Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/mmu/mmu_internal.h
53558 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef __KVM_X86_MMU_INTERNAL_H
3
#define __KVM_X86_MMU_INTERNAL_H
4
5
#include <linux/types.h>
6
#include <linux/kvm_host.h>
7
#include <asm/kvm_host.h>
8
9
#include "mmu.h"
10
11
#ifdef CONFIG_KVM_PROVE_MMU
12
#define KVM_MMU_WARN_ON(x) WARN_ON_ONCE(x)
13
#else
14
#define KVM_MMU_WARN_ON(x) BUILD_BUG_ON_INVALID(x)
15
#endif
16
17
/* Page table builder macros common to shadow (host) PTEs and guest PTEs. */
18
#define __PT_BASE_ADDR_MASK GENMASK_ULL(51, 12)
19
#define __PT_LEVEL_SHIFT(level, bits_per_level) \
20
(PAGE_SHIFT + ((level) - 1) * (bits_per_level))
21
#define __PT_INDEX(address, level, bits_per_level) \
22
(((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1))
23
24
#define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \
25
((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
26
27
#define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \
28
((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
29
30
#define __PT_ENT_PER_PAGE(bits_per_level) (1 << (bits_per_level))
31
32
/*
33
* Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT
34
* bit, and thus are guaranteed to be non-zero when valid. And, when a guest
35
* PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE,
36
* as the CPU would treat that as PRESENT PDPTR with reserved bits set. Use
37
* '0' instead of INVALID_PAGE to indicate an invalid PAE root.
38
*/
39
#define INVALID_PAE_ROOT 0
40
#define IS_VALID_PAE_ROOT(x) (!!(x))
41
42
typedef u64 __rcu *tdp_ptep_t;
43
44
struct kvm_mmu_page {
45
/*
46
* Note, "link" through "spt" fit in a single 64 byte cache line on
47
* 64-bit kernels, keep it that way unless there's a reason not to.
48
*/
49
struct list_head link;
50
struct hlist_node hash_link;
51
52
bool tdp_mmu_page;
53
bool unsync;
54
union {
55
u8 mmu_valid_gen;
56
57
/* Only accessed under slots_lock. */
58
bool tdp_mmu_scheduled_root_to_zap;
59
};
60
61
/*
62
* The shadow page can't be replaced by an equivalent huge page
63
* because it is being used to map an executable page in the guest
64
* and the NX huge page mitigation is enabled.
65
*/
66
bool nx_huge_page_disallowed;
67
68
/*
69
* The following two entries are used to key the shadow page in the
70
* hash table.
71
*/
72
union kvm_mmu_page_role role;
73
gfn_t gfn;
74
75
u64 *spt;
76
77
/*
78
* Stores the result of the guest translation being shadowed by each
79
* SPTE. KVM shadows two types of guest translations: nGPA -> GPA
80
* (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both
81
* cases the result of the translation is a GPA and a set of access
82
* constraints.
83
*
84
* The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed
85
* access permissions are stored in the lower bits. Note, for
86
* convenience and uniformity across guests, the access permissions are
87
* stored in KVM format (e.g. ACC_EXEC_MASK) not the raw guest format.
88
*/
89
u64 *shadowed_translation;
90
91
/* Currently serving as active root */
92
union {
93
int root_count;
94
refcount_t tdp_mmu_root_count;
95
};
96
97
bool has_mapped_host_mmio;
98
99
union {
100
/* These two members aren't used for TDP MMU */
101
struct {
102
unsigned int unsync_children;
103
/*
104
* Number of writes since the last time traversal
105
* visited this page.
106
*/
107
atomic_t write_flooding_count;
108
};
109
/*
110
* Page table page of external PT.
111
* Passed to TDX module, not accessed by KVM.
112
*/
113
void *external_spt;
114
};
115
union {
116
struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
117
tdp_ptep_t ptep;
118
};
119
DECLARE_BITMAP(unsync_child_bitmap, 512);
120
121
/*
122
* Tracks shadow pages that, if zapped, would allow KVM to create an NX
123
* huge page. A shadow page will have nx_huge_page_disallowed set but
124
* not be on the list if a huge page is disallowed for other reasons,
125
* e.g. because KVM is shadowing a PTE at the same gfn, the memslot
126
* isn't properly aligned, etc...
127
*/
128
struct list_head possible_nx_huge_page_link;
129
#ifdef CONFIG_X86_32
130
/*
131
* Used out of the mmu-lock to avoid reading spte values while an
132
* update is in progress; see the comments in __get_spte_lockless().
133
*/
134
int clear_spte_count;
135
#endif
136
137
#ifdef CONFIG_X86_64
138
/* Used for freeing the page asynchronously if it is a TDP MMU page. */
139
struct rcu_head rcu_head;
140
#endif
141
};
142
143
extern struct kmem_cache *mmu_page_header_cache;
144
145
static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role)
146
{
147
return role.smm ? 1 : 0;
148
}
149
150
static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
151
{
152
return kvm_mmu_role_as_id(sp->role);
153
}
154
155
static inline bool is_mirror_sp(const struct kvm_mmu_page *sp)
156
{
157
return sp->role.is_mirror;
158
}
159
160
static inline void kvm_mmu_alloc_external_spt(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
161
{
162
/*
163
* external_spt is allocated for TDX module to hold private EPT mappings,
164
* TDX module will initialize the page by itself.
165
* Therefore, KVM does not need to initialize or access external_spt.
166
* KVM only interacts with sp->spt for private EPT operations.
167
*/
168
sp->external_spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_external_spt_cache);
169
}
170
171
static inline gfn_t kvm_gfn_root_bits(const struct kvm *kvm, const struct kvm_mmu_page *root)
172
{
173
/*
174
* Since mirror SPs are used only for TDX, which maps private memory
175
* at its "natural" GFN, no mask needs to be applied to them - and, dually,
176
* we expect that the bits is only used for the shared PT.
177
*/
178
if (is_mirror_sp(root))
179
return 0;
180
return kvm_gfn_direct_bits(kvm);
181
}
182
183
static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm *kvm,
184
struct kvm_mmu_page *sp)
185
{
186
/*
187
* When using the EPT page-modification log, the GPAs in the CPU dirty
188
* log would come from L2 rather than L1. Therefore, we need to rely
189
* on write protection to record dirty pages, which bypasses PML, since
190
* writes now result in a vmexit. Note, the check on CPU dirty logging
191
* being enabled is mandatory as the bits used to denote WP-only SPTEs
192
* are reserved for PAE paging (32-bit KVM).
193
*/
194
return kvm->arch.cpu_dirty_log_size && sp->role.guest_mode;
195
}
196
197
static inline gfn_t gfn_round_for_level(gfn_t gfn, int level)
198
{
199
return gfn & -KVM_PAGES_PER_HPAGE(level);
200
}
201
202
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
203
gfn_t gfn, bool synchronizing, bool prefetch);
204
205
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
206
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
207
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
208
struct kvm_memory_slot *slot, u64 gfn,
209
int min_level);
210
211
/* Flush the given page (huge or not) of guest memory. */
212
static inline void kvm_flush_remote_tlbs_gfn(struct kvm *kvm, gfn_t gfn, int level)
213
{
214
kvm_flush_remote_tlbs_range(kvm, gfn_round_for_level(gfn, level),
215
KVM_PAGES_PER_HPAGE(level));
216
}
217
218
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
219
220
extern int nx_huge_pages;
221
static inline bool is_nx_huge_page_enabled(struct kvm *kvm)
222
{
223
return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages;
224
}
225
226
struct kvm_page_fault {
227
/* arguments to kvm_mmu_do_page_fault. */
228
const gpa_t addr;
229
const u64 error_code;
230
const bool prefetch;
231
232
/* Derived from error_code. */
233
const bool exec;
234
const bool write;
235
const bool present;
236
const bool rsvd;
237
const bool user;
238
239
/* Derived from mmu and global state. */
240
const bool is_tdp;
241
const bool is_private;
242
const bool nx_huge_page_workaround_enabled;
243
244
/*
245
* Whether a >4KB mapping can be created or is forbidden due to NX
246
* hugepages.
247
*/
248
bool huge_page_disallowed;
249
250
/*
251
* Maximum page size that can be created for this fault; input to
252
* FNAME(fetch), direct_map() and kvm_tdp_mmu_map().
253
*/
254
u8 max_level;
255
256
/*
257
* Page size that can be created based on the max_level and the
258
* page size used by the host mapping.
259
*/
260
u8 req_level;
261
262
/*
263
* Page size that will be created based on the req_level and
264
* huge_page_disallowed.
265
*/
266
u8 goal_level;
267
268
/*
269
* Shifted addr, or result of guest page table walk if addr is a gva. In
270
* the case of VM where memslot's can be mapped at multiple GPA aliases
271
* (i.e. TDX), the gfn field does not contain the bit that selects between
272
* the aliases (i.e. the shared bit for TDX).
273
*/
274
gfn_t gfn;
275
276
/* The memslot containing gfn. May be NULL. */
277
struct kvm_memory_slot *slot;
278
279
/* Outputs of kvm_mmu_faultin_pfn(). */
280
unsigned long mmu_seq;
281
kvm_pfn_t pfn;
282
struct page *refcounted_page;
283
bool map_writable;
284
285
/*
286
* Indicates the guest is trying to write a gfn that contains one or
287
* more of the PTEs used to translate the write itself, i.e. the access
288
* is changing its own translation in the guest page tables.
289
*/
290
bool write_fault_to_shadow_pgtable;
291
};
292
293
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
294
295
/*
296
* Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(),
297
* and of course kvm_mmu_do_page_fault().
298
*
299
* RET_PF_CONTINUE: So far, so good, keep handling the page fault.
300
* RET_PF_RETRY: let CPU fault again on the address.
301
* RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
302
* RET_PF_WRITE_PROTECTED: the gfn is write-protected, either unprotected the
303
* gfn and retry, or emulate the instruction directly.
304
* RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
305
* RET_PF_FIXED: The faulting entry has been fixed.
306
* RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
307
*
308
* Any names added to this enum should be exported to userspace for use in
309
* tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h
310
*
311
* Note, all values must be greater than or equal to zero so as not to encroach
312
* on -errno return values.
313
*/
314
enum {
315
RET_PF_CONTINUE = 0,
316
RET_PF_RETRY,
317
RET_PF_EMULATE,
318
RET_PF_WRITE_PROTECTED,
319
RET_PF_INVALID,
320
RET_PF_FIXED,
321
RET_PF_SPURIOUS,
322
};
323
324
/*
325
* Define RET_PF_CONTINUE as 0 to allow for
326
* - efficient machine code when checking for CONTINUE, e.g.
327
* "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero,
328
* - kvm_mmu_do_page_fault() to return other RET_PF_* as a positive value.
329
*/
330
static_assert(RET_PF_CONTINUE == 0);
331
332
static inline void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
333
struct kvm_page_fault *fault)
334
{
335
kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
336
PAGE_SIZE, fault->write, fault->exec,
337
fault->is_private);
338
}
339
340
static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
341
u64 err, bool prefetch,
342
int *emulation_type, u8 *level)
343
{
344
struct kvm_page_fault fault = {
345
.addr = cr2_or_gpa,
346
.error_code = err,
347
.exec = err & PFERR_FETCH_MASK,
348
.write = err & PFERR_WRITE_MASK,
349
.present = err & PFERR_PRESENT_MASK,
350
.rsvd = err & PFERR_RSVD_MASK,
351
.user = err & PFERR_USER_MASK,
352
.prefetch = prefetch,
353
.is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
354
.nx_huge_page_workaround_enabled =
355
is_nx_huge_page_enabled(vcpu->kvm),
356
357
.max_level = KVM_MAX_HUGEPAGE_LEVEL,
358
.req_level = PG_LEVEL_4K,
359
.goal_level = PG_LEVEL_4K,
360
.is_private = err & PFERR_PRIVATE_ACCESS,
361
362
.pfn = KVM_PFN_ERR_FAULT,
363
};
364
int r;
365
366
if (vcpu->arch.mmu->root_role.direct) {
367
/*
368
* Things like memslots don't understand the concept of a shared
369
* bit. Strip it so that the GFN can be used like normal, and the
370
* fault.addr can be used when the shared bit is needed.
371
*/
372
fault.gfn = gpa_to_gfn(fault.addr) & ~kvm_gfn_direct_bits(vcpu->kvm);
373
fault.slot = kvm_vcpu_gfn_to_memslot(vcpu, fault.gfn);
374
}
375
376
/*
377
* With retpoline being active an indirect call is rather expensive,
378
* so do a direct call in the most common case.
379
*/
380
if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && fault.is_tdp)
381
r = kvm_tdp_page_fault(vcpu, &fault);
382
else
383
r = vcpu->arch.mmu->page_fault(vcpu, &fault);
384
385
/*
386
* Not sure what's happening, but punt to userspace and hope that
387
* they can fix it by changing memory to shared, or they can
388
* provide a better error.
389
*/
390
if (r == RET_PF_EMULATE && fault.is_private) {
391
pr_warn_ratelimited("kvm: unexpected emulation request on private memory\n");
392
kvm_mmu_prepare_memory_fault_exit(vcpu, &fault);
393
return -EFAULT;
394
}
395
396
if (fault.write_fault_to_shadow_pgtable && emulation_type)
397
*emulation_type |= EMULTYPE_WRITE_PF_TO_SP;
398
if (level)
399
*level = fault.goal_level;
400
401
return r;
402
}
403
404
int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault,
405
const struct kvm_memory_slot *slot, gfn_t gfn);
406
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
407
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level);
408
409
void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
410
enum kvm_mmu_type mmu_type);
411
void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
412
enum kvm_mmu_type mmu_type);
413
414
#endif /* __KVM_X86_MMU_INTERNAL_H */
415
416