Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/pmu.c
26444 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Kernel-based Virtual Machine -- Performance Monitoring Unit support
4
*
5
* Copyright 2015 Red Hat, Inc. and/or its affiliates.
6
*
7
* Authors:
8
* Avi Kivity <[email protected]>
9
* Gleb Natapov <[email protected]>
10
* Wei Huang <[email protected]>
11
*/
12
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14
#include <linux/types.h>
15
#include <linux/kvm_host.h>
16
#include <linux/perf_event.h>
17
#include <linux/bsearch.h>
18
#include <linux/sort.h>
19
#include <asm/perf_event.h>
20
#include <asm/cpu_device_id.h>
21
#include "x86.h"
22
#include "cpuid.h"
23
#include "lapic.h"
24
#include "pmu.h"
25
26
/* This is enough to filter the vast majority of currently defined events. */
27
#define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29
struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30
EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32
struct kvm_pmu_emulated_event_selectors __read_mostly kvm_pmu_eventsel;
33
EXPORT_SYMBOL_GPL(kvm_pmu_eventsel);
34
35
/* Precise Distribution of Instructions Retired (PDIR) */
36
static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
37
X86_MATCH_VFM(INTEL_ICELAKE_D, NULL),
38
X86_MATCH_VFM(INTEL_ICELAKE_X, NULL),
39
/* Instruction-Accurate PDIR (PDIR++) */
40
X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL),
41
{}
42
};
43
44
/* Precise Distribution (PDist) */
45
static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
46
X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL),
47
{}
48
};
49
50
/* NOTE:
51
* - Each perf counter is defined as "struct kvm_pmc";
52
* - There are two types of perf counters: general purpose (gp) and fixed.
53
* gp counters are stored in gp_counters[] and fixed counters are stored
54
* in fixed_counters[] respectively. Both of them are part of "struct
55
* kvm_pmu";
56
* - pmu.c understands the difference between gp counters and fixed counters.
57
* However AMD doesn't support fixed-counters;
58
* - There are three types of index to access perf counters (PMC):
59
* 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
60
* has MSR_K7_PERFCTRn and, for families 15H and later,
61
* MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
62
* aliased to MSR_K7_PERFCTRn.
63
* 2. MSR Index (named idx): This normally is used by RDPMC instruction.
64
* For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
65
* C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
66
* that it also supports fixed counters. idx can be used to as index to
67
* gp and fixed counters.
68
* 3. Global PMC Index (named pmc): pmc is an index specific to PMU
69
* code. Each pmc, stored in kvm_pmc.idx field, is unique across
70
* all perf counters (both gp and fixed). The mapping relationship
71
* between pmc and perf counters is as the following:
72
* * Intel: [0 .. KVM_MAX_NR_INTEL_GP_COUNTERS-1] <=> gp counters
73
* [KVM_FIXED_PMC_BASE_IDX .. KVM_FIXED_PMC_BASE_IDX + 2] <=> fixed
74
* * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
75
* and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
76
*/
77
78
static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
79
80
#define KVM_X86_PMU_OP(func) \
81
DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \
82
*(((struct kvm_pmu_ops *)0)->func));
83
#define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
84
#include <asm/kvm-x86-pmu-ops.h>
85
86
void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
87
{
88
memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
89
90
#define __KVM_X86_PMU_OP(func) \
91
static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
92
#define KVM_X86_PMU_OP(func) \
93
WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
94
#define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
95
#include <asm/kvm-x86-pmu-ops.h>
96
#undef __KVM_X86_PMU_OP
97
}
98
99
static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
100
{
101
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
102
bool skip_pmi = false;
103
104
if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
105
if (!in_pmi) {
106
/*
107
* TODO: KVM is currently _choosing_ to not generate records
108
* for emulated instructions, avoiding BUFFER_OVF PMI when
109
* there are no records. Strictly speaking, it should be done
110
* as well in the right context to improve sampling accuracy.
111
*/
112
skip_pmi = true;
113
} else {
114
/* Indicate PEBS overflow PMI to guest. */
115
skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
116
(unsigned long *)&pmu->global_status);
117
}
118
} else {
119
__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
120
}
121
122
if (pmc->intr && !skip_pmi)
123
kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
124
}
125
126
static void kvm_perf_overflow(struct perf_event *perf_event,
127
struct perf_sample_data *data,
128
struct pt_regs *regs)
129
{
130
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
131
132
/*
133
* Ignore asynchronous overflow events for counters that are scheduled
134
* to be reprogrammed, e.g. if a PMI for the previous event races with
135
* KVM's handling of a related guest WRMSR.
136
*/
137
if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
138
return;
139
140
__kvm_perf_overflow(pmc, true);
141
142
kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
143
}
144
145
static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
146
{
147
/*
148
* For some model specific pebs counters with special capabilities
149
* (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
150
* level to the maximum value (currently 3, backwards compatible)
151
* so that the perf subsystem would assign specific hardware counter
152
* with that capability for vPMC.
153
*/
154
if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
155
(pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
156
return 3;
157
158
/*
159
* The non-zero precision level of guest event makes the ordinary
160
* guest event becomes a guest PEBS event and triggers the host
161
* PEBS PMI handler to determine whether the PEBS overflow PMI
162
* comes from the host counters or the guest.
163
*/
164
return 1;
165
}
166
167
static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
168
{
169
u64 sample_period = (-counter_value) & pmc_bitmask(pmc);
170
171
if (!sample_period)
172
sample_period = pmc_bitmask(pmc) + 1;
173
return sample_period;
174
}
175
176
static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
177
bool exclude_user, bool exclude_kernel,
178
bool intr)
179
{
180
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
181
struct perf_event *event;
182
struct perf_event_attr attr = {
183
.type = type,
184
.size = sizeof(attr),
185
.pinned = true,
186
.exclude_idle = true,
187
.exclude_host = 1,
188
.exclude_user = exclude_user,
189
.exclude_kernel = exclude_kernel,
190
.config = config,
191
};
192
bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
193
194
attr.sample_period = get_sample_period(pmc, pmc->counter);
195
196
if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
197
(boot_cpu_has(X86_FEATURE_RTM) || boot_cpu_has(X86_FEATURE_HLE))) {
198
/*
199
* HSW_IN_TX_CHECKPOINTED is not supported with nonzero
200
* period. Just clear the sample period so at least
201
* allocating the counter doesn't fail.
202
*/
203
attr.sample_period = 0;
204
}
205
if (pebs) {
206
/*
207
* For most PEBS hardware events, the difference in the software
208
* precision levels of guest and host PEBS events will not affect
209
* the accuracy of the PEBS profiling result, because the "event IP"
210
* in the PEBS record is calibrated on the guest side.
211
*/
212
attr.precise_ip = pmc_get_pebs_precise_level(pmc);
213
}
214
215
event = perf_event_create_kernel_counter(&attr, -1, current,
216
kvm_perf_overflow, pmc);
217
if (IS_ERR(event)) {
218
pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
219
PTR_ERR(event), pmc->idx);
220
return PTR_ERR(event);
221
}
222
223
pmc->perf_event = event;
224
pmc_to_pmu(pmc)->event_count++;
225
pmc->is_paused = false;
226
pmc->intr = intr || pebs;
227
return 0;
228
}
229
230
static bool pmc_pause_counter(struct kvm_pmc *pmc)
231
{
232
u64 counter = pmc->counter;
233
u64 prev_counter;
234
235
/* update counter, reset event value to avoid redundant accumulation */
236
if (pmc->perf_event && !pmc->is_paused)
237
counter += perf_event_pause(pmc->perf_event, true);
238
239
/*
240
* Snapshot the previous counter *after* accumulating state from perf.
241
* If overflow already happened, hardware (via perf) is responsible for
242
* generating a PMI. KVM just needs to detect overflow on emulated
243
* counter events that haven't yet been processed.
244
*/
245
prev_counter = counter & pmc_bitmask(pmc);
246
247
counter += pmc->emulated_counter;
248
pmc->counter = counter & pmc_bitmask(pmc);
249
250
pmc->emulated_counter = 0;
251
pmc->is_paused = true;
252
253
return pmc->counter < prev_counter;
254
}
255
256
static bool pmc_resume_counter(struct kvm_pmc *pmc)
257
{
258
if (!pmc->perf_event)
259
return false;
260
261
/* recalibrate sample period and check if it's accepted by perf core */
262
if (is_sampling_event(pmc->perf_event) &&
263
perf_event_period(pmc->perf_event,
264
get_sample_period(pmc, pmc->counter)))
265
return false;
266
267
if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
268
(!!pmc->perf_event->attr.precise_ip))
269
return false;
270
271
/* reuse perf_event to serve as pmc_reprogram_counter() does*/
272
perf_event_enable(pmc->perf_event);
273
pmc->is_paused = false;
274
275
return true;
276
}
277
278
static void pmc_release_perf_event(struct kvm_pmc *pmc)
279
{
280
if (pmc->perf_event) {
281
perf_event_release_kernel(pmc->perf_event);
282
pmc->perf_event = NULL;
283
pmc->current_config = 0;
284
pmc_to_pmu(pmc)->event_count--;
285
}
286
}
287
288
static void pmc_stop_counter(struct kvm_pmc *pmc)
289
{
290
if (pmc->perf_event) {
291
pmc->counter = pmc_read_counter(pmc);
292
pmc_release_perf_event(pmc);
293
}
294
}
295
296
static void pmc_update_sample_period(struct kvm_pmc *pmc)
297
{
298
if (!pmc->perf_event || pmc->is_paused ||
299
!is_sampling_event(pmc->perf_event))
300
return;
301
302
perf_event_period(pmc->perf_event,
303
get_sample_period(pmc, pmc->counter));
304
}
305
306
void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
307
{
308
/*
309
* Drop any unconsumed accumulated counts, the WRMSR is a write, not a
310
* read-modify-write. Adjust the counter value so that its value is
311
* relative to the current count, as reading the current count from
312
* perf is faster than pausing and repgrogramming the event in order to
313
* reset it to '0'. Note, this very sneakily offsets the accumulated
314
* emulated count too, by using pmc_read_counter()!
315
*/
316
pmc->emulated_counter = 0;
317
pmc->counter += val - pmc_read_counter(pmc);
318
pmc->counter &= pmc_bitmask(pmc);
319
pmc_update_sample_period(pmc);
320
}
321
EXPORT_SYMBOL_GPL(pmc_write_counter);
322
323
static int filter_cmp(const void *pa, const void *pb, u64 mask)
324
{
325
u64 a = *(u64 *)pa & mask;
326
u64 b = *(u64 *)pb & mask;
327
328
return (a > b) - (a < b);
329
}
330
331
332
static int filter_sort_cmp(const void *pa, const void *pb)
333
{
334
return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
335
KVM_PMU_MASKED_ENTRY_EXCLUDE));
336
}
337
338
/*
339
* For the event filter, searching is done on the 'includes' list and
340
* 'excludes' list separately rather than on the 'events' list (which
341
* has both). As a result the exclude bit can be ignored.
342
*/
343
static int filter_event_cmp(const void *pa, const void *pb)
344
{
345
return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
346
}
347
348
static int find_filter_index(u64 *events, u64 nevents, u64 key)
349
{
350
u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
351
filter_event_cmp);
352
353
if (!fe)
354
return -1;
355
356
return fe - events;
357
}
358
359
static bool is_filter_entry_match(u64 filter_event, u64 umask)
360
{
361
u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
362
u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
363
364
BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
365
(KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
366
ARCH_PERFMON_EVENTSEL_UMASK);
367
368
return (umask & mask) == match;
369
}
370
371
static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
372
{
373
u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
374
u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
375
int i, index;
376
377
index = find_filter_index(events, nevents, event_select);
378
if (index < 0)
379
return false;
380
381
/*
382
* Entries are sorted by the event select. Walk the list in both
383
* directions to process all entries with the targeted event select.
384
*/
385
for (i = index; i < nevents; i++) {
386
if (filter_event_cmp(&events[i], &event_select))
387
break;
388
389
if (is_filter_entry_match(events[i], umask))
390
return true;
391
}
392
393
for (i = index - 1; i >= 0; i--) {
394
if (filter_event_cmp(&events[i], &event_select))
395
break;
396
397
if (is_filter_entry_match(events[i], umask))
398
return true;
399
}
400
401
return false;
402
}
403
404
static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
405
u64 eventsel)
406
{
407
if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
408
!filter_contains_match(f->excludes, f->nr_excludes, eventsel))
409
return f->action == KVM_PMU_EVENT_ALLOW;
410
411
return f->action == KVM_PMU_EVENT_DENY;
412
}
413
414
static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
415
int idx)
416
{
417
int fixed_idx = idx - KVM_FIXED_PMC_BASE_IDX;
418
419
if (filter->action == KVM_PMU_EVENT_DENY &&
420
test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
421
return false;
422
if (filter->action == KVM_PMU_EVENT_ALLOW &&
423
!test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
424
return false;
425
426
return true;
427
}
428
429
static bool check_pmu_event_filter(struct kvm_pmc *pmc)
430
{
431
struct kvm_x86_pmu_event_filter *filter;
432
struct kvm *kvm = pmc->vcpu->kvm;
433
434
filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
435
if (!filter)
436
return true;
437
438
if (pmc_is_gp(pmc))
439
return is_gp_event_allowed(filter, pmc->eventsel);
440
441
return is_fixed_event_allowed(filter, pmc->idx);
442
}
443
444
static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
445
{
446
return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
447
check_pmu_event_filter(pmc);
448
}
449
450
static int reprogram_counter(struct kvm_pmc *pmc)
451
{
452
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
453
u64 eventsel = pmc->eventsel;
454
u64 new_config = eventsel;
455
bool emulate_overflow;
456
u8 fixed_ctr_ctrl;
457
458
emulate_overflow = pmc_pause_counter(pmc);
459
460
if (!pmc_event_is_allowed(pmc))
461
return 0;
462
463
if (emulate_overflow)
464
__kvm_perf_overflow(pmc, false);
465
466
if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
467
printk_once("kvm pmu: pin control bit is ignored\n");
468
469
if (pmc_is_fixed(pmc)) {
470
fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
471
pmc->idx - KVM_FIXED_PMC_BASE_IDX);
472
if (fixed_ctr_ctrl & INTEL_FIXED_0_KERNEL)
473
eventsel |= ARCH_PERFMON_EVENTSEL_OS;
474
if (fixed_ctr_ctrl & INTEL_FIXED_0_USER)
475
eventsel |= ARCH_PERFMON_EVENTSEL_USR;
476
if (fixed_ctr_ctrl & INTEL_FIXED_0_ENABLE_PMI)
477
eventsel |= ARCH_PERFMON_EVENTSEL_INT;
478
new_config = (u64)fixed_ctr_ctrl;
479
}
480
481
if (pmc->current_config == new_config && pmc_resume_counter(pmc))
482
return 0;
483
484
pmc_release_perf_event(pmc);
485
486
pmc->current_config = new_config;
487
488
return pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
489
(eventsel & pmu->raw_event_mask),
490
!(eventsel & ARCH_PERFMON_EVENTSEL_USR),
491
!(eventsel & ARCH_PERFMON_EVENTSEL_OS),
492
eventsel & ARCH_PERFMON_EVENTSEL_INT);
493
}
494
495
void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
496
{
497
DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
498
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
499
struct kvm_pmc *pmc;
500
int bit;
501
502
bitmap_copy(bitmap, pmu->reprogram_pmi, X86_PMC_IDX_MAX);
503
504
/*
505
* The reprogramming bitmap can be written asynchronously by something
506
* other than the task that holds vcpu->mutex, take care to clear only
507
* the bits that will actually processed.
508
*/
509
BUILD_BUG_ON(sizeof(bitmap) != sizeof(atomic64_t));
510
atomic64_andnot(*(s64 *)bitmap, &pmu->__reprogram_pmi);
511
512
kvm_for_each_pmc(pmu, pmc, bit, bitmap) {
513
/*
514
* If reprogramming fails, e.g. due to contention, re-set the
515
* regprogram bit set, i.e. opportunistically try again on the
516
* next PMU refresh. Don't make a new request as doing so can
517
* stall the guest if reprogramming repeatedly fails.
518
*/
519
if (reprogram_counter(pmc))
520
set_bit(pmc->idx, pmu->reprogram_pmi);
521
}
522
523
/*
524
* Release unused perf_events if the corresponding guest MSRs weren't
525
* accessed during the last vCPU time slice (need_cleanup is set when
526
* the vCPU is scheduled back in).
527
*/
528
if (unlikely(pmu->need_cleanup))
529
kvm_pmu_cleanup(vcpu);
530
}
531
532
int kvm_pmu_check_rdpmc_early(struct kvm_vcpu *vcpu, unsigned int idx)
533
{
534
/*
535
* On Intel, VMX interception has priority over RDPMC exceptions that
536
* aren't already handled by the emulator, i.e. there are no additional
537
* check needed for Intel PMUs.
538
*
539
* On AMD, _all_ exceptions on RDPMC have priority over SVM intercepts,
540
* i.e. an invalid PMC results in a #GP, not #VMEXIT.
541
*/
542
if (!kvm_pmu_ops.check_rdpmc_early)
543
return 0;
544
545
return kvm_pmu_call(check_rdpmc_early)(vcpu, idx);
546
}
547
548
bool is_vmware_backdoor_pmc(u32 pmc_idx)
549
{
550
switch (pmc_idx) {
551
case VMWARE_BACKDOOR_PMC_HOST_TSC:
552
case VMWARE_BACKDOOR_PMC_REAL_TIME:
553
case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
554
return true;
555
}
556
return false;
557
}
558
559
static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
560
{
561
u64 ctr_val;
562
563
switch (idx) {
564
case VMWARE_BACKDOOR_PMC_HOST_TSC:
565
ctr_val = rdtsc();
566
break;
567
case VMWARE_BACKDOOR_PMC_REAL_TIME:
568
ctr_val = ktime_get_boottime_ns();
569
break;
570
case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
571
ctr_val = ktime_get_boottime_ns() +
572
vcpu->kvm->arch.kvmclock_offset;
573
break;
574
default:
575
return 1;
576
}
577
578
*data = ctr_val;
579
return 0;
580
}
581
582
int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
583
{
584
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
585
struct kvm_pmc *pmc;
586
u64 mask = ~0ull;
587
588
if (!pmu->version)
589
return 1;
590
591
if (is_vmware_backdoor_pmc(idx))
592
return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
593
594
pmc = kvm_pmu_call(rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
595
if (!pmc)
596
return 1;
597
598
if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
599
(kvm_x86_call(get_cpl)(vcpu) != 0) &&
600
kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
601
return 1;
602
603
*data = pmc_read_counter(pmc) & mask;
604
return 0;
605
}
606
607
void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
608
{
609
if (lapic_in_kernel(vcpu)) {
610
kvm_pmu_call(deliver_pmi)(vcpu);
611
kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
612
}
613
}
614
615
bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
616
{
617
switch (msr) {
618
case MSR_CORE_PERF_GLOBAL_STATUS:
619
case MSR_CORE_PERF_GLOBAL_CTRL:
620
case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
621
return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
622
default:
623
break;
624
}
625
return kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr) ||
626
kvm_pmu_call(is_valid_msr)(vcpu, msr);
627
}
628
629
static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
630
{
631
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
632
struct kvm_pmc *pmc = kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr);
633
634
if (pmc)
635
__set_bit(pmc->idx, pmu->pmc_in_use);
636
}
637
638
int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
639
{
640
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
641
u32 msr = msr_info->index;
642
643
switch (msr) {
644
case MSR_CORE_PERF_GLOBAL_STATUS:
645
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
646
msr_info->data = pmu->global_status;
647
break;
648
case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
649
case MSR_CORE_PERF_GLOBAL_CTRL:
650
msr_info->data = pmu->global_ctrl;
651
break;
652
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
653
case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
654
msr_info->data = 0;
655
break;
656
default:
657
return kvm_pmu_call(get_msr)(vcpu, msr_info);
658
}
659
660
return 0;
661
}
662
663
int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
664
{
665
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
666
u32 msr = msr_info->index;
667
u64 data = msr_info->data;
668
u64 diff;
669
670
/*
671
* Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
672
* whereas Intel generates #GP on attempts to write reserved/RO MSRs.
673
*/
674
switch (msr) {
675
case MSR_CORE_PERF_GLOBAL_STATUS:
676
if (!msr_info->host_initiated)
677
return 1; /* RO MSR */
678
fallthrough;
679
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
680
/* Per PPR, Read-only MSR. Writes are ignored. */
681
if (!msr_info->host_initiated)
682
break;
683
684
if (data & pmu->global_status_rsvd)
685
return 1;
686
687
pmu->global_status = data;
688
break;
689
case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
690
data &= ~pmu->global_ctrl_rsvd;
691
fallthrough;
692
case MSR_CORE_PERF_GLOBAL_CTRL:
693
if (!kvm_valid_perf_global_ctrl(pmu, data))
694
return 1;
695
696
if (pmu->global_ctrl != data) {
697
diff = pmu->global_ctrl ^ data;
698
pmu->global_ctrl = data;
699
reprogram_counters(pmu, diff);
700
}
701
break;
702
case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
703
/*
704
* GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
705
* GLOBAL_STATUS, and so the set of reserved bits is the same.
706
*/
707
if (data & pmu->global_status_rsvd)
708
return 1;
709
fallthrough;
710
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
711
if (!msr_info->host_initiated)
712
pmu->global_status &= ~data;
713
break;
714
default:
715
kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
716
return kvm_pmu_call(set_msr)(vcpu, msr_info);
717
}
718
719
return 0;
720
}
721
722
static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
723
{
724
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
725
struct kvm_pmc *pmc;
726
int i;
727
728
pmu->need_cleanup = false;
729
730
bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
731
732
kvm_for_each_pmc(pmu, pmc, i, pmu->all_valid_pmc_idx) {
733
pmc_stop_counter(pmc);
734
pmc->counter = 0;
735
pmc->emulated_counter = 0;
736
737
if (pmc_is_gp(pmc))
738
pmc->eventsel = 0;
739
}
740
741
pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
742
743
kvm_pmu_call(reset)(vcpu);
744
}
745
746
747
/*
748
* Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
749
* and/or PERF_CAPABILITIES.
750
*/
751
void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
752
{
753
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
754
755
if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
756
return;
757
758
/*
759
* Stop/release all existing counters/events before realizing the new
760
* vPMU model.
761
*/
762
kvm_pmu_reset(vcpu);
763
764
pmu->version = 0;
765
pmu->nr_arch_gp_counters = 0;
766
pmu->nr_arch_fixed_counters = 0;
767
pmu->counter_bitmask[KVM_PMC_GP] = 0;
768
pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
769
pmu->reserved_bits = 0xffffffff00200000ull;
770
pmu->raw_event_mask = X86_RAW_EVENT_MASK;
771
pmu->global_ctrl_rsvd = ~0ull;
772
pmu->global_status_rsvd = ~0ull;
773
pmu->fixed_ctr_ctrl_rsvd = ~0ull;
774
pmu->pebs_enable_rsvd = ~0ull;
775
pmu->pebs_data_cfg_rsvd = ~0ull;
776
bitmap_zero(pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX);
777
778
if (!vcpu->kvm->arch.enable_pmu)
779
return;
780
781
kvm_pmu_call(refresh)(vcpu);
782
783
/*
784
* At RESET, both Intel and AMD CPUs set all enable bits for general
785
* purpose counters in IA32_PERF_GLOBAL_CTRL (so that software that
786
* was written for v1 PMUs don't unknowingly leave GP counters disabled
787
* in the global controls). Emulate that behavior when refreshing the
788
* PMU so that userspace doesn't need to manually set PERF_GLOBAL_CTRL.
789
*/
790
if (kvm_pmu_has_perf_global_ctrl(pmu) && pmu->nr_arch_gp_counters)
791
pmu->global_ctrl = GENMASK_ULL(pmu->nr_arch_gp_counters - 1, 0);
792
}
793
794
void kvm_pmu_init(struct kvm_vcpu *vcpu)
795
{
796
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
797
798
memset(pmu, 0, sizeof(*pmu));
799
kvm_pmu_call(init)(vcpu);
800
}
801
802
/* Release perf_events for vPMCs that have been unused for a full time slice. */
803
void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
804
{
805
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
806
struct kvm_pmc *pmc = NULL;
807
DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
808
int i;
809
810
pmu->need_cleanup = false;
811
812
bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
813
pmu->pmc_in_use, X86_PMC_IDX_MAX);
814
815
kvm_for_each_pmc(pmu, pmc, i, bitmask) {
816
if (pmc->perf_event && !pmc_speculative_in_use(pmc))
817
pmc_stop_counter(pmc);
818
}
819
820
kvm_pmu_call(cleanup)(vcpu);
821
822
bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
823
}
824
825
void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
826
{
827
kvm_pmu_reset(vcpu);
828
}
829
830
static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
831
{
832
pmc->emulated_counter++;
833
kvm_pmu_request_counter_reprogram(pmc);
834
}
835
836
static inline bool cpl_is_matched(struct kvm_pmc *pmc)
837
{
838
bool select_os, select_user;
839
u64 config;
840
841
if (pmc_is_gp(pmc)) {
842
config = pmc->eventsel;
843
select_os = config & ARCH_PERFMON_EVENTSEL_OS;
844
select_user = config & ARCH_PERFMON_EVENTSEL_USR;
845
} else {
846
config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
847
pmc->idx - KVM_FIXED_PMC_BASE_IDX);
848
select_os = config & INTEL_FIXED_0_KERNEL;
849
select_user = config & INTEL_FIXED_0_USER;
850
}
851
852
/*
853
* Skip the CPL lookup, which isn't free on Intel, if the result will
854
* be the same regardless of the CPL.
855
*/
856
if (select_os == select_user)
857
return select_os;
858
859
return (kvm_x86_call(get_cpl)(pmc->vcpu) == 0) ? select_os :
860
select_user;
861
}
862
863
void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 eventsel)
864
{
865
DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
866
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
867
struct kvm_pmc *pmc;
868
int i;
869
870
BUILD_BUG_ON(sizeof(pmu->global_ctrl) * BITS_PER_BYTE != X86_PMC_IDX_MAX);
871
872
if (!kvm_pmu_has_perf_global_ctrl(pmu))
873
bitmap_copy(bitmap, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX);
874
else if (!bitmap_and(bitmap, pmu->all_valid_pmc_idx,
875
(unsigned long *)&pmu->global_ctrl, X86_PMC_IDX_MAX))
876
return;
877
878
kvm_for_each_pmc(pmu, pmc, i, bitmap) {
879
/*
880
* Ignore checks for edge detect (all events currently emulated
881
* but KVM are always rising edges), pin control (unsupported
882
* by modern CPUs), and counter mask and its invert flag (KVM
883
* doesn't emulate multiple events in a single clock cycle).
884
*
885
* Note, the uppermost nibble of AMD's mask overlaps Intel's
886
* IN_TX (bit 32) and IN_TXCP (bit 33), as well as two reserved
887
* bits (bits 35:34). Checking the "in HLE/RTM transaction"
888
* flags is correct as the vCPU can't be in a transaction if
889
* KVM is emulating an instruction. Checking the reserved bits
890
* might be wrong if they are defined in the future, but so
891
* could ignoring them, so do the simple thing for now.
892
*/
893
if (((pmc->eventsel ^ eventsel) & AMD64_RAW_EVENT_MASK_NB) ||
894
!pmc_event_is_allowed(pmc) || !cpl_is_matched(pmc))
895
continue;
896
897
kvm_pmu_incr_counter(pmc);
898
}
899
}
900
EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
901
902
static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
903
{
904
u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
905
KVM_PMU_MASKED_ENTRY_UMASK_MASK |
906
KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
907
KVM_PMU_MASKED_ENTRY_EXCLUDE;
908
int i;
909
910
for (i = 0; i < filter->nevents; i++) {
911
if (filter->events[i] & ~mask)
912
return false;
913
}
914
915
return true;
916
}
917
918
static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
919
{
920
int i, j;
921
922
for (i = 0, j = 0; i < filter->nevents; i++) {
923
/*
924
* Skip events that are impossible to match against a guest
925
* event. When filtering, only the event select + unit mask
926
* of the guest event is used. To maintain backwards
927
* compatibility, impossible filters can't be rejected :-(
928
*/
929
if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
930
ARCH_PERFMON_EVENTSEL_UMASK))
931
continue;
932
/*
933
* Convert userspace events to a common in-kernel event so
934
* only one code path is needed to support both events. For
935
* the in-kernel events use masked events because they are
936
* flexible enough to handle both cases. To convert to masked
937
* events all that's needed is to add an "all ones" umask_mask,
938
* (unmasked filter events don't support EXCLUDE).
939
*/
940
filter->events[j++] = filter->events[i] |
941
(0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
942
}
943
944
filter->nevents = j;
945
}
946
947
static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
948
{
949
int i;
950
951
if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
952
convert_to_masked_filter(filter);
953
else if (!is_masked_filter_valid(filter))
954
return -EINVAL;
955
956
/*
957
* Sort entries by event select and includes vs. excludes so that all
958
* entries for a given event select can be processed efficiently during
959
* filtering. The EXCLUDE flag uses a more significant bit than the
960
* event select, and so the sorted list is also effectively split into
961
* includes and excludes sub-lists.
962
*/
963
sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
964
filter_sort_cmp, NULL);
965
966
i = filter->nevents;
967
/* Find the first EXCLUDE event (only supported for masked events). */
968
if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
969
for (i = 0; i < filter->nevents; i++) {
970
if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
971
break;
972
}
973
}
974
975
filter->nr_includes = i;
976
filter->nr_excludes = filter->nevents - filter->nr_includes;
977
filter->includes = filter->events;
978
filter->excludes = filter->events + filter->nr_includes;
979
980
return 0;
981
}
982
983
int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
984
{
985
struct kvm_pmu_event_filter __user *user_filter = argp;
986
struct kvm_x86_pmu_event_filter *filter;
987
struct kvm_pmu_event_filter tmp;
988
struct kvm_vcpu *vcpu;
989
unsigned long i;
990
size_t size;
991
int r;
992
993
if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
994
return -EFAULT;
995
996
if (tmp.action != KVM_PMU_EVENT_ALLOW &&
997
tmp.action != KVM_PMU_EVENT_DENY)
998
return -EINVAL;
999
1000
if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
1001
return -EINVAL;
1002
1003
if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
1004
return -E2BIG;
1005
1006
size = struct_size(filter, events, tmp.nevents);
1007
filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
1008
if (!filter)
1009
return -ENOMEM;
1010
1011
filter->action = tmp.action;
1012
filter->nevents = tmp.nevents;
1013
filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
1014
filter->flags = tmp.flags;
1015
1016
r = -EFAULT;
1017
if (copy_from_user(filter->events, user_filter->events,
1018
sizeof(filter->events[0]) * filter->nevents))
1019
goto cleanup;
1020
1021
r = prepare_filter_lists(filter);
1022
if (r)
1023
goto cleanup;
1024
1025
mutex_lock(&kvm->lock);
1026
filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
1027
mutex_is_locked(&kvm->lock));
1028
mutex_unlock(&kvm->lock);
1029
synchronize_srcu_expedited(&kvm->srcu);
1030
1031
BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
1032
sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
1033
1034
kvm_for_each_vcpu(i, vcpu, kvm)
1035
atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
1036
1037
kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
1038
1039
r = 0;
1040
cleanup:
1041
kfree(filter);
1042
return r;
1043
}
1044
1045