Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/mmu.h
26424 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef __KVM_X86_MMU_H
3
#define __KVM_X86_MMU_H
4
5
#include <linux/kvm_host.h>
6
#include "kvm_cache_regs.h"
7
#include "x86.h"
8
#include "cpuid.h"
9
10
extern bool __read_mostly enable_mmio_caching;
11
12
#define PT_WRITABLE_SHIFT 1
13
#define PT_USER_SHIFT 2
14
15
#define PT_PRESENT_MASK (1ULL << 0)
16
#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
17
#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
18
#define PT_PWT_MASK (1ULL << 3)
19
#define PT_PCD_MASK (1ULL << 4)
20
#define PT_ACCESSED_SHIFT 5
21
#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
22
#define PT_DIRTY_SHIFT 6
23
#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
24
#define PT_PAGE_SIZE_SHIFT 7
25
#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
26
#define PT_PAT_MASK (1ULL << 7)
27
#define PT_GLOBAL_MASK (1ULL << 8)
28
#define PT64_NX_SHIFT 63
29
#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
30
31
#define PT_PAT_SHIFT 7
32
#define PT_DIR_PAT_SHIFT 12
33
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
34
35
#define PT64_ROOT_5LEVEL 5
36
#define PT64_ROOT_4LEVEL 4
37
#define PT32_ROOT_LEVEL 2
38
#define PT32E_ROOT_LEVEL 3
39
40
#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
41
X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
42
43
#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
44
#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
45
46
static __always_inline u64 rsvd_bits(int s, int e)
47
{
48
BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
49
50
if (__builtin_constant_p(e))
51
BUILD_BUG_ON(e > 63);
52
else
53
e &= 63;
54
55
if (e < s)
56
return 0;
57
58
return ((2ULL << (e - s)) - 1) << s;
59
}
60
61
static inline gfn_t kvm_mmu_max_gfn(void)
62
{
63
/*
64
* Note that this uses the host MAXPHYADDR, not the guest's.
65
* EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
66
* assuming KVM is running on bare metal, guest accesses beyond
67
* host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
68
* (either EPT Violation/Misconfig or #NPF), and so KVM will never
69
* install a SPTE for such addresses. If KVM is running as a VM
70
* itself, on the other hand, it might see a MAXPHYADDR that is less
71
* than hardware's real MAXPHYADDR. Using the host MAXPHYADDR
72
* disallows such SPTEs entirely and simplifies the TDP MMU.
73
*/
74
int max_gpa_bits = likely(tdp_enabled) ? kvm_host.maxphyaddr : 52;
75
76
return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
77
}
78
79
u8 kvm_mmu_get_max_tdp_level(void);
80
81
void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
82
void kvm_mmu_set_mmio_spte_value(struct kvm *kvm, u64 mmio_value);
83
void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
84
void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
85
86
void kvm_init_mmu(struct kvm_vcpu *vcpu);
87
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
88
unsigned long cr4, u64 efer, gpa_t nested_cr3);
89
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
90
int huge_page_level, bool accessed_dirty,
91
gpa_t new_eptp);
92
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
93
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
94
u64 fault_address, char *insn, int insn_len);
95
void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
96
struct kvm_mmu *mmu);
97
98
int kvm_mmu_load(struct kvm_vcpu *vcpu);
99
void kvm_mmu_unload(struct kvm_vcpu *vcpu);
100
void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
101
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
102
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
103
void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
104
int bytes);
105
106
static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
107
{
108
if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
109
kvm_mmu_free_obsolete_roots(vcpu);
110
111
/*
112
* Checking root.hpa is sufficient even when KVM has mirror root.
113
* We can have either:
114
* (1) mirror_root_hpa = INVALID_PAGE, root.hpa = INVALID_PAGE
115
* (2) mirror_root_hpa = root, root.hpa = INVALID_PAGE
116
* (3) mirror_root_hpa = root1, root.hpa = root2
117
* We don't ever have:
118
* mirror_root_hpa = INVALID_PAGE, root.hpa = root
119
*/
120
if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
121
return 0;
122
123
return kvm_mmu_load(vcpu);
124
}
125
126
static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
127
{
128
BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
129
130
return kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)
131
? cr3 & X86_CR3_PCID_MASK
132
: 0;
133
}
134
135
static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
136
{
137
return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
138
}
139
140
static inline unsigned long kvm_get_active_cr3_lam_bits(struct kvm_vcpu *vcpu)
141
{
142
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LAM))
143
return 0;
144
145
return kvm_read_cr3(vcpu) & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57);
146
}
147
148
static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
149
{
150
u64 root_hpa = vcpu->arch.mmu->root.hpa;
151
152
if (!VALID_PAGE(root_hpa))
153
return;
154
155
kvm_x86_call(load_mmu_pgd)(vcpu, root_hpa,
156
vcpu->arch.mmu->root_role.level);
157
}
158
159
static inline void kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
160
struct kvm_mmu *mmu)
161
{
162
/*
163
* When EPT is enabled, KVM may passthrough CR0.WP to the guest, i.e.
164
* @mmu's snapshot of CR0.WP and thus all related paging metadata may
165
* be stale. Refresh CR0.WP and the metadata on-demand when checking
166
* for permission faults. Exempt nested MMUs, i.e. MMUs for shadowing
167
* nEPT and nNPT, as CR0.WP is ignored in both cases. Note, KVM does
168
* need to refresh nested_mmu, a.k.a. the walker used to translate L2
169
* GVAs to GPAs, as that "MMU" needs to honor L2's CR0.WP.
170
*/
171
if (!tdp_enabled || mmu == &vcpu->arch.guest_mmu)
172
return;
173
174
__kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
175
}
176
177
/*
178
* Check if a given access (described through the I/D, W/R and U/S bits of a
179
* page fault error code pfec) causes a permission fault with the given PTE
180
* access rights (in ACC_* format).
181
*
182
* Return zero if the access does not fault; return the page fault error code
183
* if the access faults.
184
*/
185
static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
186
unsigned pte_access, unsigned pte_pkey,
187
u64 access)
188
{
189
/* strip nested paging fault error codes */
190
unsigned int pfec = access;
191
unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
192
193
/*
194
* For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
195
* For implicit supervisor accesses, SMAP cannot be overridden.
196
*
197
* SMAP works on supervisor accesses only, and not_smap can
198
* be set or not set when user access with neither has any bearing
199
* on the result.
200
*
201
* We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
202
* this bit will always be zero in pfec, but it will be one in index
203
* if SMAP checks are being disabled.
204
*/
205
u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
206
bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
207
int index = (pfec | (not_smap ? PFERR_RSVD_MASK : 0)) >> 1;
208
u32 errcode = PFERR_PRESENT_MASK;
209
bool fault;
210
211
kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
212
213
fault = (mmu->permissions[index] >> pte_access) & 1;
214
215
WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
216
if (unlikely(mmu->pkru_mask)) {
217
u32 pkru_bits, offset;
218
219
/*
220
* PKRU defines 32 bits, there are 16 domains and 2
221
* attribute bits per domain in pkru. pte_pkey is the
222
* index of the protection domain, so pte_pkey * 2 is
223
* is the index of the first bit for the domain.
224
*/
225
pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
226
227
/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
228
offset = (pfec & ~1) | ((pte_access & PT_USER_MASK) ? PFERR_RSVD_MASK : 0);
229
230
pkru_bits &= mmu->pkru_mask >> offset;
231
errcode |= -pkru_bits & PFERR_PK_MASK;
232
fault |= (pkru_bits != 0);
233
}
234
235
return -(u32)fault & errcode;
236
}
237
238
bool kvm_mmu_may_ignore_guest_pat(struct kvm *kvm);
239
240
int kvm_mmu_post_init_vm(struct kvm *kvm);
241
void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
242
243
static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
244
{
245
/*
246
* Read shadow_root_allocated before related pointers. Hence, threads
247
* reading shadow_root_allocated in any lock context are guaranteed to
248
* see the pointers. Pairs with smp_store_release in
249
* mmu_first_shadow_root_alloc.
250
*/
251
return smp_load_acquire(&kvm->arch.shadow_root_allocated);
252
}
253
254
#ifdef CONFIG_X86_64
255
extern bool tdp_mmu_enabled;
256
#else
257
#define tdp_mmu_enabled false
258
#endif
259
260
bool kvm_tdp_mmu_gpa_is_mapped(struct kvm_vcpu *vcpu, u64 gpa);
261
int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, u8 *level);
262
263
static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
264
{
265
return !tdp_mmu_enabled || kvm_shadow_root_allocated(kvm);
266
}
267
268
static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
269
{
270
/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
271
return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
272
(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
273
}
274
275
static inline unsigned long
276
__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
277
int level)
278
{
279
return gfn_to_index(slot->base_gfn + npages - 1,
280
slot->base_gfn, level) + 1;
281
}
282
283
static inline unsigned long
284
kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
285
{
286
return __kvm_mmu_slot_lpages(slot, slot->npages, level);
287
}
288
289
static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
290
{
291
atomic64_add(count, &kvm->stat.pages[level - 1]);
292
}
293
294
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
295
struct x86_exception *exception);
296
297
static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
298
struct kvm_mmu *mmu,
299
gpa_t gpa, u64 access,
300
struct x86_exception *exception)
301
{
302
if (mmu != &vcpu->arch.nested_mmu)
303
return gpa;
304
return translate_nested_gpa(vcpu, gpa, access, exception);
305
}
306
307
static inline bool kvm_has_mirrored_tdp(const struct kvm *kvm)
308
{
309
return kvm->arch.vm_type == KVM_X86_TDX_VM;
310
}
311
312
static inline gfn_t kvm_gfn_direct_bits(const struct kvm *kvm)
313
{
314
return kvm->arch.gfn_direct_bits;
315
}
316
317
static inline bool kvm_is_addr_direct(struct kvm *kvm, gpa_t gpa)
318
{
319
gpa_t gpa_direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(kvm));
320
321
return !gpa_direct_bits || (gpa & gpa_direct_bits);
322
}
323
324
static inline bool kvm_is_gfn_alias(struct kvm *kvm, gfn_t gfn)
325
{
326
return gfn & kvm_gfn_direct_bits(kvm);
327
}
328
#endif
329
330