Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/mmu/mmu_internal.h
26481 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef __KVM_X86_MMU_INTERNAL_H
3
#define __KVM_X86_MMU_INTERNAL_H
4
5
#include <linux/types.h>
6
#include <linux/kvm_host.h>
7
#include <asm/kvm_host.h>
8
9
#include "mmu.h"
10
11
#ifdef CONFIG_KVM_PROVE_MMU
12
#define KVM_MMU_WARN_ON(x) WARN_ON_ONCE(x)
13
#else
14
#define KVM_MMU_WARN_ON(x) BUILD_BUG_ON_INVALID(x)
15
#endif
16
17
/* Page table builder macros common to shadow (host) PTEs and guest PTEs. */
18
#define __PT_BASE_ADDR_MASK GENMASK_ULL(51, 12)
19
#define __PT_LEVEL_SHIFT(level, bits_per_level) \
20
(PAGE_SHIFT + ((level) - 1) * (bits_per_level))
21
#define __PT_INDEX(address, level, bits_per_level) \
22
(((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1))
23
24
#define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \
25
((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
26
27
#define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \
28
((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
29
30
#define __PT_ENT_PER_PAGE(bits_per_level) (1 << (bits_per_level))
31
32
/*
33
* Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT
34
* bit, and thus are guaranteed to be non-zero when valid. And, when a guest
35
* PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE,
36
* as the CPU would treat that as PRESENT PDPTR with reserved bits set. Use
37
* '0' instead of INVALID_PAGE to indicate an invalid PAE root.
38
*/
39
#define INVALID_PAE_ROOT 0
40
#define IS_VALID_PAE_ROOT(x) (!!(x))
41
42
static inline hpa_t kvm_mmu_get_dummy_root(void)
43
{
44
return my_zero_pfn(0) << PAGE_SHIFT;
45
}
46
47
static inline bool kvm_mmu_is_dummy_root(hpa_t shadow_page)
48
{
49
return is_zero_pfn(shadow_page >> PAGE_SHIFT);
50
}
51
52
typedef u64 __rcu *tdp_ptep_t;
53
54
struct kvm_mmu_page {
55
/*
56
* Note, "link" through "spt" fit in a single 64 byte cache line on
57
* 64-bit kernels, keep it that way unless there's a reason not to.
58
*/
59
struct list_head link;
60
struct hlist_node hash_link;
61
62
bool tdp_mmu_page;
63
bool unsync;
64
union {
65
u8 mmu_valid_gen;
66
67
/* Only accessed under slots_lock. */
68
bool tdp_mmu_scheduled_root_to_zap;
69
};
70
71
/*
72
* The shadow page can't be replaced by an equivalent huge page
73
* because it is being used to map an executable page in the guest
74
* and the NX huge page mitigation is enabled.
75
*/
76
bool nx_huge_page_disallowed;
77
78
/*
79
* The following two entries are used to key the shadow page in the
80
* hash table.
81
*/
82
union kvm_mmu_page_role role;
83
gfn_t gfn;
84
85
u64 *spt;
86
87
/*
88
* Stores the result of the guest translation being shadowed by each
89
* SPTE. KVM shadows two types of guest translations: nGPA -> GPA
90
* (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both
91
* cases the result of the translation is a GPA and a set of access
92
* constraints.
93
*
94
* The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed
95
* access permissions are stored in the lower bits. Note, for
96
* convenience and uniformity across guests, the access permissions are
97
* stored in KVM format (e.g. ACC_EXEC_MASK) not the raw guest format.
98
*/
99
u64 *shadowed_translation;
100
101
/* Currently serving as active root */
102
union {
103
int root_count;
104
refcount_t tdp_mmu_root_count;
105
};
106
107
bool has_mapped_host_mmio;
108
109
union {
110
/* These two members aren't used for TDP MMU */
111
struct {
112
unsigned int unsync_children;
113
/*
114
* Number of writes since the last time traversal
115
* visited this page.
116
*/
117
atomic_t write_flooding_count;
118
};
119
/*
120
* Page table page of external PT.
121
* Passed to TDX module, not accessed by KVM.
122
*/
123
void *external_spt;
124
};
125
union {
126
struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
127
tdp_ptep_t ptep;
128
};
129
DECLARE_BITMAP(unsync_child_bitmap, 512);
130
131
/*
132
* Tracks shadow pages that, if zapped, would allow KVM to create an NX
133
* huge page. A shadow page will have nx_huge_page_disallowed set but
134
* not be on the list if a huge page is disallowed for other reasons,
135
* e.g. because KVM is shadowing a PTE at the same gfn, the memslot
136
* isn't properly aligned, etc...
137
*/
138
struct list_head possible_nx_huge_page_link;
139
#ifdef CONFIG_X86_32
140
/*
141
* Used out of the mmu-lock to avoid reading spte values while an
142
* update is in progress; see the comments in __get_spte_lockless().
143
*/
144
int clear_spte_count;
145
#endif
146
147
#ifdef CONFIG_X86_64
148
/* Used for freeing the page asynchronously if it is a TDP MMU page. */
149
struct rcu_head rcu_head;
150
#endif
151
};
152
153
extern struct kmem_cache *mmu_page_header_cache;
154
155
static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role)
156
{
157
return role.smm ? 1 : 0;
158
}
159
160
static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
161
{
162
return kvm_mmu_role_as_id(sp->role);
163
}
164
165
static inline bool is_mirror_sp(const struct kvm_mmu_page *sp)
166
{
167
return sp->role.is_mirror;
168
}
169
170
static inline void kvm_mmu_alloc_external_spt(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
171
{
172
/*
173
* external_spt is allocated for TDX module to hold private EPT mappings,
174
* TDX module will initialize the page by itself.
175
* Therefore, KVM does not need to initialize or access external_spt.
176
* KVM only interacts with sp->spt for private EPT operations.
177
*/
178
sp->external_spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_external_spt_cache);
179
}
180
181
static inline gfn_t kvm_gfn_root_bits(const struct kvm *kvm, const struct kvm_mmu_page *root)
182
{
183
/*
184
* Since mirror SPs are used only for TDX, which maps private memory
185
* at its "natural" GFN, no mask needs to be applied to them - and, dually,
186
* we expect that the bits is only used for the shared PT.
187
*/
188
if (is_mirror_sp(root))
189
return 0;
190
return kvm_gfn_direct_bits(kvm);
191
}
192
193
static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm *kvm,
194
struct kvm_mmu_page *sp)
195
{
196
/*
197
* When using the EPT page-modification log, the GPAs in the CPU dirty
198
* log would come from L2 rather than L1. Therefore, we need to rely
199
* on write protection to record dirty pages, which bypasses PML, since
200
* writes now result in a vmexit. Note, the check on CPU dirty logging
201
* being enabled is mandatory as the bits used to denote WP-only SPTEs
202
* are reserved for PAE paging (32-bit KVM).
203
*/
204
return kvm->arch.cpu_dirty_log_size && sp->role.guest_mode;
205
}
206
207
static inline gfn_t gfn_round_for_level(gfn_t gfn, int level)
208
{
209
return gfn & -KVM_PAGES_PER_HPAGE(level);
210
}
211
212
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
213
gfn_t gfn, bool synchronizing, bool prefetch);
214
215
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
216
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
217
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
218
struct kvm_memory_slot *slot, u64 gfn,
219
int min_level);
220
221
/* Flush the given page (huge or not) of guest memory. */
222
static inline void kvm_flush_remote_tlbs_gfn(struct kvm *kvm, gfn_t gfn, int level)
223
{
224
kvm_flush_remote_tlbs_range(kvm, gfn_round_for_level(gfn, level),
225
KVM_PAGES_PER_HPAGE(level));
226
}
227
228
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
229
230
extern int nx_huge_pages;
231
static inline bool is_nx_huge_page_enabled(struct kvm *kvm)
232
{
233
return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages;
234
}
235
236
struct kvm_page_fault {
237
/* arguments to kvm_mmu_do_page_fault. */
238
const gpa_t addr;
239
const u64 error_code;
240
const bool prefetch;
241
242
/* Derived from error_code. */
243
const bool exec;
244
const bool write;
245
const bool present;
246
const bool rsvd;
247
const bool user;
248
249
/* Derived from mmu and global state. */
250
const bool is_tdp;
251
const bool is_private;
252
const bool nx_huge_page_workaround_enabled;
253
254
/*
255
* Whether a >4KB mapping can be created or is forbidden due to NX
256
* hugepages.
257
*/
258
bool huge_page_disallowed;
259
260
/*
261
* Maximum page size that can be created for this fault; input to
262
* FNAME(fetch), direct_map() and kvm_tdp_mmu_map().
263
*/
264
u8 max_level;
265
266
/*
267
* Page size that can be created based on the max_level and the
268
* page size used by the host mapping.
269
*/
270
u8 req_level;
271
272
/*
273
* Page size that will be created based on the req_level and
274
* huge_page_disallowed.
275
*/
276
u8 goal_level;
277
278
/*
279
* Shifted addr, or result of guest page table walk if addr is a gva. In
280
* the case of VM where memslot's can be mapped at multiple GPA aliases
281
* (i.e. TDX), the gfn field does not contain the bit that selects between
282
* the aliases (i.e. the shared bit for TDX).
283
*/
284
gfn_t gfn;
285
286
/* The memslot containing gfn. May be NULL. */
287
struct kvm_memory_slot *slot;
288
289
/* Outputs of kvm_mmu_faultin_pfn(). */
290
unsigned long mmu_seq;
291
kvm_pfn_t pfn;
292
struct page *refcounted_page;
293
bool map_writable;
294
295
/*
296
* Indicates the guest is trying to write a gfn that contains one or
297
* more of the PTEs used to translate the write itself, i.e. the access
298
* is changing its own translation in the guest page tables.
299
*/
300
bool write_fault_to_shadow_pgtable;
301
};
302
303
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
304
305
/*
306
* Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(),
307
* and of course kvm_mmu_do_page_fault().
308
*
309
* RET_PF_CONTINUE: So far, so good, keep handling the page fault.
310
* RET_PF_RETRY: let CPU fault again on the address.
311
* RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
312
* RET_PF_WRITE_PROTECTED: the gfn is write-protected, either unprotected the
313
* gfn and retry, or emulate the instruction directly.
314
* RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
315
* RET_PF_FIXED: The faulting entry has been fixed.
316
* RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
317
*
318
* Any names added to this enum should be exported to userspace for use in
319
* tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h
320
*
321
* Note, all values must be greater than or equal to zero so as not to encroach
322
* on -errno return values.
323
*/
324
enum {
325
RET_PF_CONTINUE = 0,
326
RET_PF_RETRY,
327
RET_PF_EMULATE,
328
RET_PF_WRITE_PROTECTED,
329
RET_PF_INVALID,
330
RET_PF_FIXED,
331
RET_PF_SPURIOUS,
332
};
333
334
/*
335
* Define RET_PF_CONTINUE as 0 to allow for
336
* - efficient machine code when checking for CONTINUE, e.g.
337
* "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero,
338
* - kvm_mmu_do_page_fault() to return other RET_PF_* as a positive value.
339
*/
340
static_assert(RET_PF_CONTINUE == 0);
341
342
static inline void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
343
struct kvm_page_fault *fault)
344
{
345
kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
346
PAGE_SIZE, fault->write, fault->exec,
347
fault->is_private);
348
}
349
350
static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
351
u64 err, bool prefetch,
352
int *emulation_type, u8 *level)
353
{
354
struct kvm_page_fault fault = {
355
.addr = cr2_or_gpa,
356
.error_code = err,
357
.exec = err & PFERR_FETCH_MASK,
358
.write = err & PFERR_WRITE_MASK,
359
.present = err & PFERR_PRESENT_MASK,
360
.rsvd = err & PFERR_RSVD_MASK,
361
.user = err & PFERR_USER_MASK,
362
.prefetch = prefetch,
363
.is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
364
.nx_huge_page_workaround_enabled =
365
is_nx_huge_page_enabled(vcpu->kvm),
366
367
.max_level = KVM_MAX_HUGEPAGE_LEVEL,
368
.req_level = PG_LEVEL_4K,
369
.goal_level = PG_LEVEL_4K,
370
.is_private = err & PFERR_PRIVATE_ACCESS,
371
372
.pfn = KVM_PFN_ERR_FAULT,
373
};
374
int r;
375
376
if (vcpu->arch.mmu->root_role.direct) {
377
/*
378
* Things like memslots don't understand the concept of a shared
379
* bit. Strip it so that the GFN can be used like normal, and the
380
* fault.addr can be used when the shared bit is needed.
381
*/
382
fault.gfn = gpa_to_gfn(fault.addr) & ~kvm_gfn_direct_bits(vcpu->kvm);
383
fault.slot = kvm_vcpu_gfn_to_memslot(vcpu, fault.gfn);
384
}
385
386
/*
387
* With retpoline being active an indirect call is rather expensive,
388
* so do a direct call in the most common case.
389
*/
390
if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && fault.is_tdp)
391
r = kvm_tdp_page_fault(vcpu, &fault);
392
else
393
r = vcpu->arch.mmu->page_fault(vcpu, &fault);
394
395
/*
396
* Not sure what's happening, but punt to userspace and hope that
397
* they can fix it by changing memory to shared, or they can
398
* provide a better error.
399
*/
400
if (r == RET_PF_EMULATE && fault.is_private) {
401
pr_warn_ratelimited("kvm: unexpected emulation request on private memory\n");
402
kvm_mmu_prepare_memory_fault_exit(vcpu, &fault);
403
return -EFAULT;
404
}
405
406
if (fault.write_fault_to_shadow_pgtable && emulation_type)
407
*emulation_type |= EMULTYPE_WRITE_PF_TO_SP;
408
if (level)
409
*level = fault.goal_level;
410
411
return r;
412
}
413
414
int kvm_mmu_max_mapping_level(struct kvm *kvm,
415
const struct kvm_memory_slot *slot, gfn_t gfn);
416
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
417
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level);
418
419
void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
420
void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
421
422
#endif /* __KVM_X86_MMU_INTERNAL_H */
423
424