Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/mmu/spte.h
26481 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
3
#ifndef KVM_X86_MMU_SPTE_H
4
#define KVM_X86_MMU_SPTE_H
5
6
#include <asm/vmx.h>
7
8
#include "mmu.h"
9
#include "mmu_internal.h"
10
11
/*
12
* A MMU present SPTE is backed by actual memory and may or may not be present
13
* in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it
14
* is ignored by all flavors of SPTEs and checking a low bit often generates
15
* better code than for a high bit, e.g. 56+. MMU present checks are pervasive
16
* enough that the improved code generation is noticeable in KVM's footprint.
17
*/
18
#define SPTE_MMU_PRESENT_MASK BIT_ULL(11)
19
20
/*
21
* TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also
22
* be restricted to using write-protection (for L2 when CPU dirty logging, i.e.
23
* PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that
24
* is must be employed for a given TDP SPTE.
25
*
26
* Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE
27
* paging, including NPT PAE. This scheme works because legacy shadow paging
28
* is guaranteed to have A/D bits and write-protection is forced only for
29
* TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it
30
* must be restricted to 64-bit KVM.
31
*/
32
#define SPTE_TDP_AD_SHIFT 52
33
#define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT)
34
#define SPTE_TDP_AD_ENABLED (0ULL << SPTE_TDP_AD_SHIFT)
35
#define SPTE_TDP_AD_DISABLED (1ULL << SPTE_TDP_AD_SHIFT)
36
#define SPTE_TDP_AD_WRPROT_ONLY (2ULL << SPTE_TDP_AD_SHIFT)
37
static_assert(SPTE_TDP_AD_ENABLED == 0);
38
39
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
40
#define SPTE_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
41
#else
42
#define SPTE_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
43
#endif
44
45
#define SPTE_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
46
| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
47
48
#define ACC_EXEC_MASK 1
49
#define ACC_WRITE_MASK PT_WRITABLE_MASK
50
#define ACC_USER_MASK PT_USER_MASK
51
#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
52
53
/* The mask for the R/X bits in EPT PTEs */
54
#define SPTE_EPT_READABLE_MASK 0x1ull
55
#define SPTE_EPT_EXECUTABLE_MASK 0x4ull
56
57
#define SPTE_LEVEL_BITS 9
58
#define SPTE_LEVEL_SHIFT(level) __PT_LEVEL_SHIFT(level, SPTE_LEVEL_BITS)
59
#define SPTE_INDEX(address, level) __PT_INDEX(address, level, SPTE_LEVEL_BITS)
60
#define SPTE_ENT_PER_PAGE __PT_ENT_PER_PAGE(SPTE_LEVEL_BITS)
61
62
/*
63
* The mask/shift to use for saving the original R/X bits when marking the PTE
64
* as not-present for access tracking purposes. We do not save the W bit as the
65
* PTEs being access tracked also need to be dirty tracked, so the W bit will be
66
* restored only when a write is attempted to the page. This mask obviously
67
* must not overlap the A/D type mask.
68
*/
69
#define SHADOW_ACC_TRACK_SAVED_BITS_MASK (SPTE_EPT_READABLE_MASK | \
70
SPTE_EPT_EXECUTABLE_MASK)
71
#define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54
72
#define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \
73
SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
74
static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK));
75
76
/*
77
* {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given
78
* SPTE is write-protected. See is_writable_pte() for details.
79
*/
80
81
/* Bits 9 and 10 are ignored by all non-EPT PTEs. */
82
#define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9)
83
#define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10)
84
85
/*
86
* Low ignored bits are at a premium for EPT, use high ignored bits, taking care
87
* to not overlap the A/D type mask or the saved access bits of access-tracked
88
* SPTEs when A/D bits are disabled.
89
*/
90
#define EPT_SPTE_HOST_WRITABLE BIT_ULL(57)
91
#define EPT_SPTE_MMU_WRITABLE BIT_ULL(58)
92
93
static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK));
94
static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK));
95
static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
96
static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
97
98
/* Defined only to keep the above static asserts readable. */
99
#undef SHADOW_ACC_TRACK_SAVED_MASK
100
101
/*
102
* Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
103
* the memslots generation and is derived as follows:
104
*
105
* Bits 0-7 of the MMIO generation are propagated to spte bits 3-10
106
* Bits 8-18 of the MMIO generation are propagated to spte bits 52-62
107
*
108
* The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
109
* the MMIO generation number, as doing so would require stealing a bit from
110
* the "real" generation number and thus effectively halve the maximum number
111
* of MMIO generations that can be handled before encountering a wrap (which
112
* requires a full MMU zap). The flag is instead explicitly queried when
113
* checking for MMIO spte cache hits.
114
*/
115
116
#define MMIO_SPTE_GEN_LOW_START 3
117
#define MMIO_SPTE_GEN_LOW_END 10
118
119
#define MMIO_SPTE_GEN_HIGH_START 52
120
#define MMIO_SPTE_GEN_HIGH_END 62
121
122
#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
123
MMIO_SPTE_GEN_LOW_START)
124
#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
125
MMIO_SPTE_GEN_HIGH_START)
126
static_assert(!(SPTE_MMU_PRESENT_MASK &
127
(MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
128
129
/*
130
* The SPTE MMIO mask must NOT overlap the MMIO generation bits or the
131
* MMU-present bit. The generation obviously co-exists with the magic MMIO
132
* mask/value, and MMIO SPTEs are considered !MMU-present.
133
*
134
* The SPTE MMIO mask is allowed to use hardware "present" bits (i.e. all EPT
135
* RWX bits), all physical address bits (legal PA bits are used for "fast" MMIO
136
* and so they're off-limits for generation; additional checks ensure the mask
137
* doesn't overlap legal PA bits), and bit 63 (carved out for future usage).
138
*/
139
#define SPTE_MMIO_ALLOWED_MASK (BIT_ULL(63) | GENMASK_ULL(51, 12) | GENMASK_ULL(2, 0))
140
static_assert(!(SPTE_MMIO_ALLOWED_MASK &
141
(SPTE_MMU_PRESENT_MASK | MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
142
143
#define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1)
144
#define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1)
145
146
/* remember to adjust the comment above as well if you change these */
147
static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11);
148
149
#define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0)
150
#define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS)
151
152
#define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0)
153
154
/*
155
* Non-present SPTE value needs to set bit 63 for TDX, in order to suppress
156
* #VE and get EPT violations on non-present PTEs. We can use the
157
* same value also without TDX for both VMX and SVM:
158
*
159
* For SVM NPT, for non-present spte (bit 0 = 0), other bits are ignored.
160
* For VMX EPT, bit 63 is ignored if #VE is disabled. (EPT_VIOLATION_VE=0)
161
* bit 63 is #VE suppress if #VE is enabled. (EPT_VIOLATION_VE=1)
162
*/
163
#ifdef CONFIG_X86_64
164
#define SHADOW_NONPRESENT_VALUE BIT_ULL(63)
165
static_assert(!(SHADOW_NONPRESENT_VALUE & SPTE_MMU_PRESENT_MASK));
166
#else
167
#define SHADOW_NONPRESENT_VALUE 0ULL
168
#endif
169
170
171
/*
172
* True if A/D bits are supported in hardware and are enabled by KVM. When
173
* enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can disable
174
* A/D bits in EPTP12, SP and SPTE variants are needed to handle the scenario
175
* where KVM is using A/D bits for L1, but not L2.
176
*/
177
extern bool __read_mostly kvm_ad_enabled;
178
179
extern u64 __read_mostly shadow_host_writable_mask;
180
extern u64 __read_mostly shadow_mmu_writable_mask;
181
extern u64 __read_mostly shadow_nx_mask;
182
extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
183
extern u64 __read_mostly shadow_user_mask;
184
extern u64 __read_mostly shadow_accessed_mask;
185
extern u64 __read_mostly shadow_dirty_mask;
186
extern u64 __read_mostly shadow_mmio_value;
187
extern u64 __read_mostly shadow_mmio_mask;
188
extern u64 __read_mostly shadow_mmio_access_mask;
189
extern u64 __read_mostly shadow_present_mask;
190
extern u64 __read_mostly shadow_me_value;
191
extern u64 __read_mostly shadow_me_mask;
192
193
/*
194
* SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED;
195
* shadow_acc_track_mask is the set of bits to be cleared in non-accessed
196
* pages.
197
*/
198
extern u64 __read_mostly shadow_acc_track_mask;
199
200
/*
201
* This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
202
* to guard against L1TF attacks.
203
*/
204
extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
205
206
/*
207
* The number of high-order 1 bits to use in the mask above.
208
*/
209
#define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5
210
211
/*
212
* If a thread running without exclusive control of the MMU lock must perform a
213
* multi-part operation on an SPTE, it can set the SPTE to FROZEN_SPTE as a
214
* non-present intermediate value. Other threads which encounter this value
215
* should not modify the SPTE.
216
*
217
* Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on
218
* both AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF
219
* vulnerability.
220
*
221
* Only used by the TDP MMU.
222
*/
223
#define FROZEN_SPTE (SHADOW_NONPRESENT_VALUE | 0x5a0ULL)
224
225
/* Frozen SPTEs must not be misconstrued as shadow present PTEs. */
226
static_assert(!(FROZEN_SPTE & SPTE_MMU_PRESENT_MASK));
227
228
static inline bool is_frozen_spte(u64 spte)
229
{
230
return spte == FROZEN_SPTE;
231
}
232
233
/* Get an SPTE's index into its parent's page table (and the spt array). */
234
static inline int spte_index(u64 *sptep)
235
{
236
return ((unsigned long)sptep / sizeof(*sptep)) & (SPTE_ENT_PER_PAGE - 1);
237
}
238
239
/*
240
* In some cases, we need to preserve the GFN of a non-present or reserved
241
* SPTE when we usurp the upper five bits of the physical address space to
242
* defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
243
* shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
244
* left into the reserved bits, i.e. the GFN in the SPTE will be split into
245
* high and low parts. This mask covers the lower bits of the GFN.
246
*/
247
extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
248
249
static inline struct kvm_mmu_page *to_shadow_page(hpa_t shadow_page)
250
{
251
struct page *page = pfn_to_page((shadow_page) >> PAGE_SHIFT);
252
253
return (struct kvm_mmu_page *)page_private(page);
254
}
255
256
static inline struct kvm_mmu_page *spte_to_child_sp(u64 spte)
257
{
258
return to_shadow_page(spte & SPTE_BASE_ADDR_MASK);
259
}
260
261
static inline struct kvm_mmu_page *sptep_to_sp(u64 *sptep)
262
{
263
return to_shadow_page(__pa(sptep));
264
}
265
266
static inline struct kvm_mmu_page *root_to_sp(hpa_t root)
267
{
268
if (kvm_mmu_is_dummy_root(root))
269
return NULL;
270
271
/*
272
* The "root" may be a special root, e.g. a PAE entry, treat it as a
273
* SPTE to ensure any non-PA bits are dropped.
274
*/
275
return spte_to_child_sp(root);
276
}
277
278
static inline bool is_mirror_sptep(tdp_ptep_t sptep)
279
{
280
return is_mirror_sp(sptep_to_sp(rcu_dereference(sptep)));
281
}
282
283
static inline bool kvm_vcpu_can_access_host_mmio(struct kvm_vcpu *vcpu)
284
{
285
struct kvm_mmu_page *root = root_to_sp(vcpu->arch.mmu->root.hpa);
286
287
if (root)
288
return READ_ONCE(root->has_mapped_host_mmio);
289
290
return READ_ONCE(vcpu->kvm->arch.has_mapped_host_mmio);
291
}
292
293
static inline bool is_mmio_spte(struct kvm *kvm, u64 spte)
294
{
295
return (spte & shadow_mmio_mask) == kvm->arch.shadow_mmio_value &&
296
likely(enable_mmio_caching);
297
}
298
299
static inline bool is_shadow_present_pte(u64 pte)
300
{
301
return !!(pte & SPTE_MMU_PRESENT_MASK);
302
}
303
304
static inline bool is_ept_ve_possible(u64 spte)
305
{
306
return (shadow_present_mask & VMX_EPT_SUPPRESS_VE_BIT) &&
307
!(spte & VMX_EPT_SUPPRESS_VE_BIT) &&
308
(spte & VMX_EPT_RWX_MASK) != VMX_EPT_MISCONFIG_WX_VALUE;
309
}
310
311
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
312
{
313
return sp->role.ad_disabled;
314
}
315
316
static inline bool spte_ad_enabled(u64 spte)
317
{
318
KVM_MMU_WARN_ON(!is_shadow_present_pte(spte));
319
return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED;
320
}
321
322
static inline bool spte_ad_need_write_protect(u64 spte)
323
{
324
KVM_MMU_WARN_ON(!is_shadow_present_pte(spte));
325
/*
326
* This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED is '0',
327
* and non-TDP SPTEs will never set these bits. Optimize for 64-bit
328
* TDP and do the A/D type check unconditionally.
329
*/
330
return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED;
331
}
332
333
static inline bool is_access_track_spte(u64 spte)
334
{
335
return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
336
}
337
338
static inline bool is_large_pte(u64 pte)
339
{
340
return pte & PT_PAGE_SIZE_MASK;
341
}
342
343
static inline bool is_last_spte(u64 pte, int level)
344
{
345
return (level == PG_LEVEL_4K) || is_large_pte(pte);
346
}
347
348
static inline bool is_executable_pte(u64 spte)
349
{
350
return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
351
}
352
353
static inline kvm_pfn_t spte_to_pfn(u64 pte)
354
{
355
return (pte & SPTE_BASE_ADDR_MASK) >> PAGE_SHIFT;
356
}
357
358
static inline bool is_accessed_spte(u64 spte)
359
{
360
return spte & shadow_accessed_mask;
361
}
362
363
static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte,
364
int level)
365
{
366
int bit7 = (pte >> 7) & 1;
367
368
return rsvd_check->rsvd_bits_mask[bit7][level-1];
369
}
370
371
static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check,
372
u64 pte, int level)
373
{
374
return pte & get_rsvd_bits(rsvd_check, pte, level);
375
}
376
377
static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check,
378
u64 pte)
379
{
380
return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
381
}
382
383
static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check,
384
u64 spte, int level)
385
{
386
return __is_bad_mt_xwr(rsvd_check, spte) ||
387
__is_rsvd_bits_set(rsvd_check, spte, level);
388
}
389
390
/*
391
* A shadow-present leaf SPTE may be non-writable for 4 possible reasons:
392
*
393
* 1. To intercept writes for dirty logging. KVM write-protects huge pages
394
* so that they can be split down into the dirty logging
395
* granularity (4KiB) whenever the guest writes to them. KVM also
396
* write-protects 4KiB pages so that writes can be recorded in the dirty log
397
* (e.g. if not using PML). SPTEs are write-protected for dirty logging
398
* during the VM-iotcls that enable dirty logging.
399
*
400
* 2. To intercept writes to guest page tables that KVM is shadowing. When a
401
* guest writes to its page table the corresponding shadow page table will
402
* be marked "unsync". That way KVM knows which shadow page tables need to
403
* be updated on the next TLB flush, INVLPG, etc. and which do not.
404
*
405
* 3. To prevent guest writes to read-only memory, such as for memory in a
406
* read-only memslot or guest memory backed by a read-only VMA. Writes to
407
* such pages are disallowed entirely.
408
*
409
* 4. To emulate the Accessed bit for SPTEs without A/D bits. Note, in this
410
* case, the SPTE is access-protected, not just write-protected!
411
*
412
* For cases #1 and #4, KVM can safely make such SPTEs writable without taking
413
* mmu_lock as capturing the Accessed/Dirty state doesn't require taking it.
414
* To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits
415
* in the SPTE:
416
*
417
* shadow_mmu_writable_mask, aka MMU-writable -
418
* Cleared on SPTEs that KVM is currently write-protecting for shadow paging
419
* purposes (case 2 above).
420
*
421
* shadow_host_writable_mask, aka Host-writable -
422
* Cleared on SPTEs that are not host-writable (case 3 above)
423
*
424
* Note, not all possible combinations of PT_WRITABLE_MASK,
425
* shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given
426
* SPTE can be in only one of the following states, which map to the
427
* aforementioned 3 cases:
428
*
429
* shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK
430
* ------------------------- | ------------------------ | ----------------
431
* 1 | 1 | 1 (writable)
432
* 1 | 1 | 0 (case 1)
433
* 1 | 0 | 0 (case 2)
434
* 0 | 0 | 0 (case 3)
435
*
436
* The valid combinations of these bits are checked by
437
* check_spte_writable_invariants() whenever an SPTE is modified.
438
*
439
* Clearing the MMU-writable bit is always done under the MMU lock and always
440
* accompanied by a TLB flush before dropping the lock to avoid corrupting the
441
* shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging
442
* (which does not clear the MMU-writable bit), does not flush TLBs before
443
* dropping the lock, as it only needs to synchronize guest writes with the
444
* dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for
445
* access-tracking via the clear_young() MMU notifier also does not flush TLBs.
446
*
447
* So, there is the problem: clearing the MMU-writable bit can encounter a
448
* write-protected SPTE while CPUs still have writable mappings for that SPTE
449
* cached in their TLB. To address this, KVM always flushes TLBs when
450
* write-protecting SPTEs if the MMU-writable bit is set on the old SPTE.
451
*
452
* The Host-writable bit is not modified on present SPTEs, it is only set or
453
* cleared when an SPTE is first faulted in from non-present and then remains
454
* immutable.
455
*/
456
static inline bool is_writable_pte(unsigned long pte)
457
{
458
return pte & PT_WRITABLE_MASK;
459
}
460
461
/* Note: spte must be a shadow-present leaf SPTE. */
462
static inline void check_spte_writable_invariants(u64 spte)
463
{
464
if (spte & shadow_mmu_writable_mask)
465
WARN_ONCE(!(spte & shadow_host_writable_mask),
466
KBUILD_MODNAME ": MMU-writable SPTE is not Host-writable: %llx",
467
spte);
468
else
469
WARN_ONCE(is_writable_pte(spte),
470
KBUILD_MODNAME ": Writable SPTE is not MMU-writable: %llx", spte);
471
}
472
473
static inline bool is_mmu_writable_spte(u64 spte)
474
{
475
return spte & shadow_mmu_writable_mask;
476
}
477
478
/*
479
* Returns true if the access indicated by @fault is allowed by the existing
480
* SPTE protections. Note, the caller is responsible for checking that the
481
* SPTE is a shadow-present, leaf SPTE (either before or after).
482
*/
483
static inline bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
484
{
485
if (fault->exec)
486
return is_executable_pte(spte);
487
488
if (fault->write)
489
return is_writable_pte(spte);
490
491
/* Fault was on Read access */
492
return spte & PT_PRESENT_MASK;
493
}
494
495
/*
496
* If the MMU-writable flag is cleared, i.e. the SPTE is write-protected for
497
* write-tracking, remote TLBs must be flushed, even if the SPTE was read-only,
498
* as KVM allows stale Writable TLB entries to exist. When dirty logging, KVM
499
* flushes TLBs based on whether or not dirty bitmap/ring entries were reaped,
500
* not whether or not SPTEs were modified, i.e. only the write-tracking case
501
* needs to flush at the time the SPTEs is modified, before dropping mmu_lock.
502
*
503
* Don't flush if the Accessed bit is cleared, as access tracking tolerates
504
* false negatives, e.g. KVM x86 omits TLB flushes even when aging SPTEs for a
505
* mmu_notifier.clear_flush_young() event.
506
*
507
* Lastly, don't flush if the Dirty bit is cleared, as KVM unconditionally
508
* flushes when enabling dirty logging (see kvm_mmu_slot_apply_flags()), and
509
* when clearing dirty logs, KVM flushes based on whether or not dirty entries
510
* were reaped from the bitmap/ring, not whether or not dirty SPTEs were found.
511
*
512
* Note, this logic only applies to shadow-present leaf SPTEs. The caller is
513
* responsible for checking that the old SPTE is shadow-present, and is also
514
* responsible for determining whether or not a TLB flush is required when
515
* modifying a shadow-present non-leaf SPTE.
516
*/
517
static inline bool leaf_spte_change_needs_tlb_flush(u64 old_spte, u64 new_spte)
518
{
519
return is_mmu_writable_spte(old_spte) && !is_mmu_writable_spte(new_spte);
520
}
521
522
static inline u64 get_mmio_spte_generation(u64 spte)
523
{
524
u64 gen;
525
526
gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT;
527
gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT;
528
return gen;
529
}
530
531
bool spte_needs_atomic_update(u64 spte);
532
533
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
534
const struct kvm_memory_slot *slot,
535
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
536
u64 old_spte, bool prefetch, bool synchronizing,
537
bool host_writable, u64 *new_spte);
538
u64 make_small_spte(struct kvm *kvm, u64 huge_spte,
539
union kvm_mmu_page_role role, int index);
540
u64 make_huge_spte(struct kvm *kvm, u64 small_spte, int level);
541
u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled);
542
u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access);
543
u64 mark_spte_for_access_track(u64 spte);
544
545
/* Restore an acc-track PTE back to a regular PTE */
546
static inline u64 restore_acc_track_spte(u64 spte)
547
{
548
u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
549
& SHADOW_ACC_TRACK_SAVED_BITS_MASK;
550
551
spte &= ~shadow_acc_track_mask;
552
spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
553
SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
554
spte |= saved_bits;
555
556
return spte;
557
}
558
559
void __init kvm_mmu_spte_module_init(void);
560
void kvm_mmu_reset_all_pte_masks(void);
561
562
#endif
563
564