Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/mmu/mmu.c
52730 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Kernel-based Virtual Machine driver for Linux
4
*
5
* This module enables machines with Intel VT-x extensions to run virtual
6
* machines without emulation or binary translation.
7
*
8
* MMU support
9
*
10
* Copyright (C) 2006 Qumranet, Inc.
11
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
12
*
13
* Authors:
14
* Yaniv Kamay <[email protected]>
15
* Avi Kivity <[email protected]>
16
*/
17
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19
#include "irq.h"
20
#include "ioapic.h"
21
#include "mmu.h"
22
#include "mmu_internal.h"
23
#include "tdp_mmu.h"
24
#include "x86.h"
25
#include "kvm_cache_regs.h"
26
#include "smm.h"
27
#include "kvm_emulate.h"
28
#include "page_track.h"
29
#include "cpuid.h"
30
#include "spte.h"
31
32
#include <linux/kvm_host.h>
33
#include <linux/types.h>
34
#include <linux/string.h>
35
#include <linux/mm.h>
36
#include <linux/highmem.h>
37
#include <linux/moduleparam.h>
38
#include <linux/export.h>
39
#include <linux/swap.h>
40
#include <linux/hugetlb.h>
41
#include <linux/compiler.h>
42
#include <linux/srcu.h>
43
#include <linux/slab.h>
44
#include <linux/sched/signal.h>
45
#include <linux/uaccess.h>
46
#include <linux/hash.h>
47
#include <linux/kern_levels.h>
48
#include <linux/kstrtox.h>
49
#include <linux/kthread.h>
50
#include <linux/wordpart.h>
51
52
#include <asm/page.h>
53
#include <asm/memtype.h>
54
#include <asm/cmpxchg.h>
55
#include <asm/io.h>
56
#include <asm/set_memory.h>
57
#include <asm/spec-ctrl.h>
58
#include <asm/vmx.h>
59
60
#include "trace.h"
61
62
static bool nx_hugepage_mitigation_hard_disabled;
63
64
int __read_mostly nx_huge_pages = -1;
65
static uint __read_mostly nx_huge_pages_recovery_period_ms;
66
#ifdef CONFIG_PREEMPT_RT
67
/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
68
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69
#else
70
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71
#endif
72
73
static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74
static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76
77
static const struct kernel_param_ops nx_huge_pages_ops = {
78
.set = set_nx_huge_pages,
79
.get = get_nx_huge_pages,
80
};
81
82
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83
.set = set_nx_huge_pages_recovery_param,
84
.get = param_get_uint,
85
};
86
87
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
89
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90
&nx_huge_pages_recovery_ratio, 0644);
91
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93
&nx_huge_pages_recovery_period_ms, 0644);
94
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95
96
static bool __read_mostly force_flush_and_sync_on_reuse;
97
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98
99
/*
100
* When setting this variable to true it enables Two-Dimensional-Paging
101
* where the hardware walks 2 page tables:
102
* 1. the guest-virtual to guest-physical
103
* 2. while doing 1. it walks guest-physical to host-physical
104
* If the hardware supports that we don't need to do shadow paging.
105
*/
106
bool tdp_enabled = false;
107
108
static bool __ro_after_init tdp_mmu_allowed;
109
110
#ifdef CONFIG_X86_64
111
bool __read_mostly tdp_mmu_enabled = true;
112
module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113
EXPORT_SYMBOL_FOR_KVM_INTERNAL(tdp_mmu_enabled);
114
#endif
115
116
static int max_huge_page_level __read_mostly;
117
static int tdp_root_level __read_mostly;
118
static int max_tdp_level __read_mostly;
119
120
#define PTE_PREFETCH_NUM 8
121
122
#include <trace/events/kvm.h>
123
124
/* make pte_list_desc fit well in cache lines */
125
#define PTE_LIST_EXT 14
126
127
/*
128
* struct pte_list_desc is the core data structure used to implement a custom
129
* list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
130
* given GFN when used in the context of rmaps. Using a custom list allows KVM
131
* to optimize for the common case where many GFNs will have at most a handful
132
* of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
133
* memory footprint, which in turn improves runtime performance by exploiting
134
* cache locality.
135
*
136
* A list is comprised of one or more pte_list_desc objects (descriptors).
137
* Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor
138
* is full and a new SPTEs needs to be added, a new descriptor is allocated and
139
* becomes the head of the list. This means that by definitions, all tail
140
* descriptors are full.
141
*
142
* Note, the meta data fields are deliberately placed at the start of the
143
* structure to optimize the cacheline layout; accessing the descriptor will
144
* touch only a single cacheline so long as @spte_count<=6 (or if only the
145
* descriptors metadata is accessed).
146
*/
147
struct pte_list_desc {
148
struct pte_list_desc *more;
149
/* The number of PTEs stored in _this_ descriptor. */
150
u32 spte_count;
151
/* The number of PTEs stored in all tails of this descriptor. */
152
u32 tail_count;
153
u64 *sptes[PTE_LIST_EXT];
154
};
155
156
struct kvm_shadow_walk_iterator {
157
u64 addr;
158
hpa_t shadow_addr;
159
u64 *sptep;
160
int level;
161
unsigned index;
162
};
163
164
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
165
for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
166
(_root), (_addr)); \
167
shadow_walk_okay(&(_walker)); \
168
shadow_walk_next(&(_walker)))
169
170
#define for_each_shadow_entry(_vcpu, _addr, _walker) \
171
for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172
shadow_walk_okay(&(_walker)); \
173
shadow_walk_next(&(_walker)))
174
175
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176
for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177
shadow_walk_okay(&(_walker)) && \
178
({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179
__shadow_walk_next(&(_walker), spte))
180
181
static struct kmem_cache *pte_list_desc_cache;
182
struct kmem_cache *mmu_page_header_cache;
183
184
static void mmu_spte_set(u64 *sptep, u64 spte);
185
186
struct kvm_mmu_role_regs {
187
const unsigned long cr0;
188
const unsigned long cr4;
189
const u64 efer;
190
};
191
192
#define CREATE_TRACE_POINTS
193
#include "mmutrace.h"
194
195
/*
196
* Yes, lot's of underscores. They're a hint that you probably shouldn't be
197
* reading from the role_regs. Once the root_role is constructed, it becomes
198
* the single source of truth for the MMU's state.
199
*/
200
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
201
static inline bool __maybe_unused \
202
____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \
203
{ \
204
return !!(regs->reg & flag); \
205
}
206
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
207
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
208
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
209
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
210
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
211
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
212
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
213
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
214
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
215
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
216
217
/*
218
* The MMU itself (with a valid role) is the single source of truth for the
219
* MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
220
* regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
221
* and the vCPU may be incorrect/irrelevant.
222
*/
223
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
224
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \
225
{ \
226
return !!(mmu->cpu_role. base_or_ext . reg##_##name); \
227
}
228
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
229
BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
230
BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
231
BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
232
BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
233
BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
234
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235
BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma);
236
237
static inline bool is_cr0_pg(struct kvm_mmu *mmu)
238
{
239
return mmu->cpu_role.base.level > 0;
240
}
241
242
static inline bool is_cr4_pae(struct kvm_mmu *mmu)
243
{
244
return !mmu->cpu_role.base.has_4_byte_gpte;
245
}
246
247
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248
{
249
struct kvm_mmu_role_regs regs = {
250
.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251
.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252
.efer = vcpu->arch.efer,
253
};
254
255
return regs;
256
}
257
258
static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
259
{
260
return kvm_read_cr3(vcpu);
261
}
262
263
static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
264
struct kvm_mmu *mmu)
265
{
266
if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
267
return kvm_read_cr3(vcpu);
268
269
return mmu->get_guest_pgd(vcpu);
270
}
271
272
static inline bool kvm_available_flush_remote_tlbs_range(void)
273
{
274
#if IS_ENABLED(CONFIG_HYPERV)
275
return kvm_x86_ops.flush_remote_tlbs_range;
276
#else
277
return false;
278
#endif
279
}
280
281
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
282
283
/* Flush the range of guest memory mapped by the given SPTE. */
284
static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
285
{
286
struct kvm_mmu_page *sp = sptep_to_sp(sptep);
287
gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
288
289
kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
290
}
291
292
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
293
unsigned int access)
294
{
295
u64 spte = make_mmio_spte(vcpu, gfn, access);
296
297
trace_mark_mmio_spte(sptep, gfn, spte);
298
mmu_spte_set(sptep, spte);
299
}
300
301
static gfn_t get_mmio_spte_gfn(u64 spte)
302
{
303
u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
304
305
gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
306
& shadow_nonpresent_or_rsvd_mask;
307
308
return gpa >> PAGE_SHIFT;
309
}
310
311
static unsigned get_mmio_spte_access(u64 spte)
312
{
313
return spte & shadow_mmio_access_mask;
314
}
315
316
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
317
{
318
u64 kvm_gen, spte_gen, gen;
319
320
gen = kvm_vcpu_memslots(vcpu)->generation;
321
if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
322
return false;
323
324
kvm_gen = gen & MMIO_SPTE_GEN_MASK;
325
spte_gen = get_mmio_spte_generation(spte);
326
327
trace_check_mmio_spte(spte, kvm_gen, spte_gen);
328
return likely(kvm_gen == spte_gen);
329
}
330
331
static int is_cpuid_PSE36(void)
332
{
333
return 1;
334
}
335
336
#ifdef CONFIG_X86_64
337
static void __set_spte(u64 *sptep, u64 spte)
338
{
339
KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
340
WRITE_ONCE(*sptep, spte);
341
}
342
343
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
344
{
345
KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
346
WRITE_ONCE(*sptep, spte);
347
}
348
349
static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
350
{
351
KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
352
return xchg(sptep, spte);
353
}
354
355
static u64 __get_spte_lockless(u64 *sptep)
356
{
357
return READ_ONCE(*sptep);
358
}
359
#else
360
union split_spte {
361
struct {
362
u32 spte_low;
363
u32 spte_high;
364
};
365
u64 spte;
366
};
367
368
static void count_spte_clear(u64 *sptep, u64 spte)
369
{
370
struct kvm_mmu_page *sp = sptep_to_sp(sptep);
371
372
if (is_shadow_present_pte(spte))
373
return;
374
375
/* Ensure the spte is completely set before we increase the count */
376
smp_wmb();
377
sp->clear_spte_count++;
378
}
379
380
static void __set_spte(u64 *sptep, u64 spte)
381
{
382
union split_spte *ssptep, sspte;
383
384
ssptep = (union split_spte *)sptep;
385
sspte = (union split_spte)spte;
386
387
ssptep->spte_high = sspte.spte_high;
388
389
/*
390
* If we map the spte from nonpresent to present, We should store
391
* the high bits firstly, then set present bit, so cpu can not
392
* fetch this spte while we are setting the spte.
393
*/
394
smp_wmb();
395
396
WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
397
}
398
399
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
400
{
401
union split_spte *ssptep, sspte;
402
403
ssptep = (union split_spte *)sptep;
404
sspte = (union split_spte)spte;
405
406
WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
407
408
/*
409
* If we map the spte from present to nonpresent, we should clear
410
* present bit firstly to avoid vcpu fetch the old high bits.
411
*/
412
smp_wmb();
413
414
ssptep->spte_high = sspte.spte_high;
415
count_spte_clear(sptep, spte);
416
}
417
418
static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
419
{
420
union split_spte *ssptep, sspte, orig;
421
422
ssptep = (union split_spte *)sptep;
423
sspte = (union split_spte)spte;
424
425
/* xchg acts as a barrier before the setting of the high bits */
426
orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
427
orig.spte_high = ssptep->spte_high;
428
ssptep->spte_high = sspte.spte_high;
429
count_spte_clear(sptep, spte);
430
431
return orig.spte;
432
}
433
434
/*
435
* The idea using the light way get the spte on x86_32 guest is from
436
* gup_get_pte (mm/gup.c).
437
*
438
* An spte tlb flush may be pending, because they are coalesced and
439
* we are running out of the MMU lock. Therefore
440
* we need to protect against in-progress updates of the spte.
441
*
442
* Reading the spte while an update is in progress may get the old value
443
* for the high part of the spte. The race is fine for a present->non-present
444
* change (because the high part of the spte is ignored for non-present spte),
445
* but for a present->present change we must reread the spte.
446
*
447
* All such changes are done in two steps (present->non-present and
448
* non-present->present), hence it is enough to count the number of
449
* present->non-present updates: if it changed while reading the spte,
450
* we might have hit the race. This is done using clear_spte_count.
451
*/
452
static u64 __get_spte_lockless(u64 *sptep)
453
{
454
struct kvm_mmu_page *sp = sptep_to_sp(sptep);
455
union split_spte spte, *orig = (union split_spte *)sptep;
456
int count;
457
458
retry:
459
count = sp->clear_spte_count;
460
smp_rmb();
461
462
spte.spte_low = orig->spte_low;
463
smp_rmb();
464
465
spte.spte_high = orig->spte_high;
466
smp_rmb();
467
468
if (unlikely(spte.spte_low != orig->spte_low ||
469
count != sp->clear_spte_count))
470
goto retry;
471
472
return spte.spte;
473
}
474
#endif
475
476
/* Rules for using mmu_spte_set:
477
* Set the sptep from nonpresent to present.
478
* Note: the sptep being assigned *must* be either not present
479
* or in a state where the hardware will not attempt to update
480
* the spte.
481
*/
482
static void mmu_spte_set(u64 *sptep, u64 new_spte)
483
{
484
WARN_ON_ONCE(is_shadow_present_pte(*sptep));
485
__set_spte(sptep, new_spte);
486
}
487
488
/* Rules for using mmu_spte_update:
489
* Update the state bits, it means the mapped pfn is not changed.
490
*
491
* Returns true if the TLB needs to be flushed
492
*/
493
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
494
{
495
u64 old_spte = *sptep;
496
497
WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
498
check_spte_writable_invariants(new_spte);
499
500
if (!is_shadow_present_pte(old_spte)) {
501
mmu_spte_set(sptep, new_spte);
502
return false;
503
}
504
505
if (!spte_needs_atomic_update(old_spte))
506
__update_clear_spte_fast(sptep, new_spte);
507
else
508
old_spte = __update_clear_spte_slow(sptep, new_spte);
509
510
WARN_ON_ONCE(!is_shadow_present_pte(old_spte) ||
511
spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
512
513
return leaf_spte_change_needs_tlb_flush(old_spte, new_spte);
514
}
515
516
/*
517
* Rules for using mmu_spte_clear_track_bits:
518
* It sets the sptep from present to nonpresent, and track the
519
* state bits, it is used to clear the last level sptep.
520
* Returns the old PTE.
521
*/
522
static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
523
{
524
u64 old_spte = *sptep;
525
int level = sptep_to_sp(sptep)->role.level;
526
527
if (!is_shadow_present_pte(old_spte) ||
528
!spte_needs_atomic_update(old_spte))
529
__update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
530
else
531
old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE);
532
533
if (!is_shadow_present_pte(old_spte))
534
return old_spte;
535
536
kvm_update_page_stats(kvm, level, -1);
537
return old_spte;
538
}
539
540
/*
541
* Rules for using mmu_spte_clear_no_track:
542
* Directly clear spte without caring the state bits of sptep,
543
* it is used to set the upper level spte.
544
*/
545
static void mmu_spte_clear_no_track(u64 *sptep)
546
{
547
__update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
548
}
549
550
static u64 mmu_spte_get_lockless(u64 *sptep)
551
{
552
return __get_spte_lockless(sptep);
553
}
554
555
static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
556
{
557
return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
558
}
559
560
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
561
{
562
if (is_tdp_mmu_active(vcpu)) {
563
kvm_tdp_mmu_walk_lockless_begin();
564
} else {
565
/*
566
* Prevent page table teardown by making any free-er wait during
567
* kvm_flush_remote_tlbs() IPI to all active vcpus.
568
*/
569
local_irq_disable();
570
571
/*
572
* Make sure a following spte read is not reordered ahead of the write
573
* to vcpu->mode.
574
*/
575
smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
576
}
577
}
578
579
static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
580
{
581
if (is_tdp_mmu_active(vcpu)) {
582
kvm_tdp_mmu_walk_lockless_end();
583
} else {
584
/*
585
* Make sure the write to vcpu->mode is not reordered in front of
586
* reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
587
* OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
588
*/
589
smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
590
local_irq_enable();
591
}
592
}
593
594
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
595
{
596
int r;
597
598
/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
599
r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
600
1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
601
if (r)
602
return r;
603
if (kvm_has_mirrored_tdp(vcpu->kvm)) {
604
r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache,
605
PT64_ROOT_MAX_LEVEL);
606
if (r)
607
return r;
608
}
609
r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
610
PT64_ROOT_MAX_LEVEL);
611
if (r)
612
return r;
613
if (maybe_indirect) {
614
r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
615
PT64_ROOT_MAX_LEVEL);
616
if (r)
617
return r;
618
}
619
return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
620
PT64_ROOT_MAX_LEVEL);
621
}
622
623
static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
624
{
625
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
626
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
627
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
628
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache);
629
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
630
}
631
632
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
633
{
634
kmem_cache_free(pte_list_desc_cache, pte_list_desc);
635
}
636
637
static bool sp_has_gptes(struct kvm_mmu_page *sp);
638
639
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
640
{
641
if (sp->role.passthrough)
642
return sp->gfn;
643
644
if (sp->shadowed_translation)
645
return sp->shadowed_translation[index] >> PAGE_SHIFT;
646
647
return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
648
}
649
650
/*
651
* For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
652
* that the SPTE itself may have a more constrained access permissions that
653
* what the guest enforces. For example, a guest may create an executable
654
* huge PTE but KVM may disallow execution to mitigate iTLB multihit.
655
*/
656
static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
657
{
658
if (sp->shadowed_translation)
659
return sp->shadowed_translation[index] & ACC_ALL;
660
661
/*
662
* For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
663
* KVM is not shadowing any guest page tables, so the "guest access
664
* permissions" are just ACC_ALL.
665
*
666
* For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
667
* is shadowing a guest huge page with small pages, the guest access
668
* permissions being shadowed are the access permissions of the huge
669
* page.
670
*
671
* In both cases, sp->role.access contains the correct access bits.
672
*/
673
return sp->role.access;
674
}
675
676
static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
677
gfn_t gfn, unsigned int access)
678
{
679
if (sp->shadowed_translation) {
680
sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
681
return;
682
}
683
684
WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
685
"access mismatch under %s page %llx (expected %u, got %u)\n",
686
sp->role.passthrough ? "passthrough" : "direct",
687
sp->gfn, kvm_mmu_page_get_access(sp, index), access);
688
689
WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
690
"gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
691
sp->role.passthrough ? "passthrough" : "direct",
692
sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
693
}
694
695
static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
696
unsigned int access)
697
{
698
gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
699
700
kvm_mmu_page_set_translation(sp, index, gfn, access);
701
}
702
703
/*
704
* Return the pointer to the large page information for a given gfn,
705
* handling slots that are not large page aligned.
706
*/
707
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
708
const struct kvm_memory_slot *slot, int level)
709
{
710
unsigned long idx;
711
712
idx = gfn_to_index(gfn, slot->base_gfn, level);
713
return &slot->arch.lpage_info[level - 2][idx];
714
}
715
716
/*
717
* The most significant bit in disallow_lpage tracks whether or not memory
718
* attributes are mixed, i.e. not identical for all gfns at the current level.
719
* The lower order bits are used to refcount other cases where a hugepage is
720
* disallowed, e.g. if KVM has shadow a page table at the gfn.
721
*/
722
#define KVM_LPAGE_MIXED_FLAG BIT(31)
723
724
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
725
gfn_t gfn, int count)
726
{
727
struct kvm_lpage_info *linfo;
728
int old, i;
729
730
for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
731
linfo = lpage_info_slot(gfn, slot, i);
732
733
old = linfo->disallow_lpage;
734
linfo->disallow_lpage += count;
735
WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG);
736
}
737
}
738
739
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
740
{
741
update_gfn_disallow_lpage_count(slot, gfn, 1);
742
}
743
744
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
745
{
746
update_gfn_disallow_lpage_count(slot, gfn, -1);
747
}
748
749
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
750
{
751
struct kvm_memslots *slots;
752
struct kvm_memory_slot *slot;
753
gfn_t gfn;
754
755
kvm->arch.indirect_shadow_pages++;
756
/*
757
* Ensure indirect_shadow_pages is elevated prior to re-reading guest
758
* child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight
759
* emulated writes are visible before re-reading guest PTEs, or that
760
* an emulated write will see the elevated count and acquire mmu_lock
761
* to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write().
762
*/
763
smp_mb();
764
765
gfn = sp->gfn;
766
slots = kvm_memslots_for_spte_role(kvm, sp->role);
767
slot = __gfn_to_memslot(slots, gfn);
768
769
/* the non-leaf shadow pages are keeping readonly. */
770
if (sp->role.level > PG_LEVEL_4K)
771
return __kvm_write_track_add_gfn(kvm, slot, gfn);
772
773
kvm_mmu_gfn_disallow_lpage(slot, gfn);
774
775
if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
776
kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
777
}
778
779
void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
780
enum kvm_mmu_type mmu_type)
781
{
782
/*
783
* If it's possible to replace the shadow page with an NX huge page,
784
* i.e. if the shadow page is the only thing currently preventing KVM
785
* from using a huge page, add the shadow page to the list of "to be
786
* zapped for NX recovery" pages. Note, the shadow page can already be
787
* on the list if KVM is reusing an existing shadow page, i.e. if KVM
788
* links a shadow page at multiple points.
789
*/
790
if (!list_empty(&sp->possible_nx_huge_page_link))
791
return;
792
793
++kvm->stat.nx_lpage_splits;
794
++kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages;
795
list_add_tail(&sp->possible_nx_huge_page_link,
796
&kvm->arch.possible_nx_huge_pages[mmu_type].pages);
797
}
798
799
static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
800
bool nx_huge_page_possible)
801
{
802
sp->nx_huge_page_disallowed = true;
803
804
if (nx_huge_page_possible)
805
track_possible_nx_huge_page(kvm, sp, KVM_SHADOW_MMU);
806
}
807
808
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
809
{
810
struct kvm_memslots *slots;
811
struct kvm_memory_slot *slot;
812
gfn_t gfn;
813
814
kvm->arch.indirect_shadow_pages--;
815
gfn = sp->gfn;
816
slots = kvm_memslots_for_spte_role(kvm, sp->role);
817
slot = __gfn_to_memslot(slots, gfn);
818
if (sp->role.level > PG_LEVEL_4K)
819
return __kvm_write_track_remove_gfn(kvm, slot, gfn);
820
821
kvm_mmu_gfn_allow_lpage(slot, gfn);
822
}
823
824
void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
825
enum kvm_mmu_type mmu_type)
826
{
827
if (list_empty(&sp->possible_nx_huge_page_link))
828
return;
829
830
--kvm->stat.nx_lpage_splits;
831
--kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages;
832
list_del_init(&sp->possible_nx_huge_page_link);
833
}
834
835
static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
836
{
837
sp->nx_huge_page_disallowed = false;
838
839
untrack_possible_nx_huge_page(kvm, sp, KVM_SHADOW_MMU);
840
}
841
842
static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
843
gfn_t gfn,
844
bool no_dirty_log)
845
{
846
struct kvm_memory_slot *slot;
847
848
slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
849
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
850
return NULL;
851
if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
852
return NULL;
853
854
return slot;
855
}
856
857
/*
858
* About rmap_head encoding:
859
*
860
* If the bit zero of rmap_head->val is clear, then it points to the only spte
861
* in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct
862
* pte_list_desc containing more mappings.
863
*/
864
#define KVM_RMAP_MANY BIT(0)
865
866
/*
867
* rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always
868
* operates with mmu_lock held for write), but rmaps can be walked without
869
* holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain
870
* being zapped/dropped _while the rmap is locked_.
871
*
872
* Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be
873
* done while holding mmu_lock for write. This allows a task walking rmaps
874
* without holding mmu_lock to concurrently walk the same entries as a task
875
* that is holding mmu_lock but _not_ the rmap lock. Neither task will modify
876
* the rmaps, thus the walks are stable.
877
*
878
* As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED,
879
* only the rmap chains themselves are protected. E.g. holding an rmap's lock
880
* ensures all "struct pte_list_desc" fields are stable.
881
*/
882
#define KVM_RMAP_LOCKED BIT(1)
883
884
static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head)
885
{
886
unsigned long old_val, new_val;
887
888
lockdep_assert_preemption_disabled();
889
890
/*
891
* Elide the lock if the rmap is empty, as lockless walkers (read-only
892
* mode) don't need to (and can't) walk an empty rmap, nor can they add
893
* entries to the rmap. I.e. the only paths that process empty rmaps
894
* do so while holding mmu_lock for write, and are mutually exclusive.
895
*/
896
old_val = atomic_long_read(&rmap_head->val);
897
if (!old_val)
898
return 0;
899
900
do {
901
/*
902
* If the rmap is locked, wait for it to be unlocked before
903
* trying acquire the lock, e.g. to avoid bouncing the cache
904
* line.
905
*/
906
while (old_val & KVM_RMAP_LOCKED) {
907
cpu_relax();
908
old_val = atomic_long_read(&rmap_head->val);
909
}
910
911
/*
912
* Recheck for an empty rmap, it may have been purged by the
913
* task that held the lock.
914
*/
915
if (!old_val)
916
return 0;
917
918
new_val = old_val | KVM_RMAP_LOCKED;
919
/*
920
* Use try_cmpxchg_acquire() to prevent reads and writes to the rmap
921
* from being reordered outside of the critical section created by
922
* __kvm_rmap_lock().
923
*
924
* Pairs with the atomic_long_set_release() in kvm_rmap_unlock().
925
*
926
* For the !old_val case, no ordering is needed, as there is no rmap
927
* to walk.
928
*/
929
} while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val));
930
931
/*
932
* Return the old value, i.e. _without_ the LOCKED bit set. It's
933
* impossible for the return value to be 0 (see above), i.e. the read-
934
* only unlock flow can't get a false positive and fail to unlock.
935
*/
936
return old_val;
937
}
938
939
static unsigned long kvm_rmap_lock(struct kvm *kvm,
940
struct kvm_rmap_head *rmap_head)
941
{
942
lockdep_assert_held_write(&kvm->mmu_lock);
943
944
return __kvm_rmap_lock(rmap_head);
945
}
946
947
static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head,
948
unsigned long val)
949
{
950
KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED);
951
/*
952
* Ensure that all accesses to the rmap have completed before unlocking
953
* the rmap.
954
*
955
* Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock().
956
*/
957
atomic_long_set_release(&rmap_head->val, val);
958
}
959
960
static void kvm_rmap_unlock(struct kvm *kvm,
961
struct kvm_rmap_head *rmap_head,
962
unsigned long new_val)
963
{
964
lockdep_assert_held_write(&kvm->mmu_lock);
965
966
__kvm_rmap_unlock(rmap_head, new_val);
967
}
968
969
static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head)
970
{
971
return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED;
972
}
973
974
/*
975
* If mmu_lock isn't held, rmaps can only be locked in read-only mode. The
976
* actual locking is the same, but the caller is disallowed from modifying the
977
* rmap, and so the unlock flow is a nop if the rmap is/was empty.
978
*/
979
static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head)
980
{
981
unsigned long rmap_val;
982
983
preempt_disable();
984
rmap_val = __kvm_rmap_lock(rmap_head);
985
986
if (!rmap_val)
987
preempt_enable();
988
989
return rmap_val;
990
}
991
992
static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head,
993
unsigned long old_val)
994
{
995
if (!old_val)
996
return;
997
998
KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head));
999
1000
__kvm_rmap_unlock(rmap_head, old_val);
1001
preempt_enable();
1002
}
1003
1004
/*
1005
* Returns the number of pointers in the rmap chain, not counting the new one.
1006
*/
1007
static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1008
u64 *spte, struct kvm_rmap_head *rmap_head)
1009
{
1010
unsigned long old_val, new_val;
1011
struct pte_list_desc *desc;
1012
int count = 0;
1013
1014
old_val = kvm_rmap_lock(kvm, rmap_head);
1015
1016
if (!old_val) {
1017
new_val = (unsigned long)spte;
1018
} else if (!(old_val & KVM_RMAP_MANY)) {
1019
desc = kvm_mmu_memory_cache_alloc(cache);
1020
desc->sptes[0] = (u64 *)old_val;
1021
desc->sptes[1] = spte;
1022
desc->spte_count = 2;
1023
desc->tail_count = 0;
1024
new_val = (unsigned long)desc | KVM_RMAP_MANY;
1025
++count;
1026
} else {
1027
desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY);
1028
count = desc->tail_count + desc->spte_count;
1029
1030
/*
1031
* If the previous head is full, allocate a new head descriptor
1032
* as tail descriptors are always kept full.
1033
*/
1034
if (desc->spte_count == PTE_LIST_EXT) {
1035
desc = kvm_mmu_memory_cache_alloc(cache);
1036
desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY);
1037
desc->spte_count = 0;
1038
desc->tail_count = count;
1039
new_val = (unsigned long)desc | KVM_RMAP_MANY;
1040
} else {
1041
new_val = old_val;
1042
}
1043
desc->sptes[desc->spte_count++] = spte;
1044
}
1045
1046
kvm_rmap_unlock(kvm, rmap_head, new_val);
1047
1048
return count;
1049
}
1050
1051
static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val,
1052
struct pte_list_desc *desc, int i)
1053
{
1054
struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY);
1055
int j = head_desc->spte_count - 1;
1056
1057
/*
1058
* The head descriptor should never be empty. A new head is added only
1059
* when adding an entry and the previous head is full, and heads are
1060
* removed (this flow) when they become empty.
1061
*/
1062
KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
1063
1064
/*
1065
* Replace the to-be-freed SPTE with the last valid entry from the head
1066
* descriptor to ensure that tail descriptors are full at all times.
1067
* Note, this also means that tail_count is stable for each descriptor.
1068
*/
1069
desc->sptes[i] = head_desc->sptes[j];
1070
head_desc->sptes[j] = NULL;
1071
head_desc->spte_count--;
1072
if (head_desc->spte_count)
1073
return;
1074
1075
/*
1076
* The head descriptor is empty. If there are no tail descriptors,
1077
* nullify the rmap head to mark the list as empty, else point the rmap
1078
* head at the next descriptor, i.e. the new head.
1079
*/
1080
if (!head_desc->more)
1081
*rmap_val = 0;
1082
else
1083
*rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY;
1084
mmu_free_pte_list_desc(head_desc);
1085
}
1086
1087
static void pte_list_remove(struct kvm *kvm, u64 *spte,
1088
struct kvm_rmap_head *rmap_head)
1089
{
1090
struct pte_list_desc *desc;
1091
unsigned long rmap_val;
1092
int i;
1093
1094
rmap_val = kvm_rmap_lock(kvm, rmap_head);
1095
if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm))
1096
goto out;
1097
1098
if (!(rmap_val & KVM_RMAP_MANY)) {
1099
if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm))
1100
goto out;
1101
1102
rmap_val = 0;
1103
} else {
1104
desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1105
while (desc) {
1106
for (i = 0; i < desc->spte_count; ++i) {
1107
if (desc->sptes[i] == spte) {
1108
pte_list_desc_remove_entry(kvm, &rmap_val,
1109
desc, i);
1110
goto out;
1111
}
1112
}
1113
desc = desc->more;
1114
}
1115
1116
KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
1117
}
1118
1119
out:
1120
kvm_rmap_unlock(kvm, rmap_head, rmap_val);
1121
}
1122
1123
static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1124
struct kvm_rmap_head *rmap_head, u64 *sptep)
1125
{
1126
mmu_spte_clear_track_bits(kvm, sptep);
1127
pte_list_remove(kvm, sptep, rmap_head);
1128
}
1129
1130
/* Return true if at least one SPTE was zapped, false otherwise */
1131
static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1132
struct kvm_rmap_head *rmap_head)
1133
{
1134
struct pte_list_desc *desc, *next;
1135
unsigned long rmap_val;
1136
int i;
1137
1138
rmap_val = kvm_rmap_lock(kvm, rmap_head);
1139
if (!rmap_val)
1140
return false;
1141
1142
if (!(rmap_val & KVM_RMAP_MANY)) {
1143
mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val);
1144
goto out;
1145
}
1146
1147
desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1148
1149
for (; desc; desc = next) {
1150
for (i = 0; i < desc->spte_count; i++)
1151
mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1152
next = desc->more;
1153
mmu_free_pte_list_desc(desc);
1154
}
1155
out:
1156
/* rmap_head is meaningless now, remember to reset it */
1157
kvm_rmap_unlock(kvm, rmap_head, 0);
1158
return true;
1159
}
1160
1161
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1162
{
1163
unsigned long rmap_val = kvm_rmap_get(rmap_head);
1164
struct pte_list_desc *desc;
1165
1166
if (!rmap_val)
1167
return 0;
1168
else if (!(rmap_val & KVM_RMAP_MANY))
1169
return 1;
1170
1171
desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1172
return desc->tail_count + desc->spte_count;
1173
}
1174
1175
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1176
const struct kvm_memory_slot *slot)
1177
{
1178
unsigned long idx;
1179
1180
idx = gfn_to_index(gfn, slot->base_gfn, level);
1181
return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1182
}
1183
1184
static void rmap_remove(struct kvm *kvm, u64 *spte)
1185
{
1186
struct kvm_memslots *slots;
1187
struct kvm_memory_slot *slot;
1188
struct kvm_mmu_page *sp;
1189
gfn_t gfn;
1190
struct kvm_rmap_head *rmap_head;
1191
1192
sp = sptep_to_sp(spte);
1193
gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1194
1195
/*
1196
* Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1197
* so we have to determine which memslots to use based on context
1198
* information in sp->role.
1199
*/
1200
slots = kvm_memslots_for_spte_role(kvm, sp->role);
1201
1202
slot = __gfn_to_memslot(slots, gfn);
1203
rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1204
1205
pte_list_remove(kvm, spte, rmap_head);
1206
}
1207
1208
/*
1209
* Used by the following functions to iterate through the sptes linked by a
1210
* rmap. All fields are private and not assumed to be used outside.
1211
*/
1212
struct rmap_iterator {
1213
/* private fields */
1214
struct rmap_head *head;
1215
struct pte_list_desc *desc; /* holds the sptep if not NULL */
1216
int pos; /* index of the sptep */
1217
};
1218
1219
/*
1220
* Iteration must be started by this function. This should also be used after
1221
* removing/dropping sptes from the rmap link because in such cases the
1222
* information in the iterator may not be valid.
1223
*
1224
* Returns sptep if found, NULL otherwise.
1225
*/
1226
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1227
struct rmap_iterator *iter)
1228
{
1229
unsigned long rmap_val = kvm_rmap_get(rmap_head);
1230
1231
if (!rmap_val)
1232
return NULL;
1233
1234
if (!(rmap_val & KVM_RMAP_MANY)) {
1235
iter->desc = NULL;
1236
return (u64 *)rmap_val;
1237
}
1238
1239
iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1240
iter->pos = 0;
1241
return iter->desc->sptes[iter->pos];
1242
}
1243
1244
/*
1245
* Must be used with a valid iterator: e.g. after rmap_get_first().
1246
*
1247
* Returns sptep if found, NULL otherwise.
1248
*/
1249
static u64 *rmap_get_next(struct rmap_iterator *iter)
1250
{
1251
if (iter->desc) {
1252
if (iter->pos < PTE_LIST_EXT - 1) {
1253
++iter->pos;
1254
if (iter->desc->sptes[iter->pos])
1255
return iter->desc->sptes[iter->pos];
1256
}
1257
1258
iter->desc = iter->desc->more;
1259
1260
if (iter->desc) {
1261
iter->pos = 0;
1262
/* desc->sptes[0] cannot be NULL */
1263
return iter->desc->sptes[iter->pos];
1264
}
1265
}
1266
1267
return NULL;
1268
}
1269
1270
#define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1271
for (_sptep_ = rmap_get_first(_rmap_head_, _iter_); \
1272
_sptep_; _sptep_ = rmap_get_next(_iter_))
1273
1274
#define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1275
__for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1276
if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_)))) \
1277
1278
#define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_) \
1279
__for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1280
if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep)))
1281
1282
static void drop_spte(struct kvm *kvm, u64 *sptep)
1283
{
1284
u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1285
1286
if (is_shadow_present_pte(old_spte))
1287
rmap_remove(kvm, sptep);
1288
}
1289
1290
static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1291
{
1292
struct kvm_mmu_page *sp;
1293
1294
sp = sptep_to_sp(sptep);
1295
WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1296
1297
drop_spte(kvm, sptep);
1298
1299
if (flush)
1300
kvm_flush_remote_tlbs_sptep(kvm, sptep);
1301
}
1302
1303
/*
1304
* Write-protect on the specified @sptep, @pt_protect indicates whether
1305
* spte write-protection is caused by protecting shadow page table.
1306
*
1307
* Note: write protection is difference between dirty logging and spte
1308
* protection:
1309
* - for dirty logging, the spte can be set to writable at anytime if
1310
* its dirty bitmap is properly set.
1311
* - for spte protection, the spte can be writable only after unsync-ing
1312
* shadow page.
1313
*
1314
* Return true if tlb need be flushed.
1315
*/
1316
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1317
{
1318
u64 spte = *sptep;
1319
1320
if (!is_writable_pte(spte) &&
1321
!(pt_protect && is_mmu_writable_spte(spte)))
1322
return false;
1323
1324
if (pt_protect)
1325
spte &= ~shadow_mmu_writable_mask;
1326
spte = spte & ~PT_WRITABLE_MASK;
1327
1328
return mmu_spte_update(sptep, spte);
1329
}
1330
1331
static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1332
bool pt_protect)
1333
{
1334
u64 *sptep;
1335
struct rmap_iterator iter;
1336
bool flush = false;
1337
1338
for_each_rmap_spte(rmap_head, &iter, sptep)
1339
flush |= spte_write_protect(sptep, pt_protect);
1340
1341
return flush;
1342
}
1343
1344
static bool spte_clear_dirty(u64 *sptep)
1345
{
1346
u64 spte = *sptep;
1347
1348
KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1349
spte &= ~shadow_dirty_mask;
1350
return mmu_spte_update(sptep, spte);
1351
}
1352
1353
/*
1354
* Gets the GFN ready for another round of dirty logging by clearing the
1355
* - D bit on ad-enabled SPTEs, and
1356
* - W bit on ad-disabled SPTEs.
1357
* Returns true iff any D or W bits were cleared.
1358
*/
1359
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1360
const struct kvm_memory_slot *slot)
1361
{
1362
u64 *sptep;
1363
struct rmap_iterator iter;
1364
bool flush = false;
1365
1366
for_each_rmap_spte(rmap_head, &iter, sptep) {
1367
if (spte_ad_need_write_protect(*sptep))
1368
flush |= test_and_clear_bit(PT_WRITABLE_SHIFT,
1369
(unsigned long *)sptep);
1370
else
1371
flush |= spte_clear_dirty(sptep);
1372
}
1373
1374
return flush;
1375
}
1376
1377
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1378
struct kvm_memory_slot *slot,
1379
gfn_t gfn_offset, unsigned long mask)
1380
{
1381
struct kvm_rmap_head *rmap_head;
1382
1383
if (tdp_mmu_enabled)
1384
kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1385
slot->base_gfn + gfn_offset, mask, true);
1386
1387
if (!kvm_memslots_have_rmaps(kvm))
1388
return;
1389
1390
while (mask) {
1391
rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1392
PG_LEVEL_4K, slot);
1393
rmap_write_protect(rmap_head, false);
1394
1395
/* clear the first set bit */
1396
mask &= mask - 1;
1397
}
1398
}
1399
1400
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1401
struct kvm_memory_slot *slot,
1402
gfn_t gfn_offset, unsigned long mask)
1403
{
1404
struct kvm_rmap_head *rmap_head;
1405
1406
if (tdp_mmu_enabled)
1407
kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1408
slot->base_gfn + gfn_offset, mask, false);
1409
1410
if (!kvm_memslots_have_rmaps(kvm))
1411
return;
1412
1413
while (mask) {
1414
rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1415
PG_LEVEL_4K, slot);
1416
__rmap_clear_dirty(kvm, rmap_head, slot);
1417
1418
/* clear the first set bit */
1419
mask &= mask - 1;
1420
}
1421
}
1422
1423
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1424
struct kvm_memory_slot *slot,
1425
gfn_t gfn_offset, unsigned long mask)
1426
{
1427
/*
1428
* If the slot was assumed to be "initially all dirty", write-protect
1429
* huge pages to ensure they are split to 4KiB on the first write (KVM
1430
* dirty logs at 4KiB granularity). If eager page splitting is enabled,
1431
* immediately try to split huge pages, e.g. so that vCPUs don't get
1432
* saddled with the cost of splitting.
1433
*
1434
* The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1435
* of memslot has no such restriction, so the range can cross two large
1436
* pages.
1437
*/
1438
if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1439
gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1440
gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1441
1442
if (READ_ONCE(eager_page_split))
1443
kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K);
1444
1445
kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1446
1447
/* Cross two large pages? */
1448
if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1449
ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1450
kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1451
PG_LEVEL_2M);
1452
}
1453
1454
/*
1455
* (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in
1456
* mask. If PML is enabled and the GFN doesn't need to be write-
1457
* protected for other reasons, e.g. shadow paging, clear the Dirty bit.
1458
* Otherwise clear the Writable bit.
1459
*
1460
* Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is
1461
* enabled but it chooses between clearing the Dirty bit and Writeable
1462
* bit based on the context.
1463
*/
1464
if (kvm->arch.cpu_dirty_log_size)
1465
kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1466
else
1467
kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1468
}
1469
1470
int kvm_cpu_dirty_log_size(struct kvm *kvm)
1471
{
1472
return kvm->arch.cpu_dirty_log_size;
1473
}
1474
1475
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1476
struct kvm_memory_slot *slot, u64 gfn,
1477
int min_level)
1478
{
1479
struct kvm_rmap_head *rmap_head;
1480
int i;
1481
bool write_protected = false;
1482
1483
if (kvm_memslots_have_rmaps(kvm)) {
1484
for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1485
rmap_head = gfn_to_rmap(gfn, i, slot);
1486
write_protected |= rmap_write_protect(rmap_head, true);
1487
}
1488
}
1489
1490
if (tdp_mmu_enabled)
1491
write_protected |=
1492
kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1493
1494
return write_protected;
1495
}
1496
1497
static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1498
{
1499
struct kvm_memory_slot *slot;
1500
1501
slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1502
return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1503
}
1504
1505
static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1506
const struct kvm_memory_slot *slot)
1507
{
1508
return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1509
}
1510
1511
struct slot_rmap_walk_iterator {
1512
/* input fields. */
1513
const struct kvm_memory_slot *slot;
1514
gfn_t start_gfn;
1515
gfn_t end_gfn;
1516
int start_level;
1517
int end_level;
1518
1519
/* output fields. */
1520
gfn_t gfn;
1521
struct kvm_rmap_head *rmap;
1522
int level;
1523
1524
/* private field. */
1525
struct kvm_rmap_head *end_rmap;
1526
};
1527
1528
static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1529
int level)
1530
{
1531
iterator->level = level;
1532
iterator->gfn = iterator->start_gfn;
1533
iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1534
iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1535
}
1536
1537
static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1538
const struct kvm_memory_slot *slot,
1539
int start_level, int end_level,
1540
gfn_t start_gfn, gfn_t end_gfn)
1541
{
1542
iterator->slot = slot;
1543
iterator->start_level = start_level;
1544
iterator->end_level = end_level;
1545
iterator->start_gfn = start_gfn;
1546
iterator->end_gfn = end_gfn;
1547
1548
rmap_walk_init_level(iterator, iterator->start_level);
1549
}
1550
1551
static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1552
{
1553
return !!iterator->rmap;
1554
}
1555
1556
static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1557
{
1558
while (++iterator->rmap <= iterator->end_rmap) {
1559
iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level);
1560
1561
if (atomic_long_read(&iterator->rmap->val))
1562
return;
1563
}
1564
1565
if (++iterator->level > iterator->end_level) {
1566
iterator->rmap = NULL;
1567
return;
1568
}
1569
1570
rmap_walk_init_level(iterator, iterator->level);
1571
}
1572
1573
#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1574
_start_gfn, _end_gfn, _iter_) \
1575
for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1576
_end_level_, _start_gfn, _end_gfn); \
1577
slot_rmap_walk_okay(_iter_); \
1578
slot_rmap_walk_next(_iter_))
1579
1580
/* The return value indicates if tlb flush on all vcpus is needed. */
1581
typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
1582
struct kvm_rmap_head *rmap_head,
1583
const struct kvm_memory_slot *slot);
1584
1585
static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
1586
const struct kvm_memory_slot *slot,
1587
slot_rmaps_handler fn,
1588
int start_level, int end_level,
1589
gfn_t start_gfn, gfn_t end_gfn,
1590
bool can_yield, bool flush_on_yield,
1591
bool flush)
1592
{
1593
struct slot_rmap_walk_iterator iterator;
1594
1595
lockdep_assert_held_write(&kvm->mmu_lock);
1596
1597
for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
1598
end_gfn, &iterator) {
1599
if (iterator.rmap)
1600
flush |= fn(kvm, iterator.rmap, slot);
1601
1602
if (!can_yield)
1603
continue;
1604
1605
if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
1606
if (flush && flush_on_yield) {
1607
kvm_flush_remote_tlbs_range(kvm, start_gfn,
1608
iterator.gfn - start_gfn + 1);
1609
flush = false;
1610
}
1611
cond_resched_rwlock_write(&kvm->mmu_lock);
1612
}
1613
}
1614
1615
return flush;
1616
}
1617
1618
static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
1619
const struct kvm_memory_slot *slot,
1620
slot_rmaps_handler fn,
1621
int start_level, int end_level,
1622
bool flush_on_yield)
1623
{
1624
return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
1625
slot->base_gfn, slot->base_gfn + slot->npages - 1,
1626
true, flush_on_yield, false);
1627
}
1628
1629
static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
1630
const struct kvm_memory_slot *slot,
1631
slot_rmaps_handler fn,
1632
bool flush_on_yield)
1633
{
1634
return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
1635
}
1636
1637
static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm,
1638
const struct kvm_memory_slot *slot,
1639
gfn_t start, gfn_t end, bool can_yield,
1640
bool flush)
1641
{
1642
return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap,
1643
PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1644
start, end - 1, can_yield, true, flush);
1645
}
1646
1647
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1648
{
1649
bool flush = false;
1650
1651
/*
1652
* To prevent races with vCPUs faulting in a gfn using stale data,
1653
* zapping a gfn range must be protected by mmu_invalidate_in_progress
1654
* (and mmu_invalidate_seq). The only exception is memslot deletion;
1655
* in that case, SRCU synchronization ensures that SPTEs are zapped
1656
* after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the
1657
* invalid slot.
1658
*/
1659
lockdep_assert_once(kvm->mmu_invalidate_in_progress ||
1660
lockdep_is_held(&kvm->slots_lock));
1661
1662
if (kvm_memslots_have_rmaps(kvm))
1663
flush = __kvm_rmap_zap_gfn_range(kvm, range->slot,
1664
range->start, range->end,
1665
range->may_block, flush);
1666
1667
if (tdp_mmu_enabled)
1668
flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1669
1670
if (kvm_x86_ops.set_apic_access_page_addr &&
1671
range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1672
kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1673
1674
return flush;
1675
}
1676
1677
#define RMAP_RECYCLE_THRESHOLD 1000
1678
1679
static void __rmap_add(struct kvm *kvm,
1680
struct kvm_mmu_memory_cache *cache,
1681
const struct kvm_memory_slot *slot,
1682
u64 *spte, gfn_t gfn, unsigned int access)
1683
{
1684
struct kvm_mmu_page *sp;
1685
struct kvm_rmap_head *rmap_head;
1686
int rmap_count;
1687
1688
sp = sptep_to_sp(spte);
1689
kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1690
kvm_update_page_stats(kvm, sp->role.level, 1);
1691
1692
rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1693
rmap_count = pte_list_add(kvm, cache, spte, rmap_head);
1694
1695
if (rmap_count > kvm->stat.max_mmu_rmap_size)
1696
kvm->stat.max_mmu_rmap_size = rmap_count;
1697
if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1698
kvm_zap_all_rmap_sptes(kvm, rmap_head);
1699
kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1700
}
1701
}
1702
1703
static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1704
u64 *spte, gfn_t gfn, unsigned int access)
1705
{
1706
struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1707
1708
__rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1709
}
1710
1711
static bool kvm_rmap_age_gfn_range(struct kvm *kvm,
1712
struct kvm_gfn_range *range,
1713
bool test_only)
1714
{
1715
struct kvm_rmap_head *rmap_head;
1716
struct rmap_iterator iter;
1717
unsigned long rmap_val;
1718
bool young = false;
1719
u64 *sptep;
1720
gfn_t gfn;
1721
int level;
1722
u64 spte;
1723
1724
for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
1725
for (gfn = range->start; gfn < range->end;
1726
gfn += KVM_PAGES_PER_HPAGE(level)) {
1727
rmap_head = gfn_to_rmap(gfn, level, range->slot);
1728
rmap_val = kvm_rmap_lock_readonly(rmap_head);
1729
1730
for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) {
1731
if (!is_accessed_spte(spte))
1732
continue;
1733
1734
if (test_only) {
1735
kvm_rmap_unlock_readonly(rmap_head, rmap_val);
1736
return true;
1737
}
1738
1739
if (spte_ad_enabled(spte))
1740
clear_bit((ffs(shadow_accessed_mask) - 1),
1741
(unsigned long *)sptep);
1742
else
1743
/*
1744
* If the following cmpxchg fails, the
1745
* spte is being concurrently modified
1746
* and should most likely stay young.
1747
*/
1748
cmpxchg64(sptep, spte,
1749
mark_spte_for_access_track(spte));
1750
young = true;
1751
}
1752
1753
kvm_rmap_unlock_readonly(rmap_head, rmap_val);
1754
}
1755
}
1756
return young;
1757
}
1758
1759
static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm)
1760
{
1761
return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages);
1762
}
1763
1764
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1765
{
1766
bool young = false;
1767
1768
if (tdp_mmu_enabled)
1769
young = kvm_tdp_mmu_age_gfn_range(kvm, range);
1770
1771
if (kvm_may_have_shadow_mmu_sptes(kvm))
1772
young |= kvm_rmap_age_gfn_range(kvm, range, false);
1773
1774
return young;
1775
}
1776
1777
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1778
{
1779
bool young = false;
1780
1781
if (tdp_mmu_enabled)
1782
young = kvm_tdp_mmu_test_age_gfn(kvm, range);
1783
1784
if (young)
1785
return young;
1786
1787
if (kvm_may_have_shadow_mmu_sptes(kvm))
1788
young |= kvm_rmap_age_gfn_range(kvm, range, true);
1789
1790
return young;
1791
}
1792
1793
static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1794
{
1795
#ifdef CONFIG_KVM_PROVE_MMU
1796
int i;
1797
1798
for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1799
if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1800
pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1801
sp->spt[i], &sp->spt[i],
1802
kvm_mmu_page_get_gfn(sp, i));
1803
}
1804
#endif
1805
}
1806
1807
static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1808
{
1809
kvm->arch.n_used_mmu_pages++;
1810
kvm_account_pgtable_pages((void *)sp->spt, +1);
1811
}
1812
1813
static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1814
{
1815
kvm->arch.n_used_mmu_pages--;
1816
kvm_account_pgtable_pages((void *)sp->spt, -1);
1817
}
1818
1819
static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1820
{
1821
kvm_mmu_check_sptes_at_free(sp);
1822
1823
hlist_del(&sp->hash_link);
1824
list_del(&sp->link);
1825
free_page((unsigned long)sp->spt);
1826
free_page((unsigned long)sp->shadowed_translation);
1827
kmem_cache_free(mmu_page_header_cache, sp);
1828
}
1829
1830
static unsigned kvm_page_table_hashfn(gfn_t gfn)
1831
{
1832
return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1833
}
1834
1835
static void mmu_page_add_parent_pte(struct kvm *kvm,
1836
struct kvm_mmu_memory_cache *cache,
1837
struct kvm_mmu_page *sp, u64 *parent_pte)
1838
{
1839
if (!parent_pte)
1840
return;
1841
1842
pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes);
1843
}
1844
1845
static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1846
u64 *parent_pte)
1847
{
1848
pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1849
}
1850
1851
static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1852
u64 *parent_pte)
1853
{
1854
mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1855
mmu_spte_clear_no_track(parent_pte);
1856
}
1857
1858
static void mark_unsync(u64 *spte);
1859
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1860
{
1861
u64 *sptep;
1862
struct rmap_iterator iter;
1863
1864
for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1865
mark_unsync(sptep);
1866
}
1867
}
1868
1869
static void mark_unsync(u64 *spte)
1870
{
1871
struct kvm_mmu_page *sp;
1872
1873
sp = sptep_to_sp(spte);
1874
if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1875
return;
1876
if (sp->unsync_children++)
1877
return;
1878
kvm_mmu_mark_parents_unsync(sp);
1879
}
1880
1881
#define KVM_PAGE_ARRAY_NR 16
1882
1883
struct kvm_mmu_pages {
1884
struct mmu_page_and_offset {
1885
struct kvm_mmu_page *sp;
1886
unsigned int idx;
1887
} page[KVM_PAGE_ARRAY_NR];
1888
unsigned int nr;
1889
};
1890
1891
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1892
int idx)
1893
{
1894
int i;
1895
1896
if (sp->unsync)
1897
for (i=0; i < pvec->nr; i++)
1898
if (pvec->page[i].sp == sp)
1899
return 0;
1900
1901
pvec->page[pvec->nr].sp = sp;
1902
pvec->page[pvec->nr].idx = idx;
1903
pvec->nr++;
1904
return (pvec->nr == KVM_PAGE_ARRAY_NR);
1905
}
1906
1907
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1908
{
1909
--sp->unsync_children;
1910
WARN_ON_ONCE((int)sp->unsync_children < 0);
1911
__clear_bit(idx, sp->unsync_child_bitmap);
1912
}
1913
1914
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1915
struct kvm_mmu_pages *pvec)
1916
{
1917
int i, ret, nr_unsync_leaf = 0;
1918
1919
for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1920
struct kvm_mmu_page *child;
1921
u64 ent = sp->spt[i];
1922
1923
if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1924
clear_unsync_child_bit(sp, i);
1925
continue;
1926
}
1927
1928
child = spte_to_child_sp(ent);
1929
1930
if (child->unsync_children) {
1931
if (mmu_pages_add(pvec, child, i))
1932
return -ENOSPC;
1933
1934
ret = __mmu_unsync_walk(child, pvec);
1935
if (!ret) {
1936
clear_unsync_child_bit(sp, i);
1937
continue;
1938
} else if (ret > 0) {
1939
nr_unsync_leaf += ret;
1940
} else
1941
return ret;
1942
} else if (child->unsync) {
1943
nr_unsync_leaf++;
1944
if (mmu_pages_add(pvec, child, i))
1945
return -ENOSPC;
1946
} else
1947
clear_unsync_child_bit(sp, i);
1948
}
1949
1950
return nr_unsync_leaf;
1951
}
1952
1953
#define INVALID_INDEX (-1)
1954
1955
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1956
struct kvm_mmu_pages *pvec)
1957
{
1958
pvec->nr = 0;
1959
if (!sp->unsync_children)
1960
return 0;
1961
1962
mmu_pages_add(pvec, sp, INVALID_INDEX);
1963
return __mmu_unsync_walk(sp, pvec);
1964
}
1965
1966
static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1967
{
1968
WARN_ON_ONCE(!sp->unsync);
1969
trace_kvm_mmu_sync_page(sp);
1970
sp->unsync = 0;
1971
--kvm->stat.mmu_unsync;
1972
}
1973
1974
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1975
struct list_head *invalid_list);
1976
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1977
struct list_head *invalid_list);
1978
1979
static bool sp_has_gptes(struct kvm_mmu_page *sp)
1980
{
1981
if (sp->role.direct)
1982
return false;
1983
1984
if (sp->role.passthrough)
1985
return false;
1986
1987
return true;
1988
}
1989
1990
static __ro_after_init HLIST_HEAD(empty_page_hash);
1991
1992
static struct hlist_head *kvm_get_mmu_page_hash(struct kvm *kvm, gfn_t gfn)
1993
{
1994
/*
1995
* Ensure the load of the hash table pointer itself is ordered before
1996
* loads to walk the table. The pointer is set at runtime outside of
1997
* mmu_lock when the TDP MMU is enabled, i.e. when the hash table of
1998
* shadow pages becomes necessary only when KVM needs to shadow L1's
1999
* TDP for an L2 guest. Pairs with the smp_store_release() in
2000
* kvm_mmu_alloc_page_hash().
2001
*/
2002
struct hlist_head *page_hash = smp_load_acquire(&kvm->arch.mmu_page_hash);
2003
2004
lockdep_assert_held(&kvm->mmu_lock);
2005
2006
if (!page_hash)
2007
return &empty_page_hash;
2008
2009
return &page_hash[kvm_page_table_hashfn(gfn)];
2010
}
2011
2012
#define for_each_valid_sp(_kvm, _sp, _list) \
2013
hlist_for_each_entry(_sp, _list, hash_link) \
2014
if (is_obsolete_sp((_kvm), (_sp))) { \
2015
} else
2016
2017
#define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
2018
for_each_valid_sp(_kvm, _sp, kvm_get_mmu_page_hash(_kvm, _gfn)) \
2019
if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
2020
2021
static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2022
{
2023
union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
2024
2025
/*
2026
* Ignore various flags when verifying that it's safe to sync a shadow
2027
* page using the current MMU context.
2028
*
2029
* - level: not part of the overall MMU role and will never match as the MMU's
2030
* level tracks the root level
2031
* - access: updated based on the new guest PTE
2032
* - quadrant: not part of the overall MMU role (similar to level)
2033
*/
2034
const union kvm_mmu_page_role sync_role_ign = {
2035
.level = 0xf,
2036
.access = 0x7,
2037
.quadrant = 0x3,
2038
.passthrough = 0x1,
2039
};
2040
2041
/*
2042
* Direct pages can never be unsync, and KVM should never attempt to
2043
* sync a shadow page for a different MMU context, e.g. if the role
2044
* differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
2045
* reserved bits checks will be wrong, etc...
2046
*/
2047
if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
2048
(sp->role.word ^ root_role.word) & ~sync_role_ign.word))
2049
return false;
2050
2051
return true;
2052
}
2053
2054
static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
2055
{
2056
/* sp->spt[i] has initial value of shadow page table allocation */
2057
if (sp->spt[i] == SHADOW_NONPRESENT_VALUE)
2058
return 0;
2059
2060
return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
2061
}
2062
2063
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2064
{
2065
int flush = 0;
2066
int i;
2067
2068
if (!kvm_sync_page_check(vcpu, sp))
2069
return -1;
2070
2071
for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
2072
int ret = kvm_sync_spte(vcpu, sp, i);
2073
2074
if (ret < -1)
2075
return -1;
2076
flush |= ret;
2077
}
2078
2079
/*
2080
* Note, any flush is purely for KVM's correctness, e.g. when dropping
2081
* an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
2082
* unmap or dirty logging event doesn't fail to flush. The guest is
2083
* responsible for flushing the TLB to ensure any changes in protection
2084
* bits are recognized, i.e. until the guest flushes or page faults on
2085
* a relevant address, KVM is architecturally allowed to let vCPUs use
2086
* cached translations with the old protection bits.
2087
*/
2088
return flush;
2089
}
2090
2091
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2092
struct list_head *invalid_list)
2093
{
2094
int ret = __kvm_sync_page(vcpu, sp);
2095
2096
if (ret < 0)
2097
kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2098
return ret;
2099
}
2100
2101
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2102
struct list_head *invalid_list,
2103
bool remote_flush)
2104
{
2105
if (!remote_flush && list_empty(invalid_list))
2106
return false;
2107
2108
if (!list_empty(invalid_list))
2109
kvm_mmu_commit_zap_page(kvm, invalid_list);
2110
else
2111
kvm_flush_remote_tlbs(kvm);
2112
return true;
2113
}
2114
2115
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2116
{
2117
if (sp->role.invalid)
2118
return true;
2119
2120
/* TDP MMU pages do not use the MMU generation. */
2121
return !is_tdp_mmu_page(sp) &&
2122
unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2123
}
2124
2125
struct mmu_page_path {
2126
struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2127
unsigned int idx[PT64_ROOT_MAX_LEVEL];
2128
};
2129
2130
#define for_each_sp(pvec, sp, parents, i) \
2131
for (i = mmu_pages_first(&pvec, &parents); \
2132
i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2133
i = mmu_pages_next(&pvec, &parents, i))
2134
2135
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2136
struct mmu_page_path *parents,
2137
int i)
2138
{
2139
int n;
2140
2141
for (n = i+1; n < pvec->nr; n++) {
2142
struct kvm_mmu_page *sp = pvec->page[n].sp;
2143
unsigned idx = pvec->page[n].idx;
2144
int level = sp->role.level;
2145
2146
parents->idx[level-1] = idx;
2147
if (level == PG_LEVEL_4K)
2148
break;
2149
2150
parents->parent[level-2] = sp;
2151
}
2152
2153
return n;
2154
}
2155
2156
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2157
struct mmu_page_path *parents)
2158
{
2159
struct kvm_mmu_page *sp;
2160
int level;
2161
2162
if (pvec->nr == 0)
2163
return 0;
2164
2165
WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
2166
2167
sp = pvec->page[0].sp;
2168
level = sp->role.level;
2169
WARN_ON_ONCE(level == PG_LEVEL_4K);
2170
2171
parents->parent[level-2] = sp;
2172
2173
/* Also set up a sentinel. Further entries in pvec are all
2174
* children of sp, so this element is never overwritten.
2175
*/
2176
parents->parent[level-1] = NULL;
2177
return mmu_pages_next(pvec, parents, 0);
2178
}
2179
2180
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2181
{
2182
struct kvm_mmu_page *sp;
2183
unsigned int level = 0;
2184
2185
do {
2186
unsigned int idx = parents->idx[level];
2187
sp = parents->parent[level];
2188
if (!sp)
2189
return;
2190
2191
WARN_ON_ONCE(idx == INVALID_INDEX);
2192
clear_unsync_child_bit(sp, idx);
2193
level++;
2194
} while (!sp->unsync_children);
2195
}
2196
2197
static int mmu_sync_children(struct kvm_vcpu *vcpu,
2198
struct kvm_mmu_page *parent, bool can_yield)
2199
{
2200
int i;
2201
struct kvm_mmu_page *sp;
2202
struct mmu_page_path parents;
2203
struct kvm_mmu_pages pages;
2204
LIST_HEAD(invalid_list);
2205
bool flush = false;
2206
2207
while (mmu_unsync_walk(parent, &pages)) {
2208
bool protected = false;
2209
2210
for_each_sp(pages, sp, parents, i)
2211
protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2212
2213
if (protected) {
2214
kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2215
flush = false;
2216
}
2217
2218
for_each_sp(pages, sp, parents, i) {
2219
kvm_unlink_unsync_page(vcpu->kvm, sp);
2220
flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2221
mmu_pages_clear_parents(&parents);
2222
}
2223
if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2224
kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2225
if (!can_yield) {
2226
kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2227
return -EINTR;
2228
}
2229
2230
cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2231
flush = false;
2232
}
2233
}
2234
2235
kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2236
return 0;
2237
}
2238
2239
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2240
{
2241
atomic_set(&sp->write_flooding_count, 0);
2242
}
2243
2244
static void clear_sp_write_flooding_count(u64 *spte)
2245
{
2246
__clear_sp_write_flooding_count(sptep_to_sp(spte));
2247
}
2248
2249
/*
2250
* The vCPU is required when finding indirect shadow pages; the shadow
2251
* page may already exist and syncing it needs the vCPU pointer in
2252
* order to read guest page tables. Direct shadow pages are never
2253
* unsync, thus @vcpu can be NULL if @role.direct is true.
2254
*/
2255
static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2256
struct kvm_vcpu *vcpu,
2257
gfn_t gfn,
2258
struct hlist_head *sp_list,
2259
union kvm_mmu_page_role role)
2260
{
2261
struct kvm_mmu_page *sp;
2262
int ret;
2263
int collisions = 0;
2264
LIST_HEAD(invalid_list);
2265
2266
for_each_valid_sp(kvm, sp, sp_list) {
2267
if (sp->gfn != gfn) {
2268
collisions++;
2269
continue;
2270
}
2271
2272
if (sp->role.word != role.word) {
2273
/*
2274
* If the guest is creating an upper-level page, zap
2275
* unsync pages for the same gfn. While it's possible
2276
* the guest is using recursive page tables, in all
2277
* likelihood the guest has stopped using the unsync
2278
* page and is installing a completely unrelated page.
2279
* Unsync pages must not be left as is, because the new
2280
* upper-level page will be write-protected.
2281
*/
2282
if (role.level > PG_LEVEL_4K && sp->unsync)
2283
kvm_mmu_prepare_zap_page(kvm, sp,
2284
&invalid_list);
2285
continue;
2286
}
2287
2288
/* unsync and write-flooding only apply to indirect SPs. */
2289
if (sp->role.direct)
2290
goto out;
2291
2292
if (sp->unsync) {
2293
if (KVM_BUG_ON(!vcpu, kvm))
2294
break;
2295
2296
/*
2297
* The page is good, but is stale. kvm_sync_page does
2298
* get the latest guest state, but (unlike mmu_unsync_children)
2299
* it doesn't write-protect the page or mark it synchronized!
2300
* This way the validity of the mapping is ensured, but the
2301
* overhead of write protection is not incurred until the
2302
* guest invalidates the TLB mapping. This allows multiple
2303
* SPs for a single gfn to be unsync.
2304
*
2305
* If the sync fails, the page is zapped. If so, break
2306
* in order to rebuild it.
2307
*/
2308
ret = kvm_sync_page(vcpu, sp, &invalid_list);
2309
if (ret < 0)
2310
break;
2311
2312
WARN_ON_ONCE(!list_empty(&invalid_list));
2313
if (ret > 0)
2314
kvm_flush_remote_tlbs(kvm);
2315
}
2316
2317
__clear_sp_write_flooding_count(sp);
2318
2319
goto out;
2320
}
2321
2322
sp = NULL;
2323
++kvm->stat.mmu_cache_miss;
2324
2325
out:
2326
kvm_mmu_commit_zap_page(kvm, &invalid_list);
2327
2328
if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2329
kvm->stat.max_mmu_page_hash_collisions = collisions;
2330
return sp;
2331
}
2332
2333
/* Caches used when allocating a new shadow page. */
2334
struct shadow_page_caches {
2335
struct kvm_mmu_memory_cache *page_header_cache;
2336
struct kvm_mmu_memory_cache *shadow_page_cache;
2337
struct kvm_mmu_memory_cache *shadowed_info_cache;
2338
};
2339
2340
static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2341
struct shadow_page_caches *caches,
2342
gfn_t gfn,
2343
struct hlist_head *sp_list,
2344
union kvm_mmu_page_role role)
2345
{
2346
struct kvm_mmu_page *sp;
2347
2348
sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2349
sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2350
if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL)
2351
sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2352
2353
set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2354
2355
INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2356
2357
/*
2358
* active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2359
* depends on valid pages being added to the head of the list. See
2360
* comments in kvm_zap_obsolete_pages().
2361
*/
2362
sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2363
list_add(&sp->link, &kvm->arch.active_mmu_pages);
2364
kvm_account_mmu_page(kvm, sp);
2365
2366
sp->gfn = gfn;
2367
sp->role = role;
2368
hlist_add_head(&sp->hash_link, sp_list);
2369
if (sp_has_gptes(sp))
2370
account_shadowed(kvm, sp);
2371
2372
return sp;
2373
}
2374
2375
/* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
2376
static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2377
struct kvm_vcpu *vcpu,
2378
struct shadow_page_caches *caches,
2379
gfn_t gfn,
2380
union kvm_mmu_page_role role)
2381
{
2382
struct hlist_head *sp_list;
2383
struct kvm_mmu_page *sp;
2384
bool created = false;
2385
2386
/*
2387
* No need for memory barriers, unlike in kvm_get_mmu_page_hash(), as
2388
* mmu_page_hash must be set prior to creating the first shadow root,
2389
* i.e. reaching this point is fully serialized by slots_arch_lock.
2390
*/
2391
BUG_ON(!kvm->arch.mmu_page_hash);
2392
sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2393
2394
sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2395
if (!sp) {
2396
created = true;
2397
sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2398
}
2399
2400
trace_kvm_mmu_get_page(sp, created);
2401
return sp;
2402
}
2403
2404
static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2405
gfn_t gfn,
2406
union kvm_mmu_page_role role)
2407
{
2408
struct shadow_page_caches caches = {
2409
.page_header_cache = &vcpu->arch.mmu_page_header_cache,
2410
.shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2411
.shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2412
};
2413
2414
return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2415
}
2416
2417
static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2418
unsigned int access)
2419
{
2420
struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2421
union kvm_mmu_page_role role;
2422
2423
role = parent_sp->role;
2424
role.level--;
2425
role.access = access;
2426
role.direct = direct;
2427
role.passthrough = 0;
2428
2429
/*
2430
* If the guest has 4-byte PTEs then that means it's using 32-bit,
2431
* 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2432
* (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2433
* shadow each guest page table with multiple shadow page tables, which
2434
* requires extra bookkeeping in the role.
2435
*
2436
* Specifically, to shadow the guest's page directory (which covers a
2437
* 4GiB address space), KVM uses 4 PAE page directories, each mapping
2438
* 1GiB of the address space. @role.quadrant encodes which quarter of
2439
* the address space each maps.
2440
*
2441
* To shadow the guest's page tables (which each map a 4MiB region), KVM
2442
* uses 2 PAE page tables, each mapping a 2MiB region. For these,
2443
* @role.quadrant encodes which half of the region they map.
2444
*
2445
* Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2446
* consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow
2447
* PDPTEs; those 4 PAE page directories are pre-allocated and their
2448
* quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes
2449
* bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume
2450
* bit 21 in the PTE (the child here), KVM propagates that bit to the
2451
* quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE
2452
* covers bit 21 (see above), thus the quadrant is calculated from the
2453
* _least_ significant bit of the PDE index.
2454
*/
2455
if (role.has_4_byte_gpte) {
2456
WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2457
role.quadrant = spte_index(sptep) & 1;
2458
}
2459
2460
return role;
2461
}
2462
2463
static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2464
u64 *sptep, gfn_t gfn,
2465
bool direct, unsigned int access)
2466
{
2467
union kvm_mmu_page_role role;
2468
2469
if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2470
return ERR_PTR(-EEXIST);
2471
2472
role = kvm_mmu_child_role(sptep, direct, access);
2473
return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2474
}
2475
2476
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2477
struct kvm_vcpu *vcpu, hpa_t root,
2478
u64 addr)
2479
{
2480
iterator->addr = addr;
2481
iterator->shadow_addr = root;
2482
iterator->level = vcpu->arch.mmu->root_role.level;
2483
2484
if (iterator->level >= PT64_ROOT_4LEVEL &&
2485
vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2486
!vcpu->arch.mmu->root_role.direct)
2487
iterator->level = PT32E_ROOT_LEVEL;
2488
2489
if (iterator->level == PT32E_ROOT_LEVEL) {
2490
/*
2491
* prev_root is currently only used for 64-bit hosts. So only
2492
* the active root_hpa is valid here.
2493
*/
2494
BUG_ON(root != vcpu->arch.mmu->root.hpa);
2495
2496
iterator->shadow_addr
2497
= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2498
iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2499
--iterator->level;
2500
if (!iterator->shadow_addr)
2501
iterator->level = 0;
2502
}
2503
}
2504
2505
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2506
struct kvm_vcpu *vcpu, u64 addr)
2507
{
2508
shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2509
addr);
2510
}
2511
2512
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2513
{
2514
if (iterator->level < PG_LEVEL_4K)
2515
return false;
2516
2517
iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2518
iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2519
return true;
2520
}
2521
2522
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2523
u64 spte)
2524
{
2525
if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2526
iterator->level = 0;
2527
return;
2528
}
2529
2530
iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2531
--iterator->level;
2532
}
2533
2534
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2535
{
2536
__shadow_walk_next(iterator, *iterator->sptep);
2537
}
2538
2539
static void __link_shadow_page(struct kvm *kvm,
2540
struct kvm_mmu_memory_cache *cache, u64 *sptep,
2541
struct kvm_mmu_page *sp, bool flush)
2542
{
2543
u64 spte;
2544
2545
BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2546
2547
/*
2548
* If an SPTE is present already, it must be a leaf and therefore
2549
* a large one. Drop it, and flush the TLB if needed, before
2550
* installing sp.
2551
*/
2552
if (is_shadow_present_pte(*sptep))
2553
drop_large_spte(kvm, sptep, flush);
2554
2555
spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2556
2557
mmu_spte_set(sptep, spte);
2558
2559
mmu_page_add_parent_pte(kvm, cache, sp, sptep);
2560
2561
/*
2562
* The non-direct sub-pagetable must be updated before linking. For
2563
* L1 sp, the pagetable is updated via kvm_sync_page() in
2564
* kvm_mmu_find_shadow_page() without write-protecting the gfn,
2565
* so sp->unsync can be true or false. For higher level non-direct
2566
* sp, the pagetable is updated/synced via mmu_sync_children() in
2567
* FNAME(fetch)(), so sp->unsync_children can only be false.
2568
* WARN_ON_ONCE() if anything happens unexpectedly.
2569
*/
2570
if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2571
mark_unsync(sptep);
2572
}
2573
2574
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2575
struct kvm_mmu_page *sp)
2576
{
2577
__link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2578
}
2579
2580
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2581
unsigned direct_access)
2582
{
2583
if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2584
struct kvm_mmu_page *child;
2585
2586
/*
2587
* For the direct sp, if the guest pte's dirty bit
2588
* changed form clean to dirty, it will corrupt the
2589
* sp's access: allow writable in the read-only sp,
2590
* so we should update the spte at this point to get
2591
* a new sp with the correct access.
2592
*/
2593
child = spte_to_child_sp(*sptep);
2594
if (child->role.access == direct_access)
2595
return;
2596
2597
drop_parent_pte(vcpu->kvm, child, sptep);
2598
kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2599
}
2600
}
2601
2602
/* Returns the number of zapped non-leaf child shadow pages. */
2603
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2604
u64 *spte, struct list_head *invalid_list)
2605
{
2606
u64 pte;
2607
struct kvm_mmu_page *child;
2608
2609
pte = *spte;
2610
if (is_shadow_present_pte(pte)) {
2611
if (is_last_spte(pte, sp->role.level)) {
2612
drop_spte(kvm, spte);
2613
} else {
2614
child = spte_to_child_sp(pte);
2615
drop_parent_pte(kvm, child, spte);
2616
2617
/*
2618
* Recursively zap nested TDP SPs, parentless SPs are
2619
* unlikely to be used again in the near future. This
2620
* avoids retaining a large number of stale nested SPs.
2621
*/
2622
if (tdp_enabled && invalid_list &&
2623
child->role.guest_mode &&
2624
!atomic_long_read(&child->parent_ptes.val))
2625
return kvm_mmu_prepare_zap_page(kvm, child,
2626
invalid_list);
2627
}
2628
} else if (is_mmio_spte(kvm, pte)) {
2629
mmu_spte_clear_no_track(spte);
2630
}
2631
return 0;
2632
}
2633
2634
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2635
struct kvm_mmu_page *sp,
2636
struct list_head *invalid_list)
2637
{
2638
int zapped = 0;
2639
unsigned i;
2640
2641
for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2642
zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2643
2644
return zapped;
2645
}
2646
2647
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2648
{
2649
u64 *sptep;
2650
struct rmap_iterator iter;
2651
2652
while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2653
drop_parent_pte(kvm, sp, sptep);
2654
}
2655
2656
static int mmu_zap_unsync_children(struct kvm *kvm,
2657
struct kvm_mmu_page *parent,
2658
struct list_head *invalid_list)
2659
{
2660
int i, zapped = 0;
2661
struct mmu_page_path parents;
2662
struct kvm_mmu_pages pages;
2663
2664
if (parent->role.level == PG_LEVEL_4K)
2665
return 0;
2666
2667
while (mmu_unsync_walk(parent, &pages)) {
2668
struct kvm_mmu_page *sp;
2669
2670
for_each_sp(pages, sp, parents, i) {
2671
kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2672
mmu_pages_clear_parents(&parents);
2673
zapped++;
2674
}
2675
}
2676
2677
return zapped;
2678
}
2679
2680
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2681
struct kvm_mmu_page *sp,
2682
struct list_head *invalid_list,
2683
int *nr_zapped)
2684
{
2685
bool list_unstable, zapped_root = false;
2686
2687
lockdep_assert_held_write(&kvm->mmu_lock);
2688
trace_kvm_mmu_prepare_zap_page(sp);
2689
++kvm->stat.mmu_shadow_zapped;
2690
*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2691
*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2692
kvm_mmu_unlink_parents(kvm, sp);
2693
2694
/* Zapping children means active_mmu_pages has become unstable. */
2695
list_unstable = *nr_zapped;
2696
2697
if (!sp->role.invalid && sp_has_gptes(sp))
2698
unaccount_shadowed(kvm, sp);
2699
2700
if (sp->unsync)
2701
kvm_unlink_unsync_page(kvm, sp);
2702
if (!sp->root_count) {
2703
/* Count self */
2704
(*nr_zapped)++;
2705
2706
/*
2707
* Already invalid pages (previously active roots) are not on
2708
* the active page list. See list_del() in the "else" case of
2709
* !sp->root_count.
2710
*/
2711
if (sp->role.invalid)
2712
list_add(&sp->link, invalid_list);
2713
else
2714
list_move(&sp->link, invalid_list);
2715
kvm_unaccount_mmu_page(kvm, sp);
2716
} else {
2717
/*
2718
* Remove the active root from the active page list, the root
2719
* will be explicitly freed when the root_count hits zero.
2720
*/
2721
list_del(&sp->link);
2722
2723
/*
2724
* Obsolete pages cannot be used on any vCPUs, see the comment
2725
* in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2726
* treats invalid shadow pages as being obsolete.
2727
*/
2728
zapped_root = !is_obsolete_sp(kvm, sp);
2729
}
2730
2731
if (sp->nx_huge_page_disallowed)
2732
unaccount_nx_huge_page(kvm, sp);
2733
2734
sp->role.invalid = 1;
2735
2736
/*
2737
* Make the request to free obsolete roots after marking the root
2738
* invalid, otherwise other vCPUs may not see it as invalid.
2739
*/
2740
if (zapped_root)
2741
kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2742
return list_unstable;
2743
}
2744
2745
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2746
struct list_head *invalid_list)
2747
{
2748
int nr_zapped;
2749
2750
__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2751
return nr_zapped;
2752
}
2753
2754
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2755
struct list_head *invalid_list)
2756
{
2757
struct kvm_mmu_page *sp, *nsp;
2758
2759
if (list_empty(invalid_list))
2760
return;
2761
2762
/*
2763
* We need to make sure everyone sees our modifications to
2764
* the page tables and see changes to vcpu->mode here. The barrier
2765
* in the kvm_flush_remote_tlbs() achieves this. This pairs
2766
* with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2767
*
2768
* In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2769
* guest mode and/or lockless shadow page table walks.
2770
*/
2771
kvm_flush_remote_tlbs(kvm);
2772
2773
list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2774
WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2775
kvm_mmu_free_shadow_page(sp);
2776
}
2777
}
2778
2779
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2780
unsigned long nr_to_zap)
2781
{
2782
unsigned long total_zapped = 0;
2783
struct kvm_mmu_page *sp, *tmp;
2784
LIST_HEAD(invalid_list);
2785
bool unstable;
2786
int nr_zapped;
2787
2788
if (list_empty(&kvm->arch.active_mmu_pages))
2789
return 0;
2790
2791
restart:
2792
list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2793
/*
2794
* Don't zap active root pages, the page itself can't be freed
2795
* and zapping it will just force vCPUs to realloc and reload.
2796
*/
2797
if (sp->root_count)
2798
continue;
2799
2800
unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2801
&nr_zapped);
2802
total_zapped += nr_zapped;
2803
if (total_zapped >= nr_to_zap)
2804
break;
2805
2806
if (unstable)
2807
goto restart;
2808
}
2809
2810
kvm_mmu_commit_zap_page(kvm, &invalid_list);
2811
2812
kvm->stat.mmu_recycled += total_zapped;
2813
return total_zapped;
2814
}
2815
2816
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2817
{
2818
if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2819
return kvm->arch.n_max_mmu_pages -
2820
kvm->arch.n_used_mmu_pages;
2821
2822
return 0;
2823
}
2824
2825
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2826
{
2827
unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2828
2829
if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2830
return 0;
2831
2832
kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2833
2834
/*
2835
* Note, this check is intentionally soft, it only guarantees that one
2836
* page is available, while the caller may end up allocating as many as
2837
* four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2838
* exceeding the (arbitrary by default) limit will not harm the host,
2839
* being too aggressive may unnecessarily kill the guest, and getting an
2840
* exact count is far more trouble than it's worth, especially in the
2841
* page fault paths.
2842
*/
2843
if (!kvm_mmu_available_pages(vcpu->kvm))
2844
return -ENOSPC;
2845
return 0;
2846
}
2847
2848
/*
2849
* Changing the number of mmu pages allocated to the vm
2850
* Note: if goal_nr_mmu_pages is too small, you will get dead lock
2851
*/
2852
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2853
{
2854
write_lock(&kvm->mmu_lock);
2855
2856
if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2857
kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2858
goal_nr_mmu_pages);
2859
2860
goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2861
}
2862
2863
kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2864
2865
write_unlock(&kvm->mmu_lock);
2866
}
2867
2868
bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2869
bool always_retry)
2870
{
2871
struct kvm *kvm = vcpu->kvm;
2872
LIST_HEAD(invalid_list);
2873
struct kvm_mmu_page *sp;
2874
gpa_t gpa = cr2_or_gpa;
2875
bool r = false;
2876
2877
/*
2878
* Bail early if there aren't any write-protected shadow pages to avoid
2879
* unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked
2880
* by a third party. Reading indirect_shadow_pages without holding
2881
* mmu_lock is safe, as this is purely an optimization, i.e. a false
2882
* positive is benign, and a false negative will simply result in KVM
2883
* skipping the unprotect+retry path, which is also an optimization.
2884
*/
2885
if (!READ_ONCE(kvm->arch.indirect_shadow_pages))
2886
goto out;
2887
2888
if (!vcpu->arch.mmu->root_role.direct) {
2889
gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
2890
if (gpa == INVALID_GPA)
2891
goto out;
2892
}
2893
2894
write_lock(&kvm->mmu_lock);
2895
for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa))
2896
kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2897
2898
/*
2899
* Snapshot the result before zapping, as zapping will remove all list
2900
* entries, i.e. checking the list later would yield a false negative.
2901
*/
2902
r = !list_empty(&invalid_list);
2903
kvm_mmu_commit_zap_page(kvm, &invalid_list);
2904
write_unlock(&kvm->mmu_lock);
2905
2906
out:
2907
if (r || always_retry) {
2908
vcpu->arch.last_retry_eip = kvm_rip_read(vcpu);
2909
vcpu->arch.last_retry_addr = cr2_or_gpa;
2910
}
2911
return r;
2912
}
2913
2914
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2915
{
2916
trace_kvm_mmu_unsync_page(sp);
2917
++kvm->stat.mmu_unsync;
2918
sp->unsync = 1;
2919
2920
kvm_mmu_mark_parents_unsync(sp);
2921
}
2922
2923
/*
2924
* Attempt to unsync any shadow pages that can be reached by the specified gfn,
2925
* KVM is creating a writable mapping for said gfn. Returns 0 if all pages
2926
* were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2927
* be write-protected.
2928
*/
2929
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2930
gfn_t gfn, bool synchronizing, bool prefetch)
2931
{
2932
struct kvm_mmu_page *sp;
2933
bool locked = false;
2934
2935
/*
2936
* Force write-protection if the page is being tracked. Note, the page
2937
* track machinery is used to write-protect upper-level shadow pages,
2938
* i.e. this guards the role.level == 4K assertion below!
2939
*/
2940
if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2941
return -EPERM;
2942
2943
/*
2944
* The page is not write-tracked, mark existing shadow pages unsync
2945
* unless KVM is synchronizing an unsync SP. In that case, KVM must
2946
* complete emulation of the guest TLB flush before allowing shadow
2947
* pages to become unsync (writable by the guest).
2948
*/
2949
for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2950
if (synchronizing)
2951
return -EPERM;
2952
2953
if (sp->unsync)
2954
continue;
2955
2956
if (prefetch)
2957
return -EEXIST;
2958
2959
/*
2960
* TDP MMU page faults require an additional spinlock as they
2961
* run with mmu_lock held for read, not write, and the unsync
2962
* logic is not thread safe. Take the spinklock regardless of
2963
* the MMU type to avoid extra conditionals/parameters, there's
2964
* no meaningful penalty if mmu_lock is held for write.
2965
*/
2966
if (!locked) {
2967
locked = true;
2968
spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2969
2970
/*
2971
* Recheck after taking the spinlock, a different vCPU
2972
* may have since marked the page unsync. A false
2973
* negative on the unprotected check above is not
2974
* possible as clearing sp->unsync _must_ hold mmu_lock
2975
* for write, i.e. unsync cannot transition from 1->0
2976
* while this CPU holds mmu_lock for read (or write).
2977
*/
2978
if (READ_ONCE(sp->unsync))
2979
continue;
2980
}
2981
2982
WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2983
kvm_unsync_page(kvm, sp);
2984
}
2985
if (locked)
2986
spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2987
2988
/*
2989
* We need to ensure that the marking of unsync pages is visible
2990
* before the SPTE is updated to allow writes because
2991
* kvm_mmu_sync_roots() checks the unsync flags without holding
2992
* the MMU lock and so can race with this. If the SPTE was updated
2993
* before the page had been marked as unsync-ed, something like the
2994
* following could happen:
2995
*
2996
* CPU 1 CPU 2
2997
* ---------------------------------------------------------------------
2998
* 1.2 Host updates SPTE
2999
* to be writable
3000
* 2.1 Guest writes a GPTE for GVA X.
3001
* (GPTE being in the guest page table shadowed
3002
* by the SP from CPU 1.)
3003
* This reads SPTE during the page table walk.
3004
* Since SPTE.W is read as 1, there is no
3005
* fault.
3006
*
3007
* 2.2 Guest issues TLB flush.
3008
* That causes a VM Exit.
3009
*
3010
* 2.3 Walking of unsync pages sees sp->unsync is
3011
* false and skips the page.
3012
*
3013
* 2.4 Guest accesses GVA X.
3014
* Since the mapping in the SP was not updated,
3015
* so the old mapping for GVA X incorrectly
3016
* gets used.
3017
* 1.1 Host marks SP
3018
* as unsync
3019
* (sp->unsync = true)
3020
*
3021
* The write barrier below ensures that 1.1 happens before 1.2 and thus
3022
* the situation in 2.4 does not arise. It pairs with the read barrier
3023
* in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
3024
*/
3025
smp_wmb();
3026
3027
return 0;
3028
}
3029
3030
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
3031
u64 *sptep, unsigned int pte_access, gfn_t gfn,
3032
kvm_pfn_t pfn, struct kvm_page_fault *fault)
3033
{
3034
struct kvm_mmu_page *sp = sptep_to_sp(sptep);
3035
int level = sp->role.level;
3036
int was_rmapped = 0;
3037
int ret = RET_PF_FIXED;
3038
bool flush = false;
3039
bool wrprot;
3040
u64 spte;
3041
3042
/* Prefetching always gets a writable pfn. */
3043
bool host_writable = !fault || fault->map_writable;
3044
bool prefetch = !fault || fault->prefetch;
3045
bool write_fault = fault && fault->write;
3046
3047
if (unlikely(is_noslot_pfn(pfn))) {
3048
vcpu->stat.pf_mmio_spte_created++;
3049
mark_mmio_spte(vcpu, sptep, gfn, pte_access);
3050
return RET_PF_EMULATE;
3051
}
3052
3053
if (is_shadow_present_pte(*sptep)) {
3054
if (prefetch && is_last_spte(*sptep, level) &&
3055
pfn == spte_to_pfn(*sptep))
3056
return RET_PF_SPURIOUS;
3057
3058
/*
3059
* If we overwrite a PTE page pointer with a 2MB PMD, unlink
3060
* the parent of the now unreachable PTE.
3061
*/
3062
if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
3063
struct kvm_mmu_page *child;
3064
u64 pte = *sptep;
3065
3066
child = spte_to_child_sp(pte);
3067
drop_parent_pte(vcpu->kvm, child, sptep);
3068
flush = true;
3069
} else if (WARN_ON_ONCE(pfn != spte_to_pfn(*sptep))) {
3070
drop_spte(vcpu->kvm, sptep);
3071
flush = true;
3072
} else
3073
was_rmapped = 1;
3074
}
3075
3076
wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
3077
false, host_writable, &spte);
3078
3079
if (*sptep == spte) {
3080
ret = RET_PF_SPURIOUS;
3081
} else {
3082
flush |= mmu_spte_update(sptep, spte);
3083
trace_kvm_mmu_set_spte(level, gfn, sptep);
3084
}
3085
3086
if (wrprot && write_fault)
3087
ret = RET_PF_WRITE_PROTECTED;
3088
3089
if (flush)
3090
kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
3091
3092
if (!was_rmapped) {
3093
WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
3094
rmap_add(vcpu, slot, sptep, gfn, pte_access);
3095
} else {
3096
/* Already rmapped but the pte_access bits may have changed. */
3097
kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
3098
}
3099
3100
return ret;
3101
}
3102
3103
static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep,
3104
int nr_pages, unsigned int access)
3105
{
3106
struct page *pages[PTE_PREFETCH_NUM];
3107
struct kvm_memory_slot *slot;
3108
int i;
3109
3110
if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM))
3111
return false;
3112
3113
slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3114
if (!slot)
3115
return false;
3116
3117
nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages);
3118
if (nr_pages <= 0)
3119
return false;
3120
3121
for (i = 0; i < nr_pages; i++, gfn++, sptep++) {
3122
mmu_set_spte(vcpu, slot, sptep, access, gfn,
3123
page_to_pfn(pages[i]), NULL);
3124
3125
/*
3126
* KVM always prefetches writable pages from the primary MMU,
3127
* and KVM can make its SPTE writable in the fast page handler,
3128
* without notifying the primary MMU. Mark pages/folios dirty
3129
* now to ensure file data is written back if it ends up being
3130
* written by the guest. Because KVM's prefetching GUPs
3131
* writable PTEs, the probability of unnecessary writeback is
3132
* extremely low.
3133
*/
3134
kvm_release_page_dirty(pages[i]);
3135
}
3136
3137
return true;
3138
}
3139
3140
static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3141
struct kvm_mmu_page *sp,
3142
u64 *start, u64 *end)
3143
{
3144
gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
3145
unsigned int access = sp->role.access;
3146
3147
return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access);
3148
}
3149
3150
static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3151
struct kvm_mmu_page *sp, u64 *sptep)
3152
{
3153
u64 *spte, *start = NULL;
3154
int i;
3155
3156
WARN_ON_ONCE(!sp->role.direct);
3157
3158
i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3159
spte = sp->spt + i;
3160
3161
for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3162
if (is_shadow_present_pte(*spte) || spte == sptep) {
3163
if (!start)
3164
continue;
3165
if (!direct_pte_prefetch_many(vcpu, sp, start, spte))
3166
return;
3167
3168
start = NULL;
3169
} else if (!start)
3170
start = spte;
3171
}
3172
if (start)
3173
direct_pte_prefetch_many(vcpu, sp, start, spte);
3174
}
3175
3176
static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3177
{
3178
struct kvm_mmu_page *sp;
3179
3180
sp = sptep_to_sp(sptep);
3181
3182
/*
3183
* Without accessed bits, there's no way to distinguish between
3184
* actually accessed translations and prefetched, so disable pte
3185
* prefetch if accessed bits aren't available.
3186
*/
3187
if (sp_ad_disabled(sp))
3188
return;
3189
3190
if (sp->role.level > PG_LEVEL_4K)
3191
return;
3192
3193
/*
3194
* If addresses are being invalidated, skip prefetching to avoid
3195
* accidentally prefetching those addresses.
3196
*/
3197
if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3198
return;
3199
3200
__direct_pte_prefetch(vcpu, sp, sptep);
3201
}
3202
3203
/*
3204
* Lookup the mapping level for @gfn in the current mm.
3205
*
3206
* WARNING! Use of host_pfn_mapping_level() requires the caller and the end
3207
* consumer to be tied into KVM's handlers for MMU notifier events!
3208
*
3209
* There are several ways to safely use this helper:
3210
*
3211
* - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
3212
* consuming it. In this case, mmu_lock doesn't need to be held during the
3213
* lookup, but it does need to be held while checking the MMU notifier.
3214
*
3215
* - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3216
* event for the hva. This can be done by explicit checking the MMU notifier
3217
* or by ensuring that KVM already has a valid mapping that covers the hva.
3218
*
3219
* - Do not use the result to install new mappings, e.g. use the host mapping
3220
* level only to decide whether or not to zap an entry. In this case, it's
3221
* not required to hold mmu_lock (though it's highly likely the caller will
3222
* want to hold mmu_lock anyways, e.g. to modify SPTEs).
3223
*
3224
* Note! The lookup can still race with modifications to host page tables, but
3225
* the above "rules" ensure KVM will not _consume_ the result of the walk if a
3226
* race with the primary MMU occurs.
3227
*/
3228
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3229
const struct kvm_memory_slot *slot)
3230
{
3231
int level = PG_LEVEL_4K;
3232
unsigned long hva;
3233
unsigned long flags;
3234
pgd_t pgd;
3235
p4d_t p4d;
3236
pud_t pud;
3237
pmd_t pmd;
3238
3239
/*
3240
* Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3241
* is not solely for performance, it's also necessary to avoid the
3242
* "writable" check in __gfn_to_hva_many(), which will always fail on
3243
* read-only memslots due to gfn_to_hva() assuming writes. Earlier
3244
* page fault steps have already verified the guest isn't writing a
3245
* read-only memslot.
3246
*/
3247
hva = __gfn_to_hva_memslot(slot, gfn);
3248
3249
/*
3250
* Disable IRQs to prevent concurrent tear down of host page tables,
3251
* e.g. if the primary MMU promotes a P*D to a huge page and then frees
3252
* the original page table.
3253
*/
3254
local_irq_save(flags);
3255
3256
/*
3257
* Read each entry once. As above, a non-leaf entry can be promoted to
3258
* a huge page _during_ this walk. Re-reading the entry could send the
3259
* walk into the weeks, e.g. p*d_leaf() returns false (sees the old
3260
* value) and then p*d_offset() walks into the target huge page instead
3261
* of the old page table (sees the new value).
3262
*/
3263
pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3264
if (pgd_none(pgd))
3265
goto out;
3266
3267
p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3268
if (p4d_none(p4d) || !p4d_present(p4d))
3269
goto out;
3270
3271
pud = READ_ONCE(*pud_offset(&p4d, hva));
3272
if (pud_none(pud) || !pud_present(pud))
3273
goto out;
3274
3275
if (pud_leaf(pud)) {
3276
level = PG_LEVEL_1G;
3277
goto out;
3278
}
3279
3280
pmd = READ_ONCE(*pmd_offset(&pud, hva));
3281
if (pmd_none(pmd) || !pmd_present(pmd))
3282
goto out;
3283
3284
if (pmd_leaf(pmd))
3285
level = PG_LEVEL_2M;
3286
3287
out:
3288
local_irq_restore(flags);
3289
return level;
3290
}
3291
3292
static u8 kvm_max_level_for_order(int order)
3293
{
3294
BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G);
3295
3296
KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) &&
3297
order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) &&
3298
order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K));
3299
3300
if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G))
3301
return PG_LEVEL_1G;
3302
3303
if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
3304
return PG_LEVEL_2M;
3305
3306
return PG_LEVEL_4K;
3307
}
3308
3309
static u8 kvm_gmem_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault,
3310
const struct kvm_memory_slot *slot, gfn_t gfn,
3311
bool is_private)
3312
{
3313
u8 max_level, coco_level;
3314
kvm_pfn_t pfn;
3315
3316
/* For faults, use the gmem information that was resolved earlier. */
3317
if (fault) {
3318
pfn = fault->pfn;
3319
max_level = fault->max_level;
3320
} else {
3321
/* TODO: Call into guest_memfd once hugepages are supported. */
3322
WARN_ONCE(1, "Get pfn+order from guest_memfd");
3323
pfn = KVM_PFN_ERR_FAULT;
3324
max_level = PG_LEVEL_4K;
3325
}
3326
3327
if (max_level == PG_LEVEL_4K)
3328
return max_level;
3329
3330
/*
3331
* CoCo may influence the max mapping level, e.g. due to RMP or S-EPT
3332
* restrictions. A return of '0' means "no additional restrictions", to
3333
* allow for using an optional "ret0" static call.
3334
*/
3335
coco_level = kvm_x86_call(gmem_max_mapping_level)(kvm, pfn, is_private);
3336
if (coco_level)
3337
max_level = min(max_level, coco_level);
3338
3339
return max_level;
3340
}
3341
3342
int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault,
3343
const struct kvm_memory_slot *slot, gfn_t gfn)
3344
{
3345
struct kvm_lpage_info *linfo;
3346
int host_level, max_level;
3347
bool is_private;
3348
3349
lockdep_assert_held(&kvm->mmu_lock);
3350
3351
if (fault) {
3352
max_level = fault->max_level;
3353
is_private = fault->is_private;
3354
} else {
3355
max_level = PG_LEVEL_NUM;
3356
is_private = kvm_mem_is_private(kvm, gfn);
3357
}
3358
3359
max_level = min(max_level, max_huge_page_level);
3360
for ( ; max_level > PG_LEVEL_4K; max_level--) {
3361
linfo = lpage_info_slot(gfn, slot, max_level);
3362
if (!linfo->disallow_lpage)
3363
break;
3364
}
3365
3366
if (max_level == PG_LEVEL_4K)
3367
return PG_LEVEL_4K;
3368
3369
if (is_private || kvm_memslot_is_gmem_only(slot))
3370
host_level = kvm_gmem_max_mapping_level(kvm, fault, slot, gfn,
3371
is_private);
3372
else
3373
host_level = host_pfn_mapping_level(kvm, gfn, slot);
3374
return min(host_level, max_level);
3375
}
3376
3377
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3378
{
3379
struct kvm_memory_slot *slot = fault->slot;
3380
kvm_pfn_t mask;
3381
3382
fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3383
3384
if (unlikely(fault->max_level == PG_LEVEL_4K))
3385
return;
3386
3387
if (is_error_noslot_pfn(fault->pfn))
3388
return;
3389
3390
if (kvm_slot_dirty_track_enabled(slot))
3391
return;
3392
3393
/*
3394
* Enforce the iTLB multihit workaround after capturing the requested
3395
* level, which will be used to do precise, accurate accounting.
3396
*/
3397
fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, fault,
3398
fault->slot, fault->gfn);
3399
if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3400
return;
3401
3402
/*
3403
* mmu_invalidate_retry() was successful and mmu_lock is held, so
3404
* the pmd can't be split from under us.
3405
*/
3406
fault->goal_level = fault->req_level;
3407
mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3408
VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3409
fault->pfn &= ~mask;
3410
}
3411
3412
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3413
{
3414
if (cur_level > PG_LEVEL_4K &&
3415
cur_level == fault->goal_level &&
3416
is_shadow_present_pte(spte) &&
3417
!is_large_pte(spte) &&
3418
spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3419
/*
3420
* A small SPTE exists for this pfn, but FNAME(fetch),
3421
* direct_map(), or kvm_tdp_mmu_map() would like to create a
3422
* large PTE instead: just force them to go down another level,
3423
* patching back for them into pfn the next 9 bits of the
3424
* address.
3425
*/
3426
u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3427
KVM_PAGES_PER_HPAGE(cur_level - 1);
3428
fault->pfn |= fault->gfn & page_mask;
3429
fault->goal_level--;
3430
}
3431
}
3432
3433
static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3434
{
3435
struct kvm_shadow_walk_iterator it;
3436
struct kvm_mmu_page *sp;
3437
int ret;
3438
gfn_t base_gfn = fault->gfn;
3439
3440
kvm_mmu_hugepage_adjust(vcpu, fault);
3441
3442
trace_kvm_mmu_spte_requested(fault);
3443
for_each_shadow_entry(vcpu, fault->addr, it) {
3444
/*
3445
* We cannot overwrite existing page tables with an NX
3446
* large page, as the leaf could be executable.
3447
*/
3448
if (fault->nx_huge_page_workaround_enabled)
3449
disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3450
3451
base_gfn = gfn_round_for_level(fault->gfn, it.level);
3452
if (it.level == fault->goal_level)
3453
break;
3454
3455
sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3456
if (sp == ERR_PTR(-EEXIST))
3457
continue;
3458
3459
link_shadow_page(vcpu, it.sptep, sp);
3460
if (fault->huge_page_disallowed)
3461
account_nx_huge_page(vcpu->kvm, sp,
3462
fault->req_level >= it.level);
3463
}
3464
3465
if (WARN_ON_ONCE(it.level != fault->goal_level))
3466
return -EFAULT;
3467
3468
ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3469
base_gfn, fault->pfn, fault);
3470
if (ret == RET_PF_SPURIOUS)
3471
return ret;
3472
3473
direct_pte_prefetch(vcpu, it.sptep);
3474
return ret;
3475
}
3476
3477
static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3478
{
3479
unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3480
3481
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3482
}
3483
3484
static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3485
{
3486
if (is_sigpending_pfn(fault->pfn)) {
3487
kvm_handle_signal_exit(vcpu);
3488
return -EINTR;
3489
}
3490
3491
/*
3492
* Do not cache the mmio info caused by writing the readonly gfn
3493
* into the spte otherwise read access on readonly gfn also can
3494
* caused mmio page fault and treat it as mmio access.
3495
*/
3496
if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3497
return RET_PF_EMULATE;
3498
3499
if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3500
kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3501
return RET_PF_RETRY;
3502
}
3503
3504
return -EFAULT;
3505
}
3506
3507
static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3508
struct kvm_page_fault *fault,
3509
unsigned int access)
3510
{
3511
gva_t gva = fault->is_tdp ? 0 : fault->addr;
3512
3513
if (fault->is_private) {
3514
kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
3515
return -EFAULT;
3516
}
3517
3518
vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3519
access & shadow_mmio_access_mask);
3520
3521
fault->slot = NULL;
3522
fault->pfn = KVM_PFN_NOSLOT;
3523
fault->map_writable = false;
3524
3525
/*
3526
* If MMIO caching is disabled, emulate immediately without
3527
* touching the shadow page tables as attempting to install an
3528
* MMIO SPTE will just be an expensive nop.
3529
*/
3530
if (unlikely(!enable_mmio_caching))
3531
return RET_PF_EMULATE;
3532
3533
/*
3534
* Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3535
* any guest that generates such gfns is running nested and is being
3536
* tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3537
* only if L1's MAXPHYADDR is inaccurate with respect to the
3538
* hardware's).
3539
*/
3540
if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3541
return RET_PF_EMULATE;
3542
3543
return RET_PF_CONTINUE;
3544
}
3545
3546
static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault)
3547
{
3548
/*
3549
* Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3550
* reach the common page fault handler if the SPTE has an invalid MMIO
3551
* generation number. Refreshing the MMIO generation needs to go down
3552
* the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag!
3553
*/
3554
if (fault->rsvd)
3555
return false;
3556
3557
/*
3558
* For hardware-protected VMs, certain conditions like attempting to
3559
* perform a write to a page which is not in the state that the guest
3560
* expects it to be in can result in a nested/extended #PF. In this
3561
* case, the below code might misconstrue this situation as being the
3562
* result of a write-protected access, and treat it as a spurious case
3563
* rather than taking any action to satisfy the real source of the #PF
3564
* such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the
3565
* guest spinning on a #PF indefinitely, so don't attempt the fast path
3566
* in this case.
3567
*
3568
* Note that the kvm_mem_is_private() check might race with an
3569
* attribute update, but this will either result in the guest spinning
3570
* on RET_PF_SPURIOUS until the update completes, or an actual spurious
3571
* case might go down the slow path. Either case will resolve itself.
3572
*/
3573
if (kvm->arch.has_private_mem &&
3574
fault->is_private != kvm_mem_is_private(kvm, fault->gfn))
3575
return false;
3576
3577
/*
3578
* #PF can be fast if:
3579
*
3580
* 1. The shadow page table entry is not present and A/D bits are
3581
* disabled _by KVM_, which could mean that the fault is potentially
3582
* caused by access tracking (if enabled). If A/D bits are enabled
3583
* by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3584
* bits for L2 and employ access tracking, but the fast page fault
3585
* mechanism only supports direct MMUs.
3586
* 2. The shadow page table entry is present, the access is a write,
3587
* and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3588
* the fault was caused by a write-protection violation. If the
3589
* SPTE is MMU-writable (determined later), the fault can be fixed
3590
* by setting the Writable bit, which can be done out of mmu_lock.
3591
*/
3592
if (!fault->present)
3593
return !kvm_ad_enabled;
3594
3595
/*
3596
* Note, instruction fetches and writes are mutually exclusive, ignore
3597
* the "exec" flag.
3598
*/
3599
return fault->write;
3600
}
3601
3602
/*
3603
* Returns true if the SPTE was fixed successfully. Otherwise,
3604
* someone else modified the SPTE from its original value.
3605
*/
3606
static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3607
struct kvm_page_fault *fault,
3608
u64 *sptep, u64 old_spte, u64 new_spte)
3609
{
3610
/*
3611
* Theoretically we could also set dirty bit (and flush TLB) here in
3612
* order to eliminate unnecessary PML logging. See comments in
3613
* set_spte. But fast_page_fault is very unlikely to happen with PML
3614
* enabled, so we do not do this. This might result in the same GPA
3615
* to be logged in PML buffer again when the write really happens, and
3616
* eventually to be called by mark_page_dirty twice. But it's also no
3617
* harm. This also avoids the TLB flush needed after setting dirty bit
3618
* so non-PML cases won't be impacted.
3619
*
3620
* Compare with make_spte() where instead shadow_dirty_mask is set.
3621
*/
3622
if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3623
return false;
3624
3625
if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3626
mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3627
3628
return true;
3629
}
3630
3631
/*
3632
* Returns the last level spte pointer of the shadow page walk for the given
3633
* gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3634
* walk could be performed, returns NULL and *spte does not contain valid data.
3635
*
3636
* Contract:
3637
* - Must be called between walk_shadow_page_lockless_{begin,end}.
3638
* - The returned sptep must not be used after walk_shadow_page_lockless_end.
3639
*/
3640
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3641
{
3642
struct kvm_shadow_walk_iterator iterator;
3643
u64 old_spte;
3644
u64 *sptep = NULL;
3645
3646
for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3647
sptep = iterator.sptep;
3648
*spte = old_spte;
3649
}
3650
3651
return sptep;
3652
}
3653
3654
/*
3655
* Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3656
*/
3657
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3658
{
3659
struct kvm_mmu_page *sp;
3660
int ret = RET_PF_INVALID;
3661
u64 spte;
3662
u64 *sptep;
3663
uint retry_count = 0;
3664
3665
if (!page_fault_can_be_fast(vcpu->kvm, fault))
3666
return ret;
3667
3668
walk_shadow_page_lockless_begin(vcpu);
3669
3670
do {
3671
u64 new_spte;
3672
3673
if (tdp_mmu_enabled)
3674
sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte);
3675
else
3676
sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3677
3678
/*
3679
* It's entirely possible for the mapping to have been zapped
3680
* by a different task, but the root page should always be
3681
* available as the vCPU holds a reference to its root(s).
3682
*/
3683
if (WARN_ON_ONCE(!sptep))
3684
spte = FROZEN_SPTE;
3685
3686
if (!is_shadow_present_pte(spte))
3687
break;
3688
3689
sp = sptep_to_sp(sptep);
3690
if (!is_last_spte(spte, sp->role.level))
3691
break;
3692
3693
/*
3694
* Check whether the memory access that caused the fault would
3695
* still cause it if it were to be performed right now. If not,
3696
* then this is a spurious fault caused by TLB lazily flushed,
3697
* or some other CPU has already fixed the PTE after the
3698
* current CPU took the fault.
3699
*
3700
* Need not check the access of upper level table entries since
3701
* they are always ACC_ALL.
3702
*/
3703
if (is_access_allowed(fault, spte)) {
3704
ret = RET_PF_SPURIOUS;
3705
break;
3706
}
3707
3708
new_spte = spte;
3709
3710
/*
3711
* KVM only supports fixing page faults outside of MMU lock for
3712
* direct MMUs, nested MMUs are always indirect, and KVM always
3713
* uses A/D bits for non-nested MMUs. Thus, if A/D bits are
3714
* enabled, the SPTE can't be an access-tracked SPTE.
3715
*/
3716
if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte))
3717
new_spte = restore_acc_track_spte(new_spte) |
3718
shadow_accessed_mask;
3719
3720
/*
3721
* To keep things simple, only SPTEs that are MMU-writable can
3722
* be made fully writable outside of mmu_lock, e.g. only SPTEs
3723
* that were write-protected for dirty-logging or access
3724
* tracking are handled here. Don't bother checking if the
3725
* SPTE is writable to prioritize running with A/D bits enabled.
3726
* The is_access_allowed() check above handles the common case
3727
* of the fault being spurious, and the SPTE is known to be
3728
* shadow-present, i.e. except for access tracking restoration
3729
* making the new SPTE writable, the check is wasteful.
3730
*/
3731
if (fault->write && is_mmu_writable_spte(spte)) {
3732
new_spte |= PT_WRITABLE_MASK;
3733
3734
/*
3735
* Do not fix write-permission on the large spte when
3736
* dirty logging is enabled. Since we only dirty the
3737
* first page into the dirty-bitmap in
3738
* fast_pf_fix_direct_spte(), other pages are missed
3739
* if its slot has dirty logging enabled.
3740
*
3741
* Instead, we let the slow page fault path create a
3742
* normal spte to fix the access.
3743
*/
3744
if (sp->role.level > PG_LEVEL_4K &&
3745
kvm_slot_dirty_track_enabled(fault->slot))
3746
break;
3747
}
3748
3749
/* Verify that the fault can be handled in the fast path */
3750
if (new_spte == spte ||
3751
!is_access_allowed(fault, new_spte))
3752
break;
3753
3754
/*
3755
* Currently, fast page fault only works for direct mapping
3756
* since the gfn is not stable for indirect shadow page. See
3757
* Documentation/virt/kvm/locking.rst to get more detail.
3758
*/
3759
if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3760
ret = RET_PF_FIXED;
3761
break;
3762
}
3763
3764
if (++retry_count > 4) {
3765
pr_warn_once("Fast #PF retrying more than 4 times.\n");
3766
break;
3767
}
3768
3769
} while (true);
3770
3771
trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3772
walk_shadow_page_lockless_end(vcpu);
3773
3774
if (ret != RET_PF_INVALID)
3775
vcpu->stat.pf_fast++;
3776
3777
return ret;
3778
}
3779
3780
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3781
struct list_head *invalid_list)
3782
{
3783
struct kvm_mmu_page *sp;
3784
3785
if (!VALID_PAGE(*root_hpa))
3786
return;
3787
3788
sp = root_to_sp(*root_hpa);
3789
if (WARN_ON_ONCE(!sp))
3790
return;
3791
3792
if (is_tdp_mmu_page(sp)) {
3793
lockdep_assert_held_read(&kvm->mmu_lock);
3794
kvm_tdp_mmu_put_root(kvm, sp);
3795
} else {
3796
lockdep_assert_held_write(&kvm->mmu_lock);
3797
if (!--sp->root_count && sp->role.invalid)
3798
kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3799
}
3800
3801
*root_hpa = INVALID_PAGE;
3802
}
3803
3804
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3805
void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3806
ulong roots_to_free)
3807
{
3808
bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct;
3809
int i;
3810
LIST_HEAD(invalid_list);
3811
bool free_active_root;
3812
3813
WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3814
3815
BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3816
3817
/* Before acquiring the MMU lock, see if we need to do any real work. */
3818
free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3819
&& VALID_PAGE(mmu->root.hpa);
3820
3821
if (!free_active_root) {
3822
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3823
if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3824
VALID_PAGE(mmu->prev_roots[i].hpa))
3825
break;
3826
3827
if (i == KVM_MMU_NUM_PREV_ROOTS)
3828
return;
3829
}
3830
3831
if (is_tdp_mmu)
3832
read_lock(&kvm->mmu_lock);
3833
else
3834
write_lock(&kvm->mmu_lock);
3835
3836
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3837
if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3838
mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3839
&invalid_list);
3840
3841
if (free_active_root) {
3842
if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3843
/* Nothing to cleanup for dummy roots. */
3844
} else if (root_to_sp(mmu->root.hpa)) {
3845
mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3846
} else if (mmu->pae_root) {
3847
for (i = 0; i < 4; ++i) {
3848
if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3849
continue;
3850
3851
mmu_free_root_page(kvm, &mmu->pae_root[i],
3852
&invalid_list);
3853
mmu->pae_root[i] = INVALID_PAE_ROOT;
3854
}
3855
}
3856
mmu->root.hpa = INVALID_PAGE;
3857
mmu->root.pgd = 0;
3858
}
3859
3860
if (is_tdp_mmu) {
3861
read_unlock(&kvm->mmu_lock);
3862
WARN_ON_ONCE(!list_empty(&invalid_list));
3863
} else {
3864
kvm_mmu_commit_zap_page(kvm, &invalid_list);
3865
write_unlock(&kvm->mmu_lock);
3866
}
3867
}
3868
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_roots);
3869
3870
void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3871
{
3872
unsigned long roots_to_free = 0;
3873
struct kvm_mmu_page *sp;
3874
hpa_t root_hpa;
3875
int i;
3876
3877
/*
3878
* This should not be called while L2 is active, L2 can't invalidate
3879
* _only_ its own roots, e.g. INVVPID unconditionally exits.
3880
*/
3881
WARN_ON_ONCE(mmu->root_role.guest_mode);
3882
3883
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3884
root_hpa = mmu->prev_roots[i].hpa;
3885
if (!VALID_PAGE(root_hpa))
3886
continue;
3887
3888
sp = root_to_sp(root_hpa);
3889
if (!sp || sp->role.guest_mode)
3890
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3891
}
3892
3893
kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3894
}
3895
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_guest_mode_roots);
3896
3897
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3898
u8 level)
3899
{
3900
union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3901
struct kvm_mmu_page *sp;
3902
3903
role.level = level;
3904
role.quadrant = quadrant;
3905
3906
WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3907
WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3908
3909
sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3910
++sp->root_count;
3911
3912
return __pa(sp->spt);
3913
}
3914
3915
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3916
{
3917
struct kvm_mmu *mmu = vcpu->arch.mmu;
3918
u8 shadow_root_level = mmu->root_role.level;
3919
hpa_t root;
3920
unsigned i;
3921
int r;
3922
3923
if (tdp_mmu_enabled) {
3924
if (kvm_has_mirrored_tdp(vcpu->kvm) &&
3925
!VALID_PAGE(mmu->mirror_root_hpa))
3926
kvm_tdp_mmu_alloc_root(vcpu, true);
3927
kvm_tdp_mmu_alloc_root(vcpu, false);
3928
return 0;
3929
}
3930
3931
write_lock(&vcpu->kvm->mmu_lock);
3932
r = make_mmu_pages_available(vcpu);
3933
if (r < 0)
3934
goto out_unlock;
3935
3936
if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3937
root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3938
mmu->root.hpa = root;
3939
} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3940
if (WARN_ON_ONCE(!mmu->pae_root)) {
3941
r = -EIO;
3942
goto out_unlock;
3943
}
3944
3945
for (i = 0; i < 4; ++i) {
3946
WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3947
3948
root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3949
PT32_ROOT_LEVEL);
3950
mmu->pae_root[i] = root | PT_PRESENT_MASK |
3951
shadow_me_value;
3952
}
3953
mmu->root.hpa = __pa(mmu->pae_root);
3954
} else {
3955
WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3956
r = -EIO;
3957
goto out_unlock;
3958
}
3959
3960
/* root.pgd is ignored for direct MMUs. */
3961
mmu->root.pgd = 0;
3962
out_unlock:
3963
write_unlock(&vcpu->kvm->mmu_lock);
3964
return r;
3965
}
3966
3967
static int kvm_mmu_alloc_page_hash(struct kvm *kvm)
3968
{
3969
struct hlist_head *h;
3970
3971
if (kvm->arch.mmu_page_hash)
3972
return 0;
3973
3974
h = kvcalloc(KVM_NUM_MMU_PAGES, sizeof(*h), GFP_KERNEL_ACCOUNT);
3975
if (!h)
3976
return -ENOMEM;
3977
3978
/*
3979
* Ensure the hash table pointer is set only after all stores to zero
3980
* the memory are retired. Pairs with the smp_load_acquire() in
3981
* kvm_get_mmu_page_hash(). Note, mmu_lock must be held for write to
3982
* add (or remove) shadow pages, and so readers are guaranteed to see
3983
* an empty list for their current mmu_lock critical section.
3984
*/
3985
smp_store_release(&kvm->arch.mmu_page_hash, h);
3986
return 0;
3987
}
3988
3989
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3990
{
3991
struct kvm_memslots *slots;
3992
struct kvm_memory_slot *slot;
3993
int r = 0, i, bkt;
3994
3995
/*
3996
* Check if this is the first shadow root being allocated before
3997
* taking the lock.
3998
*/
3999
if (kvm_shadow_root_allocated(kvm))
4000
return 0;
4001
4002
mutex_lock(&kvm->slots_arch_lock);
4003
4004
/* Recheck, under the lock, whether this is the first shadow root. */
4005
if (kvm_shadow_root_allocated(kvm))
4006
goto out_unlock;
4007
4008
r = kvm_mmu_alloc_page_hash(kvm);
4009
if (r)
4010
goto out_unlock;
4011
4012
/*
4013
* Check if memslot metadata actually needs to be allocated, e.g. all
4014
* metadata will be allocated upfront if TDP is disabled.
4015
*/
4016
if (kvm_memslots_have_rmaps(kvm) &&
4017
kvm_page_track_write_tracking_enabled(kvm))
4018
goto out_success;
4019
4020
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4021
slots = __kvm_memslots(kvm, i);
4022
kvm_for_each_memslot(slot, bkt, slots) {
4023
/*
4024
* Both of these functions are no-ops if the target is
4025
* already allocated, so unconditionally calling both
4026
* is safe. Intentionally do NOT free allocations on
4027
* failure to avoid having to track which allocations
4028
* were made now versus when the memslot was created.
4029
* The metadata is guaranteed to be freed when the slot
4030
* is freed, and will be kept/used if userspace retries
4031
* KVM_RUN instead of killing the VM.
4032
*/
4033
r = memslot_rmap_alloc(slot, slot->npages);
4034
if (r)
4035
goto out_unlock;
4036
r = kvm_page_track_write_tracking_alloc(slot);
4037
if (r)
4038
goto out_unlock;
4039
}
4040
}
4041
4042
/*
4043
* Ensure that shadow_root_allocated becomes true strictly after
4044
* all the related pointers are set.
4045
*/
4046
out_success:
4047
smp_store_release(&kvm->arch.shadow_root_allocated, true);
4048
4049
out_unlock:
4050
mutex_unlock(&kvm->slots_arch_lock);
4051
return r;
4052
}
4053
4054
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
4055
{
4056
struct kvm_mmu *mmu = vcpu->arch.mmu;
4057
u64 pdptrs[4], pm_mask;
4058
gfn_t root_gfn, root_pgd;
4059
int quadrant, i, r;
4060
hpa_t root;
4061
4062
root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
4063
root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
4064
4065
if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
4066
mmu->root.hpa = kvm_mmu_get_dummy_root();
4067
return 0;
4068
}
4069
4070
/*
4071
* On SVM, reading PDPTRs might access guest memory, which might fault
4072
* and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
4073
*/
4074
if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
4075
for (i = 0; i < 4; ++i) {
4076
pdptrs[i] = mmu->get_pdptr(vcpu, i);
4077
if (!(pdptrs[i] & PT_PRESENT_MASK))
4078
continue;
4079
4080
if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
4081
pdptrs[i] = 0;
4082
}
4083
}
4084
4085
r = mmu_first_shadow_root_alloc(vcpu->kvm);
4086
if (r)
4087
return r;
4088
4089
write_lock(&vcpu->kvm->mmu_lock);
4090
r = make_mmu_pages_available(vcpu);
4091
if (r < 0)
4092
goto out_unlock;
4093
4094
/*
4095
* Do we shadow a long mode page table? If so we need to
4096
* write-protect the guests page table root.
4097
*/
4098
if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4099
root = mmu_alloc_root(vcpu, root_gfn, 0,
4100
mmu->root_role.level);
4101
mmu->root.hpa = root;
4102
goto set_root_pgd;
4103
}
4104
4105
if (WARN_ON_ONCE(!mmu->pae_root)) {
4106
r = -EIO;
4107
goto out_unlock;
4108
}
4109
4110
/*
4111
* We shadow a 32 bit page table. This may be a legacy 2-level
4112
* or a PAE 3-level page table. In either case we need to be aware that
4113
* the shadow page table may be a PAE or a long mode page table.
4114
*/
4115
pm_mask = PT_PRESENT_MASK | shadow_me_value;
4116
if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
4117
pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
4118
4119
if (WARN_ON_ONCE(!mmu->pml4_root)) {
4120
r = -EIO;
4121
goto out_unlock;
4122
}
4123
mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
4124
4125
if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
4126
if (WARN_ON_ONCE(!mmu->pml5_root)) {
4127
r = -EIO;
4128
goto out_unlock;
4129
}
4130
mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
4131
}
4132
}
4133
4134
for (i = 0; i < 4; ++i) {
4135
WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
4136
4137
if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
4138
if (!(pdptrs[i] & PT_PRESENT_MASK)) {
4139
mmu->pae_root[i] = INVALID_PAE_ROOT;
4140
continue;
4141
}
4142
root_gfn = pdptrs[i] >> PAGE_SHIFT;
4143
}
4144
4145
/*
4146
* If shadowing 32-bit non-PAE page tables, each PAE page
4147
* directory maps one quarter of the guest's non-PAE page
4148
* directory. Othwerise each PAE page direct shadows one guest
4149
* PAE page directory so that quadrant should be 0.
4150
*/
4151
quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
4152
4153
root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
4154
mmu->pae_root[i] = root | pm_mask;
4155
}
4156
4157
if (mmu->root_role.level == PT64_ROOT_5LEVEL)
4158
mmu->root.hpa = __pa(mmu->pml5_root);
4159
else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
4160
mmu->root.hpa = __pa(mmu->pml4_root);
4161
else
4162
mmu->root.hpa = __pa(mmu->pae_root);
4163
4164
set_root_pgd:
4165
mmu->root.pgd = root_pgd;
4166
out_unlock:
4167
write_unlock(&vcpu->kvm->mmu_lock);
4168
4169
return r;
4170
}
4171
4172
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
4173
{
4174
struct kvm_mmu *mmu = vcpu->arch.mmu;
4175
bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
4176
u64 *pml5_root = NULL;
4177
u64 *pml4_root = NULL;
4178
u64 *pae_root;
4179
4180
/*
4181
* When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
4182
* tables are allocated and initialized at root creation as there is no
4183
* equivalent level in the guest's NPT to shadow. Allocate the tables
4184
* on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
4185
*/
4186
if (mmu->root_role.direct ||
4187
mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
4188
mmu->root_role.level < PT64_ROOT_4LEVEL)
4189
return 0;
4190
4191
/*
4192
* NPT, the only paging mode that uses this horror, uses a fixed number
4193
* of levels for the shadow page tables, e.g. all MMUs are 4-level or
4194
* all MMus are 5-level. Thus, this can safely require that pml5_root
4195
* is allocated if the other roots are valid and pml5 is needed, as any
4196
* prior MMU would also have required pml5.
4197
*/
4198
if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
4199
return 0;
4200
4201
/*
4202
* The special roots should always be allocated in concert. Yell and
4203
* bail if KVM ends up in a state where only one of the roots is valid.
4204
*/
4205
if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
4206
(need_pml5 && mmu->pml5_root)))
4207
return -EIO;
4208
4209
/*
4210
* Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
4211
* doesn't need to be decrypted.
4212
*/
4213
pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4214
if (!pae_root)
4215
return -ENOMEM;
4216
4217
#ifdef CONFIG_X86_64
4218
pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4219
if (!pml4_root)
4220
goto err_pml4;
4221
4222
if (need_pml5) {
4223
pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4224
if (!pml5_root)
4225
goto err_pml5;
4226
}
4227
#endif
4228
4229
mmu->pae_root = pae_root;
4230
mmu->pml4_root = pml4_root;
4231
mmu->pml5_root = pml5_root;
4232
4233
return 0;
4234
4235
#ifdef CONFIG_X86_64
4236
err_pml5:
4237
free_page((unsigned long)pml4_root);
4238
err_pml4:
4239
free_page((unsigned long)pae_root);
4240
return -ENOMEM;
4241
#endif
4242
}
4243
4244
static bool is_unsync_root(hpa_t root)
4245
{
4246
struct kvm_mmu_page *sp;
4247
4248
if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
4249
return false;
4250
4251
/*
4252
* The read barrier orders the CPU's read of SPTE.W during the page table
4253
* walk before the reads of sp->unsync/sp->unsync_children here.
4254
*
4255
* Even if another CPU was marking the SP as unsync-ed simultaneously,
4256
* any guest page table changes are not guaranteed to be visible anyway
4257
* until this VCPU issues a TLB flush strictly after those changes are
4258
* made. We only need to ensure that the other CPU sets these flags
4259
* before any actual changes to the page tables are made. The comments
4260
* in mmu_try_to_unsync_pages() describe what could go wrong if this
4261
* requirement isn't satisfied.
4262
*/
4263
smp_rmb();
4264
sp = root_to_sp(root);
4265
4266
/*
4267
* PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
4268
* PDPTEs for a given PAE root need to be synchronized individually.
4269
*/
4270
if (WARN_ON_ONCE(!sp))
4271
return false;
4272
4273
if (sp->unsync || sp->unsync_children)
4274
return true;
4275
4276
return false;
4277
}
4278
4279
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4280
{
4281
int i;
4282
struct kvm_mmu_page *sp;
4283
4284
if (vcpu->arch.mmu->root_role.direct)
4285
return;
4286
4287
if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4288
return;
4289
4290
vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4291
4292
if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4293
hpa_t root = vcpu->arch.mmu->root.hpa;
4294
4295
if (!is_unsync_root(root))
4296
return;
4297
4298
sp = root_to_sp(root);
4299
4300
write_lock(&vcpu->kvm->mmu_lock);
4301
mmu_sync_children(vcpu, sp, true);
4302
write_unlock(&vcpu->kvm->mmu_lock);
4303
return;
4304
}
4305
4306
write_lock(&vcpu->kvm->mmu_lock);
4307
4308
for (i = 0; i < 4; ++i) {
4309
hpa_t root = vcpu->arch.mmu->pae_root[i];
4310
4311
if (IS_VALID_PAE_ROOT(root)) {
4312
sp = spte_to_child_sp(root);
4313
mmu_sync_children(vcpu, sp, true);
4314
}
4315
}
4316
4317
write_unlock(&vcpu->kvm->mmu_lock);
4318
}
4319
4320
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4321
{
4322
unsigned long roots_to_free = 0;
4323
int i;
4324
4325
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4326
if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4327
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4328
4329
/* sync prev_roots by simply freeing them */
4330
kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4331
}
4332
4333
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4334
gpa_t vaddr, u64 access,
4335
struct x86_exception *exception)
4336
{
4337
if (exception)
4338
exception->error_code = 0;
4339
return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4340
}
4341
4342
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4343
{
4344
/*
4345
* A nested guest cannot use the MMIO cache if it is using nested
4346
* page tables, because cr2 is a nGPA while the cache stores GPAs.
4347
*/
4348
if (mmu_is_nested(vcpu))
4349
return false;
4350
4351
if (direct)
4352
return vcpu_match_mmio_gpa(vcpu, addr);
4353
4354
return vcpu_match_mmio_gva(vcpu, addr);
4355
}
4356
4357
/*
4358
* Return the level of the lowest level SPTE added to sptes.
4359
* That SPTE may be non-present.
4360
*
4361
* Must be called between walk_shadow_page_lockless_{begin,end}.
4362
*/
4363
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4364
{
4365
struct kvm_shadow_walk_iterator iterator;
4366
int leaf = -1;
4367
u64 spte;
4368
4369
for (shadow_walk_init(&iterator, vcpu, addr),
4370
*root_level = iterator.level;
4371
shadow_walk_okay(&iterator);
4372
__shadow_walk_next(&iterator, spte)) {
4373
leaf = iterator.level;
4374
spte = mmu_spte_get_lockless(iterator.sptep);
4375
4376
sptes[leaf] = spte;
4377
}
4378
4379
return leaf;
4380
}
4381
4382
static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
4383
int *root_level)
4384
{
4385
int leaf;
4386
4387
walk_shadow_page_lockless_begin(vcpu);
4388
4389
if (is_tdp_mmu_active(vcpu))
4390
leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level);
4391
else
4392
leaf = get_walk(vcpu, addr, sptes, root_level);
4393
4394
walk_shadow_page_lockless_end(vcpu);
4395
return leaf;
4396
}
4397
4398
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4399
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4400
{
4401
u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4402
struct rsvd_bits_validate *rsvd_check;
4403
int root, leaf, level;
4404
bool reserved = false;
4405
4406
leaf = get_sptes_lockless(vcpu, addr, sptes, &root);
4407
if (unlikely(leaf < 0)) {
4408
*sptep = 0ull;
4409
return reserved;
4410
}
4411
4412
*sptep = sptes[leaf];
4413
4414
/*
4415
* Skip reserved bits checks on the terminal leaf if it's not a valid
4416
* SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
4417
* design, always have reserved bits set. The purpose of the checks is
4418
* to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4419
*/
4420
if (!is_shadow_present_pte(sptes[leaf]))
4421
leaf++;
4422
4423
rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4424
4425
for (level = root; level >= leaf; level--)
4426
reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4427
4428
if (reserved) {
4429
pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4430
__func__, addr);
4431
for (level = root; level >= leaf; level--)
4432
pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4433
sptes[level], level,
4434
get_rsvd_bits(rsvd_check, sptes[level], level));
4435
}
4436
4437
return reserved;
4438
}
4439
4440
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4441
{
4442
u64 spte;
4443
bool reserved;
4444
4445
if (mmio_info_in_cache(vcpu, addr, direct))
4446
return RET_PF_EMULATE;
4447
4448
reserved = get_mmio_spte(vcpu, addr, &spte);
4449
if (WARN_ON_ONCE(reserved))
4450
return -EINVAL;
4451
4452
if (is_mmio_spte(vcpu->kvm, spte)) {
4453
gfn_t gfn = get_mmio_spte_gfn(spte);
4454
unsigned int access = get_mmio_spte_access(spte);
4455
4456
if (!check_mmio_spte(vcpu, spte))
4457
return RET_PF_INVALID;
4458
4459
if (direct)
4460
addr = 0;
4461
4462
trace_handle_mmio_page_fault(addr, gfn, access);
4463
vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4464
return RET_PF_EMULATE;
4465
}
4466
4467
/*
4468
* If the page table is zapped by other cpus, let CPU fault again on
4469
* the address.
4470
*/
4471
return RET_PF_RETRY;
4472
}
4473
4474
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4475
struct kvm_page_fault *fault)
4476
{
4477
if (unlikely(fault->rsvd))
4478
return false;
4479
4480
if (!fault->present || !fault->write)
4481
return false;
4482
4483
/*
4484
* guest is writing the page which is write tracked which can
4485
* not be fixed by page fault handler.
4486
*/
4487
if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4488
return true;
4489
4490
return false;
4491
}
4492
4493
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4494
{
4495
struct kvm_shadow_walk_iterator iterator;
4496
u64 spte;
4497
4498
walk_shadow_page_lockless_begin(vcpu);
4499
for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4500
clear_sp_write_flooding_count(iterator.sptep);
4501
walk_shadow_page_lockless_end(vcpu);
4502
}
4503
4504
static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4505
{
4506
/* make sure the token value is not 0 */
4507
u32 id = vcpu->arch.apf.id;
4508
4509
if (id << 12 == 0)
4510
vcpu->arch.apf.id = 1;
4511
4512
return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4513
}
4514
4515
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu,
4516
struct kvm_page_fault *fault)
4517
{
4518
struct kvm_arch_async_pf arch;
4519
4520
arch.token = alloc_apf_token(vcpu);
4521
arch.gfn = fault->gfn;
4522
arch.error_code = fault->error_code;
4523
arch.direct_map = vcpu->arch.mmu->root_role.direct;
4524
if (arch.direct_map)
4525
arch.cr3 = (unsigned long)INVALID_GPA;
4526
else
4527
arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4528
4529
return kvm_setup_async_pf(vcpu, fault->addr,
4530
kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch);
4531
}
4532
4533
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4534
{
4535
int r;
4536
4537
if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS))
4538
return;
4539
4540
if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4541
work->wakeup_all)
4542
return;
4543
4544
r = kvm_mmu_reload(vcpu);
4545
if (unlikely(r))
4546
return;
4547
4548
if (!vcpu->arch.mmu->root_role.direct &&
4549
work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4550
return;
4551
4552
r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code,
4553
true, NULL, NULL);
4554
4555
/*
4556
* Account fixed page faults, otherwise they'll never be counted, but
4557
* ignore stats for all other return times. Page-ready "faults" aren't
4558
* truly spurious and never trigger emulation
4559
*/
4560
if (r == RET_PF_FIXED)
4561
vcpu->stat.pf_fixed++;
4562
}
4563
4564
static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu,
4565
struct kvm_page_fault *fault, int r)
4566
{
4567
kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page,
4568
r == RET_PF_RETRY, fault->map_writable);
4569
}
4570
4571
static int kvm_mmu_faultin_pfn_gmem(struct kvm_vcpu *vcpu,
4572
struct kvm_page_fault *fault)
4573
{
4574
int max_order, r;
4575
4576
if (!kvm_slot_has_gmem(fault->slot)) {
4577
kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4578
return -EFAULT;
4579
}
4580
4581
r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn,
4582
&fault->refcounted_page, &max_order);
4583
if (r) {
4584
kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4585
return r;
4586
}
4587
4588
fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY);
4589
fault->max_level = kvm_max_level_for_order(max_order);
4590
4591
return RET_PF_CONTINUE;
4592
}
4593
4594
static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4595
struct kvm_page_fault *fault)
4596
{
4597
unsigned int foll = fault->write ? FOLL_WRITE : 0;
4598
4599
if (fault->is_private || kvm_memslot_is_gmem_only(fault->slot))
4600
return kvm_mmu_faultin_pfn_gmem(vcpu, fault);
4601
4602
foll |= FOLL_NOWAIT;
4603
fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4604
&fault->map_writable, &fault->refcounted_page);
4605
4606
/*
4607
* If resolving the page failed because I/O is needed to fault-in the
4608
* page, then either set up an asynchronous #PF to do the I/O, or if
4609
* doing an async #PF isn't possible, retry with I/O allowed. All
4610
* other failures are terminal, i.e. retrying won't help.
4611
*/
4612
if (fault->pfn != KVM_PFN_ERR_NEEDS_IO)
4613
return RET_PF_CONTINUE;
4614
4615
if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4616
trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4617
if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4618
trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4619
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4620
return RET_PF_RETRY;
4621
} else if (kvm_arch_setup_async_pf(vcpu, fault)) {
4622
return RET_PF_RETRY;
4623
}
4624
}
4625
4626
/*
4627
* Allow gup to bail on pending non-fatal signals when it's also allowed
4628
* to wait for IO. Note, gup always bails if it is unable to quickly
4629
* get a page and a fatal signal, i.e. SIGKILL, is pending.
4630
*/
4631
foll |= FOLL_INTERRUPTIBLE;
4632
foll &= ~FOLL_NOWAIT;
4633
fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4634
&fault->map_writable, &fault->refcounted_page);
4635
4636
return RET_PF_CONTINUE;
4637
}
4638
4639
static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4640
struct kvm_page_fault *fault, unsigned int access)
4641
{
4642
struct kvm_memory_slot *slot = fault->slot;
4643
struct kvm *kvm = vcpu->kvm;
4644
int ret;
4645
4646
if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm))
4647
return -EFAULT;
4648
4649
/*
4650
* Note that the mmu_invalidate_seq also serves to detect a concurrent
4651
* change in attributes. is_page_fault_stale() will detect an
4652
* invalidation relate to fault->fn and resume the guest without
4653
* installing a mapping in the page tables.
4654
*/
4655
fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4656
smp_rmb();
4657
4658
/*
4659
* Now that we have a snapshot of mmu_invalidate_seq we can check for a
4660
* private vs. shared mismatch.
4661
*/
4662
if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) {
4663
kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4664
return -EFAULT;
4665
}
4666
4667
if (unlikely(!slot))
4668
return kvm_handle_noslot_fault(vcpu, fault, access);
4669
4670
/*
4671
* Retry the page fault if the gfn hit a memslot that is being deleted
4672
* or moved. This ensures any existing SPTEs for the old memslot will
4673
* be zapped before KVM inserts a new MMIO SPTE for the gfn. Punt the
4674
* error to userspace if this is a prefault, as KVM's prefaulting ABI
4675
* doesn't provide the same forward progress guarantees as KVM_RUN.
4676
*/
4677
if (slot->flags & KVM_MEMSLOT_INVALID) {
4678
if (fault->prefetch)
4679
return -EAGAIN;
4680
4681
return RET_PF_RETRY;
4682
}
4683
4684
if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) {
4685
/*
4686
* Don't map L1's APIC access page into L2, KVM doesn't support
4687
* using APICv/AVIC to accelerate L2 accesses to L1's APIC,
4688
* i.e. the access needs to be emulated. Emulating access to
4689
* L1's APIC is also correct if L1 is accelerating L2's own
4690
* virtual APIC, but for some reason L1 also maps _L1's_ APIC
4691
* into L2. Note, vcpu_is_mmio_gpa() always treats access to
4692
* the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM
4693
* uses different roots for L1 vs. L2, i.e. there is no danger
4694
* of breaking APICv/AVIC for L1.
4695
*/
4696
if (is_guest_mode(vcpu))
4697
return kvm_handle_noslot_fault(vcpu, fault, access);
4698
4699
/*
4700
* If the APIC access page exists but is disabled, go directly
4701
* to emulation without caching the MMIO access or creating a
4702
* MMIO SPTE. That way the cache doesn't need to be purged
4703
* when the AVIC is re-enabled.
4704
*/
4705
if (!kvm_apicv_activated(vcpu->kvm))
4706
return RET_PF_EMULATE;
4707
}
4708
4709
/*
4710
* Check for a relevant mmu_notifier invalidation event before getting
4711
* the pfn from the primary MMU, and before acquiring mmu_lock.
4712
*
4713
* For mmu_lock, if there is an in-progress invalidation and the kernel
4714
* allows preemption, the invalidation task may drop mmu_lock and yield
4715
* in response to mmu_lock being contended, which is *very* counter-
4716
* productive as this vCPU can't actually make forward progress until
4717
* the invalidation completes.
4718
*
4719
* Retrying now can also avoid unnessary lock contention in the primary
4720
* MMU, as the primary MMU doesn't necessarily hold a single lock for
4721
* the duration of the invalidation, i.e. faulting in a conflicting pfn
4722
* can cause the invalidation to take longer by holding locks that are
4723
* needed to complete the invalidation.
4724
*
4725
* Do the pre-check even for non-preemtible kernels, i.e. even if KVM
4726
* will never yield mmu_lock in response to contention, as this vCPU is
4727
* *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
4728
* to detect retry guarantees the worst case latency for the vCPU.
4729
*/
4730
if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn))
4731
return RET_PF_RETRY;
4732
4733
ret = __kvm_mmu_faultin_pfn(vcpu, fault);
4734
if (ret != RET_PF_CONTINUE)
4735
return ret;
4736
4737
if (unlikely(is_error_pfn(fault->pfn)))
4738
return kvm_handle_error_pfn(vcpu, fault);
4739
4740
if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn)))
4741
return kvm_handle_noslot_fault(vcpu, fault, access);
4742
4743
/*
4744
* Check again for a relevant mmu_notifier invalidation event purely to
4745
* avoid contending mmu_lock. Most invalidations will be detected by
4746
* the previous check, but checking is extremely cheap relative to the
4747
* overall cost of failing to detect the invalidation until after
4748
* mmu_lock is acquired.
4749
*/
4750
if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) {
4751
kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY);
4752
return RET_PF_RETRY;
4753
}
4754
4755
return RET_PF_CONTINUE;
4756
}
4757
4758
/*
4759
* Returns true if the page fault is stale and needs to be retried, i.e. if the
4760
* root was invalidated by a memslot update or a relevant mmu_notifier fired.
4761
*/
4762
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4763
struct kvm_page_fault *fault)
4764
{
4765
struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4766
4767
/* Special roots, e.g. pae_root, are not backed by shadow pages. */
4768
if (sp && is_obsolete_sp(vcpu->kvm, sp))
4769
return true;
4770
4771
/*
4772
* Roots without an associated shadow page are considered invalid if
4773
* there is a pending request to free obsolete roots. The request is
4774
* only a hint that the current root _may_ be obsolete and needs to be
4775
* reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4776
* previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4777
* to reload even if no vCPU is actively using the root.
4778
*/
4779
if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4780
return true;
4781
4782
/*
4783
* Check for a relevant mmu_notifier invalidation event one last time
4784
* now that mmu_lock is held, as the "unsafe" checks performed without
4785
* holding mmu_lock can get false negatives.
4786
*/
4787
return fault->slot &&
4788
mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn);
4789
}
4790
4791
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4792
{
4793
int r;
4794
4795
/* Dummy roots are used only for shadowing bad guest roots. */
4796
if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4797
return RET_PF_RETRY;
4798
4799
if (page_fault_handle_page_track(vcpu, fault))
4800
return RET_PF_WRITE_PROTECTED;
4801
4802
r = fast_page_fault(vcpu, fault);
4803
if (r != RET_PF_INVALID)
4804
return r;
4805
4806
r = mmu_topup_memory_caches(vcpu, false);
4807
if (r)
4808
return r;
4809
4810
r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4811
if (r != RET_PF_CONTINUE)
4812
return r;
4813
4814
r = RET_PF_RETRY;
4815
write_lock(&vcpu->kvm->mmu_lock);
4816
4817
if (is_page_fault_stale(vcpu, fault))
4818
goto out_unlock;
4819
4820
r = make_mmu_pages_available(vcpu);
4821
if (r)
4822
goto out_unlock;
4823
4824
r = direct_map(vcpu, fault);
4825
4826
out_unlock:
4827
kvm_mmu_finish_page_fault(vcpu, fault, r);
4828
write_unlock(&vcpu->kvm->mmu_lock);
4829
return r;
4830
}
4831
4832
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4833
struct kvm_page_fault *fault)
4834
{
4835
/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4836
fault->max_level = PG_LEVEL_2M;
4837
return direct_page_fault(vcpu, fault);
4838
}
4839
4840
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4841
u64 fault_address, char *insn, int insn_len)
4842
{
4843
int r = 1;
4844
u32 flags = vcpu->arch.apf.host_apf_flags;
4845
4846
#ifndef CONFIG_X86_64
4847
/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4848
if (WARN_ON_ONCE(fault_address >> 32))
4849
return -EFAULT;
4850
#endif
4851
/*
4852
* Legacy #PF exception only have a 32-bit error code. Simply drop the
4853
* upper bits as KVM doesn't use them for #PF (because they are never
4854
* set), and to ensure there are no collisions with KVM-defined bits.
4855
*/
4856
if (WARN_ON_ONCE(error_code >> 32))
4857
error_code = lower_32_bits(error_code);
4858
4859
/*
4860
* Restrict KVM-defined flags to bits 63:32 so that it's impossible for
4861
* them to conflict with #PF error codes, which are limited to 32 bits.
4862
*/
4863
BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK));
4864
4865
kvm_request_l1tf_flush_l1d();
4866
if (!flags) {
4867
trace_kvm_page_fault(vcpu, fault_address, error_code);
4868
4869
r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4870
insn_len);
4871
} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4872
vcpu->arch.apf.host_apf_flags = 0;
4873
local_irq_disable();
4874
kvm_async_pf_task_wait_schedule(fault_address);
4875
local_irq_enable();
4876
} else {
4877
WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4878
}
4879
4880
return r;
4881
}
4882
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_page_fault);
4883
4884
#ifdef CONFIG_X86_64
4885
static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4886
struct kvm_page_fault *fault)
4887
{
4888
int r;
4889
4890
if (page_fault_handle_page_track(vcpu, fault))
4891
return RET_PF_WRITE_PROTECTED;
4892
4893
r = fast_page_fault(vcpu, fault);
4894
if (r != RET_PF_INVALID)
4895
return r;
4896
4897
r = mmu_topup_memory_caches(vcpu, false);
4898
if (r)
4899
return r;
4900
4901
r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4902
if (r != RET_PF_CONTINUE)
4903
return r;
4904
4905
r = RET_PF_RETRY;
4906
read_lock(&vcpu->kvm->mmu_lock);
4907
4908
if (is_page_fault_stale(vcpu, fault))
4909
goto out_unlock;
4910
4911
r = kvm_tdp_mmu_map(vcpu, fault);
4912
4913
out_unlock:
4914
kvm_mmu_finish_page_fault(vcpu, fault, r);
4915
read_unlock(&vcpu->kvm->mmu_lock);
4916
return r;
4917
}
4918
#endif
4919
4920
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4921
{
4922
#ifdef CONFIG_X86_64
4923
if (tdp_mmu_enabled)
4924
return kvm_tdp_mmu_page_fault(vcpu, fault);
4925
#endif
4926
4927
return direct_page_fault(vcpu, fault);
4928
}
4929
4930
static int kvm_tdp_page_prefault(struct kvm_vcpu *vcpu, gpa_t gpa,
4931
u64 error_code, u8 *level)
4932
{
4933
int r;
4934
4935
/*
4936
* Restrict to TDP page fault, since that's the only case where the MMU
4937
* is indexed by GPA.
4938
*/
4939
if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault)
4940
return -EOPNOTSUPP;
4941
4942
do {
4943
if (signal_pending(current))
4944
return -EINTR;
4945
4946
if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
4947
return -EIO;
4948
4949
cond_resched();
4950
r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level);
4951
} while (r == RET_PF_RETRY);
4952
4953
if (r < 0)
4954
return r;
4955
4956
switch (r) {
4957
case RET_PF_FIXED:
4958
case RET_PF_SPURIOUS:
4959
case RET_PF_WRITE_PROTECTED:
4960
return 0;
4961
4962
case RET_PF_EMULATE:
4963
return -ENOENT;
4964
4965
case RET_PF_RETRY:
4966
case RET_PF_CONTINUE:
4967
case RET_PF_INVALID:
4968
default:
4969
WARN_ONCE(1, "could not fix page fault during prefault");
4970
return -EIO;
4971
}
4972
}
4973
4974
long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4975
struct kvm_pre_fault_memory *range)
4976
{
4977
u64 error_code = PFERR_GUEST_FINAL_MASK;
4978
u8 level = PG_LEVEL_4K;
4979
u64 direct_bits;
4980
u64 end;
4981
int r;
4982
4983
if (!vcpu->kvm->arch.pre_fault_allowed)
4984
return -EOPNOTSUPP;
4985
4986
if (kvm_is_gfn_alias(vcpu->kvm, gpa_to_gfn(range->gpa)))
4987
return -EINVAL;
4988
4989
/*
4990
* reload is efficient when called repeatedly, so we can do it on
4991
* every iteration.
4992
*/
4993
r = kvm_mmu_reload(vcpu);
4994
if (r)
4995
return r;
4996
4997
direct_bits = 0;
4998
if (kvm_arch_has_private_mem(vcpu->kvm) &&
4999
kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa)))
5000
error_code |= PFERR_PRIVATE_ACCESS;
5001
else
5002
direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
5003
5004
/*
5005
* Shadow paging uses GVA for kvm page fault, so restrict to
5006
* two-dimensional paging.
5007
*/
5008
r = kvm_tdp_page_prefault(vcpu, range->gpa | direct_bits, error_code, &level);
5009
if (r < 0)
5010
return r;
5011
5012
/*
5013
* If the mapping that covers range->gpa can use a huge page, it
5014
* may start below it or end after range->gpa + range->size.
5015
*/
5016
end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level);
5017
return min(range->size, end - range->gpa);
5018
}
5019
5020
#ifdef CONFIG_KVM_GUEST_MEMFD
5021
static void kvm_assert_gmem_invalidate_lock_held(struct kvm_memory_slot *slot)
5022
{
5023
#ifdef CONFIG_PROVE_LOCKING
5024
if (WARN_ON_ONCE(!kvm_slot_has_gmem(slot)) ||
5025
WARN_ON_ONCE(!slot->gmem.file) ||
5026
WARN_ON_ONCE(!file_count(slot->gmem.file)))
5027
return;
5028
5029
lockdep_assert_held(&file_inode(slot->gmem.file)->i_mapping->invalidate_lock);
5030
#endif
5031
}
5032
5033
int kvm_tdp_mmu_map_private_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
5034
{
5035
struct kvm_page_fault fault = {
5036
.addr = gfn_to_gpa(gfn),
5037
.error_code = PFERR_GUEST_FINAL_MASK | PFERR_PRIVATE_ACCESS,
5038
.prefetch = true,
5039
.is_tdp = true,
5040
.nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(vcpu->kvm),
5041
5042
.max_level = PG_LEVEL_4K,
5043
.req_level = PG_LEVEL_4K,
5044
.goal_level = PG_LEVEL_4K,
5045
.is_private = true,
5046
5047
.gfn = gfn,
5048
.slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn),
5049
.pfn = pfn,
5050
.map_writable = true,
5051
};
5052
struct kvm *kvm = vcpu->kvm;
5053
int r;
5054
5055
lockdep_assert_held(&kvm->slots_lock);
5056
5057
/*
5058
* Mapping a pre-determined private pfn is intended only for use when
5059
* populating a guest_memfd instance. Assert that the slot is backed
5060
* by guest_memfd and that the gmem instance's invalidate_lock is held.
5061
*/
5062
kvm_assert_gmem_invalidate_lock_held(fault.slot);
5063
5064
if (KVM_BUG_ON(!tdp_mmu_enabled, kvm))
5065
return -EIO;
5066
5067
if (kvm_gfn_is_write_tracked(kvm, fault.slot, fault.gfn))
5068
return -EPERM;
5069
5070
r = kvm_mmu_reload(vcpu);
5071
if (r)
5072
return r;
5073
5074
r = mmu_topup_memory_caches(vcpu, false);
5075
if (r)
5076
return r;
5077
5078
do {
5079
if (signal_pending(current))
5080
return -EINTR;
5081
5082
if (kvm_test_request(KVM_REQ_VM_DEAD, vcpu))
5083
return -EIO;
5084
5085
cond_resched();
5086
5087
guard(read_lock)(&kvm->mmu_lock);
5088
5089
r = kvm_tdp_mmu_map(vcpu, &fault);
5090
} while (r == RET_PF_RETRY);
5091
5092
if (r != RET_PF_FIXED)
5093
return -EIO;
5094
5095
return 0;
5096
}
5097
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_tdp_mmu_map_private_pfn);
5098
#endif
5099
5100
static void nonpaging_init_context(struct kvm_mmu *context)
5101
{
5102
context->page_fault = nonpaging_page_fault;
5103
context->gva_to_gpa = nonpaging_gva_to_gpa;
5104
context->sync_spte = NULL;
5105
}
5106
5107
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
5108
union kvm_mmu_page_role role)
5109
{
5110
struct kvm_mmu_page *sp;
5111
5112
if (!VALID_PAGE(root->hpa))
5113
return false;
5114
5115
if (!role.direct && pgd != root->pgd)
5116
return false;
5117
5118
sp = root_to_sp(root->hpa);
5119
if (WARN_ON_ONCE(!sp))
5120
return false;
5121
5122
return role.word == sp->role.word;
5123
}
5124
5125
/*
5126
* Find out if a previously cached root matching the new pgd/role is available,
5127
* and insert the current root as the MRU in the cache.
5128
* If a matching root is found, it is assigned to kvm_mmu->root and
5129
* true is returned.
5130
* If no match is found, kvm_mmu->root is left invalid, the LRU root is
5131
* evicted to make room for the current root, and false is returned.
5132
*/
5133
static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
5134
gpa_t new_pgd,
5135
union kvm_mmu_page_role new_role)
5136
{
5137
uint i;
5138
5139
if (is_root_usable(&mmu->root, new_pgd, new_role))
5140
return true;
5141
5142
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5143
/*
5144
* The swaps end up rotating the cache like this:
5145
* C 0 1 2 3 (on entry to the function)
5146
* 0 C 1 2 3
5147
* 1 C 0 2 3
5148
* 2 C 0 1 3
5149
* 3 C 0 1 2 (on exit from the loop)
5150
*/
5151
swap(mmu->root, mmu->prev_roots[i]);
5152
if (is_root_usable(&mmu->root, new_pgd, new_role))
5153
return true;
5154
}
5155
5156
kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
5157
return false;
5158
}
5159
5160
/*
5161
* Find out if a previously cached root matching the new pgd/role is available.
5162
* On entry, mmu->root is invalid.
5163
* If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
5164
* of the cache becomes invalid, and true is returned.
5165
* If no match is found, kvm_mmu->root is left invalid and false is returned.
5166
*/
5167
static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
5168
gpa_t new_pgd,
5169
union kvm_mmu_page_role new_role)
5170
{
5171
uint i;
5172
5173
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5174
if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
5175
goto hit;
5176
5177
return false;
5178
5179
hit:
5180
swap(mmu->root, mmu->prev_roots[i]);
5181
/* Bubble up the remaining roots. */
5182
for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
5183
mmu->prev_roots[i] = mmu->prev_roots[i + 1];
5184
mmu->prev_roots[i].hpa = INVALID_PAGE;
5185
return true;
5186
}
5187
5188
static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
5189
gpa_t new_pgd, union kvm_mmu_page_role new_role)
5190
{
5191
/*
5192
* Limit reuse to 64-bit hosts+VMs without "special" roots in order to
5193
* avoid having to deal with PDPTEs and other complexities.
5194
*/
5195
if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
5196
kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
5197
5198
if (VALID_PAGE(mmu->root.hpa))
5199
return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
5200
else
5201
return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
5202
}
5203
5204
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
5205
{
5206
struct kvm_mmu *mmu = vcpu->arch.mmu;
5207
union kvm_mmu_page_role new_role = mmu->root_role;
5208
5209
/*
5210
* Return immediately if no usable root was found, kvm_mmu_reload()
5211
* will establish a valid root prior to the next VM-Enter.
5212
*/
5213
if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
5214
return;
5215
5216
/*
5217
* It's possible that the cached previous root page is obsolete because
5218
* of a change in the MMU generation number. However, changing the
5219
* generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
5220
* which will free the root set here and allocate a new one.
5221
*/
5222
kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
5223
5224
if (force_flush_and_sync_on_reuse) {
5225
kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
5226
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
5227
}
5228
5229
/*
5230
* The last MMIO access's GVA and GPA are cached in the VCPU. When
5231
* switching to a new CR3, that GVA->GPA mapping may no longer be
5232
* valid. So clear any cached MMIO info even when we don't need to sync
5233
* the shadow page tables.
5234
*/
5235
vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5236
5237
/*
5238
* If this is a direct root page, it doesn't have a write flooding
5239
* count. Otherwise, clear the write flooding count.
5240
*/
5241
if (!new_role.direct) {
5242
struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
5243
5244
if (!WARN_ON_ONCE(!sp))
5245
__clear_sp_write_flooding_count(sp);
5246
}
5247
}
5248
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_new_pgd);
5249
5250
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
5251
unsigned int access)
5252
{
5253
if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) {
5254
if (gfn != get_mmio_spte_gfn(*sptep)) {
5255
mmu_spte_clear_no_track(sptep);
5256
return true;
5257
}
5258
5259
mark_mmio_spte(vcpu, sptep, gfn, access);
5260
return true;
5261
}
5262
5263
return false;
5264
}
5265
5266
#define PTTYPE_EPT 18 /* arbitrary */
5267
#define PTTYPE PTTYPE_EPT
5268
#include "paging_tmpl.h"
5269
#undef PTTYPE
5270
5271
#define PTTYPE 64
5272
#include "paging_tmpl.h"
5273
#undef PTTYPE
5274
5275
#define PTTYPE 32
5276
#include "paging_tmpl.h"
5277
#undef PTTYPE
5278
5279
static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
5280
u64 pa_bits_rsvd, int level, bool nx,
5281
bool gbpages, bool pse, bool amd)
5282
{
5283
u64 gbpages_bit_rsvd = 0;
5284
u64 nonleaf_bit8_rsvd = 0;
5285
u64 high_bits_rsvd;
5286
5287
rsvd_check->bad_mt_xwr = 0;
5288
5289
if (!gbpages)
5290
gbpages_bit_rsvd = rsvd_bits(7, 7);
5291
5292
if (level == PT32E_ROOT_LEVEL)
5293
high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
5294
else
5295
high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5296
5297
/* Note, NX doesn't exist in PDPTEs, this is handled below. */
5298
if (!nx)
5299
high_bits_rsvd |= rsvd_bits(63, 63);
5300
5301
/*
5302
* Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
5303
* leaf entries) on AMD CPUs only.
5304
*/
5305
if (amd)
5306
nonleaf_bit8_rsvd = rsvd_bits(8, 8);
5307
5308
switch (level) {
5309
case PT32_ROOT_LEVEL:
5310
/* no rsvd bits for 2 level 4K page table entries */
5311
rsvd_check->rsvd_bits_mask[0][1] = 0;
5312
rsvd_check->rsvd_bits_mask[0][0] = 0;
5313
rsvd_check->rsvd_bits_mask[1][0] =
5314
rsvd_check->rsvd_bits_mask[0][0];
5315
5316
if (!pse) {
5317
rsvd_check->rsvd_bits_mask[1][1] = 0;
5318
break;
5319
}
5320
5321
if (is_cpuid_PSE36())
5322
/* 36bits PSE 4MB page */
5323
rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
5324
else
5325
/* 32 bits PSE 4MB page */
5326
rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
5327
break;
5328
case PT32E_ROOT_LEVEL:
5329
rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
5330
high_bits_rsvd |
5331
rsvd_bits(5, 8) |
5332
rsvd_bits(1, 2); /* PDPTE */
5333
rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
5334
rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
5335
rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5336
rsvd_bits(13, 20); /* large page */
5337
rsvd_check->rsvd_bits_mask[1][0] =
5338
rsvd_check->rsvd_bits_mask[0][0];
5339
break;
5340
case PT64_ROOT_5LEVEL:
5341
rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
5342
nonleaf_bit8_rsvd |
5343
rsvd_bits(7, 7);
5344
rsvd_check->rsvd_bits_mask[1][4] =
5345
rsvd_check->rsvd_bits_mask[0][4];
5346
fallthrough;
5347
case PT64_ROOT_4LEVEL:
5348
rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
5349
nonleaf_bit8_rsvd |
5350
rsvd_bits(7, 7);
5351
rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
5352
gbpages_bit_rsvd;
5353
rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
5354
rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5355
rsvd_check->rsvd_bits_mask[1][3] =
5356
rsvd_check->rsvd_bits_mask[0][3];
5357
rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
5358
gbpages_bit_rsvd |
5359
rsvd_bits(13, 29);
5360
rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5361
rsvd_bits(13, 20); /* large page */
5362
rsvd_check->rsvd_bits_mask[1][0] =
5363
rsvd_check->rsvd_bits_mask[0][0];
5364
break;
5365
}
5366
}
5367
5368
static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
5369
struct kvm_mmu *context)
5370
{
5371
__reset_rsvds_bits_mask(&context->guest_rsvd_check,
5372
vcpu->arch.reserved_gpa_bits,
5373
context->cpu_role.base.level, is_efer_nx(context),
5374
guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES),
5375
is_cr4_pse(context),
5376
guest_cpuid_is_amd_compatible(vcpu));
5377
}
5378
5379
static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5380
u64 pa_bits_rsvd, bool execonly,
5381
int huge_page_level)
5382
{
5383
u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5384
u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
5385
u64 bad_mt_xwr;
5386
5387
if (huge_page_level < PG_LEVEL_1G)
5388
large_1g_rsvd = rsvd_bits(7, 7);
5389
if (huge_page_level < PG_LEVEL_2M)
5390
large_2m_rsvd = rsvd_bits(7, 7);
5391
5392
rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
5393
rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
5394
rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
5395
rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
5396
rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5397
5398
/* large page */
5399
rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
5400
rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5401
rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
5402
rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
5403
rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
5404
5405
bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
5406
bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
5407
bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
5408
bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
5409
bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
5410
if (!execonly) {
5411
/* bits 0..2 must not be 100 unless VMX capabilities allow it */
5412
bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
5413
}
5414
rsvd_check->bad_mt_xwr = bad_mt_xwr;
5415
}
5416
5417
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
5418
struct kvm_mmu *context, bool execonly, int huge_page_level)
5419
{
5420
__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5421
vcpu->arch.reserved_gpa_bits, execonly,
5422
huge_page_level);
5423
}
5424
5425
static inline u64 reserved_hpa_bits(void)
5426
{
5427
return rsvd_bits(kvm_host.maxphyaddr, 63);
5428
}
5429
5430
/*
5431
* the page table on host is the shadow page table for the page
5432
* table in guest or amd nested guest, its mmu features completely
5433
* follow the features in guest.
5434
*/
5435
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
5436
struct kvm_mmu *context)
5437
{
5438
/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
5439
bool is_amd = true;
5440
/* KVM doesn't use 2-level page tables for the shadow MMU. */
5441
bool is_pse = false;
5442
struct rsvd_bits_validate *shadow_zero_check;
5443
int i;
5444
5445
WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
5446
5447
shadow_zero_check = &context->shadow_zero_check;
5448
__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5449
context->root_role.level,
5450
context->root_role.efer_nx,
5451
guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES),
5452
is_pse, is_amd);
5453
5454
if (!shadow_me_mask)
5455
return;
5456
5457
for (i = context->root_role.level; --i >= 0;) {
5458
/*
5459
* So far shadow_me_value is a constant during KVM's life
5460
* time. Bits in shadow_me_value are allowed to be set.
5461
* Bits in shadow_me_mask but not in shadow_me_value are
5462
* not allowed to be set.
5463
*/
5464
shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
5465
shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
5466
shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
5467
shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
5468
}
5469
5470
}
5471
5472
static inline bool boot_cpu_is_amd(void)
5473
{
5474
WARN_ON_ONCE(!tdp_enabled);
5475
return shadow_x_mask == 0;
5476
}
5477
5478
/*
5479
* the direct page table on host, use as much mmu features as
5480
* possible, however, kvm currently does not do execution-protection.
5481
*/
5482
static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
5483
{
5484
struct rsvd_bits_validate *shadow_zero_check;
5485
int i;
5486
5487
shadow_zero_check = &context->shadow_zero_check;
5488
5489
if (boot_cpu_is_amd())
5490
__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5491
context->root_role.level, true,
5492
boot_cpu_has(X86_FEATURE_GBPAGES),
5493
false, true);
5494
else
5495
__reset_rsvds_bits_mask_ept(shadow_zero_check,
5496
reserved_hpa_bits(), false,
5497
max_huge_page_level);
5498
5499
if (!shadow_me_mask)
5500
return;
5501
5502
for (i = context->root_role.level; --i >= 0;) {
5503
shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
5504
shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
5505
}
5506
}
5507
5508
/*
5509
* as the comments in reset_shadow_zero_bits_mask() except it
5510
* is the shadow page table for intel nested guest.
5511
*/
5512
static void
5513
reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
5514
{
5515
__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
5516
reserved_hpa_bits(), execonly,
5517
max_huge_page_level);
5518
}
5519
5520
#define BYTE_MASK(access) \
5521
((1 & (access) ? 2 : 0) | \
5522
(2 & (access) ? 4 : 0) | \
5523
(3 & (access) ? 8 : 0) | \
5524
(4 & (access) ? 16 : 0) | \
5525
(5 & (access) ? 32 : 0) | \
5526
(6 & (access) ? 64 : 0) | \
5527
(7 & (access) ? 128 : 0))
5528
5529
5530
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
5531
{
5532
unsigned byte;
5533
5534
const u8 x = BYTE_MASK(ACC_EXEC_MASK);
5535
const u8 w = BYTE_MASK(ACC_WRITE_MASK);
5536
const u8 u = BYTE_MASK(ACC_USER_MASK);
5537
5538
bool cr4_smep = is_cr4_smep(mmu);
5539
bool cr4_smap = is_cr4_smap(mmu);
5540
bool cr0_wp = is_cr0_wp(mmu);
5541
bool efer_nx = is_efer_nx(mmu);
5542
5543
for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
5544
unsigned pfec = byte << 1;
5545
5546
/*
5547
* Each "*f" variable has a 1 bit for each UWX value
5548
* that causes a fault with the given PFEC.
5549
*/
5550
5551
/* Faults from writes to non-writable pages */
5552
u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
5553
/* Faults from user mode accesses to supervisor pages */
5554
u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
5555
/* Faults from fetches of non-executable pages*/
5556
u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
5557
/* Faults from kernel mode fetches of user pages */
5558
u8 smepf = 0;
5559
/* Faults from kernel mode accesses of user pages */
5560
u8 smapf = 0;
5561
5562
if (!ept) {
5563
/* Faults from kernel mode accesses to user pages */
5564
u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
5565
5566
/* Not really needed: !nx will cause pte.nx to fault */
5567
if (!efer_nx)
5568
ff = 0;
5569
5570
/* Allow supervisor writes if !cr0.wp */
5571
if (!cr0_wp)
5572
wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5573
5574
/* Disallow supervisor fetches of user code if cr4.smep */
5575
if (cr4_smep)
5576
smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5577
5578
/*
5579
* SMAP:kernel-mode data accesses from user-mode
5580
* mappings should fault. A fault is considered
5581
* as a SMAP violation if all of the following
5582
* conditions are true:
5583
* - X86_CR4_SMAP is set in CR4
5584
* - A user page is accessed
5585
* - The access is not a fetch
5586
* - The access is supervisor mode
5587
* - If implicit supervisor access or X86_EFLAGS_AC is clear
5588
*
5589
* Here, we cover the first four conditions.
5590
* The fifth is computed dynamically in permission_fault();
5591
* PFERR_RSVD_MASK bit will be set in PFEC if the access is
5592
* *not* subject to SMAP restrictions.
5593
*/
5594
if (cr4_smap)
5595
smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5596
}
5597
5598
mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5599
}
5600
}
5601
5602
/*
5603
* PKU is an additional mechanism by which the paging controls access to
5604
* user-mode addresses based on the value in the PKRU register. Protection
5605
* key violations are reported through a bit in the page fault error code.
5606
* Unlike other bits of the error code, the PK bit is not known at the
5607
* call site of e.g. gva_to_gpa; it must be computed directly in
5608
* permission_fault based on two bits of PKRU, on some machine state (CR4,
5609
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
5610
*
5611
* In particular the following conditions come from the error code, the
5612
* page tables and the machine state:
5613
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5614
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5615
* - PK is always zero if U=0 in the page tables
5616
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5617
*
5618
* The PKRU bitmask caches the result of these four conditions. The error
5619
* code (minus the P bit) and the page table's U bit form an index into the
5620
* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
5621
* with the two bits of the PKRU register corresponding to the protection key.
5622
* For the first three conditions above the bits will be 00, thus masking
5623
* away both AD and WD. For all reads or if the last condition holds, WD
5624
* only will be masked away.
5625
*/
5626
static void update_pkru_bitmask(struct kvm_mmu *mmu)
5627
{
5628
unsigned bit;
5629
bool wp;
5630
5631
mmu->pkru_mask = 0;
5632
5633
if (!is_cr4_pke(mmu))
5634
return;
5635
5636
wp = is_cr0_wp(mmu);
5637
5638
for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5639
unsigned pfec, pkey_bits;
5640
bool check_pkey, check_write, ff, uf, wf, pte_user;
5641
5642
pfec = bit << 1;
5643
ff = pfec & PFERR_FETCH_MASK;
5644
uf = pfec & PFERR_USER_MASK;
5645
wf = pfec & PFERR_WRITE_MASK;
5646
5647
/* PFEC.RSVD is replaced by ACC_USER_MASK. */
5648
pte_user = pfec & PFERR_RSVD_MASK;
5649
5650
/*
5651
* Only need to check the access which is not an
5652
* instruction fetch and is to a user page.
5653
*/
5654
check_pkey = (!ff && pte_user);
5655
/*
5656
* write access is controlled by PKRU if it is a
5657
* user access or CR0.WP = 1.
5658
*/
5659
check_write = check_pkey && wf && (uf || wp);
5660
5661
/* PKRU.AD stops both read and write access. */
5662
pkey_bits = !!check_pkey;
5663
/* PKRU.WD stops write access. */
5664
pkey_bits |= (!!check_write) << 1;
5665
5666
mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5667
}
5668
}
5669
5670
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5671
struct kvm_mmu *mmu)
5672
{
5673
if (!is_cr0_pg(mmu))
5674
return;
5675
5676
reset_guest_rsvds_bits_mask(vcpu, mmu);
5677
update_permission_bitmask(mmu, false);
5678
update_pkru_bitmask(mmu);
5679
}
5680
5681
static void paging64_init_context(struct kvm_mmu *context)
5682
{
5683
context->page_fault = paging64_page_fault;
5684
context->gva_to_gpa = paging64_gva_to_gpa;
5685
context->sync_spte = paging64_sync_spte;
5686
}
5687
5688
static void paging32_init_context(struct kvm_mmu *context)
5689
{
5690
context->page_fault = paging32_page_fault;
5691
context->gva_to_gpa = paging32_gva_to_gpa;
5692
context->sync_spte = paging32_sync_spte;
5693
}
5694
5695
static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5696
const struct kvm_mmu_role_regs *regs)
5697
{
5698
union kvm_cpu_role role = {0};
5699
5700
role.base.access = ACC_ALL;
5701
role.base.smm = is_smm(vcpu);
5702
role.base.guest_mode = is_guest_mode(vcpu);
5703
role.ext.valid = 1;
5704
5705
if (!____is_cr0_pg(regs)) {
5706
role.base.direct = 1;
5707
return role;
5708
}
5709
5710
role.base.efer_nx = ____is_efer_nx(regs);
5711
role.base.cr0_wp = ____is_cr0_wp(regs);
5712
role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5713
role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5714
role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5715
5716
if (____is_efer_lma(regs))
5717
role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5718
: PT64_ROOT_4LEVEL;
5719
else if (____is_cr4_pae(regs))
5720
role.base.level = PT32E_ROOT_LEVEL;
5721
else
5722
role.base.level = PT32_ROOT_LEVEL;
5723
5724
role.ext.cr4_smep = ____is_cr4_smep(regs);
5725
role.ext.cr4_smap = ____is_cr4_smap(regs);
5726
role.ext.cr4_pse = ____is_cr4_pse(regs);
5727
5728
/* PKEY and LA57 are active iff long mode is active. */
5729
role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5730
role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5731
role.ext.efer_lma = ____is_efer_lma(regs);
5732
return role;
5733
}
5734
5735
void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5736
struct kvm_mmu *mmu)
5737
{
5738
const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5739
5740
BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5741
BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5742
5743
if (is_cr0_wp(mmu) == cr0_wp)
5744
return;
5745
5746
mmu->cpu_role.base.cr0_wp = cr0_wp;
5747
reset_guest_paging_metadata(vcpu, mmu);
5748
}
5749
5750
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5751
{
5752
int maxpa;
5753
5754
if (vcpu->kvm->arch.vm_type == KVM_X86_TDX_VM)
5755
maxpa = cpuid_query_maxguestphyaddr(vcpu);
5756
else
5757
maxpa = cpuid_maxphyaddr(vcpu);
5758
5759
/* tdp_root_level is architecture forced level, use it if nonzero */
5760
if (tdp_root_level)
5761
return tdp_root_level;
5762
5763
/* Use 5-level TDP if and only if it's useful/necessary. */
5764
if (max_tdp_level == 5 && maxpa <= 48)
5765
return 4;
5766
5767
return max_tdp_level;
5768
}
5769
5770
u8 kvm_mmu_get_max_tdp_level(void)
5771
{
5772
return tdp_root_level ? tdp_root_level : max_tdp_level;
5773
}
5774
5775
static union kvm_mmu_page_role
5776
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5777
union kvm_cpu_role cpu_role)
5778
{
5779
union kvm_mmu_page_role role = {0};
5780
5781
role.access = ACC_ALL;
5782
role.cr0_wp = true;
5783
role.efer_nx = true;
5784
role.smm = cpu_role.base.smm;
5785
role.guest_mode = cpu_role.base.guest_mode;
5786
role.ad_disabled = !kvm_ad_enabled;
5787
role.level = kvm_mmu_get_tdp_level(vcpu);
5788
role.direct = true;
5789
role.has_4_byte_gpte = false;
5790
5791
return role;
5792
}
5793
5794
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5795
union kvm_cpu_role cpu_role)
5796
{
5797
struct kvm_mmu *context = &vcpu->arch.root_mmu;
5798
union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5799
5800
if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5801
root_role.word == context->root_role.word)
5802
return;
5803
5804
context->cpu_role.as_u64 = cpu_role.as_u64;
5805
context->root_role.word = root_role.word;
5806
context->page_fault = kvm_tdp_page_fault;
5807
context->sync_spte = NULL;
5808
context->get_guest_pgd = get_guest_cr3;
5809
context->get_pdptr = kvm_pdptr_read;
5810
context->inject_page_fault = kvm_inject_page_fault;
5811
5812
if (!is_cr0_pg(context))
5813
context->gva_to_gpa = nonpaging_gva_to_gpa;
5814
else if (is_cr4_pae(context))
5815
context->gva_to_gpa = paging64_gva_to_gpa;
5816
else
5817
context->gva_to_gpa = paging32_gva_to_gpa;
5818
5819
reset_guest_paging_metadata(vcpu, context);
5820
reset_tdp_shadow_zero_bits_mask(context);
5821
}
5822
5823
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5824
union kvm_cpu_role cpu_role,
5825
union kvm_mmu_page_role root_role)
5826
{
5827
if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5828
root_role.word == context->root_role.word)
5829
return;
5830
5831
context->cpu_role.as_u64 = cpu_role.as_u64;
5832
context->root_role.word = root_role.word;
5833
5834
if (!is_cr0_pg(context))
5835
nonpaging_init_context(context);
5836
else if (is_cr4_pae(context))
5837
paging64_init_context(context);
5838
else
5839
paging32_init_context(context);
5840
5841
reset_guest_paging_metadata(vcpu, context);
5842
reset_shadow_zero_bits_mask(vcpu, context);
5843
}
5844
5845
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5846
union kvm_cpu_role cpu_role)
5847
{
5848
struct kvm_mmu *context = &vcpu->arch.root_mmu;
5849
union kvm_mmu_page_role root_role;
5850
5851
root_role = cpu_role.base;
5852
5853
/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5854
root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5855
5856
/*
5857
* KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5858
* KVM uses NX when TDP is disabled to handle a variety of scenarios,
5859
* notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5860
* to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5861
* The iTLB multi-hit workaround can be toggled at any time, so assume
5862
* NX can be used by any non-nested shadow MMU to avoid having to reset
5863
* MMU contexts.
5864
*/
5865
root_role.efer_nx = true;
5866
5867
shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5868
}
5869
5870
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5871
unsigned long cr4, u64 efer, gpa_t nested_cr3)
5872
{
5873
struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5874
struct kvm_mmu_role_regs regs = {
5875
.cr0 = cr0,
5876
.cr4 = cr4 & ~X86_CR4_PKE,
5877
.efer = efer,
5878
};
5879
union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5880
union kvm_mmu_page_role root_role;
5881
5882
/* NPT requires CR0.PG=1. */
5883
WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode);
5884
5885
root_role = cpu_role.base;
5886
root_role.level = kvm_mmu_get_tdp_level(vcpu);
5887
if (root_role.level == PT64_ROOT_5LEVEL &&
5888
cpu_role.base.level == PT64_ROOT_4LEVEL)
5889
root_role.passthrough = 1;
5890
5891
shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5892
kvm_mmu_new_pgd(vcpu, nested_cr3);
5893
}
5894
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_shadow_npt_mmu);
5895
5896
static union kvm_cpu_role
5897
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5898
bool execonly, u8 level)
5899
{
5900
union kvm_cpu_role role = {0};
5901
5902
/*
5903
* KVM does not support SMM transfer monitors, and consequently does not
5904
* support the "entry to SMM" control either. role.base.smm is always 0.
5905
*/
5906
WARN_ON_ONCE(is_smm(vcpu));
5907
role.base.level = level;
5908
role.base.has_4_byte_gpte = false;
5909
role.base.direct = false;
5910
role.base.ad_disabled = !accessed_dirty;
5911
role.base.guest_mode = true;
5912
role.base.access = ACC_ALL;
5913
5914
role.ext.word = 0;
5915
role.ext.execonly = execonly;
5916
role.ext.valid = 1;
5917
5918
return role;
5919
}
5920
5921
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5922
int huge_page_level, bool accessed_dirty,
5923
gpa_t new_eptp)
5924
{
5925
struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5926
u8 level = vmx_eptp_page_walk_level(new_eptp);
5927
union kvm_cpu_role new_mode =
5928
kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5929
execonly, level);
5930
5931
if (new_mode.as_u64 != context->cpu_role.as_u64) {
5932
/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5933
context->cpu_role.as_u64 = new_mode.as_u64;
5934
context->root_role.word = new_mode.base.word;
5935
5936
context->page_fault = ept_page_fault;
5937
context->gva_to_gpa = ept_gva_to_gpa;
5938
context->sync_spte = ept_sync_spte;
5939
5940
update_permission_bitmask(context, true);
5941
context->pkru_mask = 0;
5942
reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5943
reset_ept_shadow_zero_bits_mask(context, execonly);
5944
}
5945
5946
kvm_mmu_new_pgd(vcpu, new_eptp);
5947
}
5948
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_shadow_ept_mmu);
5949
5950
static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5951
union kvm_cpu_role cpu_role)
5952
{
5953
struct kvm_mmu *context = &vcpu->arch.root_mmu;
5954
5955
kvm_init_shadow_mmu(vcpu, cpu_role);
5956
5957
context->get_guest_pgd = get_guest_cr3;
5958
context->get_pdptr = kvm_pdptr_read;
5959
context->inject_page_fault = kvm_inject_page_fault;
5960
}
5961
5962
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5963
union kvm_cpu_role new_mode)
5964
{
5965
struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5966
5967
if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5968
return;
5969
5970
g_context->cpu_role.as_u64 = new_mode.as_u64;
5971
g_context->get_guest_pgd = get_guest_cr3;
5972
g_context->get_pdptr = kvm_pdptr_read;
5973
g_context->inject_page_fault = kvm_inject_page_fault;
5974
5975
/*
5976
* L2 page tables are never shadowed, so there is no need to sync
5977
* SPTEs.
5978
*/
5979
g_context->sync_spte = NULL;
5980
5981
/*
5982
* Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5983
* L1's nested page tables (e.g. EPT12). The nested translation
5984
* of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5985
* L2's page tables as the first level of translation and L1's
5986
* nested page tables as the second level of translation. Basically
5987
* the gva_to_gpa functions between mmu and nested_mmu are swapped.
5988
*/
5989
if (!is_paging(vcpu))
5990
g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5991
else if (is_long_mode(vcpu))
5992
g_context->gva_to_gpa = paging64_gva_to_gpa;
5993
else if (is_pae(vcpu))
5994
g_context->gva_to_gpa = paging64_gva_to_gpa;
5995
else
5996
g_context->gva_to_gpa = paging32_gva_to_gpa;
5997
5998
reset_guest_paging_metadata(vcpu, g_context);
5999
}
6000
6001
void kvm_init_mmu(struct kvm_vcpu *vcpu)
6002
{
6003
struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
6004
union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
6005
6006
if (mmu_is_nested(vcpu))
6007
init_kvm_nested_mmu(vcpu, cpu_role);
6008
else if (tdp_enabled)
6009
init_kvm_tdp_mmu(vcpu, cpu_role);
6010
else
6011
init_kvm_softmmu(vcpu, cpu_role);
6012
}
6013
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_mmu);
6014
6015
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
6016
{
6017
/*
6018
* Invalidate all MMU roles to force them to reinitialize as CPUID
6019
* information is factored into reserved bit calculations.
6020
*
6021
* Correctly handling multiple vCPU models with respect to paging and
6022
* physical address properties) in a single VM would require tracking
6023
* all relevant CPUID information in kvm_mmu_page_role. That is very
6024
* undesirable as it would increase the memory requirements for
6025
* gfn_write_track (see struct kvm_mmu_page_role comments). For now
6026
* that problem is swept under the rug; KVM's CPUID API is horrific and
6027
* it's all but impossible to solve it without introducing a new API.
6028
*/
6029
vcpu->arch.root_mmu.root_role.invalid = 1;
6030
vcpu->arch.guest_mmu.root_role.invalid = 1;
6031
vcpu->arch.nested_mmu.root_role.invalid = 1;
6032
vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
6033
vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
6034
vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
6035
kvm_mmu_reset_context(vcpu);
6036
6037
KVM_BUG_ON(!kvm_can_set_cpuid_and_feature_msrs(vcpu), vcpu->kvm);
6038
}
6039
6040
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6041
{
6042
kvm_mmu_unload(vcpu);
6043
kvm_init_mmu(vcpu);
6044
}
6045
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_reset_context);
6046
6047
int kvm_mmu_load(struct kvm_vcpu *vcpu)
6048
{
6049
int r;
6050
6051
r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
6052
if (r)
6053
goto out;
6054
r = mmu_alloc_special_roots(vcpu);
6055
if (r)
6056
goto out;
6057
if (vcpu->arch.mmu->root_role.direct)
6058
r = mmu_alloc_direct_roots(vcpu);
6059
else
6060
r = mmu_alloc_shadow_roots(vcpu);
6061
if (r)
6062
goto out;
6063
6064
kvm_mmu_sync_roots(vcpu);
6065
6066
kvm_mmu_load_pgd(vcpu);
6067
6068
/*
6069
* Flush any TLB entries for the new root, the provenance of the root
6070
* is unknown. Even if KVM ensures there are no stale TLB entries
6071
* for a freed root, in theory another hypervisor could have left
6072
* stale entries. Flushing on alloc also allows KVM to skip the TLB
6073
* flush when freeing a root (see kvm_tdp_mmu_put_root()).
6074
*/
6075
kvm_x86_call(flush_tlb_current)(vcpu);
6076
out:
6077
return r;
6078
}
6079
6080
void kvm_mmu_unload(struct kvm_vcpu *vcpu)
6081
{
6082
struct kvm *kvm = vcpu->kvm;
6083
6084
kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
6085
WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
6086
kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
6087
WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
6088
vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
6089
}
6090
6091
static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
6092
{
6093
struct kvm_mmu_page *sp;
6094
6095
if (!VALID_PAGE(root_hpa))
6096
return false;
6097
6098
/*
6099
* When freeing obsolete roots, treat roots as obsolete if they don't
6100
* have an associated shadow page, as it's impossible to determine if
6101
* such roots are fresh or stale. This does mean KVM will get false
6102
* positives and free roots that don't strictly need to be freed, but
6103
* such false positives are relatively rare:
6104
*
6105
* (a) only PAE paging and nested NPT have roots without shadow pages
6106
* (or any shadow paging flavor with a dummy root, see note below)
6107
* (b) remote reloads due to a memslot update obsoletes _all_ roots
6108
* (c) KVM doesn't track previous roots for PAE paging, and the guest
6109
* is unlikely to zap an in-use PGD.
6110
*
6111
* Note! Dummy roots are unique in that they are obsoleted by memslot
6112
* _creation_! See also FNAME(fetch).
6113
*/
6114
sp = root_to_sp(root_hpa);
6115
return !sp || is_obsolete_sp(kvm, sp);
6116
}
6117
6118
static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
6119
{
6120
unsigned long roots_to_free = 0;
6121
int i;
6122
6123
if (is_obsolete_root(kvm, mmu->root.hpa))
6124
roots_to_free |= KVM_MMU_ROOT_CURRENT;
6125
6126
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6127
if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
6128
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
6129
}
6130
6131
if (roots_to_free)
6132
kvm_mmu_free_roots(kvm, mmu, roots_to_free);
6133
}
6134
6135
void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
6136
{
6137
__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
6138
__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
6139
}
6140
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_obsolete_roots);
6141
6142
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
6143
int *bytes)
6144
{
6145
u64 gentry = 0;
6146
int r;
6147
6148
/*
6149
* Assume that the pte write on a page table of the same type
6150
* as the current vcpu paging mode since we update the sptes only
6151
* when they have the same mode.
6152
*/
6153
if (is_pae(vcpu) && *bytes == 4) {
6154
/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
6155
*gpa &= ~(gpa_t)7;
6156
*bytes = 8;
6157
}
6158
6159
if (*bytes == 4 || *bytes == 8) {
6160
r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
6161
if (r)
6162
gentry = 0;
6163
}
6164
6165
return gentry;
6166
}
6167
6168
/*
6169
* If we're seeing too many writes to a page, it may no longer be a page table,
6170
* or we may be forking, in which case it is better to unmap the page.
6171
*/
6172
static bool detect_write_flooding(struct kvm_mmu_page *sp)
6173
{
6174
/*
6175
* Skip write-flooding detected for the sp whose level is 1, because
6176
* it can become unsync, then the guest page is not write-protected.
6177
*/
6178
if (sp->role.level == PG_LEVEL_4K)
6179
return false;
6180
6181
atomic_inc(&sp->write_flooding_count);
6182
return atomic_read(&sp->write_flooding_count) >= 3;
6183
}
6184
6185
/*
6186
* Misaligned accesses are too much trouble to fix up; also, they usually
6187
* indicate a page is not used as a page table.
6188
*/
6189
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
6190
int bytes)
6191
{
6192
unsigned offset, pte_size, misaligned;
6193
6194
offset = offset_in_page(gpa);
6195
pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
6196
6197
/*
6198
* Sometimes, the OS only writes the last one bytes to update status
6199
* bits, for example, in linux, andb instruction is used in clear_bit().
6200
*/
6201
if (!(offset & (pte_size - 1)) && bytes == 1)
6202
return false;
6203
6204
misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
6205
misaligned |= bytes < 4;
6206
6207
return misaligned;
6208
}
6209
6210
static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
6211
{
6212
unsigned page_offset, quadrant;
6213
u64 *spte;
6214
int level;
6215
6216
page_offset = offset_in_page(gpa);
6217
level = sp->role.level;
6218
*nspte = 1;
6219
if (sp->role.has_4_byte_gpte) {
6220
page_offset <<= 1; /* 32->64 */
6221
/*
6222
* A 32-bit pde maps 4MB while the shadow pdes map
6223
* only 2MB. So we need to double the offset again
6224
* and zap two pdes instead of one.
6225
*/
6226
if (level == PT32_ROOT_LEVEL) {
6227
page_offset &= ~7; /* kill rounding error */
6228
page_offset <<= 1;
6229
*nspte = 2;
6230
}
6231
quadrant = page_offset >> PAGE_SHIFT;
6232
page_offset &= ~PAGE_MASK;
6233
if (quadrant != sp->role.quadrant)
6234
return NULL;
6235
}
6236
6237
spte = &sp->spt[page_offset / sizeof(*spte)];
6238
return spte;
6239
}
6240
6241
void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
6242
int bytes)
6243
{
6244
gfn_t gfn = gpa >> PAGE_SHIFT;
6245
struct kvm_mmu_page *sp;
6246
LIST_HEAD(invalid_list);
6247
u64 entry, gentry, *spte;
6248
int npte;
6249
bool flush = false;
6250
6251
/*
6252
* When emulating guest writes, ensure the written value is visible to
6253
* any task that is handling page faults before checking whether or not
6254
* KVM is shadowing a guest PTE. This ensures either KVM will create
6255
* the correct SPTE in the page fault handler, or this task will see
6256
* a non-zero indirect_shadow_pages. Pairs with the smp_mb() in
6257
* account_shadowed().
6258
*/
6259
smp_mb();
6260
if (!vcpu->kvm->arch.indirect_shadow_pages)
6261
return;
6262
6263
write_lock(&vcpu->kvm->mmu_lock);
6264
6265
gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
6266
6267
++vcpu->kvm->stat.mmu_pte_write;
6268
6269
for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
6270
if (detect_write_misaligned(sp, gpa, bytes) ||
6271
detect_write_flooding(sp)) {
6272
kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
6273
++vcpu->kvm->stat.mmu_flooded;
6274
continue;
6275
}
6276
6277
spte = get_written_sptes(sp, gpa, &npte);
6278
if (!spte)
6279
continue;
6280
6281
while (npte--) {
6282
entry = *spte;
6283
mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
6284
if (gentry && sp->role.level != PG_LEVEL_4K)
6285
++vcpu->kvm->stat.mmu_pde_zapped;
6286
if (is_shadow_present_pte(entry))
6287
flush = true;
6288
++spte;
6289
}
6290
}
6291
kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
6292
write_unlock(&vcpu->kvm->mmu_lock);
6293
}
6294
6295
static bool is_write_to_guest_page_table(u64 error_code)
6296
{
6297
const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK;
6298
6299
return (error_code & mask) == mask;
6300
}
6301
6302
static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6303
u64 error_code, int *emulation_type)
6304
{
6305
bool direct = vcpu->arch.mmu->root_role.direct;
6306
6307
/*
6308
* Do not try to unprotect and retry if the vCPU re-faulted on the same
6309
* RIP with the same address that was previously unprotected, as doing
6310
* so will likely put the vCPU into an infinite. E.g. if the vCPU uses
6311
* a non-page-table modifying instruction on the PDE that points to the
6312
* instruction, then unprotecting the gfn will unmap the instruction's
6313
* code, i.e. make it impossible for the instruction to ever complete.
6314
*/
6315
if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) &&
6316
vcpu->arch.last_retry_addr == cr2_or_gpa)
6317
return RET_PF_EMULATE;
6318
6319
/*
6320
* Reset the unprotect+retry values that guard against infinite loops.
6321
* The values will be refreshed if KVM explicitly unprotects a gfn and
6322
* retries, in all other cases it's safe to retry in the future even if
6323
* the next page fault happens on the same RIP+address.
6324
*/
6325
vcpu->arch.last_retry_eip = 0;
6326
vcpu->arch.last_retry_addr = 0;
6327
6328
/*
6329
* It should be impossible to reach this point with an MMIO cache hit,
6330
* as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid,
6331
* writable memslot, and creating a memslot should invalidate the MMIO
6332
* cache by way of changing the memslot generation. WARN and disallow
6333
* retry if MMIO is detected, as retrying MMIO emulation is pointless
6334
* and could put the vCPU into an infinite loop because the processor
6335
* will keep faulting on the non-existent MMIO address.
6336
*/
6337
if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct)))
6338
return RET_PF_EMULATE;
6339
6340
/*
6341
* Before emulating the instruction, check to see if the access was due
6342
* to a read-only violation while the CPU was walking non-nested NPT
6343
* page tables, i.e. for a direct MMU, for _guest_ page tables in L1.
6344
* If L1 is sharing (a subset of) its page tables with L2, e.g. by
6345
* having nCR3 share lower level page tables with hCR3, then when KVM
6346
* (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also
6347
* unknowingly write-protecting L1's guest page tables, which KVM isn't
6348
* shadowing.
6349
*
6350
* Because the CPU (by default) walks NPT page tables using a write
6351
* access (to ensure the CPU can do A/D updates), page walks in L1 can
6352
* trigger write faults for the above case even when L1 isn't modifying
6353
* PTEs. As a result, KVM will unnecessarily emulate (or at least, try
6354
* to emulate) an excessive number of L1 instructions; because L1's MMU
6355
* isn't shadowed by KVM, there is no need to write-protect L1's gPTEs
6356
* and thus no need to emulate in order to guarantee forward progress.
6357
*
6358
* Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can
6359
* proceed without triggering emulation. If one or more shadow pages
6360
* was zapped, skip emulation and resume L1 to let it natively execute
6361
* the instruction. If no shadow pages were zapped, then the write-
6362
* fault is due to something else entirely, i.e. KVM needs to emulate,
6363
* as resuming the guest will put it into an infinite loop.
6364
*
6365
* Note, this code also applies to Intel CPUs, even though it is *very*
6366
* unlikely that an L1 will share its page tables (IA32/PAE/paging64
6367
* format) with L2's page tables (EPT format).
6368
*
6369
* For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to
6370
* unprotect the gfn and retry if an event is awaiting reinjection. If
6371
* KVM emulates multiple instructions before completing event injection,
6372
* the event could be delayed beyond what is architecturally allowed,
6373
* e.g. KVM could inject an IRQ after the TPR has been raised.
6374
*/
6375
if (((direct && is_write_to_guest_page_table(error_code)) ||
6376
(!direct && kvm_event_needs_reinjection(vcpu))) &&
6377
kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
6378
return RET_PF_RETRY;
6379
6380
/*
6381
* The gfn is write-protected, but if KVM detects its emulating an
6382
* instruction that is unlikely to be used to modify page tables, or if
6383
* emulation fails, KVM can try to unprotect the gfn and let the CPU
6384
* re-execute the instruction that caused the page fault. Do not allow
6385
* retrying an instruction from a nested guest as KVM is only explicitly
6386
* shadowing L1's page tables, i.e. unprotecting something for L1 isn't
6387
* going to magically fix whatever issue caused L2 to fail.
6388
*/
6389
if (!is_guest_mode(vcpu))
6390
*emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
6391
6392
return RET_PF_EMULATE;
6393
}
6394
6395
int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
6396
void *insn, int insn_len)
6397
{
6398
int r, emulation_type = EMULTYPE_PF;
6399
bool direct = vcpu->arch.mmu->root_role.direct;
6400
6401
if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
6402
return RET_PF_RETRY;
6403
6404
/*
6405
* Except for reserved faults (emulated MMIO is shared-only), set the
6406
* PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's
6407
* current attributes, which are the source of truth for such VMs. Note,
6408
* this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't
6409
* currently supported nested virtualization (among many other things)
6410
* for software-protected VMs.
6411
*/
6412
if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) &&
6413
!(error_code & PFERR_RSVD_MASK) &&
6414
vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM &&
6415
kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)))
6416
error_code |= PFERR_PRIVATE_ACCESS;
6417
6418
r = RET_PF_INVALID;
6419
if (unlikely(error_code & PFERR_RSVD_MASK)) {
6420
if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS))
6421
return -EFAULT;
6422
6423
r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
6424
if (r == RET_PF_EMULATE)
6425
goto emulate;
6426
}
6427
6428
if (r == RET_PF_INVALID) {
6429
vcpu->stat.pf_taken++;
6430
6431
r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false,
6432
&emulation_type, NULL);
6433
if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
6434
return -EIO;
6435
}
6436
6437
if (r < 0)
6438
return r;
6439
6440
if (r == RET_PF_WRITE_PROTECTED)
6441
r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code,
6442
&emulation_type);
6443
6444
if (r == RET_PF_FIXED)
6445
vcpu->stat.pf_fixed++;
6446
else if (r == RET_PF_EMULATE)
6447
vcpu->stat.pf_emulate++;
6448
else if (r == RET_PF_SPURIOUS)
6449
vcpu->stat.pf_spurious++;
6450
6451
/*
6452
* None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or
6453
* kvm_mmu_write_protect_fault() return RET_PF_CONTINUE.
6454
* kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to
6455
* indicate continuing the page fault handling until to the final
6456
* page table mapping phase.
6457
*/
6458
WARN_ON_ONCE(r == RET_PF_CONTINUE);
6459
if (r != RET_PF_EMULATE)
6460
return r;
6461
6462
emulate:
6463
return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
6464
insn_len);
6465
}
6466
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_page_fault);
6467
6468
void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg)
6469
{
6470
u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
6471
int root_level, leaf, level;
6472
6473
leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level);
6474
if (unlikely(leaf < 0))
6475
return;
6476
6477
pr_err("%s %llx", msg, gpa);
6478
for (level = root_level; level >= leaf; level--)
6479
pr_cont(", spte[%d] = 0x%llx", level, sptes[level]);
6480
pr_cont("\n");
6481
}
6482
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_print_sptes);
6483
6484
static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6485
u64 addr, hpa_t root_hpa)
6486
{
6487
struct kvm_shadow_walk_iterator iterator;
6488
6489
vcpu_clear_mmio_info(vcpu, addr);
6490
6491
/*
6492
* Walking and synchronizing SPTEs both assume they are operating in
6493
* the context of the current MMU, and would need to be reworked if
6494
* this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
6495
*/
6496
if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
6497
return;
6498
6499
if (!VALID_PAGE(root_hpa))
6500
return;
6501
6502
write_lock(&vcpu->kvm->mmu_lock);
6503
for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
6504
struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
6505
6506
if (sp->unsync) {
6507
int ret = kvm_sync_spte(vcpu, sp, iterator.index);
6508
6509
if (ret < 0)
6510
mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
6511
if (ret)
6512
kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
6513
}
6514
6515
if (!sp->unsync_children)
6516
break;
6517
}
6518
write_unlock(&vcpu->kvm->mmu_lock);
6519
}
6520
6521
void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6522
u64 addr, unsigned long roots)
6523
{
6524
int i;
6525
6526
WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
6527
6528
/* It's actually a GPA for vcpu->arch.guest_mmu. */
6529
if (mmu != &vcpu->arch.guest_mmu) {
6530
/* INVLPG on a non-canonical address is a NOP according to the SDM. */
6531
if (is_noncanonical_invlpg_address(addr, vcpu))
6532
return;
6533
6534
kvm_x86_call(flush_tlb_gva)(vcpu, addr);
6535
}
6536
6537
if (!mmu->sync_spte)
6538
return;
6539
6540
if (roots & KVM_MMU_ROOT_CURRENT)
6541
__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
6542
6543
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6544
if (roots & KVM_MMU_ROOT_PREVIOUS(i))
6545
__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
6546
}
6547
}
6548
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_invalidate_addr);
6549
6550
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
6551
{
6552
/*
6553
* INVLPG is required to invalidate any global mappings for the VA,
6554
* irrespective of PCID. Blindly sync all roots as it would take
6555
* roughly the same amount of work/time to determine whether any of the
6556
* previous roots have a global mapping.
6557
*
6558
* Mappings not reachable via the current or previous cached roots will
6559
* be synced when switching to that new cr3, so nothing needs to be
6560
* done here for them.
6561
*/
6562
kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
6563
++vcpu->stat.invlpg;
6564
}
6565
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_invlpg);
6566
6567
6568
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
6569
{
6570
struct kvm_mmu *mmu = vcpu->arch.mmu;
6571
unsigned long roots = 0;
6572
uint i;
6573
6574
if (pcid == kvm_get_active_pcid(vcpu))
6575
roots |= KVM_MMU_ROOT_CURRENT;
6576
6577
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6578
if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
6579
pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
6580
roots |= KVM_MMU_ROOT_PREVIOUS(i);
6581
}
6582
6583
if (roots)
6584
kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
6585
++vcpu->stat.invlpg;
6586
6587
/*
6588
* Mappings not reachable via the current cr3 or the prev_roots will be
6589
* synced when switching to that cr3, so nothing needs to be done here
6590
* for them.
6591
*/
6592
}
6593
6594
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
6595
int tdp_max_root_level, int tdp_huge_page_level)
6596
{
6597
tdp_enabled = enable_tdp;
6598
tdp_root_level = tdp_forced_root_level;
6599
max_tdp_level = tdp_max_root_level;
6600
6601
#ifdef CONFIG_X86_64
6602
tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
6603
#endif
6604
/*
6605
* max_huge_page_level reflects KVM's MMU capabilities irrespective
6606
* of kernel support, e.g. KVM may be capable of using 1GB pages when
6607
* the kernel is not. But, KVM never creates a page size greater than
6608
* what is used by the kernel for any given HVA, i.e. the kernel's
6609
* capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
6610
*/
6611
if (tdp_enabled)
6612
max_huge_page_level = tdp_huge_page_level;
6613
else if (boot_cpu_has(X86_FEATURE_GBPAGES))
6614
max_huge_page_level = PG_LEVEL_1G;
6615
else
6616
max_huge_page_level = PG_LEVEL_2M;
6617
}
6618
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_configure_mmu);
6619
6620
static void free_mmu_pages(struct kvm_mmu *mmu)
6621
{
6622
if (!tdp_enabled && mmu->pae_root)
6623
set_memory_encrypted((unsigned long)mmu->pae_root, 1);
6624
free_page((unsigned long)mmu->pae_root);
6625
free_page((unsigned long)mmu->pml4_root);
6626
free_page((unsigned long)mmu->pml5_root);
6627
}
6628
6629
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6630
{
6631
struct page *page;
6632
int i;
6633
6634
mmu->root.hpa = INVALID_PAGE;
6635
mmu->root.pgd = 0;
6636
mmu->mirror_root_hpa = INVALID_PAGE;
6637
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
6638
mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6639
6640
/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
6641
if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
6642
return 0;
6643
6644
/*
6645
* When using PAE paging, the four PDPTEs are treated as 'root' pages,
6646
* while the PDP table is a per-vCPU construct that's allocated at MMU
6647
* creation. When emulating 32-bit mode, cr3 is only 32 bits even on
6648
* x86_64. Therefore we need to allocate the PDP table in the first
6649
* 4GB of memory, which happens to fit the DMA32 zone. TDP paging
6650
* generally doesn't use PAE paging and can skip allocating the PDP
6651
* table. The main exception, handled here, is SVM's 32-bit NPT. The
6652
* other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6653
* KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6654
*/
6655
if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6656
return 0;
6657
6658
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6659
if (!page)
6660
return -ENOMEM;
6661
6662
mmu->pae_root = page_address(page);
6663
6664
/*
6665
* CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6666
* get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
6667
* that KVM's writes and the CPU's reads get along. Note, this is
6668
* only necessary when using shadow paging, as 64-bit NPT can get at
6669
* the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6670
* by 32-bit kernels (when KVM itself uses 32-bit NPT).
6671
*/
6672
if (!tdp_enabled)
6673
set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6674
else
6675
WARN_ON_ONCE(shadow_me_value);
6676
6677
for (i = 0; i < 4; ++i)
6678
mmu->pae_root[i] = INVALID_PAE_ROOT;
6679
6680
return 0;
6681
}
6682
6683
int kvm_mmu_create(struct kvm_vcpu *vcpu)
6684
{
6685
int ret;
6686
6687
vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6688
vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6689
6690
vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6691
vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6692
6693
vcpu->arch.mmu_shadow_page_cache.init_value =
6694
SHADOW_NONPRESENT_VALUE;
6695
if (!vcpu->arch.mmu_shadow_page_cache.init_value)
6696
vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6697
6698
vcpu->arch.mmu = &vcpu->arch.root_mmu;
6699
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6700
6701
ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6702
if (ret)
6703
return ret;
6704
6705
ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6706
if (ret)
6707
goto fail_allocate_root;
6708
6709
return ret;
6710
fail_allocate_root:
6711
free_mmu_pages(&vcpu->arch.guest_mmu);
6712
return ret;
6713
}
6714
6715
#define BATCH_ZAP_PAGES 10
6716
static void kvm_zap_obsolete_pages(struct kvm *kvm)
6717
{
6718
struct kvm_mmu_page *sp, *node;
6719
int nr_zapped, batch = 0;
6720
LIST_HEAD(invalid_list);
6721
bool unstable;
6722
6723
lockdep_assert_held(&kvm->slots_lock);
6724
6725
restart:
6726
list_for_each_entry_safe_reverse(sp, node,
6727
&kvm->arch.active_mmu_pages, link) {
6728
/*
6729
* No obsolete valid page exists before a newly created page
6730
* since active_mmu_pages is a FIFO list.
6731
*/
6732
if (!is_obsolete_sp(kvm, sp))
6733
break;
6734
6735
/*
6736
* Invalid pages should never land back on the list of active
6737
* pages. Skip the bogus page, otherwise we'll get stuck in an
6738
* infinite loop if the page gets put back on the list (again).
6739
*/
6740
if (WARN_ON_ONCE(sp->role.invalid))
6741
continue;
6742
6743
/*
6744
* No need to flush the TLB since we're only zapping shadow
6745
* pages with an obsolete generation number and all vCPUS have
6746
* loaded a new root, i.e. the shadow pages being zapped cannot
6747
* be in active use by the guest.
6748
*/
6749
if (batch >= BATCH_ZAP_PAGES &&
6750
cond_resched_rwlock_write(&kvm->mmu_lock)) {
6751
batch = 0;
6752
goto restart;
6753
}
6754
6755
unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6756
&invalid_list, &nr_zapped);
6757
batch += nr_zapped;
6758
6759
if (unstable)
6760
goto restart;
6761
}
6762
6763
/*
6764
* Kick all vCPUs (via remote TLB flush) before freeing the page tables
6765
* to ensure KVM is not in the middle of a lockless shadow page table
6766
* walk, which may reference the pages. The remote TLB flush itself is
6767
* not required and is simply a convenient way to kick vCPUs as needed.
6768
* KVM performs a local TLB flush when allocating a new root (see
6769
* kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6770
* running with an obsolete MMU.
6771
*/
6772
kvm_mmu_commit_zap_page(kvm, &invalid_list);
6773
}
6774
6775
/*
6776
* Fast invalidate all shadow pages and use lock-break technique
6777
* to zap obsolete pages.
6778
*
6779
* It's required when memslot is being deleted or VM is being
6780
* destroyed, in these cases, we should ensure that KVM MMU does
6781
* not use any resource of the being-deleted slot or all slots
6782
* after calling the function.
6783
*/
6784
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6785
{
6786
lockdep_assert_held(&kvm->slots_lock);
6787
6788
write_lock(&kvm->mmu_lock);
6789
trace_kvm_mmu_zap_all_fast(kvm);
6790
6791
/*
6792
* Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
6793
* held for the entire duration of zapping obsolete pages, it's
6794
* impossible for there to be multiple invalid generations associated
6795
* with *valid* shadow pages at any given time, i.e. there is exactly
6796
* one valid generation and (at most) one invalid generation.
6797
*/
6798
kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6799
6800
/*
6801
* In order to ensure all vCPUs drop their soon-to-be invalid roots,
6802
* invalidating TDP MMU roots must be done while holding mmu_lock for
6803
* write and in the same critical section as making the reload request,
6804
* e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6805
*/
6806
if (tdp_mmu_enabled) {
6807
/*
6808
* External page tables don't support fast zapping, therefore
6809
* their mirrors must be invalidated separately by the caller.
6810
*/
6811
kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS);
6812
}
6813
6814
/*
6815
* Notify all vcpus to reload its shadow page table and flush TLB.
6816
* Then all vcpus will switch to new shadow page table with the new
6817
* mmu_valid_gen.
6818
*
6819
* Note: we need to do this under the protection of mmu_lock,
6820
* otherwise, vcpu would purge shadow page but miss tlb flush.
6821
*/
6822
kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6823
6824
kvm_zap_obsolete_pages(kvm);
6825
6826
write_unlock(&kvm->mmu_lock);
6827
6828
/*
6829
* Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6830
* returning to the caller, e.g. if the zap is in response to a memslot
6831
* deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6832
* associated with the deleted memslot once the update completes, and
6833
* Deferring the zap until the final reference to the root is put would
6834
* lead to use-after-free.
6835
*/
6836
if (tdp_mmu_enabled)
6837
kvm_tdp_mmu_zap_invalidated_roots(kvm, true);
6838
}
6839
6840
int kvm_mmu_init_vm(struct kvm *kvm)
6841
{
6842
int r, i;
6843
6844
kvm->arch.shadow_mmio_value = shadow_mmio_value;
6845
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6846
for (i = 0; i < KVM_NR_MMU_TYPES; ++i)
6847
INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages[i].pages);
6848
spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6849
6850
if (tdp_mmu_enabled) {
6851
kvm_mmu_init_tdp_mmu(kvm);
6852
} else {
6853
r = kvm_mmu_alloc_page_hash(kvm);
6854
if (r)
6855
return r;
6856
}
6857
6858
kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6859
kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6860
6861
kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6862
6863
kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6864
kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6865
return 0;
6866
}
6867
6868
static void mmu_free_vm_memory_caches(struct kvm *kvm)
6869
{
6870
kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6871
kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6872
kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6873
}
6874
6875
void kvm_mmu_uninit_vm(struct kvm *kvm)
6876
{
6877
kvfree(kvm->arch.mmu_page_hash);
6878
6879
if (tdp_mmu_enabled)
6880
kvm_mmu_uninit_tdp_mmu(kvm);
6881
6882
mmu_free_vm_memory_caches(kvm);
6883
}
6884
6885
static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6886
{
6887
const struct kvm_memory_slot *memslot;
6888
struct kvm_memslots *slots;
6889
struct kvm_memslot_iter iter;
6890
bool flush = false;
6891
gfn_t start, end;
6892
int i;
6893
6894
if (!kvm_memslots_have_rmaps(kvm))
6895
return flush;
6896
6897
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6898
slots = __kvm_memslots(kvm, i);
6899
6900
kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6901
memslot = iter.slot;
6902
start = max(gfn_start, memslot->base_gfn);
6903
end = min(gfn_end, memslot->base_gfn + memslot->npages);
6904
if (WARN_ON_ONCE(start >= end))
6905
continue;
6906
6907
flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start,
6908
end, true, flush);
6909
}
6910
}
6911
6912
return flush;
6913
}
6914
6915
/*
6916
* Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6917
* (not including it)
6918
*/
6919
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6920
{
6921
bool flush;
6922
6923
if (WARN_ON_ONCE(gfn_end <= gfn_start))
6924
return;
6925
6926
write_lock(&kvm->mmu_lock);
6927
6928
kvm_mmu_invalidate_begin(kvm);
6929
6930
kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end);
6931
6932
flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6933
6934
if (tdp_mmu_enabled)
6935
flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6936
6937
if (flush)
6938
kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6939
6940
kvm_mmu_invalidate_end(kvm);
6941
6942
write_unlock(&kvm->mmu_lock);
6943
}
6944
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_zap_gfn_range);
6945
6946
static bool slot_rmap_write_protect(struct kvm *kvm,
6947
struct kvm_rmap_head *rmap_head,
6948
const struct kvm_memory_slot *slot)
6949
{
6950
return rmap_write_protect(rmap_head, false);
6951
}
6952
6953
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6954
const struct kvm_memory_slot *memslot,
6955
int start_level)
6956
{
6957
if (kvm_memslots_have_rmaps(kvm)) {
6958
write_lock(&kvm->mmu_lock);
6959
walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6960
start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6961
write_unlock(&kvm->mmu_lock);
6962
}
6963
6964
if (tdp_mmu_enabled) {
6965
read_lock(&kvm->mmu_lock);
6966
kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6967
read_unlock(&kvm->mmu_lock);
6968
}
6969
}
6970
6971
static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6972
{
6973
return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6974
}
6975
6976
static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6977
{
6978
if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6979
return true;
6980
6981
/*
6982
* In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6983
* to split a single huge page. Calculating how many are actually needed
6984
* is possible but not worth the complexity.
6985
*/
6986
return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6987
need_topup(&kvm->arch.split_page_header_cache, 1) ||
6988
need_topup(&kvm->arch.split_shadow_page_cache, 1);
6989
}
6990
6991
static int topup_split_caches(struct kvm *kvm)
6992
{
6993
/*
6994
* Allocating rmap list entries when splitting huge pages for nested
6995
* MMUs is uncommon as KVM needs to use a list if and only if there is
6996
* more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6997
* aliased by multiple L2 gfns and/or from multiple nested roots with
6998
* different roles. Aliasing gfns when using TDP is atypical for VMMs;
6999
* a few gfns are often aliased during boot, e.g. when remapping BIOS,
7000
* but aliasing rarely occurs post-boot or for many gfns. If there is
7001
* only one rmap entry, rmap->val points directly at that one entry and
7002
* doesn't need to allocate a list. Buffer the cache by the default
7003
* capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
7004
* encounters an aliased gfn or two.
7005
*/
7006
const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
7007
KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
7008
int r;
7009
7010
lockdep_assert_held(&kvm->slots_lock);
7011
7012
r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
7013
SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
7014
if (r)
7015
return r;
7016
7017
r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
7018
if (r)
7019
return r;
7020
7021
return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
7022
}
7023
7024
static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
7025
{
7026
struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
7027
struct shadow_page_caches caches = {};
7028
union kvm_mmu_page_role role;
7029
unsigned int access;
7030
gfn_t gfn;
7031
7032
gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
7033
access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
7034
7035
/*
7036
* Note, huge page splitting always uses direct shadow pages, regardless
7037
* of whether the huge page itself is mapped by a direct or indirect
7038
* shadow page, since the huge page region itself is being directly
7039
* mapped with smaller pages.
7040
*/
7041
role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
7042
7043
/* Direct SPs do not require a shadowed_info_cache. */
7044
caches.page_header_cache = &kvm->arch.split_page_header_cache;
7045
caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
7046
7047
/* Safe to pass NULL for vCPU since requesting a direct SP. */
7048
return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
7049
}
7050
7051
static void shadow_mmu_split_huge_page(struct kvm *kvm,
7052
const struct kvm_memory_slot *slot,
7053
u64 *huge_sptep)
7054
7055
{
7056
struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
7057
u64 huge_spte = READ_ONCE(*huge_sptep);
7058
struct kvm_mmu_page *sp;
7059
bool flush = false;
7060
u64 *sptep, spte;
7061
gfn_t gfn;
7062
int index;
7063
7064
sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
7065
7066
for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
7067
sptep = &sp->spt[index];
7068
gfn = kvm_mmu_page_get_gfn(sp, index);
7069
7070
/*
7071
* The SP may already have populated SPTEs, e.g. if this huge
7072
* page is aliased by multiple sptes with the same access
7073
* permissions. These entries are guaranteed to map the same
7074
* gfn-to-pfn translation since the SP is direct, so no need to
7075
* modify them.
7076
*
7077
* However, if a given SPTE points to a lower level page table,
7078
* that lower level page table may only be partially populated.
7079
* Installing such SPTEs would effectively unmap a potion of the
7080
* huge page. Unmapping guest memory always requires a TLB flush
7081
* since a subsequent operation on the unmapped regions would
7082
* fail to detect the need to flush.
7083
*/
7084
if (is_shadow_present_pte(*sptep)) {
7085
flush |= !is_last_spte(*sptep, sp->role.level);
7086
continue;
7087
}
7088
7089
spte = make_small_spte(kvm, huge_spte, sp->role, index);
7090
mmu_spte_set(sptep, spte);
7091
__rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
7092
}
7093
7094
__link_shadow_page(kvm, cache, huge_sptep, sp, flush);
7095
}
7096
7097
static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
7098
const struct kvm_memory_slot *slot,
7099
u64 *huge_sptep)
7100
{
7101
struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
7102
int level, r = 0;
7103
gfn_t gfn;
7104
u64 spte;
7105
7106
/* Grab information for the tracepoint before dropping the MMU lock. */
7107
gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
7108
level = huge_sp->role.level;
7109
spte = *huge_sptep;
7110
7111
if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
7112
r = -ENOSPC;
7113
goto out;
7114
}
7115
7116
if (need_topup_split_caches_or_resched(kvm)) {
7117
write_unlock(&kvm->mmu_lock);
7118
cond_resched();
7119
/*
7120
* If the topup succeeds, return -EAGAIN to indicate that the
7121
* rmap iterator should be restarted because the MMU lock was
7122
* dropped.
7123
*/
7124
r = topup_split_caches(kvm) ?: -EAGAIN;
7125
write_lock(&kvm->mmu_lock);
7126
goto out;
7127
}
7128
7129
shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
7130
7131
out:
7132
trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
7133
return r;
7134
}
7135
7136
static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
7137
struct kvm_rmap_head *rmap_head,
7138
const struct kvm_memory_slot *slot)
7139
{
7140
struct rmap_iterator iter;
7141
struct kvm_mmu_page *sp;
7142
u64 *huge_sptep;
7143
int r;
7144
7145
restart:
7146
for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
7147
sp = sptep_to_sp(huge_sptep);
7148
7149
/* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
7150
if (WARN_ON_ONCE(!sp->role.guest_mode))
7151
continue;
7152
7153
/* The rmaps should never contain non-leaf SPTEs. */
7154
if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
7155
continue;
7156
7157
/* SPs with level >PG_LEVEL_4K should never by unsync. */
7158
if (WARN_ON_ONCE(sp->unsync))
7159
continue;
7160
7161
/* Don't bother splitting huge pages on invalid SPs. */
7162
if (sp->role.invalid)
7163
continue;
7164
7165
r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
7166
7167
/*
7168
* The split succeeded or needs to be retried because the MMU
7169
* lock was dropped. Either way, restart the iterator to get it
7170
* back into a consistent state.
7171
*/
7172
if (!r || r == -EAGAIN)
7173
goto restart;
7174
7175
/* The split failed and shouldn't be retried (e.g. -ENOMEM). */
7176
break;
7177
}
7178
7179
return false;
7180
}
7181
7182
static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
7183
const struct kvm_memory_slot *slot,
7184
gfn_t start, gfn_t end,
7185
int target_level)
7186
{
7187
int level;
7188
7189
/*
7190
* Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
7191
* down to the target level. This ensures pages are recursively split
7192
* all the way to the target level. There's no need to split pages
7193
* already at the target level.
7194
*/
7195
for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
7196
__walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
7197
level, level, start, end - 1, true, true, false);
7198
}
7199
7200
/* Must be called with the mmu_lock held in write-mode. */
7201
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
7202
const struct kvm_memory_slot *memslot,
7203
u64 start, u64 end,
7204
int target_level)
7205
{
7206
if (!tdp_mmu_enabled)
7207
return;
7208
7209
if (kvm_memslots_have_rmaps(kvm))
7210
kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
7211
7212
kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
7213
7214
/*
7215
* A TLB flush is unnecessary at this point for the same reasons as in
7216
* kvm_mmu_slot_try_split_huge_pages().
7217
*/
7218
}
7219
7220
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
7221
const struct kvm_memory_slot *memslot,
7222
int target_level)
7223
{
7224
u64 start = memslot->base_gfn;
7225
u64 end = start + memslot->npages;
7226
7227
if (!tdp_mmu_enabled)
7228
return;
7229
7230
if (kvm_memslots_have_rmaps(kvm)) {
7231
write_lock(&kvm->mmu_lock);
7232
kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
7233
write_unlock(&kvm->mmu_lock);
7234
}
7235
7236
read_lock(&kvm->mmu_lock);
7237
kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
7238
read_unlock(&kvm->mmu_lock);
7239
7240
/*
7241
* No TLB flush is necessary here. KVM will flush TLBs after
7242
* write-protecting and/or clearing dirty on the newly split SPTEs to
7243
* ensure that guest writes are reflected in the dirty log before the
7244
* ioctl to enable dirty logging on this memslot completes. Since the
7245
* split SPTEs retain the write and dirty bits of the huge SPTE, it is
7246
* safe for KVM to decide if a TLB flush is necessary based on the split
7247
* SPTEs.
7248
*/
7249
}
7250
7251
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
7252
struct kvm_rmap_head *rmap_head,
7253
const struct kvm_memory_slot *slot)
7254
{
7255
u64 *sptep;
7256
struct rmap_iterator iter;
7257
int need_tlb_flush = 0;
7258
struct kvm_mmu_page *sp;
7259
7260
restart:
7261
for_each_rmap_spte(rmap_head, &iter, sptep) {
7262
sp = sptep_to_sp(sptep);
7263
7264
/*
7265
* We cannot do huge page mapping for indirect shadow pages,
7266
* which are found on the last rmap (level = 1) when not using
7267
* tdp; such shadow pages are synced with the page table in
7268
* the guest, and the guest page table is using 4K page size
7269
* mapping if the indirect sp has level = 1.
7270
*/
7271
if (sp->role.direct &&
7272
sp->role.level < kvm_mmu_max_mapping_level(kvm, NULL, slot, sp->gfn)) {
7273
kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
7274
7275
if (kvm_available_flush_remote_tlbs_range())
7276
kvm_flush_remote_tlbs_sptep(kvm, sptep);
7277
else
7278
need_tlb_flush = 1;
7279
7280
goto restart;
7281
}
7282
}
7283
7284
return need_tlb_flush;
7285
}
7286
7287
static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
7288
const struct kvm_memory_slot *slot)
7289
{
7290
/*
7291
* Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
7292
* pages that are already mapped at the maximum hugepage level.
7293
*/
7294
if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
7295
PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
7296
kvm_flush_remote_tlbs_memslot(kvm, slot);
7297
}
7298
7299
void kvm_mmu_recover_huge_pages(struct kvm *kvm,
7300
const struct kvm_memory_slot *slot)
7301
{
7302
if (kvm_memslots_have_rmaps(kvm)) {
7303
write_lock(&kvm->mmu_lock);
7304
kvm_rmap_zap_collapsible_sptes(kvm, slot);
7305
write_unlock(&kvm->mmu_lock);
7306
}
7307
7308
if (tdp_mmu_enabled) {
7309
read_lock(&kvm->mmu_lock);
7310
kvm_tdp_mmu_recover_huge_pages(kvm, slot);
7311
read_unlock(&kvm->mmu_lock);
7312
}
7313
}
7314
7315
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
7316
const struct kvm_memory_slot *memslot)
7317
{
7318
if (kvm_memslots_have_rmaps(kvm)) {
7319
write_lock(&kvm->mmu_lock);
7320
/*
7321
* Clear dirty bits only on 4k SPTEs since the legacy MMU only
7322
* support dirty logging at a 4k granularity.
7323
*/
7324
walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
7325
write_unlock(&kvm->mmu_lock);
7326
}
7327
7328
if (tdp_mmu_enabled) {
7329
read_lock(&kvm->mmu_lock);
7330
kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
7331
read_unlock(&kvm->mmu_lock);
7332
}
7333
7334
/*
7335
* The caller will flush the TLBs after this function returns.
7336
*
7337
* It's also safe to flush TLBs out of mmu lock here as currently this
7338
* function is only used for dirty logging, in which case flushing TLB
7339
* out of mmu lock also guarantees no dirty pages will be lost in
7340
* dirty_bitmap.
7341
*/
7342
}
7343
7344
static void kvm_mmu_zap_all(struct kvm *kvm)
7345
{
7346
struct kvm_mmu_page *sp, *node;
7347
LIST_HEAD(invalid_list);
7348
int ign;
7349
7350
write_lock(&kvm->mmu_lock);
7351
restart:
7352
list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
7353
if (WARN_ON_ONCE(sp->role.invalid))
7354
continue;
7355
if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
7356
goto restart;
7357
if (cond_resched_rwlock_write(&kvm->mmu_lock))
7358
goto restart;
7359
}
7360
7361
kvm_mmu_commit_zap_page(kvm, &invalid_list);
7362
7363
if (tdp_mmu_enabled)
7364
kvm_tdp_mmu_zap_all(kvm);
7365
7366
write_unlock(&kvm->mmu_lock);
7367
}
7368
7369
void kvm_arch_flush_shadow_all(struct kvm *kvm)
7370
{
7371
kvm_mmu_zap_all(kvm);
7372
}
7373
7374
static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm,
7375
struct kvm_memory_slot *slot,
7376
bool flush)
7377
{
7378
LIST_HEAD(invalid_list);
7379
unsigned long i;
7380
7381
if (list_empty(&kvm->arch.active_mmu_pages))
7382
goto out_flush;
7383
7384
/*
7385
* Since accounting information is stored in struct kvm_arch_memory_slot,
7386
* all MMU pages that are shadowing guest PTEs must be zapped before the
7387
* memslot is deleted, as freeing such pages after the memslot is freed
7388
* will result in use-after-free, e.g. in unaccount_shadowed().
7389
*/
7390
for (i = 0; i < slot->npages; i++) {
7391
struct kvm_mmu_page *sp;
7392
gfn_t gfn = slot->base_gfn + i;
7393
7394
for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn)
7395
kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7396
7397
if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7398
kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7399
flush = false;
7400
cond_resched_rwlock_write(&kvm->mmu_lock);
7401
}
7402
}
7403
7404
out_flush:
7405
kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7406
}
7407
7408
static void kvm_mmu_zap_memslot(struct kvm *kvm,
7409
struct kvm_memory_slot *slot)
7410
{
7411
struct kvm_gfn_range range = {
7412
.slot = slot,
7413
.start = slot->base_gfn,
7414
.end = slot->base_gfn + slot->npages,
7415
.may_block = true,
7416
.attr_filter = KVM_FILTER_PRIVATE | KVM_FILTER_SHARED,
7417
};
7418
bool flush;
7419
7420
write_lock(&kvm->mmu_lock);
7421
flush = kvm_unmap_gfn_range(kvm, &range);
7422
kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush);
7423
write_unlock(&kvm->mmu_lock);
7424
}
7425
7426
static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm)
7427
{
7428
return kvm->arch.vm_type == KVM_X86_DEFAULT_VM &&
7429
kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL);
7430
}
7431
7432
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7433
struct kvm_memory_slot *slot)
7434
{
7435
if (kvm_memslot_flush_zap_all(kvm))
7436
kvm_mmu_zap_all_fast(kvm);
7437
else
7438
kvm_mmu_zap_memslot(kvm, slot);
7439
}
7440
7441
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
7442
{
7443
WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
7444
7445
if (!enable_mmio_caching)
7446
return;
7447
7448
gen &= MMIO_SPTE_GEN_MASK;
7449
7450
/*
7451
* Generation numbers are incremented in multiples of the number of
7452
* address spaces in order to provide unique generations across all
7453
* address spaces. Strip what is effectively the address space
7454
* modifier prior to checking for a wrap of the MMIO generation so
7455
* that a wrap in any address space is detected.
7456
*/
7457
gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1);
7458
7459
/*
7460
* The very rare case: if the MMIO generation number has wrapped,
7461
* zap all shadow pages.
7462
*/
7463
if (unlikely(gen == 0)) {
7464
kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
7465
kvm_mmu_zap_all_fast(kvm);
7466
}
7467
}
7468
7469
static void mmu_destroy_caches(void)
7470
{
7471
kmem_cache_destroy(pte_list_desc_cache);
7472
kmem_cache_destroy(mmu_page_header_cache);
7473
}
7474
7475
static void kvm_wake_nx_recovery_thread(struct kvm *kvm)
7476
{
7477
/*
7478
* The NX recovery thread is spawned on-demand at the first KVM_RUN and
7479
* may not be valid even though the VM is globally visible. Do nothing,
7480
* as such a VM can't have any possible NX huge pages.
7481
*/
7482
struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread);
7483
7484
if (nx_thread)
7485
vhost_task_wake(nx_thread);
7486
}
7487
7488
static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
7489
{
7490
if (nx_hugepage_mitigation_hard_disabled)
7491
return sysfs_emit(buffer, "never\n");
7492
7493
return param_get_bool(buffer, kp);
7494
}
7495
7496
static bool get_nx_auto_mode(void)
7497
{
7498
/* Return true when CPU has the bug, and mitigations are ON */
7499
return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
7500
}
7501
7502
static void __set_nx_huge_pages(bool val)
7503
{
7504
nx_huge_pages = itlb_multihit_kvm_mitigation = val;
7505
}
7506
7507
static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
7508
{
7509
bool old_val = nx_huge_pages;
7510
bool new_val;
7511
7512
if (nx_hugepage_mitigation_hard_disabled)
7513
return -EPERM;
7514
7515
/* In "auto" mode deploy workaround only if CPU has the bug. */
7516
if (sysfs_streq(val, "off")) {
7517
new_val = 0;
7518
} else if (sysfs_streq(val, "force")) {
7519
new_val = 1;
7520
} else if (sysfs_streq(val, "auto")) {
7521
new_val = get_nx_auto_mode();
7522
} else if (sysfs_streq(val, "never")) {
7523
new_val = 0;
7524
7525
mutex_lock(&kvm_lock);
7526
if (!list_empty(&vm_list)) {
7527
mutex_unlock(&kvm_lock);
7528
return -EBUSY;
7529
}
7530
nx_hugepage_mitigation_hard_disabled = true;
7531
mutex_unlock(&kvm_lock);
7532
} else if (kstrtobool(val, &new_val) < 0) {
7533
return -EINVAL;
7534
}
7535
7536
__set_nx_huge_pages(new_val);
7537
7538
if (new_val != old_val) {
7539
struct kvm *kvm;
7540
7541
mutex_lock(&kvm_lock);
7542
7543
list_for_each_entry(kvm, &vm_list, vm_list) {
7544
mutex_lock(&kvm->slots_lock);
7545
kvm_mmu_zap_all_fast(kvm);
7546
mutex_unlock(&kvm->slots_lock);
7547
7548
kvm_wake_nx_recovery_thread(kvm);
7549
}
7550
mutex_unlock(&kvm_lock);
7551
}
7552
7553
return 0;
7554
}
7555
7556
/*
7557
* nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
7558
* its default value of -1 is technically undefined behavior for a boolean.
7559
* Forward the module init call to SPTE code so that it too can handle module
7560
* params that need to be resolved/snapshot.
7561
*/
7562
void __init kvm_mmu_x86_module_init(void)
7563
{
7564
if (nx_huge_pages == -1)
7565
__set_nx_huge_pages(get_nx_auto_mode());
7566
7567
/*
7568
* Snapshot userspace's desire to enable the TDP MMU. Whether or not the
7569
* TDP MMU is actually enabled is determined in kvm_configure_mmu()
7570
* when the vendor module is loaded.
7571
*/
7572
tdp_mmu_allowed = tdp_mmu_enabled;
7573
7574
kvm_mmu_spte_module_init();
7575
}
7576
7577
/*
7578
* The bulk of the MMU initialization is deferred until the vendor module is
7579
* loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
7580
* to be reset when a potentially different vendor module is loaded.
7581
*/
7582
int kvm_mmu_vendor_module_init(void)
7583
{
7584
int ret = -ENOMEM;
7585
7586
/*
7587
* MMU roles use union aliasing which is, generally speaking, an
7588
* undefined behavior. However, we supposedly know how compilers behave
7589
* and the current status quo is unlikely to change. Guardians below are
7590
* supposed to let us know if the assumption becomes false.
7591
*/
7592
BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
7593
BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
7594
BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
7595
7596
kvm_mmu_reset_all_pte_masks();
7597
7598
pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT);
7599
if (!pte_list_desc_cache)
7600
goto out;
7601
7602
mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
7603
sizeof(struct kvm_mmu_page),
7604
0, SLAB_ACCOUNT, NULL);
7605
if (!mmu_page_header_cache)
7606
goto out;
7607
7608
return 0;
7609
7610
out:
7611
mmu_destroy_caches();
7612
return ret;
7613
}
7614
7615
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
7616
{
7617
kvm_mmu_unload(vcpu);
7618
if (tdp_mmu_enabled) {
7619
read_lock(&vcpu->kvm->mmu_lock);
7620
mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa,
7621
NULL);
7622
read_unlock(&vcpu->kvm->mmu_lock);
7623
}
7624
free_mmu_pages(&vcpu->arch.root_mmu);
7625
free_mmu_pages(&vcpu->arch.guest_mmu);
7626
mmu_free_memory_caches(vcpu);
7627
}
7628
7629
void kvm_mmu_vendor_module_exit(void)
7630
{
7631
mmu_destroy_caches();
7632
}
7633
7634
/*
7635
* Calculate the effective recovery period, accounting for '0' meaning "let KVM
7636
* select a halving time of 1 hour". Returns true if recovery is enabled.
7637
*/
7638
static bool calc_nx_huge_pages_recovery_period(uint *period)
7639
{
7640
/*
7641
* Use READ_ONCE to get the params, this may be called outside of the
7642
* param setters, e.g. by the kthread to compute its next timeout.
7643
*/
7644
bool enabled = READ_ONCE(nx_huge_pages);
7645
uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7646
7647
if (!enabled || !ratio)
7648
return false;
7649
7650
*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
7651
if (!*period) {
7652
/* Make sure the period is not less than one second. */
7653
ratio = min(ratio, 3600u);
7654
*period = 60 * 60 * 1000 / ratio;
7655
}
7656
return true;
7657
}
7658
7659
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
7660
{
7661
bool was_recovery_enabled, is_recovery_enabled;
7662
uint old_period, new_period;
7663
int err;
7664
7665
if (nx_hugepage_mitigation_hard_disabled)
7666
return -EPERM;
7667
7668
was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7669
7670
err = param_set_uint(val, kp);
7671
if (err)
7672
return err;
7673
7674
is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7675
7676
if (is_recovery_enabled &&
7677
(!was_recovery_enabled || old_period > new_period)) {
7678
struct kvm *kvm;
7679
7680
mutex_lock(&kvm_lock);
7681
7682
list_for_each_entry(kvm, &vm_list, vm_list)
7683
kvm_wake_nx_recovery_thread(kvm);
7684
7685
mutex_unlock(&kvm_lock);
7686
}
7687
7688
return err;
7689
}
7690
7691
static unsigned long nx_huge_pages_to_zap(struct kvm *kvm,
7692
enum kvm_mmu_type mmu_type)
7693
{
7694
unsigned long pages = READ_ONCE(kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages);
7695
unsigned int ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7696
7697
return ratio ? DIV_ROUND_UP(pages, ratio) : 0;
7698
}
7699
7700
static bool kvm_mmu_sp_dirty_logging_enabled(struct kvm *kvm,
7701
struct kvm_mmu_page *sp)
7702
{
7703
struct kvm_memory_slot *slot;
7704
7705
/*
7706
* Skip the memslot lookup if dirty tracking can't possibly be enabled,
7707
* as memslot lookups are relatively expensive.
7708
*
7709
* If a memslot update is in progress, reading an incorrect value of
7710
* kvm->nr_memslots_dirty_logging is not a problem: if it is becoming
7711
* zero, KVM will do an unnecessary memslot lookup; if it is becoming
7712
* nonzero, the page will be zapped unnecessarily. Either way, this
7713
* only affects efficiency in racy situations, and not correctness.
7714
*/
7715
if (!atomic_read(&kvm->nr_memslots_dirty_logging))
7716
return false;
7717
7718
slot = __gfn_to_memslot(kvm_memslots_for_spte_role(kvm, sp->role), sp->gfn);
7719
if (WARN_ON_ONCE(!slot))
7720
return false;
7721
7722
return kvm_slot_dirty_track_enabled(slot);
7723
}
7724
7725
static void kvm_recover_nx_huge_pages(struct kvm *kvm,
7726
const enum kvm_mmu_type mmu_type)
7727
{
7728
#ifdef CONFIG_X86_64
7729
const bool is_tdp_mmu = mmu_type == KVM_TDP_MMU;
7730
spinlock_t *tdp_mmu_pages_lock = &kvm->arch.tdp_mmu_pages_lock;
7731
#else
7732
const bool is_tdp_mmu = false;
7733
spinlock_t *tdp_mmu_pages_lock = NULL;
7734
#endif
7735
unsigned long to_zap = nx_huge_pages_to_zap(kvm, mmu_type);
7736
struct list_head *nx_huge_pages;
7737
struct kvm_mmu_page *sp;
7738
LIST_HEAD(invalid_list);
7739
bool flush = false;
7740
int rcu_idx;
7741
7742
nx_huge_pages = &kvm->arch.possible_nx_huge_pages[mmu_type].pages;
7743
7744
rcu_idx = srcu_read_lock(&kvm->srcu);
7745
if (is_tdp_mmu)
7746
read_lock(&kvm->mmu_lock);
7747
else
7748
write_lock(&kvm->mmu_lock);
7749
7750
/*
7751
* Zapping TDP MMU shadow pages, including the remote TLB flush, must
7752
* be done under RCU protection, because the pages are freed via RCU
7753
* callback.
7754
*/
7755
rcu_read_lock();
7756
7757
for ( ; to_zap; --to_zap) {
7758
if (is_tdp_mmu)
7759
spin_lock(tdp_mmu_pages_lock);
7760
7761
if (list_empty(nx_huge_pages)) {
7762
if (is_tdp_mmu)
7763
spin_unlock(tdp_mmu_pages_lock);
7764
break;
7765
}
7766
7767
/*
7768
* We use a separate list instead of just using active_mmu_pages
7769
* because the number of shadow pages that be replaced with an
7770
* NX huge page is expected to be relatively small compared to
7771
* the total number of shadow pages. And because the TDP MMU
7772
* doesn't use active_mmu_pages.
7773
*/
7774
sp = list_first_entry(nx_huge_pages,
7775
struct kvm_mmu_page,
7776
possible_nx_huge_page_link);
7777
WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7778
WARN_ON_ONCE(!sp->role.direct);
7779
7780
unaccount_nx_huge_page(kvm, sp);
7781
7782
if (is_tdp_mmu)
7783
spin_unlock(tdp_mmu_pages_lock);
7784
7785
/*
7786
* Do not attempt to recover any NX Huge Pages that are being
7787
* dirty tracked, as they would just be faulted back in as 4KiB
7788
* pages. The NX Huge Pages in this slot will be recovered,
7789
* along with all the other huge pages in the slot, when dirty
7790
* logging is disabled.
7791
*/
7792
if (!kvm_mmu_sp_dirty_logging_enabled(kvm, sp)) {
7793
if (is_tdp_mmu)
7794
flush |= kvm_tdp_mmu_zap_possible_nx_huge_page(kvm, sp);
7795
else
7796
kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7797
7798
}
7799
7800
WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7801
7802
if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7803
kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7804
rcu_read_unlock();
7805
7806
if (is_tdp_mmu)
7807
cond_resched_rwlock_read(&kvm->mmu_lock);
7808
else
7809
cond_resched_rwlock_write(&kvm->mmu_lock);
7810
7811
flush = false;
7812
rcu_read_lock();
7813
}
7814
}
7815
kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7816
7817
rcu_read_unlock();
7818
7819
if (is_tdp_mmu)
7820
read_unlock(&kvm->mmu_lock);
7821
else
7822
write_unlock(&kvm->mmu_lock);
7823
srcu_read_unlock(&kvm->srcu, rcu_idx);
7824
}
7825
7826
static void kvm_nx_huge_page_recovery_worker_kill(void *data)
7827
{
7828
}
7829
7830
static bool kvm_nx_huge_page_recovery_worker(void *data)
7831
{
7832
struct kvm *kvm = data;
7833
long remaining_time;
7834
bool enabled;
7835
uint period;
7836
int i;
7837
7838
enabled = calc_nx_huge_pages_recovery_period(&period);
7839
if (!enabled)
7840
return false;
7841
7842
remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period)
7843
- get_jiffies_64();
7844
if (remaining_time > 0) {
7845
schedule_timeout(remaining_time);
7846
/* check for signals and come back */
7847
return true;
7848
}
7849
7850
__set_current_state(TASK_RUNNING);
7851
for (i = 0; i < KVM_NR_MMU_TYPES; ++i)
7852
kvm_recover_nx_huge_pages(kvm, i);
7853
kvm->arch.nx_huge_page_last = get_jiffies_64();
7854
return true;
7855
}
7856
7857
static int kvm_mmu_start_lpage_recovery(struct once *once)
7858
{
7859
struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once);
7860
struct kvm *kvm = container_of(ka, struct kvm, arch);
7861
struct vhost_task *nx_thread;
7862
7863
kvm->arch.nx_huge_page_last = get_jiffies_64();
7864
nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker,
7865
kvm_nx_huge_page_recovery_worker_kill,
7866
kvm, "kvm-nx-lpage-recovery");
7867
7868
if (IS_ERR(nx_thread))
7869
return PTR_ERR(nx_thread);
7870
7871
vhost_task_start(nx_thread);
7872
7873
/* Make the task visible only once it is fully started. */
7874
WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread);
7875
return 0;
7876
}
7877
7878
int kvm_mmu_post_init_vm(struct kvm *kvm)
7879
{
7880
if (nx_hugepage_mitigation_hard_disabled)
7881
return 0;
7882
7883
return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery);
7884
}
7885
7886
void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7887
{
7888
if (kvm->arch.nx_huge_page_recovery_thread)
7889
vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread);
7890
}
7891
7892
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
7893
static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7894
int level)
7895
{
7896
return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
7897
}
7898
7899
static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7900
int level)
7901
{
7902
lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
7903
}
7904
7905
static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7906
int level)
7907
{
7908
lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
7909
}
7910
7911
bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
7912
struct kvm_gfn_range *range)
7913
{
7914
struct kvm_memory_slot *slot = range->slot;
7915
int level;
7916
7917
/*
7918
* Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only
7919
* supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
7920
* can simply ignore such slots. But if userspace is making memory
7921
* PRIVATE, then KVM must prevent the guest from accessing the memory
7922
* as shared. And if userspace is making memory SHARED and this point
7923
* is reached, then at least one page within the range was previously
7924
* PRIVATE, i.e. the slot's possible hugepage ranges are changing.
7925
* Zapping SPTEs in this case ensures KVM will reassess whether or not
7926
* a hugepage can be used for affected ranges.
7927
*/
7928
if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7929
return false;
7930
7931
if (WARN_ON_ONCE(range->end <= range->start))
7932
return false;
7933
7934
/*
7935
* If the head and tail pages of the range currently allow a hugepage,
7936
* i.e. reside fully in the slot and don't have mixed attributes, then
7937
* add each corresponding hugepage range to the ongoing invalidation,
7938
* e.g. to prevent KVM from creating a hugepage in response to a fault
7939
* for a gfn whose attributes aren't changing. Note, only the range
7940
* of gfns whose attributes are being modified needs to be explicitly
7941
* unmapped, as that will unmap any existing hugepages.
7942
*/
7943
for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7944
gfn_t start = gfn_round_for_level(range->start, level);
7945
gfn_t end = gfn_round_for_level(range->end - 1, level);
7946
gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7947
7948
if ((start != range->start || start + nr_pages > range->end) &&
7949
start >= slot->base_gfn &&
7950
start + nr_pages <= slot->base_gfn + slot->npages &&
7951
!hugepage_test_mixed(slot, start, level))
7952
kvm_mmu_invalidate_range_add(kvm, start, start + nr_pages);
7953
7954
if (end == start)
7955
continue;
7956
7957
if ((end + nr_pages) > range->end &&
7958
(end + nr_pages) <= (slot->base_gfn + slot->npages) &&
7959
!hugepage_test_mixed(slot, end, level))
7960
kvm_mmu_invalidate_range_add(kvm, end, end + nr_pages);
7961
}
7962
7963
/* Unmap the old attribute page. */
7964
if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE)
7965
range->attr_filter = KVM_FILTER_SHARED;
7966
else
7967
range->attr_filter = KVM_FILTER_PRIVATE;
7968
7969
return kvm_unmap_gfn_range(kvm, range);
7970
}
7971
7972
7973
7974
static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot,
7975
gfn_t gfn, int level, unsigned long attrs)
7976
{
7977
const unsigned long start = gfn;
7978
const unsigned long end = start + KVM_PAGES_PER_HPAGE(level);
7979
7980
if (level == PG_LEVEL_2M)
7981
return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs);
7982
7983
for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) {
7984
if (hugepage_test_mixed(slot, gfn, level - 1) ||
7985
attrs != kvm_get_memory_attributes(kvm, gfn))
7986
return false;
7987
}
7988
return true;
7989
}
7990
7991
bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
7992
struct kvm_gfn_range *range)
7993
{
7994
unsigned long attrs = range->arg.attributes;
7995
struct kvm_memory_slot *slot = range->slot;
7996
int level;
7997
7998
lockdep_assert_held_write(&kvm->mmu_lock);
7999
lockdep_assert_held(&kvm->slots_lock);
8000
8001
/*
8002
* Calculate which ranges can be mapped with hugepages even if the slot
8003
* can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over
8004
* a range that has PRIVATE GFNs, and conversely converting a range to
8005
* SHARED may now allow hugepages.
8006
*/
8007
if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
8008
return false;
8009
8010
/*
8011
* The sequence matters here: upper levels consume the result of lower
8012
* level's scanning.
8013
*/
8014
for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
8015
gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
8016
gfn_t gfn = gfn_round_for_level(range->start, level);
8017
8018
/* Process the head page if it straddles the range. */
8019
if (gfn != range->start || gfn + nr_pages > range->end) {
8020
/*
8021
* Skip mixed tracking if the aligned gfn isn't covered
8022
* by the memslot, KVM can't use a hugepage due to the
8023
* misaligned address regardless of memory attributes.
8024
*/
8025
if (gfn >= slot->base_gfn &&
8026
gfn + nr_pages <= slot->base_gfn + slot->npages) {
8027
if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
8028
hugepage_clear_mixed(slot, gfn, level);
8029
else
8030
hugepage_set_mixed(slot, gfn, level);
8031
}
8032
gfn += nr_pages;
8033
}
8034
8035
/*
8036
* Pages entirely covered by the range are guaranteed to have
8037
* only the attributes which were just set.
8038
*/
8039
for ( ; gfn + nr_pages <= range->end; gfn += nr_pages)
8040
hugepage_clear_mixed(slot, gfn, level);
8041
8042
/*
8043
* Process the last tail page if it straddles the range and is
8044
* contained by the memslot. Like the head page, KVM can't
8045
* create a hugepage if the slot size is misaligned.
8046
*/
8047
if (gfn < range->end &&
8048
(gfn + nr_pages) <= (slot->base_gfn + slot->npages)) {
8049
if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
8050
hugepage_clear_mixed(slot, gfn, level);
8051
else
8052
hugepage_set_mixed(slot, gfn, level);
8053
}
8054
}
8055
return false;
8056
}
8057
8058
void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
8059
struct kvm_memory_slot *slot)
8060
{
8061
int level;
8062
8063
if (!kvm_arch_has_private_mem(kvm))
8064
return;
8065
8066
for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
8067
/*
8068
* Don't bother tracking mixed attributes for pages that can't
8069
* be huge due to alignment, i.e. process only pages that are
8070
* entirely contained by the memslot.
8071
*/
8072
gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level);
8073
gfn_t start = gfn_round_for_level(slot->base_gfn, level);
8074
gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
8075
gfn_t gfn;
8076
8077
if (start < slot->base_gfn)
8078
start += nr_pages;
8079
8080
/*
8081
* Unlike setting attributes, every potential hugepage needs to
8082
* be manually checked as the attributes may already be mixed.
8083
*/
8084
for (gfn = start; gfn < end; gfn += nr_pages) {
8085
unsigned long attrs = kvm_get_memory_attributes(kvm, gfn);
8086
8087
if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
8088
hugepage_clear_mixed(slot, gfn, level);
8089
else
8090
hugepage_set_mixed(slot, gfn, level);
8091
}
8092
}
8093
}
8094
#endif
8095
8096