Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/reverse_cpuid.h
26424 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3
#define ARCH_X86_KVM_REVERSE_CPUID_H
4
5
#include <uapi/asm/kvm.h>
6
#include <asm/cpufeature.h>
7
#include <asm/cpufeatures.h>
8
9
/*
10
* Define a KVM-only feature flag.
11
*
12
* For features that are scattered by cpufeatures.h, __feature_translate() also
13
* needs to be updated to translate the kernel-defined feature into the
14
* KVM-defined feature.
15
*
16
* For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
17
* forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
18
* that X86_FEATURE_* can be used in KVM. No __feature_translate() handling is
19
* needed in this case.
20
*/
21
#define KVM_X86_FEATURE(w, f) ((w)*32 + (f))
22
23
/* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
24
#define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0)
25
#define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1)
26
#define KVM_X86_FEATURE_SGX_EDECCSSA KVM_X86_FEATURE(CPUID_12_EAX, 11)
27
28
/* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
29
#define X86_FEATURE_AVX_VNNI_INT8 KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
30
#define X86_FEATURE_AVX_NE_CONVERT KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
31
#define X86_FEATURE_AMX_COMPLEX KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
32
#define X86_FEATURE_AVX_VNNI_INT16 KVM_X86_FEATURE(CPUID_7_1_EDX, 10)
33
#define X86_FEATURE_PREFETCHITI KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
34
#define X86_FEATURE_AVX10 KVM_X86_FEATURE(CPUID_7_1_EDX, 19)
35
36
/* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
37
#define X86_FEATURE_INTEL_PSFD KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
38
#define X86_FEATURE_IPRED_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
39
#define KVM_X86_FEATURE_RRSBA_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
40
#define X86_FEATURE_DDPD_U KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
41
#define KVM_X86_FEATURE_BHI_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
42
#define X86_FEATURE_MCDT_NO KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
43
44
/* Intel-defined sub-features, CPUID level 0x00000024:0 (EBX) */
45
#define X86_FEATURE_AVX10_128 KVM_X86_FEATURE(CPUID_24_0_EBX, 16)
46
#define X86_FEATURE_AVX10_256 KVM_X86_FEATURE(CPUID_24_0_EBX, 17)
47
#define X86_FEATURE_AVX10_512 KVM_X86_FEATURE(CPUID_24_0_EBX, 18)
48
49
/* CPUID level 0x80000007 (EDX). */
50
#define KVM_X86_FEATURE_CONSTANT_TSC KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
51
52
/* CPUID level 0x80000022 (EAX) */
53
#define KVM_X86_FEATURE_PERFMON_V2 KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
54
55
/* CPUID level 0x80000021 (ECX) */
56
#define KVM_X86_FEATURE_TSA_SQ_NO KVM_X86_FEATURE(CPUID_8000_0021_ECX, 1)
57
#define KVM_X86_FEATURE_TSA_L1_NO KVM_X86_FEATURE(CPUID_8000_0021_ECX, 2)
58
59
struct cpuid_reg {
60
u32 function;
61
u32 index;
62
int reg;
63
};
64
65
static const struct cpuid_reg reverse_cpuid[] = {
66
[CPUID_1_EDX] = { 1, 0, CPUID_EDX},
67
[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
68
[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
69
[CPUID_1_ECX] = { 1, 0, CPUID_ECX},
70
[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
71
[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
72
[CPUID_7_0_EBX] = { 7, 0, CPUID_EBX},
73
[CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX},
74
[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
75
[CPUID_6_EAX] = { 6, 0, CPUID_EAX},
76
[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
77
[CPUID_7_ECX] = { 7, 0, CPUID_ECX},
78
[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
79
[CPUID_7_EDX] = { 7, 0, CPUID_EDX},
80
[CPUID_7_1_EAX] = { 7, 1, CPUID_EAX},
81
[CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX},
82
[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
83
[CPUID_7_1_EDX] = { 7, 1, CPUID_EDX},
84
[CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
85
[CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
86
[CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
87
[CPUID_7_2_EDX] = { 7, 2, CPUID_EDX},
88
[CPUID_24_0_EBX] = { 0x24, 0, CPUID_EBX},
89
[CPUID_8000_0021_ECX] = {0x80000021, 0, CPUID_ECX},
90
};
91
92
/*
93
* Reverse CPUID and its derivatives can only be used for hardware-defined
94
* feature words, i.e. words whose bits directly correspond to a CPUID leaf.
95
* Retrieving a feature bit or masking guest CPUID from a Linux-defined word
96
* is nonsensical as the bit number/mask is an arbitrary software-defined value
97
* and can't be used by KVM to query/control guest capabilities. And obviously
98
* the leaf being queried must have an entry in the lookup table.
99
*/
100
static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
101
{
102
BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
103
BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
104
BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
105
BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
106
BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
107
BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
108
BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
109
BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
110
}
111
112
/*
113
* Translate feature bits that are scattered in the kernel's cpufeatures word
114
* into KVM feature words that align with hardware's definitions.
115
*/
116
static __always_inline u32 __feature_translate(int x86_feature)
117
{
118
#define KVM_X86_TRANSLATE_FEATURE(f) \
119
case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
120
121
switch (x86_feature) {
122
KVM_X86_TRANSLATE_FEATURE(SGX1);
123
KVM_X86_TRANSLATE_FEATURE(SGX2);
124
KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
125
KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
126
KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
127
KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
128
KVM_X86_TRANSLATE_FEATURE(BHI_CTRL);
129
KVM_X86_TRANSLATE_FEATURE(TSA_SQ_NO);
130
KVM_X86_TRANSLATE_FEATURE(TSA_L1_NO);
131
default:
132
return x86_feature;
133
}
134
}
135
136
static __always_inline u32 __feature_leaf(int x86_feature)
137
{
138
u32 x86_leaf = __feature_translate(x86_feature) / 32;
139
140
reverse_cpuid_check(x86_leaf);
141
return x86_leaf;
142
}
143
144
/*
145
* Retrieve the bit mask from an X86_FEATURE_* definition. Features contain
146
* the hardware defined bit number (stored in bits 4:0) and a software defined
147
* "word" (stored in bits 31:5). The word is used to index into arrays of
148
* bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
149
*/
150
static __always_inline u32 __feature_bit(int x86_feature)
151
{
152
x86_feature = __feature_translate(x86_feature);
153
154
reverse_cpuid_check(x86_feature / 32);
155
return 1 << (x86_feature & 31);
156
}
157
158
#define feature_bit(name) __feature_bit(X86_FEATURE_##name)
159
160
static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
161
{
162
unsigned int x86_leaf = __feature_leaf(x86_feature);
163
164
return reverse_cpuid[x86_leaf];
165
}
166
167
static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
168
u32 reg)
169
{
170
switch (reg) {
171
case CPUID_EAX:
172
return &entry->eax;
173
case CPUID_EBX:
174
return &entry->ebx;
175
case CPUID_ECX:
176
return &entry->ecx;
177
case CPUID_EDX:
178
return &entry->edx;
179
default:
180
BUILD_BUG();
181
return NULL;
182
}
183
}
184
185
static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
186
unsigned int x86_feature)
187
{
188
const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
189
190
return __cpuid_entry_get_reg(entry, cpuid.reg);
191
}
192
193
static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
194
unsigned int x86_feature)
195
{
196
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
197
198
return *reg & __feature_bit(x86_feature);
199
}
200
201
static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
202
unsigned int x86_feature)
203
{
204
return cpuid_entry_get(entry, x86_feature);
205
}
206
207
static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
208
unsigned int x86_feature)
209
{
210
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
211
212
*reg &= ~__feature_bit(x86_feature);
213
}
214
215
static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
216
unsigned int x86_feature)
217
{
218
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
219
220
*reg |= __feature_bit(x86_feature);
221
}
222
223
static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
224
unsigned int x86_feature,
225
bool set)
226
{
227
u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
228
229
/*
230
* Open coded instead of using cpuid_entry_{clear,set}() to coerce the
231
* compiler into using CMOV instead of Jcc when possible.
232
*/
233
if (set)
234
*reg |= __feature_bit(x86_feature);
235
else
236
*reg &= ~__feature_bit(x86_feature);
237
}
238
239
#endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
240
241