned int size, unsigned short port,
1431
void *dest)
1432
{
1433
struct read_cache *rc = &ctxt->io_read;
1434
1435
if (rc->pos == rc->end) { /* refill pio read ahead */
1436
unsigned int in_page, n;
1437
unsigned int count = ctxt->rep_prefix ?
1438
address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1439
in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
1440
offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1441
PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1442
n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1443
if (n == 0)
1444
n = 1;
1445
rc->pos = rc->end = 0;
1446
if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1447
return 0;
1448
rc->end = n * size;
1449
}
1450
1451
if (ctxt->rep_prefix && (ctxt->d & String) &&
1452
!(ctxt->eflags & X86_EFLAGS_DF)) {
1453
ctxt->dst.data = rc->data + rc->pos;
1454
ctxt->dst.type = OP_MEM_STR;
1455
ctxt->dst.count = (rc->end - rc->pos) / size;
1456
rc->pos = rc->end;
1457
} else {
1458
memcpy(dest, rc->data + rc->pos, size);
1459
rc->pos += size;
1460
}
1461
return 1;
1462
}
1463
1464
static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1465
u16 index, struct desc_struct *desc)
1466
{
1467
struct desc_ptr dt;
1468
ulong addr;
1469
1470
ctxt->ops->get_idt(ctxt, &dt);
1471
1472
if (dt.size < index * 8 + 7)
1473
return emulate_gp(ctxt, index << 3 | 0x2);
1474
1475
addr = dt.address + index * 8;
1476
return linear_read_system(ctxt, addr, desc, sizeof(*desc));
1477
}
1478
1479
static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1480
u16 selector, struct desc_ptr *dt)
1481
{
1482
const struct x86_emulate_ops *ops = ctxt->ops;
1483
u32 base3 = 0;
1484
1485
if (selector & 1 << 2) {
1486
struct desc_struct desc;
1487
u16 sel;
1488
1489
memset(dt, 0, sizeof(*dt));
1490
if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1491
VCPU_SREG_LDTR))
1492
return;
1493
1494
dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1495
dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1496
} else
1497
ops->get_gdt(ctxt, dt);
1498
}
1499
1500
static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1501
u16 selector, ulong *desc_addr_p)
1502
{
1503
struct desc_ptr dt;
1504
u16 index = selector >> 3;
1505
ulong addr;
1506
1507
get_descriptor_table_ptr(ctxt, selector, &dt);
1508
1509
if (dt.size < index * 8 + 7)
1510
return emulate_gp(ctxt, selector & 0xfffc);
1511
1512
addr = dt.address + index * 8;
1513
1514
#ifdef CONFIG_X86_64
1515
if (addr >> 32 != 0) {
1516
u64 efer = 0;
1517
1518
ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1519
if (!(efer & EFER_LMA))
1520
addr &= (u32)-1;
1521
}
1522
#endif
1523
1524
*desc_addr_p = addr;
1525
return X86EMUL_CONTINUE;
1526
}
1527
1528
/* allowed just for 8 bytes segments */
1529
static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1530
u16 selector, struct desc_struct *desc,
1531
ulong *desc_addr_p)
1532
{
1533
int rc;
1534
1535
rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1536
if (rc != X86EMUL_CONTINUE)
1537
return rc;
1538
1539
return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc));
1540
}
1541
1542
/* allowed just for 8 bytes segments */
1543
static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1544
u16 selector, struct desc_struct *desc)
1545
{
1546
int rc;
1547
ulong addr;
1548
1549
rc = get_descriptor_ptr(ctxt, selector, &addr);
1550
if (rc != X86EMUL_CONTINUE)
1551
return rc;
1552
1553
return linear_write_system(ctxt, addr, desc, sizeof(*desc));
1554
}
1555
1556
static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1557
u16 selector, int seg, u8 cpl,
1558
enum x86_transfer_type transfer,
1559
struct desc_struct *desc)
1560
{
1561
struct desc_struct seg_desc, old_desc;
1562
u8 dpl, rpl;
1563
unsigned err_vec = GP_VECTOR;
1564
u32 err_code = 0;
1565
bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1566
ulong desc_addr;
1567
int ret;
1568
u16 dummy;
1569
u32 base3 = 0;
1570
1571
memset(&seg_desc, 0, sizeof(seg_desc));
1572
1573
if (ctxt->mode == X86EMUL_MODE_REAL) {
1574
/* set real mode segment descriptor (keep limit etc. for
1575
* unreal mode) */
1576
ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1577
set_desc_base(&seg_desc, selector << 4);
1578
goto load;
1579
} else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1580
/* VM86 needs a clean new segment descriptor */
1581
set_desc_base(&seg_desc, selector << 4);
1582
set_desc_limit(&seg_desc, 0xffff);
1583
seg_desc.type = 3;
1584
seg_desc.p = 1;
1585
seg_desc.s = 1;
1586
seg_desc.dpl = 3;
1587
goto load;
1588
}
1589
1590
rpl = selector & 3;
1591
1592
/* TR should be in GDT only */
1593
if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1594
goto exception;
1595
1596
/* NULL selector is not valid for TR, CS and (except for long mode) SS */
1597
if (null_selector) {
1598
if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
1599
goto exception;
1600
1601
if (seg == VCPU_SREG_SS) {
1602
if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
1603
goto exception;
1604
1605
/*
1606
* ctxt->ops->set_segment expects the CPL to be in
1607
* SS.DPL, so fake an expand-up 32-bit data segment.
1608
*/
1609
seg_desc.type = 3;
1610
seg_desc.p = 1;
1611
seg_desc.s = 1;
1612
seg_desc.dpl = cpl;
1613
seg_desc.d = 1;
1614
seg_desc.g = 1;
1615
}
1616
1617
/* Skip all following checks */
1618
goto load;
1619
}
1620
1621
ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1622
if (ret != X86EMUL_CONTINUE)
1623
return ret;
1624
1625
err_code = selector & 0xfffc;
1626
err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1627
GP_VECTOR;
1628
1629
/* can't load system descriptor into segment selector */
1630
if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1631
if (transfer == X86_TRANSFER_CALL_JMP)
1632
return X86EMUL_UNHANDLEABLE;
1633
goto exception;
1634
}
1635
1636
dpl = seg_desc.dpl;
1637
1638
switch (seg) {
1639
case VCPU_SREG_SS:
1640
/*
1641
* segment is not a writable data segment or segment
1642
* selector's RPL != CPL or DPL != CPL
1643
*/
1644
if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1645
goto exception;
1646
break;
1647
case VCPU_SREG_CS:
1648
/*
1649
* KVM uses "none" when loading CS as part of emulating Real
1650
* Mode exceptions and IRET (handled above). In all other
1651
* cases, loading CS without a control transfer is a KVM bug.
1652
*/
1653
if (WARN_ON_ONCE(transfer == X86_TRANSFER_NONE))
1654
goto exception;
1655
1656
if (!(seg_desc.type & 8))
1657
goto exception;
1658
1659
if (transfer == X86_TRANSFER_RET) {
1660
/* RET can never return to an inner privilege level. */
1661
if (rpl < cpl)
1662
goto exception;
1663
/* Outer-privilege level return is not implemented */
1664
if (rpl > cpl)
1665
return X86EMUL_UNHANDLEABLE;
1666
}
1667
if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) {
1668
if (seg_desc.type & 4) {
1669
/* conforming */
1670
if (dpl > rpl)
1671
goto exception;
1672
} else {
1673
/* nonconforming */
1674
if (dpl != rpl)
1675
goto exception;
1676
}
1677
} else { /* X86_TRANSFER_CALL_JMP */
1678
if (seg_desc.type & 4) {
1679
/* conforming */
1680
if (dpl > cpl)
1681
goto exception;
1682
} else {
1683
/* nonconforming */
1684
if (rpl > cpl || dpl != cpl)
1685
goto exception;
1686
}
1687
}
1688
/* in long-mode d/b must be clear if l is set */
1689
if (seg_desc.d && seg_desc.l) {
1690
u64 efer = 0;
1691
1692
ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1693
if (efer & EFER_LMA)
1694
goto exception;
1695
}
1696
1697
/* CS(RPL) <- CPL */
1698
selector = (selector & 0xfffc) | cpl;
1699
break;
1700
case VCPU_SREG_TR:
1701
if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1702
goto exception;
1703
break;
1704
case VCPU_SREG_LDTR:
1705
if (seg_desc.s || seg_desc.type != 2)
1706
goto exception;
1707
break;
1708
default: /* DS, ES, FS, or GS */
1709
/*
1710
* segment is not a data or readable code segment or
1711
* ((segment is a data or nonconforming code segment)
1712
* and ((RPL > DPL) or (CPL > DPL)))
1713
*/
1714
if ((seg_desc.type & 0xa) == 0x8 ||
1715
(((seg_desc.type & 0xc) != 0xc) &&
1716
(rpl > dpl || cpl > dpl)))
1717
goto exception;
1718
break;
1719
}
1720
1721
if (!seg_desc.p) {
1722
err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1723
goto exception;
1724
}
1725
1726
if (seg_desc.s) {
1727
/* mark segment as accessed */
1728
if (!(seg_desc.type & 1)) {
1729
seg_desc.type |= 1;
1730
ret = write_segment_descriptor(ctxt, selector,
1731
&seg_desc);
1732
if (ret != X86EMUL_CONTINUE)
1733
return ret;
1734
}
1735
} else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1736
ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3));
1737
if (ret != X86EMUL_CONTINUE)
1738
return ret;
1739
if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
1740
((u64)base3 << 32), ctxt,
1741
X86EMUL_F_DT_LOAD))
1742
return emulate_gp(ctxt, err_code);
1743
}
1744
1745
if (seg == VCPU_SREG_TR) {
1746
old_desc = seg_desc;
1747
seg_desc.type |= 2; /* busy */
1748
ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1749
sizeof(seg_desc), &ctxt->exception);
1750
if (ret != X86EMUL_CONTINUE)
1751
return ret;
1752
}
1753
load:
1754
ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1755
if (desc)
1756
*desc = seg_desc;
1757
return X86EMUL_CONTINUE;
1758
exception:
1759
return emulate_exception(ctxt, err_vec, err_code, true);
1760
}
1761
1762
static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1763
u16 selector, int seg)
1764
{
1765
u8 cpl = ctxt->ops->cpl(ctxt);
1766
1767
/*
1768
* None of MOV, POP and LSS can load a NULL selector in CPL=3, but
1769
* they can load it at CPL<3 (Intel's manual says only LSS can,
1770
* but it's wrong).
1771
*
1772
* However, the Intel manual says that putting IST=1/DPL=3 in
1773
* an interrupt gate will result in SS=3 (the AMD manual instead
1774
* says it doesn't), so allow SS=3 in __load_segment_descriptor
1775
* and only forbid it here.
1776
*/
1777
if (seg == VCPU_SREG_SS && selector == 3 &&
1778
ctxt->mode == X86EMUL_MODE_PROT64)
1779
return emulate_exception(ctxt, GP_VECTOR, 0, true);
1780
1781
return __load_segment_descriptor(ctxt, selector, seg, cpl,
1782
X86_TRANSFER_NONE, NULL);
1783
}
1784
1785
static void write_register_operand(struct operand *op)
1786
{
1787
return assign_register(op->addr.reg, op->val, op->bytes);
1788
}
1789
1790
static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1791
{
1792
switch (op->type) {
1793
case OP_REG:
1794
write_register_operand(op);
1795
break;
1796
case OP_MEM:
1797
if (ctxt->lock_prefix)
1798
return segmented_cmpxchg(ctxt,
1799
op->addr.mem,
1800
&op->orig_val,
1801
&op->val,
1802
op->bytes);
1803
else
1804
return segmented_write(ctxt,
1805
op->addr.mem,
1806
&op->val,
1807
op->bytes);
1808
case OP_MEM_STR:
1809
return segmented_write(ctxt,
1810
op->addr.mem,
1811
op->data,
1812
op->bytes * op->count);
1813
case OP_XMM:
1814
kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
1815
break;
1816
case OP_MM:
1817
kvm_write_mmx_reg(op->addr.mm, &op->mm_val);
1818
break;
1819
case OP_NONE:
1820
/* no writeback */
1821
break;
1822
default:
1823
break;
1824
}
1825
return X86EMUL_CONTINUE;
1826
}
1827
1828
static int emulate_push(struct x86_emulate_ctxt *ctxt, const void *data, int len)
1829
{
1830
struct segmented_address addr;
1831
1832
rsp_increment(ctxt, -len);
1833
addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1834
addr.seg = VCPU_SREG_SS;
1835
1836
return segmented_write(ctxt, addr, data, len);
1837
}
1838
1839
static int em_push(struct x86_emulate_ctxt *ctxt)
1840
{
1841
/* Disable writeback. */
1842
ctxt->dst.type = OP_NONE;
1843
return emulate_push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1844
}
1845
1846
static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1847
void *dest, int len)
1848
{
1849
int rc;
1850
struct segmented_address addr;
1851
1852
addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1853
addr.seg = VCPU_SREG_SS;
1854
rc = segmented_read(ctxt, addr, dest, len);
1855
if (rc != X86EMUL_CONTINUE)
1856
return rc;
1857
1858
rsp_increment(ctxt, len);
1859
return rc;
1860
}
1861
1862
static int em_pop(struct x86_emulate_ctxt *ctxt)
1863
{
1864
return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1865
}
1866
1867
static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1868
void *dest, int len)
1869
{
1870
int rc;
1871
unsigned long val = 0;
1872
unsigned long change_mask;
1873
int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
1874
int cpl = ctxt->ops->cpl(ctxt);
1875
1876
rc = emulate_pop(ctxt, &val, len);
1877
if (rc != X86EMUL_CONTINUE)
1878
return rc;
1879
1880
change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
1881
X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
1882
X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
1883
X86_EFLAGS_AC | X86_EFLAGS_ID;
1884
1885
switch(ctxt->mode) {
1886
case X86EMUL_MODE_PROT64:
1887
case X86EMUL_MODE_PROT32:
1888
case X86EMUL_MODE_PROT16:
1889
if (cpl == 0)
1890
change_mask |= X86_EFLAGS_IOPL;
1891
if (cpl <= iopl)
1892
change_mask |= X86_EFLAGS_IF;
1893
break;
1894
case X86EMUL_MODE_VM86:
1895
if (iopl < 3)
1896
return emulate_gp(ctxt, 0);
1897
change_mask |= X86_EFLAGS_IF;
1898
break;
1899
default: /* real mode */
1900
change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
1901
break;
1902
}
1903
1904
*(unsigned long *)dest =
1905
(ctxt->eflags & ~change_mask) | (val & change_mask);
1906
1907
return rc;
1908
}
1909
1910
static int em_popf(struct x86_emulate_ctxt *ctxt)
1911
{
1912
ctxt->dst.type = OP_REG;
1913
ctxt->dst.addr.reg = &ctxt->eflags;
1914
ctxt->dst.bytes = ctxt->op_bytes;
1915
return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1916
}
1917
1918
static int em_enter(struct x86_emulate_ctxt *ctxt)
1919
{
1920
int rc;
1921
unsigned frame_size = ctxt->src.val;
1922
unsigned nesting_level = ctxt->src2.val & 31;
1923
ulong rbp;
1924
1925
if (nesting_level)
1926
return X86EMUL_UNHANDLEABLE;
1927
1928
rbp = reg_read(ctxt, VCPU_REGS_RBP);
1929
rc = emulate_push(ctxt, &rbp, stack_size(ctxt));
1930
if (rc != X86EMUL_CONTINUE)
1931
return rc;
1932
assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1933
stack_mask(ctxt));
1934
assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1935
reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1936
stack_mask(ctxt));
1937
return X86EMUL_CONTINUE;
1938
}
1939
1940
static int em_leave(struct x86_emulate_ctxt *ctxt)
1941
{
1942
assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1943
stack_mask(ctxt));
1944
return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1945
}
1946
1947
static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1948
{
1949
int seg = ctxt->src2.val;
1950
1951
ctxt->src.val = get_segment_selector(ctxt, seg);
1952
if (ctxt->op_bytes == 4) {
1953
rsp_increment(ctxt, -2);
1954
ctxt->op_bytes = 2;
1955
}
1956
1957
return em_push(ctxt);
1958
}
1959
1960
static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1961
{
1962
int seg = ctxt->src2.val;
1963
unsigned long selector = 0;
1964
int rc;
1965
1966
rc = emulate_pop(ctxt, &selector, 2);
1967
if (rc != X86EMUL_CONTINUE)
1968
return rc;
1969
1970
if (seg == VCPU_SREG_SS)
1971
ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
1972
if (ctxt->op_bytes > 2)
1973
rsp_increment(ctxt, ctxt->op_bytes - 2);
1974
1975
rc = load_segment_descriptor(ctxt, (u16)selector, seg);
1976
return rc;
1977
}
1978
1979
static int em_pusha(struct x86_emulate_ctxt *ctxt)
1980
{
1981
unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
1982
int rc = X86EMUL_CONTINUE;
1983
int reg = VCPU_REGS_RAX;
1984
1985
while (reg <= VCPU_REGS_RDI) {
1986
(reg == VCPU_REGS_RSP) ?
1987
(ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
1988
1989
rc = em_push(ctxt);
1990
if (rc != X86EMUL_CONTINUE)
1991
return rc;
1992
1993
++reg;
1994
}
1995
1996
return rc;
1997
}
1998
1999
static int em_pushf(struct x86_emulate_ctxt *ctxt)
2000
{
2001
ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
2002
return em_push(ctxt);
2003
}
2004
2005
static int em_popa(struct x86_emulate_ctxt *ctxt)
2006
{
2007
int rc = X86EMUL_CONTINUE;
2008
int reg = VCPU_REGS_RDI;
2009
u32 val = 0;
2010
2011
while (reg >= VCPU_REGS_RAX) {
2012
if (reg == VCPU_REGS_RSP) {
2013
rsp_increment(ctxt, ctxt->op_bytes);
2014
--reg;
2015
}
2016
2017
rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
2018
if (rc != X86EMUL_CONTINUE)
2019
break;
2020
assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
2021
--reg;
2022
}
2023
return rc;
2024
}
2025
2026
static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2027
{
2028
const struct x86_emulate_ops *ops = ctxt->ops;
2029
int rc;
2030
struct desc_ptr dt;
2031
gva_t cs_addr;
2032
gva_t eip_addr;
2033
u16 cs, eip;
2034
2035
/* TODO: Add limit checks */
2036
ctxt->src.val = ctxt->eflags;
2037
rc = em_push(ctxt);
2038
if (rc != X86EMUL_CONTINUE)
2039
return rc;
2040
2041
ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
2042
2043
ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
2044
rc = em_push(ctxt);
2045
if (rc != X86EMUL_CONTINUE)
2046
return rc;
2047
2048
ctxt->src.val = ctxt->_eip;
2049
rc = em_push(ctxt);
2050
if (rc != X86EMUL_CONTINUE)
2051
return rc;
2052
2053
ops->get_idt(ctxt, &dt);
2054
2055
eip_addr = dt.address + (irq << 2);
2056
cs_addr = dt.address + (irq << 2) + 2;
2057
2058
rc = linear_read_system(ctxt, cs_addr, &cs, 2);
2059
if (rc != X86EMUL_CONTINUE)
2060
return rc;
2061
2062
rc = linear_read_system(ctxt, eip_addr, &eip, 2);
2063
if (rc != X86EMUL_CONTINUE)
2064
return rc;
2065
2066
rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2067
if (rc != X86EMUL_CONTINUE)
2068
return rc;
2069
2070
ctxt->_eip = eip;
2071
2072
return rc;
2073
}
2074
2075
int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2076
{
2077
int rc;
2078
2079
invalidate_registers(ctxt);
2080
rc = __emulate_int_real(ctxt, irq);
2081
if (rc == X86EMUL_CONTINUE)
2082
writeback_registers(ctxt);
2083
return rc;
2084
}
2085
2086
static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2087
{
2088
switch(ctxt->mode) {
2089
case X86EMUL_MODE_REAL:
2090
return __emulate_int_real(ctxt, irq);
2091
case X86EMUL_MODE_VM86:
2092
case X86EMUL_MODE_PROT16:
2093
case X86EMUL_MODE_PROT32:
2094
case X86EMUL_MODE_PROT64:
2095
default:
2096
/* Protected mode interrupts unimplemented yet */
2097
return X86EMUL_UNHANDLEABLE;
2098
}
2099
}
2100
2101
static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2102
{
2103
int rc = X86EMUL_CONTINUE;
2104
unsigned long temp_eip = 0;
2105
unsigned long temp_eflags = 0;
2106
unsigned long cs = 0;
2107
unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
2108
X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
2109
X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
2110
X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
2111
X86_EFLAGS_AC | X86_EFLAGS_ID |
2112
X86_EFLAGS_FIXED;
2113
unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
2114
X86_EFLAGS_VIP;
2115
2116
/* TODO: Add stack limit check */
2117
2118
rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2119
2120
if (rc != X86EMUL_CONTINUE)
2121
return rc;
2122
2123
if (temp_eip & ~0xffff)
2124
return emulate_gp(ctxt, 0);
2125
2126
rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2127
2128
if (rc != X86EMUL_CONTINUE)
2129
return rc;
2130
2131
rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2132
2133
if (rc != X86EMUL_CONTINUE)
2134
return rc;
2135
2136
rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2137
2138
if (rc != X86EMUL_CONTINUE)
2139
return rc;
2140
2141
ctxt->_eip = temp_eip;
2142
2143
if (ctxt->op_bytes == 4)
2144
ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2145
else if (ctxt->op_bytes == 2) {
2146
ctxt->eflags &= ~0xffff;
2147
ctxt->eflags |= temp_eflags;
2148
}
2149
2150
ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2151
ctxt->eflags |= X86_EFLAGS_FIXED;
2152
ctxt->ops->set_nmi_mask(ctxt, false);
2153
2154
return rc;
2155
}
2156
2157
static int em_iret(struct x86_emulate_ctxt *ctxt)
2158
{
2159
switch(ctxt->mode) {
2160
case X86EMUL_MODE_REAL:
2161
return emulate_iret_real(ctxt);
2162
case X86EMUL_MODE_VM86:
2163
case X86EMUL_MODE_PROT16:
2164
case X86EMUL_MODE_PROT32:
2165
case X86EMUL_MODE_PROT64:
2166
default:
2167
/* iret from protected mode unimplemented yet */
2168
return X86EMUL_UNHANDLEABLE;
2169
}
2170
}
2171
2172
static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2173
{
2174
int rc;
2175
unsigned short sel;
2176
struct desc_struct new_desc;
2177
u8 cpl = ctxt->ops->cpl(ctxt);
2178
2179
memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2180
2181
rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2182
X86_TRANSFER_CALL_JMP,
2183
&new_desc);
2184
if (rc != X86EMUL_CONTINUE)
2185
return rc;
2186
2187
rc = assign_eip_far(ctxt, ctxt->src.val);
2188
/* Error handling is not implemented. */
2189
if (rc != X86EMUL_CONTINUE)
2190
return X86EMUL_UNHANDLEABLE;
2191
2192
return rc;
2193
}
2194
2195
static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2196
{
2197
return assign_eip_near(ctxt, ctxt->src.val);
2198
}
2199
2200
static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2201
{
2202
int rc;
2203
long int old_eip;
2204
2205
old_eip = ctxt->_eip;
2206
rc = assign_eip_near(ctxt, ctxt->src.val);
2207
if (rc != X86EMUL_CONTINUE)
2208
return rc;
2209
ctxt->src.val = old_eip;
2210
rc = em_push(ctxt);
2211
return rc;
2212
}
2213
2214
static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2215
{
2216
u64 old = ctxt->dst.orig_val64;
2217
2218
if (ctxt->dst.bytes == 16)
2219
return X86EMUL_UNHANDLEABLE;
2220
2221
if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2222
((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2223
*reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2224
*reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2225
ctxt->eflags &= ~X86_EFLAGS_ZF;
2226
} else {
2227
ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2228
(u32) reg_read(ctxt, VCPU_REGS_RBX);
2229
2230
ctxt->eflags |= X86_EFLAGS_ZF;
2231
}
2232
return X86EMUL_CONTINUE;
2233
}
2234
2235
static int em_ret(struct x86_emulate_ctxt *ctxt)
2236
{
2237
int rc;
2238
unsigned long eip = 0;
2239
2240
rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2241
if (rc != X86EMUL_CONTINUE)
2242
return rc;
2243
2244
return assign_eip_near(ctxt, eip);
2245
}
2246
2247
static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2248
{
2249
int rc;
2250
unsigned long eip = 0;
2251
unsigned long cs = 0;
2252
int cpl = ctxt->ops->cpl(ctxt);
2253
struct desc_struct new_desc;
2254
2255
rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2256
if (rc != X86EMUL_CONTINUE)
2257
return rc;
2258
rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2259
if (rc != X86EMUL_CONTINUE)
2260
return rc;
2261
rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2262
X86_TRANSFER_RET,
2263
&new_desc);
2264
if (rc != X86EMUL_CONTINUE)
2265
return rc;
2266
rc = assign_eip_far(ctxt, eip);
2267
/* Error handling is not implemented. */
2268
if (rc != X86EMUL_CONTINUE)
2269
return X86EMUL_UNHANDLEABLE;
2270
2271
return rc;
2272
}
2273
2274
static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2275
{
2276
int rc;
2277
2278
rc = em_ret_far(ctxt);
2279
if (rc != X86EMUL_CONTINUE)
2280
return rc;
2281
rsp_increment(ctxt, ctxt->src.val);
2282
return X86EMUL_CONTINUE;
2283
}
2284
2285
static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2286
{
2287
/* Save real source value, then compare EAX against destination. */
2288
ctxt->dst.orig_val = ctxt->dst.val;
2289
ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2290
ctxt->src.orig_val = ctxt->src.val;
2291
ctxt->src.val = ctxt->dst.orig_val;
2292
fastop(ctxt, em_cmp);
2293
2294
if (ctxt->eflags & X86_EFLAGS_ZF) {
2295
/* Success: write back to memory; no update of EAX */
2296
ctxt->src.type = OP_NONE;
2297
ctxt->dst.val = ctxt->src.orig_val;
2298
} else {
2299
/* Failure: write the value we saw to EAX. */
2300
ctxt->src.type = OP_REG;
2301
ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2302
ctxt->src.val = ctxt->dst.orig_val;
2303
/* Create write-cycle to dest by writing the same value */
2304
ctxt->dst.val = ctxt->dst.orig_val;
2305
}
2306
return X86EMUL_CONTINUE;
2307
}
2308
2309
static int em_lseg(struct x86_emulate_ctxt *ctxt)
2310
{
2311
int seg = ctxt->src2.val;
2312
unsigned short sel;
2313
int rc;
2314
2315
memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2316
2317
rc = load_segment_descriptor(ctxt, sel, seg);
2318
if (rc != X86EMUL_CONTINUE)
2319
return rc;
2320
2321
ctxt->dst.val = ctxt->src.val;
2322
return rc;
2323
}
2324
2325
static int em_rsm(struct x86_emulate_ctxt *ctxt)
2326
{
2327
if (!ctxt->ops->is_smm(ctxt))
2328
return emulate_ud(ctxt);
2329
2330
if (ctxt->ops->leave_smm(ctxt))
2331
ctxt->ops->triple_fault(ctxt);
2332
2333
return emulator_recalc_and_set_mode(ctxt);
2334
}
2335
2336
static void
2337
setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss)
2338
{
2339
cs->l = 0; /* will be adjusted later */
2340
set_desc_base(cs, 0); /* flat segment */
2341
cs->g = 1; /* 4kb granularity */
2342
set_desc_limit(cs, 0xfffff); /* 4GB limit */
2343
cs->type = 0x0b; /* Read, Execute, Accessed */
2344
cs->s = 1;
2345
cs->dpl = 0; /* will be adjusted later */
2346
cs->p = 1;
2347
cs->d = 1;
2348
cs->avl = 0;
2349
2350
set_desc_base(ss, 0); /* flat segment */
2351
set_desc_limit(ss, 0xfffff); /* 4GB limit */
2352
ss->g = 1; /* 4kb granularity */
2353
ss->s = 1;
2354
ss->type = 0x03; /* Read/Write, Accessed */
2355
ss->d = 1; /* 32bit stack segment */
2356
ss->dpl = 0;
2357
ss->p = 1;
2358
ss->l = 0;
2359
ss->avl = 0;
2360
}
2361
2362
static int em_syscall(struct x86_emulate_ctxt *ctxt)
2363
{
2364
const struct x86_emulate_ops *ops = ctxt->ops;
2365
struct desc_struct cs, ss;
2366
u64 msr_data;
2367
u16 cs_sel, ss_sel;
2368
u64 efer = 0;
2369
2370
/* syscall is not available in real mode */
2371
if (ctxt->mode == X86EMUL_MODE_REAL ||
2372
ctxt->mode == X86EMUL_MODE_VM86)
2373
return emulate_ud(ctxt);
2374
2375
/*
2376
* Intel compatible CPUs only support SYSCALL in 64-bit mode, whereas
2377
* AMD allows SYSCALL in any flavor of protected mode. Note, it's
2378
* infeasible to emulate Intel behavior when running on AMD hardware,
2379
* as SYSCALL won't fault in the "wrong" mode, i.e. there is no #UD
2380
* for KVM to trap-and-emulate, unlike emulating AMD on Intel.
2381
*/
2382
if (ctxt->mode != X86EMUL_MODE_PROT64 &&
2383
ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2384
return emulate_ud(ctxt);
2385
2386
ops->get_msr(ctxt, MSR_EFER, &efer);
2387
if (!(efer & EFER_SCE))
2388
return emulate_ud(ctxt);
2389
2390
setup_syscalls_segments(&cs, &ss);
2391
ops->get_msr(ctxt, MSR_STAR, &msr_data);
2392
msr_data >>= 32;
2393
cs_sel = (u16)(msr_data & 0xfffc);
2394
ss_sel = (u16)(msr_data + 8);
2395
2396
if (efer & EFER_LMA) {
2397
cs.d = 0;
2398
cs.l = 1;
2399
}
2400
ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2401
ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2402
2403
*reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2404
if (efer & EFER_LMA) {
2405
#ifdef CONFIG_X86_64
2406
*reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2407
2408
ops->get_msr(ctxt,
2409
ctxt->mode == X86EMUL_MODE_PROT64 ?
2410
MSR_LSTAR : MSR_CSTAR, &msr_data);
2411
ctxt->_eip = msr_data;
2412
2413
ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2414
ctxt->eflags &= ~msr_data;
2415
ctxt->eflags |= X86_EFLAGS_FIXED;
2416
#endif
2417
} else {
2418
/* legacy mode */
2419
ops->get_msr(ctxt, MSR_STAR, &msr_data);
2420
ctxt->_eip = (u32)msr_data;
2421
2422
ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2423
}
2424
2425
ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
2426
return X86EMUL_CONTINUE;
2427
}
2428
2429
static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2430
{
2431
const struct x86_emulate_ops *ops = ctxt->ops;
2432
struct desc_struct cs, ss;
2433
u64 msr_data;
2434
u16 cs_sel, ss_sel;
2435
u64 efer = 0;
2436
2437
ops->get_msr(ctxt, MSR_EFER, &efer);
2438
/* inject #GP if in real mode */
2439
if (ctxt->mode == X86EMUL_MODE_REAL)
2440
return emulate_gp(ctxt, 0);
2441
2442
/*
2443
* Intel's architecture allows SYSENTER in compatibility mode, but AMD
2444
* does not. Note, AMD does allow SYSENTER in legacy protected mode.
2445
*/
2446
if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) &&
2447
!ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2448
return emulate_ud(ctxt);
2449
2450
/* sysenter/sysexit have not been tested in 64bit mode. */
2451
if (ctxt->mode == X86EMUL_MODE_PROT64)
2452
return X86EMUL_UNHANDLEABLE;
2453
2454
ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2455
if ((msr_data & 0xfffc) == 0x0)
2456
return emulate_gp(ctxt, 0);
2457
2458
setup_syscalls_segments(&cs, &ss);
2459
ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2460
cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
2461
ss_sel = cs_sel + 8;
2462
if (efer & EFER_LMA) {
2463
cs.d = 0;
2464
cs.l = 1;
2465
}
2466
2467
ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2468
ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2469
2470
ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2471
ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2472
2473
ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2474
*reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2475
(u32)msr_data;
2476
if (efer & EFER_LMA)
2477
ctxt->mode = X86EMUL_MODE_PROT64;
2478
2479
return X86EMUL_CONTINUE;
2480
}
2481
2482
static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2483
{
2484
const struct x86_emulate_ops *ops = ctxt->ops;
2485
struct desc_struct cs, ss;
2486
u64 msr_data, rcx, rdx;
2487
int usermode;
2488
u16 cs_sel = 0, ss_sel = 0;
2489
2490
/* inject #GP if in real mode or Virtual 8086 mode */
2491
if (ctxt->mode == X86EMUL_MODE_REAL ||
2492
ctxt->mode == X86EMUL_MODE_VM86)
2493
return emulate_gp(ctxt, 0);
2494
2495
setup_syscalls_segments(&cs, &ss);
2496
2497
if ((ctxt->rex_prefix & 0x8) != 0x0)
2498
usermode = X86EMUL_MODE_PROT64;
2499
else
2500
usermode = X86EMUL_MODE_PROT32;
2501
2502
rcx = reg_read(ctxt, VCPU_REGS_RCX);
2503
rdx = reg_read(ctxt, VCPU_REGS_RDX);
2504
2505
cs.dpl = 3;
2506
ss.dpl = 3;
2507
ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2508
switch (usermode) {
2509
case X86EMUL_MODE_PROT32:
2510
cs_sel = (u16)(msr_data + 16);
2511
if ((msr_data & 0xfffc) == 0x0)
2512
return emulate_gp(ctxt, 0);
2513
ss_sel = (u16)(msr_data + 24);
2514
rcx = (u32)rcx;
2515
rdx = (u32)rdx;
2516
break;
2517
case X86EMUL_MODE_PROT64:
2518
cs_sel = (u16)(msr_data + 32);
2519
if (msr_data == 0x0)
2520
return emulate_gp(ctxt, 0);
2521
ss_sel = cs_sel + 8;
2522
cs.d = 0;
2523
cs.l = 1;
2524
if (emul_is_noncanonical_address(rcx, ctxt, 0) ||
2525
emul_is_noncanonical_address(rdx, ctxt, 0))
2526
return emulate_gp(ctxt, 0);
2527
break;
2528
}
2529
cs_sel |= SEGMENT_RPL_MASK;
2530
ss_sel |= SEGMENT_RPL_MASK;
2531
2532
ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2533
ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2534
2535
ctxt->_eip = rdx;
2536
ctxt->mode = usermode;
2537
*reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2538
2539
return X86EMUL_CONTINUE;
2540
}
2541
2542
static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2543
{
2544
int iopl;
2545
if (ctxt->mode == X86EMUL_MODE_REAL)
2546
return false;
2547
if (ctxt->mode == X86EMUL_MODE_VM86)
2548
return true;
2549
iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
2550
return ctxt->ops->cpl(ctxt) > iopl;
2551
}
2552
2553
#define VMWARE_PORT_VMPORT (0x5658)
2554
#define VMWARE_PORT_VMRPC (0x5659)
2555
2556
static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2557
u16 port, u16 len)
2558
{
2559
const struct x86_emulate_ops *ops = ctxt->ops;
2560
struct desc_struct tr_seg;
2561
u32 base3;
2562
int r;
2563
u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2564
unsigned mask = (1 << len) - 1;
2565
unsigned long base;
2566
2567
/*
2568
* VMware allows access to these ports even if denied
2569
* by TSS I/O permission bitmap. Mimic behavior.
2570
*/
2571
if (enable_vmware_backdoor &&
2572
((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC)))
2573
return true;
2574
2575
ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2576
if (!tr_seg.p)
2577
return false;
2578
if (desc_limit_scaled(&tr_seg) < 103)
2579
return false;
2580
base = get_desc_base(&tr_seg);
2581
#ifdef CONFIG_X86_64
2582
base |= ((u64)base3) << 32;
2583
#endif
2584
r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true);
2585
if (r != X86EMUL_CONTINUE)
2586
return false;
2587
if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2588
return false;
2589
r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true);
2590
if (r != X86EMUL_CONTINUE)
2591
return false;
2592
if ((perm >> bit_idx) & mask)
2593
return false;
2594
return true;
2595
}
2596
2597
static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt,
2598
u16 port, u16 len)
2599
{
2600
if (ctxt->perm_ok)
2601
return true;
2602
2603
if (emulator_bad_iopl(ctxt))
2604
if (!emulator_io_port_access_allowed(ctxt, port, len))
2605
return false;
2606
2607
ctxt->perm_ok = true;
2608
2609
return true;
2610
}
2611
2612
static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
2613
{
2614
/*
2615
* Intel CPUs mask the counter and pointers in quite strange
2616
* manner when ECX is zero due to REP-string optimizations.
2617
*/
2618
#ifdef CONFIG_X86_64
2619
u32 eax, ebx, ecx, edx;
2620
2621
if (ctxt->ad_bytes != 4)
2622
return;
2623
2624
eax = ecx = 0;
2625
ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2626
if (!is_guest_vendor_intel(ebx, ecx, edx))
2627
return;
2628
2629
*reg_write(ctxt, VCPU_REGS_RCX) = 0;
2630
2631
switch (ctxt->b) {
2632
case 0xa4: /* movsb */
2633
case 0xa5: /* movsd/w */
2634
*reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
2635
fallthrough;
2636
case 0xaa: /* stosb */
2637
case 0xab: /* stosd/w */
2638
*reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
2639
}
2640
#endif
2641
}
2642
2643
static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2644
struct tss_segment_16 *tss)
2645
{
2646
tss->ip = ctxt->_eip;
2647
tss->flag = ctxt->eflags;
2648
tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2649
tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2650
tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2651
tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2652
tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2653
tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2654
tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2655
tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2656
2657
tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2658
tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2659
tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2660
tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2661
tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2662
}
2663
2664
static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2665
struct tss_segment_16 *tss)
2666
{
2667
int ret;
2668
u8 cpl;
2669
2670
ctxt->_eip = tss->ip;
2671
ctxt->eflags = tss->flag | 2;
2672
*reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2673
*reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2674
*reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2675
*reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2676
*reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2677
*reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2678
*reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2679
*reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2680
2681
/*
2682
* SDM says that segment selectors are loaded before segment
2683
* descriptors
2684
*/
2685
set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2686
set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2687
set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2688
set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2689
set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2690
2691
cpl = tss->cs & 3;
2692
2693
/*
2694
* Now load segment descriptors. If fault happens at this stage
2695
* it is handled in a context of new task
2696
*/
2697
ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
2698
X86_TRANSFER_TASK_SWITCH, NULL);
2699
if (ret != X86EMUL_CONTINUE)
2700
return ret;
2701
ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2702
X86_TRANSFER_TASK_SWITCH, NULL);
2703
if (ret != X86EMUL_CONTINUE)
2704
return ret;
2705
ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2706
X86_TRANSFER_TASK_SWITCH, NULL);
2707
if (ret != X86EMUL_CONTINUE)
2708
return ret;
2709
ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2710
X86_TRANSFER_TASK_SWITCH, NULL);
2711
if (ret != X86EMUL_CONTINUE)
2712
return ret;
2713
ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2714
X86_TRANSFER_TASK_SWITCH, NULL);
2715
if (ret != X86EMUL_CONTINUE)
2716
return ret;
2717
2718
return X86EMUL_CONTINUE;
2719
}
2720
2721
static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2722
ulong old_tss_base, struct desc_struct *new_desc)
2723
{
2724
struct tss_segment_16 tss_seg;
2725
int ret;
2726
u32 new_tss_base = get_desc_base(new_desc);
2727
2728
ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2729
if (ret != X86EMUL_CONTINUE)
2730
return ret;
2731
2732
save_state_to_tss16(ctxt, &tss_seg);
2733
2734
ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2735
if (ret != X86EMUL_CONTINUE)
2736
return ret;
2737
2738
ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2739
if (ret != X86EMUL_CONTINUE)
2740
return ret;
2741
2742
if (old_tss_sel != 0xffff) {
2743
tss_seg.prev_task_link = old_tss_sel;
2744
2745
ret = linear_write_system(ctxt, new_tss_base,
2746
&tss_seg.prev_task_link,
2747
sizeof(tss_seg.prev_task_link));
2748
if (ret != X86EMUL_CONTINUE)
2749
return ret;
2750
}
2751
2752
return load_state_from_tss16(ctxt, &tss_seg);
2753
}
2754
2755
static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
2756
struct tss_segment_32 *tss)
2757
{
2758
/* CR3 and ldt selector are not saved intentionally */
2759
tss->eip = ctxt->_eip;
2760
tss->eflags = ctxt->eflags;
2761
tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
2762
tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
2763
tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
2764
tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
2765
tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
2766
tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
2767
tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
2768
tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
2769
2770
tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2771
tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2772
tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2773
tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2774
tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
2775
tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
2776
}
2777
2778
static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
2779
struct tss_segment_32 *tss)
2780
{
2781
int ret;
2782
u8 cpl;
2783
2784
if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
2785
return emulate_gp(ctxt, 0);
2786
ctxt->_eip = tss->eip;
2787
ctxt->eflags = tss->eflags | 2;
2788
2789
/* General purpose registers */
2790
*reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
2791
*reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
2792
*reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
2793
*reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
2794
*reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
2795
*reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
2796
*reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
2797
*reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
2798
2799
/*
2800
* SDM says that segment selectors are loaded before segment
2801
* descriptors. This is important because CPL checks will
2802
* use CS.RPL.
2803
*/
2804
set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
2805
set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2806
set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2807
set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2808
set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2809
set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
2810
set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
2811
2812
/*
2813
* If we're switching between Protected Mode and VM86, we need to make
2814
* sure to update the mode before loading the segment descriptors so
2815
* that the selectors are interpreted correctly.
2816
*/
2817
if (ctxt->eflags & X86_EFLAGS_VM) {
2818
ctxt->mode = X86EMUL_MODE_VM86;
2819
cpl = 3;
2820
} else {
2821
ctxt->mode = X86EMUL_MODE_PROT32;
2822
cpl = tss->cs & 3;
2823
}
2824
2825
/*
2826
* Now load segment descriptors. If fault happens at this stage
2827
* it is handled in a context of new task
2828
*/
2829
ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
2830
cpl, X86_TRANSFER_TASK_SWITCH, NULL);
2831
if (ret != X86EMUL_CONTINUE)
2832
return ret;
2833
ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2834
X86_TRANSFER_TASK_SWITCH, NULL);
2835
if (ret != X86EMUL_CONTINUE)
2836
return ret;
2837
ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2838
X86_TRANSFER_TASK_SWITCH, NULL);
2839
if (ret != X86EMUL_CONTINUE)
2840
return ret;
2841
ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2842
X86_TRANSFER_TASK_SWITCH, NULL);
2843
if (ret != X86EMUL_CONTINUE)
2844
return ret;
2845
ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2846
X86_TRANSFER_TASK_SWITCH, NULL);
2847
if (ret != X86EMUL_CONTINUE)
2848
return ret;
2849
ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
2850
X86_TRANSFER_TASK_SWITCH, NULL);
2851
if (ret != X86EMUL_CONTINUE)
2852
return ret;
2853
ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
2854
X86_TRANSFER_TASK_SWITCH, NULL);
2855
2856
return ret;
2857
}
2858
2859
static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2860
ulong old_tss_base, struct desc_struct *new_desc)
2861
{
2862
struct tss_segment_32 tss_seg;
2863
int ret;
2864
u32 new_tss_base = get_desc_base(new_desc);
2865
u32 eip_offset = offsetof(struct tss_segment_32, eip);
2866
u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
2867
2868
ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2869
if (ret != X86EMUL_CONTINUE)
2870
return ret;
2871
2872
save_state_to_tss32(ctxt, &tss_seg);
2873
2874
/* Only GP registers and segment selectors are saved */
2875
ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
2876
ldt_sel_offset - eip_offset);
2877
if (ret != X86EMUL_CONTINUE)
2878
return ret;
2879
2880
ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2881
if (ret != X86EMUL_CONTINUE)
2882
return ret;
2883
2884
if (old_tss_sel != 0xffff) {
2885
tss_seg.prev_task_link = old_tss_sel;
2886
2887
ret = linear_write_system(ctxt, new_tss_base,
2888
&tss_seg.prev_task_link,
2889
sizeof(tss_seg.prev_task_link));
2890
if (ret != X86EMUL_CONTINUE)
2891
return ret;
2892
}
2893
2894
return load_state_from_tss32(ctxt, &tss_seg);
2895
}
2896
2897
static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
2898
u16 tss_selector, int idt_index, int reason,
2899
bool has_error_code, u32 error_code)
2900
{
2901
const struct x86_emulate_ops *ops = ctxt->ops;
2902
struct desc_struct curr_tss_desc, next_tss_desc;
2903
int ret;
2904
u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
2905
ulong old_tss_base =
2906
ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
2907
u32 desc_limit;
2908
ulong desc_addr, dr7;
2909
2910
/* FIXME: old_tss_base == ~0 ? */
2911
2912
ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
2913
if (ret != X86EMUL_CONTINUE)
2914
return ret;
2915
ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
2916
if (ret != X86EMUL_CONTINUE)
2917
return ret;
2918
2919
/* FIXME: check that next_tss_desc is tss */
2920
2921
/*
2922
* Check privileges. The three cases are task switch caused by...
2923
*
2924
* 1. jmp/call/int to task gate: Check against DPL of the task gate
2925
* 2. Exception/IRQ/iret: No check is performed
2926
* 3. jmp/call to TSS/task-gate: No check is performed since the
2927
* hardware checks it before exiting.
2928
*/
2929
if (reason == TASK_SWITCH_GATE) {
2930
if (idt_index != -1) {
2931
/* Software interrupts */
2932
struct desc_struct task_gate_desc;
2933
int dpl;
2934
2935
ret = read_interrupt_descriptor(ctxt, idt_index,
2936
&task_gate_desc);
2937
if (ret != X86EMUL_CONTINUE)
2938
return ret;
2939
2940
dpl = task_gate_desc.dpl;
2941
if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
2942
return emulate_gp(ctxt, (idt_index << 3) | 0x2);
2943
}
2944
}
2945
2946
desc_limit = desc_limit_scaled(&next_tss_desc);
2947
if (!next_tss_desc.p ||
2948
((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
2949
desc_limit < 0x2b)) {
2950
return emulate_ts(ctxt, tss_selector & 0xfffc);
2951
}
2952
2953
if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
2954
curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
2955
write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
2956
}
2957
2958
if (reason == TASK_SWITCH_IRET)
2959
ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
2960
2961
/* set back link to prev task only if NT bit is set in eflags
2962
note that old_tss_sel is not used after this point */
2963
if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
2964
old_tss_sel = 0xffff;
2965
2966
if (next_tss_desc.type & 8)
2967
ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc);
2968
else
2969
ret = task_switch_16(ctxt, old_tss_sel,
2970
old_tss_base, &next_tss_desc);
2971
if (ret != X86EMUL_CONTINUE)
2972
return ret;
2973
2974
if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
2975
ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
2976
2977
if (reason != TASK_SWITCH_IRET) {
2978
next_tss_desc.type |= (1 << 1); /* set busy flag */
2979
write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
2980
}
2981
2982
ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
2983
ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
2984
2985
if (has_error_code) {
2986
ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
2987
ctxt->lock_prefix = 0;
2988
ctxt->src.val = (unsigned long) error_code;
2989
ret = em_push(ctxt);
2990
}
2991
2992
dr7 = ops->get_dr(ctxt, 7);
2993
ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
2994
2995
return ret;
2996
}
2997
2998
int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
2999
u16 tss_selector, int idt_index, int reason,
3000
bool has_error_code, u32 error_code)
3001
{
3002
int rc;
3003
3004
invalidate_registers(ctxt);
3005
ctxt->_eip = ctxt->eip;
3006
ctxt->dst.type = OP_NONE;
3007
3008
rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
3009
has_error_code, error_code);
3010
3011
if (rc == X86EMUL_CONTINUE) {
3012
ctxt->eip = ctxt->_eip;
3013
writeback_registers(ctxt);
3014
}
3015
3016
return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
3017
}
3018
3019
static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
3020
struct operand *op)
3021
{
3022
int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
3023
3024
register_address_increment(ctxt, reg, df * op->bytes);
3025
op->addr.mem.ea = register_address(ctxt, reg);
3026
}
3027
3028
static int em_das(struct x86_emulate_ctxt *ctxt)
3029
{
3030
u8 al, old_al;
3031
bool af, cf, old_cf;
3032
3033
cf = ctxt->eflags & X86_EFLAGS_CF;
3034
al = ctxt->dst.val;
3035
3036
old_al = al;
3037
old_cf = cf;
3038
cf = false;
3039
af = ctxt->eflags & X86_EFLAGS_AF;
3040
if ((al & 0x0f) > 9 || af) {
3041
al -= 6;
3042
cf = old_cf | (al >= 250);
3043
af = true;
3044
} else {
3045
af = false;
3046
}
3047
if (old_al > 0x99 || old_cf) {
3048
al -= 0x60;
3049
cf = true;
3050
}
3051
3052
ctxt->dst.val = al;
3053
/* Set PF, ZF, SF */
3054
ctxt->src.type = OP_IMM;
3055
ctxt->src.val = 0;
3056
ctxt->src.bytes = 1;
3057
fastop(ctxt, em_or);
3058
ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3059
if (cf)
3060
ctxt->eflags |= X86_EFLAGS_CF;
3061
if (af)
3062
ctxt->eflags |= X86_EFLAGS_AF;
3063
return X86EMUL_CONTINUE;
3064
}
3065
3066
static int em_aam(struct x86_emulate_ctxt *ctxt)
3067
{
3068
u8 al, ah;
3069
3070
if (ctxt->src.val == 0)
3071
return emulate_de(ctxt);
3072
3073
al = ctxt->dst.val & 0xff;
3074
ah = al / ctxt->src.val;
3075
al %= ctxt->src.val;
3076
3077
ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3078
3079
/* Set PF, ZF, SF */
3080
ctxt->src.type = OP_IMM;
3081
ctxt->src.val = 0;
3082
ctxt->src.bytes = 1;
3083
fastop(ctxt, em_or);
3084
3085
return X86EMUL_CONTINUE;
3086
}
3087
3088
static int em_aad(struct x86_emulate_ctxt *ctxt)
3089
{
3090
u8 al = ctxt->dst.val & 0xff;
3091
u8 ah = (ctxt->dst.val >> 8) & 0xff;
3092
3093
al = (al + (ah * ctxt->src.val)) & 0xff;
3094
3095
ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3096
3097
/* Set PF, ZF, SF */
3098
ctxt->src.type = OP_IMM;
3099
ctxt->src.val = 0;
3100
ctxt->src.bytes = 1;
3101
fastop(ctxt, em_or);
3102
3103
return X86EMUL_CONTINUE;
3104
}
3105
3106
static int em_call(struct x86_emulate_ctxt *ctxt)
3107
{
3108
int rc;
3109
long rel = ctxt->src.val;
3110
3111
ctxt->src.val = (unsigned long)ctxt->_eip;
3112
rc = jmp_rel(ctxt, rel);
3113
if (rc != X86EMUL_CONTINUE)
3114
return rc;
3115
return em_push(ctxt);
3116
}
3117
3118
static int em_call_far(struct x86_emulate_ctxt *ctxt)
3119
{
3120
u16 sel, old_cs;
3121
ulong old_eip;
3122
int rc;
3123
struct desc_struct old_desc, new_desc;
3124
const struct x86_emulate_ops *ops = ctxt->ops;
3125
int cpl = ctxt->ops->cpl(ctxt);
3126
enum x86emul_mode prev_mode = ctxt->mode;
3127
3128
old_eip = ctxt->_eip;
3129
ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3130
3131
memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3132
rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3133
X86_TRANSFER_CALL_JMP, &new_desc);
3134
if (rc != X86EMUL_CONTINUE)
3135
return rc;
3136
3137
rc = assign_eip_far(ctxt, ctxt->src.val);
3138
if (rc != X86EMUL_CONTINUE)
3139
goto fail;
3140
3141
ctxt->src.val = old_cs;
3142
rc = em_push(ctxt);
3143
if (rc != X86EMUL_CONTINUE)
3144
goto fail;
3145
3146
ctxt->src.val = old_eip;
3147
rc = em_push(ctxt);
3148
/* If we failed, we tainted the memory, but the very least we should
3149
restore cs */
3150
if (rc != X86EMUL_CONTINUE) {
3151
pr_warn_once("faulting far call emulation tainted memory\n");
3152
goto fail;
3153
}
3154
return rc;
3155
fail:
3156
ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3157
ctxt->mode = prev_mode;
3158
return rc;
3159
3160
}
3161
3162
static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3163
{
3164
int rc;
3165
unsigned long eip = 0;
3166
3167
rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3168
if (rc != X86EMUL_CONTINUE)
3169
return rc;
3170
rc = assign_eip_near(ctxt, eip);
3171
if (rc != X86EMUL_CONTINUE)
3172
return rc;
3173
rsp_increment(ctxt, ctxt->src.val);
3174
return X86EMUL_CONTINUE;
3175
}
3176
3177
static int em_xchg(struct x86_emulate_ctxt *ctxt)
3178
{
3179
/* Write back the register source. */
3180
ctxt->src.val = ctxt->dst.val;
3181
write_register_operand(&ctxt->src);
3182
3183
/* Write back the memory destination with implicit LOCK prefix. */
3184
ctxt->dst.val = ctxt->src.orig_val;
3185
ctxt->lock_prefix = 1;
3186
return X86EMUL_CONTINUE;
3187
}
3188
3189
static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3190
{
3191
ctxt->dst.val = ctxt->src2.val;
3192
return fastop(ctxt, em_imul);
3193
}
3194
3195
static int em_cwd(struct x86_emulate_ctxt *ctxt)
3196
{
3197
ctxt->dst.type = OP_REG;
3198
ctxt->dst.bytes = ctxt->src.bytes;
3199
ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3200
ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3201
3202
return X86EMUL_CONTINUE;
3203
}
3204
3205
static int em_rdpid(struct x86_emulate_ctxt *ctxt)
3206
{
3207
u64 tsc_aux = 0;
3208
3209
if (!ctxt->ops->guest_has_rdpid(ctxt))
3210
return emulate_ud(ctxt);
3211
3212
ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux);
3213
ctxt->dst.val = tsc_aux;
3214
return X86EMUL_CONTINUE;
3215
}
3216
3217
static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3218
{
3219
u64 tsc = 0;
3220
3221
ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3222
*reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3223
*reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3224
return X86EMUL_CONTINUE;
3225
}
3226
3227
static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3228
{
3229
u64 pmc;
3230
3231
if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3232
return emulate_gp(ctxt, 0);
3233
*reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3234
*reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3235
return X86EMUL_CONTINUE;
3236
}
3237
3238
static int em_mov(struct x86_emulate_ctxt *ctxt)
3239
{
3240
memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3241
return X86EMUL_CONTINUE;
3242
}
3243
3244
static int em_movbe(struct x86_emulate_ctxt *ctxt)
3245
{
3246
u16 tmp;
3247
3248
if (!ctxt->ops->guest_has_movbe(ctxt))
3249
return emulate_ud(ctxt);
3250
3251
switch (ctxt->op_bytes) {
3252
case 2:
3253
/*
3254
* From MOVBE definition: "...When the operand size is 16 bits,
3255
* the upper word of the destination register remains unchanged
3256
* ..."
3257
*
3258
* Both casting ->valptr and ->val to u16 breaks strict aliasing
3259
* rules so we have to do the operation almost per hand.
3260
*/
3261
tmp = (u16)ctxt->src.val;
3262
ctxt->dst.val &= ~0xffffUL;
3263
ctxt->dst.val |= (unsigned long)swab16(tmp);
3264
break;
3265
case 4:
3266
ctxt->dst.val = swab32((u32)ctxt->src.val);
3267
break;
3268
case 8:
3269
ctxt->dst.val = swab64(ctxt->src.val);
3270
break;
3271
default:
3272
BUG();
3273
}
3274
return X86EMUL_CONTINUE;
3275
}
3276
3277
static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3278
{
3279
int cr_num = ctxt->modrm_reg;
3280
int r;
3281
3282
if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val))
3283
return emulate_gp(ctxt, 0);
3284
3285
/* Disable writeback. */
3286
ctxt->dst.type = OP_NONE;
3287
3288
if (cr_num == 0) {
3289
/*
3290
* CR0 write might have updated CR0.PE and/or CR0.PG
3291
* which can affect the cpu's execution mode.
3292
*/
3293
r = emulator_recalc_and_set_mode(ctxt);
3294
if (r != X86EMUL_CONTINUE)
3295
return r;
3296
}
3297
3298
return X86EMUL_CONTINUE;
3299
}
3300
3301
static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3302
{
3303
unsigned long val;
3304
3305
if (ctxt->mode == X86EMUL_MODE_PROT64)
3306
val = ctxt->src.val & ~0ULL;
3307
else
3308
val = ctxt->src.val & ~0U;
3309
3310
/* #UD condition is already handled. */
3311
if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3312
return emulate_gp(ctxt, 0);
3313
3314
/* Disable writeback. */
3315
ctxt->dst.type = OP_NONE;
3316
return X86EMUL_CONTINUE;
3317
}
3318
3319
static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3320
{
3321
u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3322
u64 msr_data;
3323
int r;
3324
3325
msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3326
| ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3327
r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data);
3328
3329
if (r == X86EMUL_PROPAGATE_FAULT)
3330
return emulate_gp(ctxt, 0);
3331
3332
return r;
3333
}
3334
3335
static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3336
{
3337
u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3338
u64 msr_data;
3339
int r;
3340
3341
r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data);
3342
3343
if (r == X86EMUL_PROPAGATE_FAULT)
3344
return emulate_gp(ctxt, 0);
3345
3346
if (r == X86EMUL_CONTINUE) {
3347
*reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3348
*reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3349
}
3350
return r;
3351
}
3352
3353
static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment)
3354
{
3355
if (segment > VCPU_SREG_GS &&
3356
(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3357
ctxt->ops->cpl(ctxt) > 0)
3358
return emulate_gp(ctxt, 0);
3359
3360
ctxt->dst.val = get_segment_selector(ctxt, segment);
3361
if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3362
ctxt->dst.bytes = 2;
3363
return X86EMUL_CONTINUE;
3364
}
3365
3366
static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3367
{
3368
if (ctxt->modrm_reg > VCPU_SREG_GS)
3369
return emulate_ud(ctxt);
3370
3371
return em_store_sreg(ctxt, ctxt->modrm_reg);
3372
}
3373
3374
static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3375
{
3376
u16 sel = ctxt->src.val;
3377
3378
if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3379
return emulate_ud(ctxt);
3380
3381
if (ctxt->modrm_reg == VCPU_SREG_SS)
3382
ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3383
3384
/* Disable writeback. */
3385
ctxt->dst.type = OP_NONE;
3386
return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3387
}
3388
3389
static int em_sldt(struct x86_emulate_ctxt *ctxt)
3390
{
3391
return em_store_sreg(ctxt, VCPU_SREG_LDTR);
3392
}
3393
3394
static int em_lldt(struct x86_emulate_ctxt *ctxt)
3395
{
3396
u16 sel = ctxt->src.val;
3397
3398
/* Disable writeback. */
3399
ctxt->dst.type = OP_NONE;
3400
return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3401
}
3402
3403
static int em_str(struct x86_emulate_ctxt *ctxt)
3404
{
3405
return em_store_sreg(ctxt, VCPU_SREG_TR);
3406
}
3407
3408
static int em_ltr(struct x86_emulate_ctxt *ctxt)
3409
{
3410
u16 sel = ctxt->src.val;
3411
3412
/* Disable writeback. */
3413
ctxt->dst.type = OP_NONE;
3414
return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3415
}
3416
3417
static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3418
{
3419
int rc;
3420
ulong linear;
3421
unsigned int max_size;
3422
3423
rc = __linearize(ctxt, ctxt->src.addr.mem, &max_size, 1, ctxt->mode,
3424
&linear, X86EMUL_F_INVLPG);
3425
if (rc == X86EMUL_CONTINUE)
3426
ctxt->ops->invlpg(ctxt, linear);
3427
/* Disable writeback. */
3428
ctxt->dst.type = OP_NONE;
3429
return X86EMUL_CONTINUE;
3430
}
3431
3432
static int em_clts(struct x86_emulate_ctxt *ctxt)
3433
{
3434
ulong cr0;
3435
3436
cr0 = ctxt->ops->get_cr(ctxt, 0);
3437
cr0 &= ~X86_CR0_TS;
3438
ctxt->ops->set_cr(ctxt, 0, cr0);
3439
return X86EMUL_CONTINUE;
3440
}
3441
3442
static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3443
{
3444
int rc = ctxt->ops->fix_hypercall(ctxt);
3445
3446
if (rc != X86EMUL_CONTINUE)
3447
return rc;
3448
3449
/* Let the processor re-execute the fixed hypercall */
3450
ctxt->_eip = ctxt->eip;
3451
/* Disable writeback. */
3452
ctxt->dst.type = OP_NONE;
3453
return X86EMUL_CONTINUE;
3454
}
3455
3456
static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3457
void (*get)(struct x86_emulate_ctxt *ctxt,
3458
struct desc_ptr *ptr))
3459
{
3460
struct desc_ptr desc_ptr;
3461
3462
if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3463
ctxt->ops->cpl(ctxt) > 0)
3464
return emulate_gp(ctxt, 0);
3465
3466
if (ctxt->mode == X86EMUL_MODE_PROT64)
3467
ctxt->op_bytes = 8;
3468
get(ctxt, &desc_ptr);
3469
if (ctxt->op_bytes == 2) {
3470
ctxt->op_bytes = 4;
3471
desc_ptr.address &= 0x00ffffff;
3472
}
3473
/* Disable writeback. */
3474
ctxt->dst.type = OP_NONE;
3475
return segmented_write_std(ctxt, ctxt->dst.addr.mem,
3476
&desc_ptr, 2 + ctxt->op_bytes);
3477
}
3478
3479
static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3480
{
3481
return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3482
}
3483
3484
static int em_sidt(struct x86_emulate_ctxt *ctxt)
3485
{
3486
return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3487
}
3488
3489
static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3490
{
3491
struct desc_ptr desc_ptr;
3492
int rc;
3493
3494
if (ctxt->mode == X86EMUL_MODE_PROT64)
3495
ctxt->op_bytes = 8;
3496
rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3497
&desc_ptr.size, &desc_ptr.address,
3498
ctxt->op_bytes);
3499
if (rc != X86EMUL_CONTINUE)
3500
return rc;
3501
if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3502
emul_is_noncanonical_address(desc_ptr.address, ctxt,
3503
X86EMUL_F_DT_LOAD))
3504
return emulate_gp(ctxt, 0);
3505
if (lgdt)
3506
ctxt->ops->set_gdt(ctxt, &desc_ptr);
3507
else
3508
ctxt->ops->set_idt(ctxt, &desc_ptr);
3509
/* Disable writeback. */
3510
ctxt->dst.type = OP_NONE;
3511
return X86EMUL_CONTINUE;
3512
}
3513
3514
static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3515
{
3516
return em_lgdt_lidt(ctxt, true);
3517
}
3518
3519
static int em_lidt(struct x86_emulate_ctxt *ctxt)
3520
{
3521
return em_lgdt_lidt(ctxt, false);
3522
}
3523
3524
static int em_smsw(struct x86_emulate_ctxt *ctxt)
3525
{
3526
if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3527
ctxt->ops->cpl(ctxt) > 0)
3528
return emulate_gp(ctxt, 0);
3529
3530
if (ctxt->dst.type == OP_MEM)
3531
ctxt->dst.bytes = 2;
3532
ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3533
return X86EMUL_CONTINUE;
3534
}
3535
3536
static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3537
{
3538
ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3539
| (ctxt->src.val & 0x0f));
3540
ctxt->dst.type = OP_NONE;
3541
return X86EMUL_CONTINUE;
3542
}
3543
3544
static int em_loop(struct x86_emulate_ctxt *ctxt)
3545
{
3546
int rc = X86EMUL_CONTINUE;
3547
3548
register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3549
if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3550
(ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3551
rc = jmp_rel(ctxt, ctxt->src.val);
3552
3553
return rc;
3554
}
3555
3556
static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3557
{
3558
int rc = X86EMUL_CONTINUE;
3559
3560
if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3561
rc = jmp_rel(ctxt, ctxt->src.val);
3562
3563
return rc;
3564
}
3565
3566
static int em_in(struct x86_emulate_ctxt *ctxt)
3567
{
3568
if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3569
&ctxt->dst.val))
3570
return X86EMUL_IO_NEEDED;
3571
3572
return X86EMUL_CONTINUE;
3573
}
3574
3575
static int em_out(struct x86_emulate_ctxt *ctxt)
3576
{
3577
ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3578
&ctxt->src.val, 1);
3579
/* Disable writeback. */
3580
ctxt->dst.type = OP_NONE;
3581
return X86EMUL_CONTINUE;
3582
}
3583
3584
static int em_cli(struct x86_emulate_ctxt *ctxt)
3585
{
3586
if (emulator_bad_iopl(ctxt))
3587
return emulate_gp(ctxt, 0);
3588
3589
ctxt->eflags &= ~X86_EFLAGS_IF;
3590
return X86EMUL_CONTINUE;
3591
}
3592
3593
static int em_sti(struct x86_emulate_ctxt *ctxt)
3594
{
3595
if (emulator_bad_iopl(ctxt))
3596
return emulate_gp(ctxt, 0);
3597
3598
ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3599
ctxt->eflags |= X86_EFLAGS_IF;
3600
return X86EMUL_CONTINUE;
3601
}
3602
3603
static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3604
{
3605
u32 eax, ebx, ecx, edx;
3606
u64 msr = 0;
3607
3608
ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
3609
if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3610
ctxt->ops->cpl(ctxt)) {
3611
return emulate_gp(ctxt, 0);
3612
}
3613
3614
eax = reg_read(ctxt, VCPU_REGS_RAX);
3615
ecx = reg_read(ctxt, VCPU_REGS_RCX);
3616
ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3617
*reg_write(ctxt, VCPU_REGS_RAX) = eax;
3618
*reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3619
*reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3620
*reg_write(ctxt, VCPU_REGS_RDX) = edx;
3621
return X86EMUL_CONTINUE;
3622
}
3623
3624
static int em_sahf(struct x86_emulate_ctxt *ctxt)
3625
{
3626
u32 flags;
3627
3628
flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
3629
X86_EFLAGS_SF;
3630
flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3631
3632
ctxt->eflags &= ~0xffUL;
3633
ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3634
return X86EMUL_CONTINUE;
3635
}
3636
3637
static int em_lahf(struct x86_emulate_ctxt *ctxt)
3638
{
3639
*reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3640
*reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3641
return X86EMUL_CONTINUE;
3642
}
3643
3644
static int em_bswap(struct x86_emulate_ctxt *ctxt)
3645
{
3646
switch (ctxt->op_bytes) {
3647
#ifdef CONFIG_X86_64
3648
case 8:
3649
asm("bswap %0" : "+r"(ctxt->dst.val));
3650
break;
3651
#endif
3652
default:
3653
asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3654
break;
3655
}
3656
return X86EMUL_CONTINUE;
3657
}
3658
3659
static int em_clflush(struct x86_emulate_ctxt *ctxt)
3660
{
3661
/* emulating clflush regardless of cpuid */
3662
return X86EMUL_CONTINUE;
3663
}
3664
3665
static int em_clflushopt(struct x86_emulate_ctxt *ctxt)
3666
{
3667
/* emulating clflushopt regardless of cpuid */
3668
return X86EMUL_CONTINUE;
3669
}
3670
3671
static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3672
{
3673
ctxt->dst.val = (s32) ctxt->src.val;
3674
return X86EMUL_CONTINUE;
3675
}
3676
3677
static int check_fxsr(struct x86_emulate_ctxt *ctxt)
3678
{
3679
if (!ctxt->ops->guest_has_fxsr(ctxt))
3680
return emulate_ud(ctxt);
3681
3682
if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
3683
return emulate_nm(ctxt);
3684
3685
/*
3686
* Don't emulate a case that should never be hit, instead of working
3687
* around a lack of fxsave64/fxrstor64 on old compilers.
3688
*/
3689
if (ctxt->mode >= X86EMUL_MODE_PROT64)
3690
return X86EMUL_UNHANDLEABLE;
3691
3692
return X86EMUL_CONTINUE;
3693
}
3694
3695
/*
3696
* Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
3697
* and restore MXCSR.
3698
*/
3699
static size_t __fxstate_size(int nregs)
3700
{
3701
return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
3702
}
3703
3704
static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
3705
{
3706
bool cr4_osfxsr;
3707
if (ctxt->mode == X86EMUL_MODE_PROT64)
3708
return __fxstate_size(16);
3709
3710
cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
3711
return __fxstate_size(cr4_osfxsr ? 8 : 0);
3712
}
3713
3714
/*
3715
* FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
3716
* 1) 16 bit mode
3717
* 2) 32 bit mode
3718
* - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs
3719
* preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
3720
* save and restore
3721
* 3) 64-bit mode with REX.W prefix
3722
* - like (2), but XMM 8-15 are being saved and restored
3723
* 4) 64-bit mode without REX.W prefix
3724
* - like (3), but FIP and FDP are 64 bit
3725
*
3726
* Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
3727
* desired result. (4) is not emulated.
3728
*
3729
* Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
3730
* and FPU DS) should match.
3731
*/
3732
static int em_fxsave(struct x86_emulate_ctxt *ctxt)
3733
{
3734
struct fxregs_state fx_state;
3735
int rc;
3736
3737
rc = check_fxsr(ctxt);
3738
if (rc != X86EMUL_CONTINUE)
3739
return rc;
3740
3741
kvm_fpu_get();
3742
3743
rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
3744
3745
kvm_fpu_put();
3746
3747
if (rc != X86EMUL_CONTINUE)
3748
return rc;
3749
3750
return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
3751
fxstate_size(ctxt));
3752
}
3753
3754
/*
3755
* FXRSTOR might restore XMM registers not provided by the guest. Fill
3756
* in the host registers (via FXSAVE) instead, so they won't be modified.
3757
* (preemption has to stay disabled until FXRSTOR).
3758
*
3759
* Use noinline to keep the stack for other functions called by callers small.
3760
*/
3761
static noinline int fxregs_fixup(struct fxregs_state *fx_state,
3762
const size_t used_size)
3763
{
3764
struct fxregs_state fx_tmp;
3765
int rc;
3766
3767
rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
3768
memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
3769
__fxstate_size(16) - used_size);
3770
3771
return rc;
3772
}
3773
3774
static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
3775
{
3776
struct fxregs_state fx_state;
3777
int rc;
3778
size_t size;
3779
3780
rc = check_fxsr(ctxt);
3781
if (rc != X86EMUL_CONTINUE)
3782
return rc;
3783
3784
size = fxstate_size(ctxt);
3785
rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
3786
if (rc != X86EMUL_CONTINUE)
3787
return rc;
3788
3789
kvm_fpu_get();
3790
3791
if (size < __fxstate_size(16)) {
3792
rc = fxregs_fixup(&fx_state, size);
3793
if (rc != X86EMUL_CONTINUE)
3794
goto out;
3795
}
3796
3797
if (fx_state.mxcsr >> 16) {
3798
rc = emulate_gp(ctxt, 0);
3799
goto out;
3800
}
3801
3802
if (rc == X86EMUL_CONTINUE)
3803
rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
3804
3805
out:
3806
kvm_fpu_put();
3807
3808
return rc;
3809
}
3810
3811
static int em_xsetbv(struct x86_emulate_ctxt *ctxt)
3812
{
3813
u32 eax, ecx, edx;
3814
3815
if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE))
3816
return emulate_ud(ctxt);
3817
3818
eax = reg_read(ctxt, VCPU_REGS_RAX);
3819
edx = reg_read(ctxt, VCPU_REGS_RDX);
3820
ecx = reg_read(ctxt, VCPU_REGS_RCX);
3821
3822
if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax))
3823
return emulate_gp(ctxt, 0);
3824
3825
return X86EMUL_CONTINUE;
3826
}
3827
3828
static bool valid_cr(int nr)
3829
{
3830
switch (nr) {
3831
case 0:
3832
case 2 ... 4:
3833
case 8:
3834
return true;
3835
default:
3836
return false;
3837
}
3838
}
3839
3840
static int check_cr_access(struct x86_emulate_ctxt *ctxt)
3841
{
3842
if (!valid_cr(ctxt->modrm_reg))
3843
return emulate_ud(ctxt);
3844
3845
return X86EMUL_CONTINUE;
3846
}
3847
3848
static int check_dr_read(struct x86_emulate_ctxt *ctxt)
3849
{
3850
int dr = ctxt->modrm_reg;
3851
u64 cr4;
3852
3853
if (dr > 7)
3854
return emulate_ud(ctxt);
3855
3856
cr4 = ctxt->ops->get_cr(ctxt, 4);
3857
if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
3858
return emulate_ud(ctxt);
3859
3860
if (ctxt->ops->get_dr(ctxt, 7) & DR7_GD) {
3861
ulong dr6;
3862
3863
dr6 = ctxt->ops->get_dr(ctxt, 6);
3864
dr6 &= ~DR_TRAP_BITS;
3865
dr6 |= DR6_BD | DR6_ACTIVE_LOW;
3866
ctxt->ops->set_dr(ctxt, 6, dr6);
3867
return emulate_db(ctxt);
3868
}
3869
3870
return X86EMUL_CONTINUE;
3871
}
3872
3873
static int check_dr_write(struct x86_emulate_ctxt *ctxt)
3874
{
3875
u64 new_val = ctxt->src.val64;
3876
int dr = ctxt->modrm_reg;
3877
3878
if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
3879
return emulate_gp(ctxt, 0);
3880
3881
return check_dr_read(ctxt);
3882
}
3883
3884
static int check_svme(struct x86_emulate_ctxt *ctxt)
3885
{
3886
u64 efer = 0;
3887
3888
ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3889
3890
if (!(efer & EFER_SVME))
3891
return emulate_ud(ctxt);
3892
3893
return X86EMUL_CONTINUE;
3894
}
3895
3896
static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
3897
{
3898
u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
3899
3900
/* Valid physical address? */
3901
if (rax & 0xffff000000000000ULL)
3902
return emulate_gp(ctxt, 0);
3903
3904
return check_svme(ctxt);
3905
}
3906
3907
static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
3908
{
3909
u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3910
3911
if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
3912
return emulate_gp(ctxt, 0);
3913
3914
return X86EMUL_CONTINUE;
3915
}
3916
3917
static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
3918
{
3919
u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3920
u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
3921
3922
/*
3923
* VMware allows access to these Pseduo-PMCs even when read via RDPMC
3924
* in Ring3 when CR4.PCE=0.
3925
*/
3926
if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx))
3927
return X86EMUL_CONTINUE;
3928
3929
/*
3930
* If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0. The CR0.PE
3931
* check however is unnecessary because CPL is always 0 outside
3932
* protected mode.
3933
*/
3934
if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
3935
ctxt->ops->check_rdpmc_early(ctxt, rcx))
3936
return emulate_gp(ctxt, 0);
3937
3938
return X86EMUL_CONTINUE;
3939
}
3940
3941
static int check_perm_in(struct x86_emulate_ctxt *ctxt)
3942
{
3943
ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
3944
if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes))
3945
return emulate_gp(ctxt, 0);
3946
3947
return X86EMUL_CONTINUE;
3948
}
3949
3950
static int check_perm_out(struct x86_emulate_ctxt *ctxt)
3951
{
3952
ctxt->src.bytes = min(ctxt->src.bytes, 4u);
3953
if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes))
3954
return emulate_gp(ctxt, 0);
3955
3956
return X86EMUL_CONTINUE;
3957
}
3958
3959
#define D(_y) { .flags = (_y) }
3960
#define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
3961
#define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
3962
.intercept = x86_intercept_##_i, .check_perm = (_p) }
3963
#define N D(NotImpl)
3964
#define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
3965
#define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
3966
#define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
3967
#define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
3968
#define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
3969
#define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
3970
#define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
3971
#define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
3972
#define II(_f, _e, _i) \
3973
{ .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
3974
#define IIP(_f, _e, _i, _p) \
3975
{ .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
3976
.intercept = x86_intercept_##_i, .check_perm = (_p) }
3977
#define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
3978
3979
#define D2bv(_f) D((_f) | ByteOp), D(_f)
3980
#define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
3981
#define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
3982
#define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
3983
#define I2bvIP(_f, _e, _i, _p) \
3984
IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
3985
3986
#define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
3987
F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
3988
F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
3989
3990
static const struct opcode group7_rm0[] = {
3991
N,
3992
I(SrcNone | Priv | EmulateOnUD, em_hypercall),
3993
N, N, N, N, N, N,
3994
};
3995
3996
static const struct opcode group7_rm1[] = {
3997
DI(SrcNone | Priv, monitor),
3998
DI(SrcNone | Priv, mwait),
3999
N, N, N, N, N, N,
4000
};
4001
4002
static const struct opcode group7_rm2[] = {
4003
N,
4004
II(ImplicitOps | Priv, em_xsetbv, xsetbv),
4005
N, N, N, N, N, N,
4006
};
4007
4008
static const struct opcode group7_rm3[] = {
4009
DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
4010
II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall),
4011
DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
4012
DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
4013
DIP(SrcNone | Prot | Priv, stgi, check_svme),
4014
DIP(SrcNone | Prot | Priv, clgi, check_svme),
4015
DIP(SrcNone | Prot | Priv, skinit, check_svme),
4016
DIP(SrcNone | Prot | Priv, invlpga, check_svme),
4017
};
4018
4019
static const struct opcode group7_rm7[] = {
4020
N,
4021
DIP(SrcNone, rdtscp, check_rdtsc),
4022
N, N, N, N, N, N,
4023
};
4024
4025
static const struct opcode group1[] = {
4026
F(Lock, em_add),
4027
F(Lock | PageTable, em_or),
4028
F(Lock, em_adc),
4029
F(Lock, em_sbb),
4030
F(Lock | PageTable, em_and),
4031
F(Lock, em_sub),
4032
F(Lock, em_xor),
4033
F(NoWrite, em_cmp),
4034
};
4035
4036
static const struct opcode group1A[] = {
4037
I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
4038
};
4039
4040
static const struct opcode group2[] = {
4041
F(DstMem | ModRM, em_rol),
4042
F(DstMem | ModRM, em_ror),
4043
F(DstMem | ModRM, em_rcl),
4044
F(DstMem | ModRM, em_rcr),
4045
F(DstMem | ModRM, em_shl),
4046
F(DstMem | ModRM, em_shr),
4047
F(DstMem | ModRM, em_shl),
4048
F(DstMem | ModRM, em_sar),
4049
};
4050
4051
static const struct opcode group3[] = {
4052
F(DstMem | SrcImm | NoWrite, em_test),
4053
F(DstMem | SrcImm | NoWrite, em_test),
4054
F(DstMem | SrcNone | Lock, em_not),
4055
F(DstMem | SrcNone | Lock, em_neg),
4056
F(DstXacc | Src2Mem, em_mul_ex),
4057
F(DstXacc | Src2Mem, em_imul_ex),
4058
F(DstXacc | Src2Mem, em_div_ex),
4059
F(DstXacc | Src2Mem, em_idiv_ex),
4060
};
4061
4062
static const struct opcode group4[] = {
4063
F(ByteOp | DstMem | SrcNone | Lock, em_inc),
4064
F(ByteOp | DstMem | SrcNone | Lock, em_dec),
4065
N, N, N, N, N, N,
4066
};
4067
4068
static const struct opcode group5[] = {
4069
F(DstMem | SrcNone | Lock, em_inc),
4070
F(DstMem | SrcNone | Lock, em_dec),
4071
I(SrcMem | NearBranch | IsBranch, em_call_near_abs),
4072
I(SrcMemFAddr | ImplicitOps | IsBranch, em_call_far),
4073
I(SrcMem | NearBranch | IsBranch, em_jmp_abs),
4074
I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far),
4075
I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined),
4076
};
4077
4078
static const struct opcode group6[] = {
4079
II(Prot | DstMem, em_sldt, sldt),
4080
II(Prot | DstMem, em_str, str),
4081
II(Prot | Priv | SrcMem16, em_lldt, lldt),
4082
II(Prot | Priv | SrcMem16, em_ltr, ltr),
4083
N, N, N, N,
4084
};
4085
4086
static const struct group_dual group7 = { {
4087
II(Mov | DstMem, em_sgdt, sgdt),
4088
II(Mov | DstMem, em_sidt, sidt),
4089
II(SrcMem | Priv, em_lgdt, lgdt),
4090
II(SrcMem | Priv, em_lidt, lidt),
4091
II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4092
II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4093
II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
4094
}, {
4095
EXT(0, group7_rm0),
4096
EXT(0, group7_rm1),
4097
EXT(0, group7_rm2),
4098
EXT(0, group7_rm3),
4099
II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4100
II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4101
EXT(0, group7_rm7),
4102
} };
4103
4104
static const struct opcode group8[] = {
4105
N, N, N, N,
4106
F(DstMem | SrcImmByte | NoWrite, em_bt),
4107
F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
4108
F(DstMem | SrcImmByte | Lock, em_btr),
4109
F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
4110
};
4111
4112
/*
4113
* The "memory" destination is actually always a register, since we come
4114
* from the register case of group9.
4115
*/
4116
static const struct gprefix pfx_0f_c7_7 = {
4117
N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid),
4118
};
4119
4120
4121
static const struct group_dual group9 = { {
4122
N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
4123
}, {
4124
N, N, N, N, N, N, N,
4125
GP(0, &pfx_0f_c7_7),
4126
} };
4127
4128
static const struct opcode group11[] = {
4129
I(DstMem | SrcImm | Mov | PageTable, em_mov),
4130
X7(D(Undefined)),
4131
};
4132
4133
static const struct gprefix pfx_0f_ae_7 = {
4134
I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N,
4135
};
4136
4137
static const struct group_dual group15 = { {
4138
I(ModRM | Aligned16, em_fxsave),
4139
I(ModRM | Aligned16, em_fxrstor),
4140
N, N, N, N, N, GP(0, &pfx_0f_ae_7),
4141
}, {
4142
N, N, N, N, N, N, N, N,
4143
} };
4144
4145
static const struct gprefix pfx_0f_6f_0f_7f = {
4146
I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
4147
};
4148
4149
static const struct instr_dual instr_dual_0f_2b = {
4150
I(0, em_mov), N
4151
};
4152
4153
static const struct gprefix pfx_0f_2b = {
4154
ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
4155
};
4156
4157
static const struct gprefix pfx_0f_10_0f_11 = {
4158
I(Unaligned, em_mov), I(Unaligned, em_mov), N, N,
4159
};
4160
4161
static const struct gprefix pfx_0f_28_0f_29 = {
4162
I(Aligned, em_mov), I(Aligned, em_mov), N, N,
4163
};
4164
4165
static const struct gprefix pfx_0f_e7 = {
4166
N, I(Sse, em_mov), N, N,
4167
};
4168
4169
static const struct escape escape_d9 = { {
4170
N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
4171
}, {
4172
/* 0xC0 - 0xC7 */
4173
N, N, N, N, N, N, N, N,
4174
/* 0xC8 - 0xCF */
4175
N, N, N, N, N, N, N, N,
4176
/* 0xD0 - 0xC7 */
4177
N, N, N, N, N, N, N, N,
4178
/* 0xD8 - 0xDF */
4179
N, N, N, N, N, N, N, N,
4180
/* 0xE0 - 0xE7 */
4181
N, N, N, N, N, N, N, N,
4182
/* 0xE8 - 0xEF */
4183
N, N, N, N, N, N, N, N,
4184
/* 0xF0 - 0xF7 */
4185
N, N, N, N, N, N, N, N,
4186
/* 0xF8 - 0xFF */
4187
N, N, N, N, N, N, N, N,
4188
} };
4189
4190
static const struct escape escape_db = { {
4191
N, N, N, N, N, N, N, N,
4192
}, {
4193
/* 0xC0 - 0xC7 */
4194
N, N, N, N, N, N, N, N,
4195
/* 0xC8 - 0xCF */
4196
N, N, N, N, N, N, N, N,
4197
/* 0xD0 - 0xC7 */
4198
N, N, N, N, N, N, N, N,
4199
/* 0xD8 - 0xDF */
4200
N, N, N, N, N, N, N, N,
4201
/* 0xE0 - 0xE7 */
4202
N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
4203
/* 0xE8 - 0xEF */
4204
N, N, N, N, N, N, N, N,
4205
/* 0xF0 - 0xF7 */
4206
N, N, N, N, N, N, N, N,
4207
/* 0xF8 - 0xFF */
4208
N, N, N, N, N, N, N, N,
4209
} };
4210
4211
static const struct escape escape_dd = { {
4212
N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
4213
}, {
4214
/* 0xC0 - 0xC7 */
4215
N, N, N, N, N, N, N, N,
4216
/* 0xC8 - 0xCF */
4217
N, N, N, N, N, N, N, N,
4218
/* 0xD0 - 0xC7 */
4219
N, N, N, N, N, N, N, N,
4220
/* 0xD8 - 0xDF */
4221
N, N, N, N, N, N, N, N,
4222
/* 0xE0 - 0xE7 */
4223
N, N, N, N, N, N, N, N,
4224
/* 0xE8 - 0xEF */
4225
N, N, N, N, N, N, N, N,
4226
/* 0xF0 - 0xF7 */
4227
N, N, N, N, N, N, N, N,
4228
/* 0xF8 - 0xFF */
4229
N, N, N, N, N, N, N, N,
4230
} };
4231
4232
static const struct instr_dual instr_dual_0f_c3 = {
4233
I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4234
};
4235
4236
static const struct mode_dual mode_dual_63 = {
4237
N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4238
};
4239
4240
static const struct instr_dual instr_dual_8d = {
4241
D(DstReg | SrcMem | ModRM | NoAccess), N
4242
};
4243
4244
static const struct opcode opcode_table[256] = {
4245
/* 0x00 - 0x07 */
4246
F6ALU(Lock, em_add),
4247
I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4248
I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4249
/* 0x08 - 0x0F */
4250
F6ALU(Lock | PageTable, em_or),
4251
I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4252
N,
4253
/* 0x10 - 0x17 */
4254
F6ALU(Lock, em_adc),
4255
I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4256
I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4257
/* 0x18 - 0x1F */
4258
F6ALU(Lock, em_sbb),
4259
I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4260
I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4261
/* 0x20 - 0x27 */
4262
F6ALU(Lock | PageTable, em_and), N, N,
4263
/* 0x28 - 0x2F */
4264
F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4265
/* 0x30 - 0x37 */
4266
F6ALU(Lock, em_xor), N, N,
4267
/* 0x38 - 0x3F */
4268
F6ALU(NoWrite, em_cmp), N, N,
4269
/* 0x40 - 0x4F */
4270
X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
4271
/* 0x50 - 0x57 */
4272
X8(I(SrcReg | Stack, em_push)),
4273
/* 0x58 - 0x5F */
4274
X8(I(DstReg | Stack, em_pop)),
4275
/* 0x60 - 0x67 */
4276
I(ImplicitOps | Stack | No64, em_pusha),
4277
I(ImplicitOps | Stack | No64, em_popa),
4278
N, MD(ModRM, &mode_dual_63),
4279
N, N, N, N,
4280
/* 0x68 - 0x6F */
4281
I(SrcImm | Mov | Stack, em_push),
4282
I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4283
I(SrcImmByte | Mov | Stack, em_push),
4284
I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4285
I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4286
I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4287
/* 0x70 - 0x7F */
4288
X16(D(SrcImmByte | NearBranch | IsBranch)),
4289
/* 0x80 - 0x87 */
4290
G(ByteOp | DstMem | SrcImm, group1),
4291
G(DstMem | SrcImm, group1),
4292
G(ByteOp | DstMem | SrcImm | No64, group1),
4293
G(DstMem | SrcImmByte, group1),
4294
F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4295
I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4296
/* 0x88 - 0x8F */
4297
I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4298
I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4299
I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4300
ID(0, &instr_dual_8d),
4301
I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4302
G(0, group1A),
4303
/* 0x90 - 0x97 */
4304
DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4305
/* 0x98 - 0x9F */
4306
D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4307
I(SrcImmFAddr | No64 | IsBranch, em_call_far), N,
4308
II(ImplicitOps | Stack, em_pushf, pushf),
4309
II(ImplicitOps | Stack, em_popf, popf),
4310
I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4311
/* 0xA0 - 0xA7 */
4312
I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4313
I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4314
I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
4315
F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
4316
/* 0xA8 - 0xAF */
4317
F2bv(DstAcc | SrcImm | NoWrite, em_test),
4318
I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4319
I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4320
F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4321
/* 0xB0 - 0xB7 */
4322
X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4323
/* 0xB8 - 0xBF */
4324
X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4325
/* 0xC0 - 0xC7 */
4326
G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4327
I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch, em_ret_near_imm),
4328
I(ImplicitOps | NearBranch | IsBranch, em_ret),
4329
I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4330
I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4331
G(ByteOp, group11), G(0, group11),
4332
/* 0xC8 - 0xCF */
4333
I(Stack | SrcImmU16 | Src2ImmByte | IsBranch, em_enter),
4334
I(Stack | IsBranch, em_leave),
4335
I(ImplicitOps | SrcImmU16 | IsBranch, em_ret_far_imm),
4336
I(ImplicitOps | IsBranch, em_ret_far),
4337
D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch, intn),
4338
D(ImplicitOps | No64 | IsBranch),
4339
II(ImplicitOps | IsBranch, em_iret, iret),
4340
/* 0xD0 - 0xD7 */
4341
G(Src2One | ByteOp, group2), G(Src2One, group2),
4342
G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4343
I(DstAcc | SrcImmUByte | No64, em_aam),
4344
I(DstAcc | SrcImmUByte | No64, em_aad),
4345
F(DstAcc | ByteOp | No64, em_salc),
4346
I(DstAcc | SrcXLat | ByteOp, em_mov),
4347
/* 0xD8 - 0xDF */
4348
N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4349
/* 0xE0 - 0xE7 */
4350
X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)),
4351
I(SrcImmByte | NearBranch | IsBranch, em_jcxz),
4352
I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
4353
I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4354
/* 0xE8 - 0xEF */
4355
I(SrcImm | NearBranch | IsBranch, em_call),
4356
D(SrcImm | ImplicitOps | NearBranch | IsBranch),
4357
I(SrcImmFAddr | No64 | IsBranch, em_jmp_far),
4358
D(SrcImmByte | ImplicitOps | NearBranch | IsBranch),
4359
I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
4360
I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4361
/* 0xF0 - 0xF7 */
4362
N, DI(ImplicitOps, icebp), N, N,
4363
DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4364
G(ByteOp, group3), G(0, group3),
4365
/* 0xF8 - 0xFF */
4366
D(ImplicitOps), D(ImplicitOps),
4367
I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4368
D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4369
};
4370
4371
static const struct opcode twobyte_table[256] = {
4372
/* 0x00 - 0x0F */
4373
G(0, group6), GD(0, &group7), N, N,
4374
N, I(ImplicitOps | EmulateOnUD | IsBranch, em_syscall),
4375
II(ImplicitOps | Priv, em_clts, clts), N,
4376
DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4377
N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4378
/* 0x10 - 0x1F */
4379
GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11),
4380
GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11),
4381
N, N, N, N, N, N,
4382
D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */
4383
D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4384
D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4385
D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4386
D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4387
D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */
4388
/* 0x20 - 0x2F */
4389
DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access),
4390
DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4391
IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4392
check_cr_access),
4393
IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4394
check_dr_write),
4395
N, N, N, N,
4396
GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
4397
GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
4398
N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
4399
N, N, N, N,
4400
/* 0x30 - 0x3F */
4401
II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4402
IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4403
II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4404
IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4405
I(ImplicitOps | EmulateOnUD | IsBranch, em_sysenter),
4406
I(ImplicitOps | Priv | EmulateOnUD | IsBranch, em_sysexit),
4407
N, N,
4408
N, N, N, N, N, N, N, N,
4409
/* 0x40 - 0x4F */
4410
X16(D(DstReg | SrcMem | ModRM)),
4411
/* 0x50 - 0x5F */
4412
N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4413
/* 0x60 - 0x6F */
4414
N, N, N, N,
4415
N, N, N, N,
4416
N, N, N, N,
4417
N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4418
/* 0x70 - 0x7F */
4419
N, N, N, N,
4420
N, N, N, N,
4421
N, N, N, N,
4422
N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4423
/* 0x80 - 0x8F */
4424
X16(D(SrcImm | NearBranch | IsBranch)),
4425
/* 0x90 - 0x9F */
4426
X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4427
/* 0xA0 - 0xA7 */
4428
I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4429
II(ImplicitOps, em_cpuid, cpuid),
4430
F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4431
F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4432
F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4433
/* 0xA8 - 0xAF */
4434
I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4435
II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
4436
F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4437
F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4438
F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4439
GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
4440
/* 0xB0 - 0xB7 */
4441
I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4442
I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4443
F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4444
I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4445
I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4446
D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4447
/* 0xB8 - 0xBF */
4448
N, N,
4449
G(BitOp, group8),
4450
F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4451
I(DstReg | SrcMem | ModRM, em_bsf_c),
4452
I(DstReg | SrcMem | ModRM, em_bsr_c),
4453
D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4454
/* 0xC0 - 0xC7 */
4455
F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4456
N, ID(0, &instr_dual_0f_c3),
4457
N, N, N, GD(0, &group9),
4458
/* 0xC8 - 0xCF */
4459
X8(I(DstReg, em_bswap)),
4460
/* 0xD0 - 0xDF */
4461
N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4462
/* 0xE0 - 0xEF */
4463
N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
4464
N, N, N, N, N, N, N, N,
4465
/* 0xF0 - 0xFF */
4466
N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4467
};
4468
4469
static const struct instr_dual instr_dual_0f_38_f0 = {
4470
I(DstReg | SrcMem | Mov, em_movbe), N
4471
};
4472
4473
static const struct instr_dual instr_dual_0f_38_f1 = {
4474
I(DstMem | SrcReg | Mov, em_movbe), N
4475
};
4476
4477
static const struct gprefix three_byte_0f_38_f0 = {
4478
ID(0, &instr_dual_0f_38_f0), ID(0, &instr_dual_0f_38_f0), N, N
4479
};
4480
4481
static const struct gprefix three_byte_0f_38_f1 = {
4482
ID(0, &instr_dual_0f_38_f1), ID(0, &instr_dual_0f_38_f1), N, N
4483
};
4484
4485
/*
4486
* Insns below are selected by the prefix which indexed by the third opcode
4487
* byte.
4488
*/
4489
static const struct opcode opcode_map_0f_38[256] = {
4490
/* 0x00 - 0x7f */
4491
X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4492
/* 0x80 - 0xef */
4493
X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4494
/* 0xf0 - 0xf1 */
4495
GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4496
GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4497
/* 0xf2 - 0xff */
4498
N, N, X4(N), X8(N)
4499
};
4500
4501
#undef D
4502
#undef N
4503
#undef G
4504
#undef GD
4505
#undef I
4506
#undef GP
4507
#undef EXT
4508
#undef MD
4509
#undef ID
4510
4511
#undef D2bv
4512
#undef D2bvIP
4513
#undef I2bv
4514
#undef I2bvIP
4515
#undef I6ALU
4516
4517
static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4518
{
4519
unsigned size;
4520
4521
size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4522
if (size == 8)
4523
size = 4;
4524
return size;
4525
}
4526
4527
static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4528
unsigned size, bool sign_extension)
4529
{
4530
int rc = X86EMUL_CONTINUE;
4531
4532
op->type = OP_IMM;
4533
op->bytes = size;
4534
op->addr.mem.ea = ctxt->_eip;
4535
/* NB. Immediates are sign-extended as necessary. */
4536
switch (op->bytes) {
4537
case 1:
4538
op->val = insn_fetch(s8, ctxt);
4539
break;
4540
case 2:
4541
op->val = insn_fetch(s16, ctxt);
4542
break;
4543
case 4:
4544
op->val = insn_fetch(s32, ctxt);
4545
break;
4546
case 8:
4547
op->val = insn_fetch(s64, ctxt);
4548
break;
4549
}
4550
if (!sign_extension) {
4551
switch (op->bytes) {
4552
case 1:
4553
op->val &= 0xff;
4554
break;
4555
case 2:
4556
op->val &= 0xffff;
4557
break;
4558
case 4:
4559
op->val &= 0xffffffff;
4560
break;
4561
}
4562
}
4563
done:
4564
return rc;
4565
}
4566
4567
static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4568
unsigned d)
4569
{
4570
int rc = X86EMUL_CONTINUE;
4571
4572
switch (d) {
4573
case OpReg:
4574
decode_register_operand(ctxt, op);
4575
break;
4576
case OpImmUByte:
4577
rc = decode_imm(ctxt, op, 1, false);
4578
break;
4579
case OpMem:
4580
ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4581
mem_common:
4582
*op = ctxt->memop;
4583
ctxt->memopp = op;
4584
if (ctxt->d & BitOp)
4585
fetch_bit_operand(ctxt);
4586
op->orig_val = op->val;
4587
break;
4588
case OpMem64:
4589
ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4590
goto mem_common;
4591
case OpAcc:
4592
op->type = OP_REG;
4593
op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4594
op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4595
fetch_register_operand(op);
4596
op->orig_val = op->val;
4597
break;
4598
case OpAccLo:
4599
op->type = OP_REG;
4600
op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4601
op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4602
fetch_register_operand(op);
4603
op->orig_val = op->val;
4604
break;
4605
case OpAccHi:
4606
if (ctxt->d & ByteOp) {
4607
op->type = OP_NONE;
4608
break;
4609
}
4610
op->type = OP_REG;
4611
op->bytes = ctxt->op_bytes;
4612
op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4613
fetch_register_operand(op);
4614
op->orig_val = op->val;
4615
break;
4616
case OpDI:
4617
op->type = OP_MEM;
4618
op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4619
op->addr.mem.ea =
4620
register_address(ctxt, VCPU_REGS_RDI);
4621
op->addr.mem.seg = VCPU_SREG_ES;
4622
op->val = 0;
4623
op->count = 1;
4624
break;
4625
case OpDX:
4626
op->type = OP_REG;
4627
op->bytes = 2;
4628
op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4629
fetch_register_operand(op);
4630
break;
4631
case OpCL:
4632
op->type = OP_IMM;
4633
op->bytes = 1;
4634
op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4635
break;
4636
case OpImmByte:
4637
rc = decode_imm(ctxt, op, 1, true);
4638
break;
4639
case OpOne:
4640
op->type = OP_IMM;
4641
op->bytes = 1;
4642
op->val = 1;
4643
break;
4644
case OpImm:
4645
rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4646
break;
4647
case OpImm64:
4648
rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4649
break;
4650
case OpMem8:
4651
ctxt->memop.bytes = 1;
4652
if (ctxt->memop.type == OP_REG) {
4653
ctxt->memop.addr.reg = decode_register(ctxt,
4654
ctxt->modrm_rm, true);
4655
fetch_register_operand(&ctxt->memop);
4656
}
4657
goto mem_common;
4658
case OpMem16:
4659
ctxt->memop.bytes = 2;
4660
goto mem_common;
4661
case OpMem32:
4662
ctxt->memop.bytes = 4;
4663
goto mem_common;
4664
case OpImmU16:
4665
rc = decode_imm(ctxt, op, 2, false);
4666
break;
4667
case OpImmU:
4668
rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4669
break;
4670
case OpSI:
4671
op->type = OP_MEM;
4672
op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4673
op->addr.mem.ea =
4674
register_address(ctxt, VCPU_REGS_RSI);
4675
op->addr.mem.seg = ctxt->seg_override;
4676
op->val = 0;
4677
op->count = 1;
4678
break;
4679
case OpXLat:
4680
op->type = OP_MEM;
4681
op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4682
op->addr.mem.ea =
4683
address_mask(ctxt,
4684
reg_read(ctxt, VCPU_REGS_RBX) +
4685
(reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4686
op->addr.mem.seg = ctxt->seg_override;
4687
op->val = 0;
4688
break;
4689
case OpImmFAddr:
4690
op->type = OP_IMM;
4691
op->addr.mem.ea = ctxt->_eip;
4692
op->bytes = ctxt->op_bytes + 2;
4693
insn_fetch_arr(op->valptr, op->bytes, ctxt);
4694
break;
4695
case OpMemFAddr:
4696
ctxt->memop.bytes = ctxt->op_bytes + 2;
4697
goto mem_common;
4698
case OpES:
4699
op->type = OP_IMM;
4700
op->val = VCPU_SREG_ES;
4701
break;
4702
case OpCS:
4703
op->type = OP_IMM;
4704
op->val = VCPU_SREG_CS;
4705
break;
4706
case OpSS:
4707
op->type = OP_IMM;
4708
op->val = VCPU_SREG_SS;
4709
break;
4710
case OpDS:
4711
op->type = OP_IMM;
4712
op->val = VCPU_SREG_DS;
4713
break;
4714
case OpFS:
4715
op->type = OP_IMM;
4716
op->val = VCPU_SREG_FS;
4717
break;
4718
case OpGS:
4719
op->type = OP_IMM;
4720
op->val = VCPU_SREG_GS;
4721
break;
4722
case OpImplicit:
4723
/* Special instructions do their own operand decoding. */
4724
default:
4725
op->type = OP_NONE; /* Disable writeback. */
4726
break;
4727
}
4728
4729
done:
4730
return rc;
4731
}
4732
4733
int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type)
4734
{
4735
int rc = X86EMUL_CONTINUE;
4736
int mode = ctxt->mode;
4737
int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
4738
bool op_prefix = false;
4739
bool has_seg_override = false;
4740
struct opcode opcode;
4741
u16 dummy;
4742
struct desc_struct desc;
4743
4744
ctxt->memop.type = OP_NONE;
4745
ctxt->memopp = NULL;
4746
ctxt->_eip = ctxt->eip;
4747
ctxt->fetch.ptr = ctxt->fetch.data;
4748
ctxt->fetch.end = ctxt->fetch.data + insn_len;
4749
ctxt->opcode_len = 1;
4750
ctxt->intercept = x86_intercept_none;
4751
if (insn_len > 0)
4752
memcpy(ctxt->fetch.data, insn, insn_len);
4753
else {
4754
rc = __do_insn_fetch_bytes(ctxt, 1);
4755
if (rc != X86EMUL_CONTINUE)
4756
goto done;
4757
}
4758
4759
switch (mode) {
4760
case X86EMUL_MODE_REAL:
4761
case X86EMUL_MODE_VM86:
4762
def_op_bytes = def_ad_bytes = 2;
4763
ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
4764
if (desc.d)
4765
def_op_bytes = def_ad_bytes = 4;
4766
break;
4767
case X86EMUL_MODE_PROT16:
4768
def_op_bytes = def_ad_bytes = 2;
4769
break;
4770
case X86EMUL_MODE_PROT32:
4771
def_op_bytes = def_ad_bytes = 4;
4772
break;
4773
#ifdef CONFIG_X86_64
4774
case X86EMUL_MODE_PROT64:
4775
def_op_bytes = 4;
4776
def_ad_bytes = 8;
4777
break;
4778
#endif
4779
default:
4780
return EMULATION_FAILED;
4781
}
4782
4783
ctxt->op_bytes = def_op_bytes;
4784
ctxt->ad_bytes = def_ad_bytes;
4785
4786
/* Legacy prefixes. */
4787
for (;;) {
4788
switch (ctxt->b = insn_fetch(u8, ctxt)) {
4789
case 0x66: /* operand-size override */
4790
op_prefix = true;
4791
/* switch between 2/4 bytes */
4792
ctxt->op_bytes = def_op_bytes ^ 6;
4793
break;
4794
case 0x67: /* address-size override */
4795
if (mode == X86EMUL_MODE_PROT64)
4796
/* switch between 4/8 bytes */
4797
ctxt->ad_bytes = def_ad_bytes ^ 12;
4798
else
4799
/* switch between 2/4 bytes */
4800
ctxt->ad_bytes = def_ad_bytes ^ 6;
4801
break;
4802
case 0x26: /* ES override */
4803
has_seg_override = true;
4804
ctxt->seg_override = VCPU_SREG_ES;
4805
break;
4806
case 0x2e: /* CS override */
4807
has_seg_override = true;
4808
ctxt->seg_override = VCPU_SREG_CS;
4809
break;
4810
case 0x36: /* SS override */
4811
has_seg_override = true;
4812
ctxt->seg_override = VCPU_SREG_SS;
4813
break;
4814
case 0x3e: /* DS override */
4815
has_seg_override = true;
4816
ctxt->seg_override = VCPU_SREG_DS;
4817
break;
4818
case 0x64: /* FS override */
4819
has_seg_override = true;
4820
ctxt->seg_override = VCPU_SREG_FS;
4821
break;
4822
case 0x65: /* GS override */
4823
has_seg_override = true;
4824
ctxt->seg_override = VCPU_SREG_GS;
4825
break;
4826
case 0x40 ... 0x4f: /* REX */
4827
if (mode != X86EMUL_MODE_PROT64)
4828
goto done_prefixes;
4829
ctxt->rex_prefix = ctxt->b;
4830
continue;
4831
case 0xf0: /* LOCK */
4832
ctxt->lock_prefix = 1;
4833
break;
4834
case 0xf2: /* REPNE/REPNZ */
4835
case 0xf3: /* REP/REPE/REPZ */
4836
ctxt->rep_prefix = ctxt->b;
4837
break;
4838
default:
4839
goto done_prefixes;
4840
}
4841
4842
/* Any legacy prefix after a REX prefix nullifies its effect. */
4843
4844
ctxt->rex_prefix = 0;
4845
}
4846
4847
done_prefixes:
4848
4849
/* REX prefix. */
4850
if (ctxt->rex_prefix & 8)
4851
ctxt->op_bytes = 8; /* REX.W */
4852
4853
/* Opcode byte(s). */
4854
opcode = opcode_table[ctxt->b];
4855
/* Two-byte opcode? */
4856
if (ctxt->b == 0x0f) {
4857
ctxt->opcode_len = 2;
4858
ctxt->b = insn_fetch(u8, ctxt);
4859
opcode = twobyte_table[ctxt->b];
4860
4861
/* 0F_38 opcode map */
4862
if (ctxt->b == 0x38) {
4863
ctxt->opcode_len = 3;
4864
ctxt->b = insn_fetch(u8, ctxt);
4865
opcode = opcode_map_0f_38[ctxt->b];
4866
}
4867
}
4868
ctxt->d = opcode.flags;
4869
4870
if (ctxt->d & ModRM)
4871
ctxt->modrm = insn_fetch(u8, ctxt);
4872
4873
/* vex-prefix instructions are not implemented */
4874
if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
4875
(mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
4876
ctxt->d = NotImpl;
4877
}
4878
4879
while (ctxt->d & GroupMask) {
4880
switch (ctxt->d & GroupMask) {
4881
case Group:
4882
goffset = (ctxt->modrm >> 3) & 7;
4883
opcode = opcode.u.group[goffset];
4884
break;
4885
case GroupDual:
4886
goffset = (ctxt->modrm >> 3) & 7;
4887
if ((ctxt->modrm >> 6) == 3)
4888
opcode = opcode.u.gdual->mod3[goffset];
4889
else
4890
opcode = opcode.u.gdual->mod012[goffset];
4891
break;
4892
case RMExt:
4893
goffset = ctxt->modrm & 7;
4894
opcode = opcode.u.group[goffset];
4895
break;
4896
case Prefix:
4897
if (ctxt->rep_prefix && op_prefix)
4898
return EMULATION_FAILED;
4899
simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
4900
switch (simd_prefix) {
4901
case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
4902
case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
4903
case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
4904
case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
4905
}
4906
break;
4907
case Escape:
4908
if (ctxt->modrm > 0xbf) {
4909
size_t size = ARRAY_SIZE(opcode.u.esc->high);
4910
u32 index = array_index_nospec(
4911
ctxt->modrm - 0xc0, size);
4912
4913
opcode = opcode.u.esc->high[index];
4914
} else {
4915
opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
4916
}
4917
break;
4918
case InstrDual:
4919
if ((ctxt->modrm >> 6) == 3)
4920
opcode = opcode.u.idual->mod3;
4921
else
4922
opcode = opcode.u.idual->mod012;
4923
break;
4924
case ModeDual:
4925
if (ctxt->mode == X86EMUL_MODE_PROT64)
4926
opcode = opcode.u.mdual->mode64;
4927
else
4928
opcode = opcode.u.mdual->mode32;
4929
break;
4930
default:
4931
return EMULATION_FAILED;
4932
}
4933
4934
ctxt->d &= ~(u64)GroupMask;
4935
ctxt->d |= opcode.flags;
4936
}
4937
4938
ctxt->is_branch = opcode.flags & IsBranch;
4939
4940
/* Unrecognised? */
4941
if (ctxt->d == 0)
4942
return EMULATION_FAILED;
4943
4944
ctxt->execute = opcode.u.execute;
4945
4946
if (unlikely(emulation_type & EMULTYPE_TRAP_UD) &&
4947
likely(!(ctxt->d & EmulateOnUD)))
4948
return EMULATION_FAILED;
4949
4950
if (unlikely(ctxt->d &
4951
(NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
4952
No16))) {
4953
/*
4954
* These are copied unconditionally here, and checked unconditionally
4955
* in x86_emulate_insn.
4956
*/
4957
ctxt->check_perm = opcode.check_perm;
4958
ctxt->intercept = opcode.intercept;
4959
4960
if (ctxt->d & NotImpl)
4961
return EMULATION_FAILED;
4962
4963
if (mode == X86EMUL_MODE_PROT64) {
4964
if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
4965
ctxt->op_bytes = 8;
4966
else if (ctxt->d & NearBranch)
4967
ctxt->op_bytes = 8;
4968
}
4969
4970
if (ctxt->d & Op3264) {
4971
if (mode == X86EMUL_MODE_PROT64)
4972
ctxt->op_bytes = 8;
4973
else
4974
ctxt->op_bytes = 4;
4975
}
4976
4977
if ((ctxt->d & No16) && ctxt->op_bytes == 2)
4978
ctxt->op_bytes = 4;
4979
4980
if (ctxt->d & Sse)
4981
ctxt->op_bytes = 16;
4982
else if (ctxt->d & Mmx)
4983
ctxt->op_bytes = 8;
4984
}
4985
4986
/* ModRM and SIB bytes. */
4987
if (ctxt->d & ModRM) {
4988
rc = decode_modrm(ctxt, &ctxt->memop);
4989
if (!has_seg_override) {
4990
has_seg_override = true;
4991
ctxt->seg_override = ctxt->modrm_seg;
4992
}
4993
} else if (ctxt->d & MemAbs)
4994
rc = decode_abs(ctxt, &ctxt->memop);
4995
if (rc != X86EMUL_CONTINUE)
4996
goto done;
4997
4998
if (!has_seg_override)
4999
ctxt->seg_override = VCPU_SREG_DS;
5000
5001
ctxt->memop.addr.mem.seg = ctxt->seg_override;
5002
5003
/*
5004
* Decode and fetch the source operand: register, memory
5005
* or immediate.
5006
*/
5007
rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
5008
if (rc != X86EMUL_CONTINUE)
5009
goto done;
5010
5011
/*
5012
* Decode and fetch the second source operand: register, memory
5013
* or immediate.
5014
*/
5015
rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
5016
if (rc != X86EMUL_CONTINUE)
5017
goto done;
5018
5019
/* Decode and fetch the destination operand: register or memory. */
5020
rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
5021
5022
if (ctxt->rip_relative && likely(ctxt->memopp))
5023
ctxt->memopp->addr.mem.ea = address_mask(ctxt,
5024
ctxt->memopp->addr.mem.ea + ctxt->_eip);
5025
5026
done:
5027
if (rc == X86EMUL_PROPAGATE_FAULT)
5028
ctxt->have_exception = true;
5029
return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
5030
}
5031
5032
bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
5033
{
5034
return ctxt->d & PageTable;
5035
}
5036
5037
static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
5038
{
5039
/* The second termination condition only applies for REPE
5040
* and REPNE. Test if the repeat string operation prefix is
5041
* REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
5042
* corresponding termination condition according to:
5043
* - if REPE/REPZ and ZF = 0 then done
5044
* - if REPNE/REPNZ and ZF = 1 then done
5045
*/
5046
if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
5047
(ctxt->b == 0xae) || (ctxt->b == 0xaf))
5048
&& (((ctxt->rep_prefix == REPE_PREFIX) &&
5049
((ctxt->eflags & X86_EFLAGS_ZF) == 0))
5050
|| ((ctxt->rep_prefix == REPNE_PREFIX) &&
5051
((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
5052
return true;
5053
5054
return false;
5055
}
5056
5057
static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
5058
{
5059
int rc;
5060
5061
kvm_fpu_get();
5062
rc = asm_safe("fwait");
5063
kvm_fpu_put();
5064
5065
if (unlikely(rc != X86EMUL_CONTINUE))
5066
return emulate_exception(ctxt, MF_VECTOR, 0, false);
5067
5068
return X86EMUL_CONTINUE;
5069
}
5070
5071
static void fetch_possible_mmx_operand(struct operand *op)
5072
{
5073
if (op->type == OP_MM)
5074
kvm_read_mmx_reg(op->addr.mm, &op->mm_val);
5075
}
5076
5077
static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop)
5078
{
5079
ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
5080
5081
if (!(ctxt->d & ByteOp))
5082
fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
5083
5084
asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n"
5085
: "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
5086
[thunk_target]"+S"(fop), ASM_CALL_CONSTRAINT
5087
: "c"(ctxt->src2.val));
5088
5089
ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
5090
if (!fop) /* exception is returned in fop variable */
5091
return emulate_de(ctxt);
5092
return X86EMUL_CONTINUE;
5093
}
5094
5095
void init_decode_cache(struct x86_emulate_ctxt *ctxt)
5096
{
5097
/* Clear fields that are set conditionally but read without a guard. */
5098
ctxt->rip_relative = false;
5099
ctxt->rex_prefix = 0;
5100
ctxt->lock_prefix = 0;
5101
ctxt->rep_prefix = 0;
5102
ctxt->regs_valid = 0;
5103
ctxt->regs_dirty = 0;
5104
5105
ctxt->io_read.pos = 0;
5106
ctxt->io_read.end = 0;
5107
ctxt->mem_read.end = 0;
5108
}
5109
5110
int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
5111
{
5112
const struct x86_emulate_ops *ops = ctxt->ops;
5113
int rc = X86EMUL_CONTINUE;
5114
int saved_dst_type = ctxt->dst.type;
5115
bool is_guest_mode = ctxt->ops->is_guest_mode(ctxt);
5116
5117
ctxt->mem_read.pos = 0;
5118
5119
/* LOCK prefix is allowed only with some instructions */
5120
if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
5121
rc = emulate_ud(ctxt);
5122
goto done;
5123
}
5124
5125
if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
5126
rc = emulate_ud(ctxt);
5127
goto done;
5128
}
5129
5130
if (unlikely(ctxt->d &
5131
(No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
5132
if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
5133
(ctxt->d & Undefined)) {
5134
rc = emulate_ud(ctxt);
5135
goto done;
5136
}
5137
5138
if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
5139
|| ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
5140
rc = emulate_ud(ctxt);
5141
goto done;
5142
}
5143
5144
if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
5145
rc = emulate_nm(ctxt);
5146
goto done;
5147
}
5148
5149
if (ctxt->d & Mmx) {
5150
rc = flush_pending_x87_faults(ctxt);
5151
if (rc != X86EMUL_CONTINUE)
5152
goto done;
5153
/*
5154
* Now that we know the fpu is exception safe, we can fetch
5155
* operands from it.
5156
*/
5157
fetch_possible_mmx_operand(&ctxt->src);
5158
fetch_possible_mmx_operand(&ctxt->src2);
5159
if (!(ctxt->d & Mov))
5160
fetch_possible_mmx_operand(&ctxt->dst);
5161
}
5162
5163
if (unlikely(is_guest_mode) && ctxt->intercept) {
5164
rc = emulator_check_intercept(ctxt, ctxt->intercept,
5165
X86_ICPT_PRE_EXCEPT);
5166
if (rc != X86EMUL_CONTINUE)
5167
goto done;
5168
}
5169
5170
/* Instruction can only be executed in protected mode */
5171
if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
5172
rc = emulate_ud(ctxt);
5173
goto done;
5174
}
5175
5176
/* Privileged instruction can be executed only in CPL=0 */
5177
if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
5178
if (ctxt->d & PrivUD)
5179
rc = emulate_ud(ctxt);
5180
else
5181
rc = emulate_gp(ctxt, 0);
5182
goto done;
5183
}
5184
5185
/* Do instruction specific permission checks */
5186
if (ctxt->d & CheckPerm) {
5187
rc = ctxt->check_perm(ctxt);
5188
if (rc != X86EMUL_CONTINUE)
5189
goto done;
5190
}
5191
5192
if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) {
5193
rc = emulator_check_intercept(ctxt, ctxt->intercept,
5194
X86_ICPT_POST_EXCEPT);
5195
if (rc != X86EMUL_CONTINUE)
5196
goto done;
5197
}
5198
5199
if (ctxt->rep_prefix && (ctxt->d & String)) {
5200
/* All REP prefixes have the same first termination condition */
5201
if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
5202
string_registers_quirk(ctxt);
5203
ctxt->eip = ctxt->_eip;
5204
ctxt->eflags &= ~X86_EFLAGS_RF;
5205
goto done;
5206
}
5207
}
5208
}
5209
5210
if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
5211
rc = segmented_read(ctxt, ctxt->src.addr.mem,
5212
ctxt->src.valptr, ctxt->src.bytes);
5213
if (rc != X86EMUL_CONTINUE)
5214
goto done;
5215
ctxt->src.orig_val64 = ctxt->src.val64;
5216
}
5217
5218
if (ctxt->src2.type == OP_MEM) {
5219
rc = segmented_read(ctxt, ctxt->src2.addr.mem,
5220
&ctxt->src2.val, ctxt->src2.bytes);
5221
if (rc != X86EMUL_CONTINUE)
5222
goto done;
5223
}
5224
5225
if ((ctxt->d & DstMask) == ImplicitOps)
5226
goto special_insn;
5227
5228
5229
if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
5230
/* optimisation - avoid slow emulated read if Mov */
5231
rc = segmented_read(ctxt, ctxt->dst.addr.mem,
5232
&ctxt->dst.val, ctxt->dst.bytes);
5233
if (rc != X86EMUL_CONTINUE) {
5234
if (!(ctxt->d & NoWrite) &&
5235
rc == X86EMUL_PROPAGATE_FAULT &&
5236
ctxt->exception.vector == PF_VECTOR)
5237
ctxt->exception.error_code |= PFERR_WRITE_MASK;
5238
goto done;
5239
}
5240
}
5241
/* Copy full 64-bit value for CMPXCHG8B. */
5242
ctxt->dst.orig_val64 = ctxt->dst.val64;
5243
5244
special_insn:
5245
5246
if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) {
5247
rc = emulator_check_intercept(ctxt, ctxt->intercept,
5248
X86_ICPT_POST_MEMACCESS);
5249
if (rc != X86EMUL_CONTINUE)
5250
goto done;
5251
}
5252
5253
if (ctxt->rep_prefix && (ctxt->d & String))
5254
ctxt->eflags |= X86_EFLAGS_RF;
5255
else
5256
ctxt->eflags &= ~X86_EFLAGS_RF;
5257
5258
if (ctxt->execute) {
5259
if (ctxt->d & Fastop)
5260
rc = fastop(ctxt, ctxt->fop);
5261
else
5262
rc = ctxt->execute(ctxt);
5263
if (rc != X86EMUL_CONTINUE)
5264
goto done;
5265
goto writeback;
5266
}
5267
5268
if (ctxt->opcode_len == 2)
5269
goto twobyte_insn;
5270
else if (ctxt->opcode_len == 3)
5271
goto threebyte_insn;
5272
5273
switch (ctxt->b) {
5274
case 0x70 ... 0x7f: /* jcc (short) */
5275
if (test_cc(ctxt->b, ctxt->eflags))
5276
rc = jmp_rel(ctxt, ctxt->src.val);
5277
break;
5278
case 0x8d: /* lea r16/r32, m */
5279
ctxt->dst.val = ctxt->src.addr.mem.ea;
5280
break;
5281
case 0x90 ... 0x97: /* nop / xchg reg, rax */
5282
if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5283
ctxt->dst.type = OP_NONE;
5284
else
5285
rc = em_xchg(ctxt);
5286
break;
5287
case 0x98: /* cbw/cwde/cdqe */
5288
switch (ctxt->op_bytes) {
5289
case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5290
case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5291
case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5292
}
5293
break;
5294
case 0xcc: /* int3 */
5295
rc = emulate_int(ctxt, 3);
5296
break;
5297
case 0xcd: /* int n */
5298
rc = emulate_int(ctxt, ctxt->src.val);
5299
break;
5300
case 0xce: /* into */
5301
if (ctxt->eflags & X86_EFLAGS_OF)
5302
rc = emulate_int(ctxt, 4);
5303
break;
5304
case 0xe9: /* jmp rel */
5305
case 0xeb: /* jmp rel short */
5306
rc = jmp_rel(ctxt, ctxt->src.val);
5307
ctxt->dst.type = OP_NONE; /* Disable writeback. */
5308
break;
5309
case 0xf4: /* hlt */
5310
ctxt->ops->halt(ctxt);
5311
break;
5312
case 0xf5: /* cmc */
5313
/* complement carry flag from eflags reg */
5314
ctxt->eflags ^= X86_EFLAGS_CF;
5315
break;
5316
case 0xf8: /* clc */
5317
ctxt->eflags &= ~X86_EFLAGS_CF;
5318
break;
5319
case 0xf9: /* stc */
5320
ctxt->eflags |= X86_EFLAGS_CF;
5321
break;
5322
case 0xfc: /* cld */
5323
ctxt->eflags &= ~X86_EFLAGS_DF;
5324
break;
5325
case 0xfd: /* std */
5326
ctxt->eflags |= X86_EFLAGS_DF;
5327
break;
5328
default:
5329
goto cannot_emulate;
5330
}
5331
5332
if (rc != X86EMUL_CONTINUE)
5333
goto done;
5334
5335
writeback:
5336
if (ctxt->d & SrcWrite) {
5337
BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5338
rc = writeback(ctxt, &ctxt->src);
5339
if (rc != X86EMUL_CONTINUE)
5340
goto done;
5341
}
5342
if (!(ctxt->d & NoWrite)) {
5343
rc = writeback(ctxt, &ctxt->dst);
5344
if (rc != X86EMUL_CONTINUE)
5345
goto done;
5346
}
5347
5348
/*
5349
* restore dst type in case the decoding will be reused
5350
* (happens for string instruction )
5351
*/
5352
ctxt->dst.type = saved_dst_type;
5353
5354
if ((ctxt->d & SrcMask) == SrcSI)
5355
string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5356
5357
if ((ctxt->d & DstMask) == DstDI)
5358
string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5359
5360
if (ctxt->rep_prefix && (ctxt->d & String)) {
5361
unsigned int count;
5362
struct read_cache *r = &ctxt->io_read;
5363
if ((ctxt->d & SrcMask) == SrcSI)
5364
count = ctxt->src.count;
5365
else
5366
count = ctxt->dst.count;
5367
register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5368
5369
if (!string_insn_completed(ctxt)) {
5370
/*
5371
* Re-enter guest when pio read ahead buffer is empty
5372
* or, if it is not used, after each 1024 iteration.
5373
*/
5374
if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5375
(r->end == 0 || r->end != r->pos)) {
5376
/*
5377
* Reset read cache. Usually happens before
5378
* decode, but since instruction is restarted
5379
* we have to do it here.
5380
*/
5381
ctxt->mem_read.end = 0;
5382
writeback_registers(ctxt);
5383
return EMULATION_RESTART;
5384
}
5385
goto done; /* skip rip writeback */
5386
}
5387
ctxt->eflags &= ~X86_EFLAGS_RF;
5388
}
5389
5390
ctxt->eip = ctxt->_eip;
5391
if (ctxt->mode != X86EMUL_MODE_PROT64)
5392
ctxt->eip = (u32)ctxt->_eip;
5393
5394
done:
5395
if (rc == X86EMUL_PROPAGATE_FAULT) {
5396
if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt))
5397
return EMULATION_FAILED;
5398
ctxt->have_exception = true;
5399
}
5400
if (rc == X86EMUL_INTERCEPTED)
5401
return EMULATION_INTERCEPTED;
5402
5403
if (rc == X86EMUL_CONTINUE)
5404
writeback_registers(ctxt);
5405
5406
return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5407
5408
twobyte_insn:
5409
switch (ctxt->b) {
5410
case 0x09: /* wbinvd */
5411
(ctxt->ops->wbinvd)(ctxt);
5412
break;
5413
case 0x08: /* invd */
5414
case 0x0d: /* GrpP (prefetch) */
5415
case 0x18: /* Grp16 (prefetch/nop) */
5416
case 0x1f: /* nop */
5417
break;
5418
case 0x20: /* mov cr, reg */
5419
ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5420
break;
5421
case 0x21: /* mov from dr to reg */
5422
ctxt->dst.val = ops->get_dr(ctxt, ctxt->modrm_reg);
5423
break;
5424
case 0x40 ... 0x4f: /* cmov */
5425
if (test_cc(ctxt->b, ctxt->eflags))
5426
ctxt->dst.val = ctxt->src.val;
5427
else if (ctxt->op_bytes != 4)
5428
ctxt->dst.type = OP_NONE; /* no writeback */
5429
break;
5430
case 0x80 ... 0x8f: /* jnz rel, etc*/
5431
if (test_cc(ctxt->b, ctxt->eflags))
5432
rc = jmp_rel(ctxt, ctxt->src.val);
5433
break;
5434
case 0x90 ... 0x9f: /* setcc r/m8 */
5435
ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5436
break;
5437
case 0xb6 ... 0xb7: /* movzx */
5438
ctxt->dst.bytes = ctxt->op_bytes;
5439
ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5440
: (u16) ctxt->src.val;
5441
break;
5442
case 0xbe ... 0xbf: /* movsx */
5443
ctxt->dst.bytes = ctxt->op_bytes;
5444
ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5445
(s16) ctxt->src.val;
5446
break;
5447
default:
5448
goto cannot_emulate;
5449
}
5450
5451
threebyte_insn:
5452
5453
if (rc != X86EMUL_CONTINUE)
5454
goto done;
5455
5456
goto writeback;
5457
5458
cannot_emulate:
5459
return EMULATION_FAILED;
5460
}
5461
5462
void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5463
{
5464
invalidate_registers(ctxt);
5465
}
5466
5467
void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5468
{
5469
writeback_registers(ctxt);
5470
}
5471
5472
bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
5473
{
5474
if (ctxt->rep_prefix && (ctxt->d & String))
5475
return false;
5476
5477
if (ctxt->d & TwoMemOp)
5478
return false;
5479
5480
return true;
5481
}
5482
5483