Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/svm/svm.c
51650 views
1
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3
#include <linux/kvm_host.h>
4
5
#include "irq.h"
6
#include "mmu.h"
7
#include "kvm_cache_regs.h"
8
#include "x86.h"
9
#include "smm.h"
10
#include "cpuid.h"
11
#include "pmu.h"
12
13
#include <linux/module.h>
14
#include <linux/mod_devicetable.h>
15
#include <linux/kernel.h>
16
#include <linux/vmalloc.h>
17
#include <linux/highmem.h>
18
#include <linux/amd-iommu.h>
19
#include <linux/sched.h>
20
#include <linux/trace_events.h>
21
#include <linux/slab.h>
22
#include <linux/hashtable.h>
23
#include <linux/objtool.h>
24
#include <linux/psp-sev.h>
25
#include <linux/file.h>
26
#include <linux/pagemap.h>
27
#include <linux/swap.h>
28
#include <linux/rwsem.h>
29
#include <linux/cc_platform.h>
30
#include <linux/smp.h>
31
#include <linux/string_choices.h>
32
#include <linux/mutex.h>
33
34
#include <asm/apic.h>
35
#include <asm/msr.h>
36
#include <asm/perf_event.h>
37
#include <asm/tlbflush.h>
38
#include <asm/desc.h>
39
#include <asm/debugreg.h>
40
#include <asm/kvm_para.h>
41
#include <asm/irq_remapping.h>
42
#include <asm/spec-ctrl.h>
43
#include <asm/cpu_device_id.h>
44
#include <asm/traps.h>
45
#include <asm/reboot.h>
46
#include <asm/fpu/api.h>
47
48
#include <trace/events/ipi.h>
49
50
#include "trace.h"
51
52
#include "svm.h"
53
#include "svm_ops.h"
54
55
#include "kvm_onhyperv.h"
56
#include "svm_onhyperv.h"
57
58
MODULE_AUTHOR("Qumranet");
59
MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
60
MODULE_LICENSE("GPL");
61
62
#ifdef MODULE
63
static const struct x86_cpu_id svm_cpu_id[] = {
64
X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
65
{}
66
};
67
MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68
#endif
69
70
#define SEG_TYPE_LDT 2
71
#define SEG_TYPE_BUSY_TSS16 3
72
73
static bool erratum_383_found __read_mostly;
74
75
/*
76
* Set osvw_len to higher value when updated Revision Guides
77
* are published and we know what the new status bits are
78
*/
79
static uint64_t osvw_len = 4, osvw_status;
80
81
static DEFINE_PER_CPU(u64, current_tsc_ratio);
82
83
/*
84
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
85
* pause_filter_count: On processors that support Pause filtering(indicated
86
* by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
87
* count value. On VMRUN this value is loaded into an internal counter.
88
* Each time a pause instruction is executed, this counter is decremented
89
* until it reaches zero at which time a #VMEXIT is generated if pause
90
* intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
91
* Intercept Filtering for more details.
92
* This also indicate if ple logic enabled.
93
*
94
* pause_filter_thresh: In addition, some processor families support advanced
95
* pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
96
* the amount of time a guest is allowed to execute in a pause loop.
97
* In this mode, a 16-bit pause filter threshold field is added in the
98
* VMCB. The threshold value is a cycle count that is used to reset the
99
* pause counter. As with simple pause filtering, VMRUN loads the pause
100
* count value from VMCB into an internal counter. Then, on each pause
101
* instruction the hardware checks the elapsed number of cycles since
102
* the most recent pause instruction against the pause filter threshold.
103
* If the elapsed cycle count is greater than the pause filter threshold,
104
* then the internal pause count is reloaded from the VMCB and execution
105
* continues. If the elapsed cycle count is less than the pause filter
106
* threshold, then the internal pause count is decremented. If the count
107
* value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
108
* triggered. If advanced pause filtering is supported and pause filter
109
* threshold field is set to zero, the filter will operate in the simpler,
110
* count only mode.
111
*/
112
113
static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
114
module_param(pause_filter_thresh, ushort, 0444);
115
116
static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
117
module_param(pause_filter_count, ushort, 0444);
118
119
/* Default doubles per-vcpu window every exit. */
120
static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
121
module_param(pause_filter_count_grow, ushort, 0444);
122
123
/* Default resets per-vcpu window every exit to pause_filter_count. */
124
static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
125
module_param(pause_filter_count_shrink, ushort, 0444);
126
127
/* Default is to compute the maximum so we can never overflow. */
128
static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
129
module_param(pause_filter_count_max, ushort, 0444);
130
131
/*
132
* Use nested page tables by default. Note, NPT may get forced off by
133
* svm_hardware_setup() if it's unsupported by hardware or the host kernel.
134
*/
135
bool npt_enabled = true;
136
module_param_named(npt, npt_enabled, bool, 0444);
137
138
/* allow nested virtualization in KVM/SVM */
139
static int nested = true;
140
module_param(nested, int, 0444);
141
142
/* enable/disable Next RIP Save */
143
int nrips = true;
144
module_param(nrips, int, 0444);
145
146
/* enable/disable Virtual VMLOAD VMSAVE */
147
static int vls = true;
148
module_param(vls, int, 0444);
149
150
/* enable/disable Virtual GIF */
151
int vgif = true;
152
module_param(vgif, int, 0444);
153
154
/* enable/disable LBR virtualization */
155
int lbrv = true;
156
module_param(lbrv, int, 0444);
157
158
static int tsc_scaling = true;
159
module_param(tsc_scaling, int, 0444);
160
161
module_param(enable_device_posted_irqs, bool, 0444);
162
163
bool __read_mostly dump_invalid_vmcb;
164
module_param(dump_invalid_vmcb, bool, 0644);
165
166
167
bool intercept_smi = true;
168
module_param(intercept_smi, bool, 0444);
169
170
bool vnmi = true;
171
module_param(vnmi, bool, 0444);
172
173
static bool svm_gp_erratum_intercept = true;
174
175
static u8 rsm_ins_bytes[] = "\x0f\xaa";
176
177
static unsigned long iopm_base;
178
179
DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
180
181
static DEFINE_MUTEX(vmcb_dump_mutex);
182
183
/*
184
* Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
185
* the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
186
*
187
* RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
188
* defer the restoration of TSC_AUX until the CPU returns to userspace.
189
*/
190
int tsc_aux_uret_slot __ro_after_init = -1;
191
192
static int get_npt_level(void)
193
{
194
#ifdef CONFIG_X86_64
195
return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
196
#else
197
return PT32E_ROOT_LEVEL;
198
#endif
199
}
200
201
int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
202
{
203
struct vcpu_svm *svm = to_svm(vcpu);
204
u64 old_efer = vcpu->arch.efer;
205
vcpu->arch.efer = efer;
206
207
if (!npt_enabled) {
208
/* Shadow paging assumes NX to be available. */
209
efer |= EFER_NX;
210
211
if (!(efer & EFER_LMA))
212
efer &= ~EFER_LME;
213
}
214
215
if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
216
if (!(efer & EFER_SVME)) {
217
svm_leave_nested(vcpu);
218
svm_set_gif(svm, true);
219
/* #GP intercept is still needed for vmware backdoor */
220
if (!enable_vmware_backdoor)
221
clr_exception_intercept(svm, GP_VECTOR);
222
223
/*
224
* Free the nested guest state, unless we are in SMM.
225
* In this case we will return to the nested guest
226
* as soon as we leave SMM.
227
*/
228
if (!is_smm(vcpu))
229
svm_free_nested(svm);
230
231
} else {
232
int ret = svm_allocate_nested(svm);
233
234
if (ret) {
235
vcpu->arch.efer = old_efer;
236
return ret;
237
}
238
239
/*
240
* Never intercept #GP for SEV guests, KVM can't
241
* decrypt guest memory to workaround the erratum.
242
*/
243
if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
244
set_exception_intercept(svm, GP_VECTOR);
245
}
246
}
247
248
svm->vmcb->save.efer = efer | EFER_SVME;
249
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
250
return 0;
251
}
252
253
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
254
{
255
struct vcpu_svm *svm = to_svm(vcpu);
256
u32 ret = 0;
257
258
if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
259
ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
260
return ret;
261
}
262
263
static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
264
{
265
struct vcpu_svm *svm = to_svm(vcpu);
266
267
if (mask == 0)
268
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
269
else
270
svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
271
272
}
273
274
static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
275
int emul_type,
276
bool commit_side_effects)
277
{
278
struct vcpu_svm *svm = to_svm(vcpu);
279
unsigned long old_rflags;
280
281
/*
282
* SEV-ES does not expose the next RIP. The RIP update is controlled by
283
* the type of exit and the #VC handler in the guest.
284
*/
285
if (sev_es_guest(vcpu->kvm))
286
goto done;
287
288
if (nrips && svm->vmcb->control.next_rip != 0) {
289
WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
290
svm->next_rip = svm->vmcb->control.next_rip;
291
}
292
293
if (!svm->next_rip) {
294
if (unlikely(!commit_side_effects))
295
old_rflags = svm->vmcb->save.rflags;
296
297
if (!kvm_emulate_instruction(vcpu, emul_type))
298
return 0;
299
300
if (unlikely(!commit_side_effects))
301
svm->vmcb->save.rflags = old_rflags;
302
} else {
303
kvm_rip_write(vcpu, svm->next_rip);
304
}
305
306
done:
307
if (likely(commit_side_effects))
308
svm_set_interrupt_shadow(vcpu, 0);
309
310
return 1;
311
}
312
313
static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
314
{
315
return __svm_skip_emulated_instruction(vcpu, EMULTYPE_SKIP, true);
316
}
317
318
static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu, u8 vector)
319
{
320
const int emul_type = EMULTYPE_SKIP | EMULTYPE_SKIP_SOFT_INT |
321
EMULTYPE_SET_SOFT_INT_VECTOR(vector);
322
unsigned long rip, old_rip = kvm_rip_read(vcpu);
323
struct vcpu_svm *svm = to_svm(vcpu);
324
325
/*
326
* Due to architectural shortcomings, the CPU doesn't always provide
327
* NextRIP, e.g. if KVM intercepted an exception that occurred while
328
* the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
329
* the instruction even if NextRIP is supported to acquire the next
330
* RIP so that it can be shoved into the NextRIP field, otherwise
331
* hardware will fail to advance guest RIP during event injection.
332
* Drop the exception/interrupt if emulation fails and effectively
333
* retry the instruction, it's the least awful option. If NRIPS is
334
* in use, the skip must not commit any side effects such as clearing
335
* the interrupt shadow or RFLAGS.RF.
336
*/
337
if (!__svm_skip_emulated_instruction(vcpu, emul_type, !nrips))
338
return -EIO;
339
340
rip = kvm_rip_read(vcpu);
341
342
/*
343
* Save the injection information, even when using next_rip, as the
344
* VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
345
* doesn't complete due to a VM-Exit occurring while the CPU is
346
* vectoring the event. Decoding the instruction isn't guaranteed to
347
* work as there may be no backing instruction, e.g. if the event is
348
* being injected by L1 for L2, or if the guest is patching INT3 into
349
* a different instruction.
350
*/
351
svm->soft_int_injected = true;
352
svm->soft_int_csbase = svm->vmcb->save.cs.base;
353
svm->soft_int_old_rip = old_rip;
354
svm->soft_int_next_rip = rip;
355
356
if (nrips)
357
kvm_rip_write(vcpu, old_rip);
358
359
if (static_cpu_has(X86_FEATURE_NRIPS))
360
svm->vmcb->control.next_rip = rip;
361
362
return 0;
363
}
364
365
static void svm_inject_exception(struct kvm_vcpu *vcpu)
366
{
367
struct kvm_queued_exception *ex = &vcpu->arch.exception;
368
struct vcpu_svm *svm = to_svm(vcpu);
369
370
kvm_deliver_exception_payload(vcpu, ex);
371
372
if (kvm_exception_is_soft(ex->vector) &&
373
svm_update_soft_interrupt_rip(vcpu, ex->vector))
374
return;
375
376
svm->vmcb->control.event_inj = ex->vector
377
| SVM_EVTINJ_VALID
378
| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
379
| SVM_EVTINJ_TYPE_EXEPT;
380
svm->vmcb->control.event_inj_err = ex->error_code;
381
}
382
383
static void svm_init_erratum_383(void)
384
{
385
u64 val;
386
387
if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
388
return;
389
390
/* Use _safe variants to not break nested virtualization */
391
if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val))
392
return;
393
394
val |= (1ULL << 47);
395
396
native_write_msr_safe(MSR_AMD64_DC_CFG, val);
397
398
erratum_383_found = true;
399
}
400
401
static void svm_init_osvw(struct kvm_vcpu *vcpu)
402
{
403
/*
404
* Guests should see errata 400 and 415 as fixed (assuming that
405
* HLT and IO instructions are intercepted).
406
*/
407
vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
408
vcpu->arch.osvw.status = osvw_status & ~(6ULL);
409
410
/*
411
* By increasing VCPU's osvw.length to 3 we are telling the guest that
412
* all osvw.status bits inside that length, including bit 0 (which is
413
* reserved for erratum 298), are valid. However, if host processor's
414
* osvw_len is 0 then osvw_status[0] carries no information. We need to
415
* be conservative here and therefore we tell the guest that erratum 298
416
* is present (because we really don't know).
417
*/
418
if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
419
vcpu->arch.osvw.status |= 1;
420
}
421
422
static bool __kvm_is_svm_supported(void)
423
{
424
int cpu = smp_processor_id();
425
struct cpuinfo_x86 *c = &cpu_data(cpu);
426
427
if (c->x86_vendor != X86_VENDOR_AMD &&
428
c->x86_vendor != X86_VENDOR_HYGON) {
429
pr_err("CPU %d isn't AMD or Hygon\n", cpu);
430
return false;
431
}
432
433
if (!cpu_has(c, X86_FEATURE_SVM)) {
434
pr_err("SVM not supported by CPU %d\n", cpu);
435
return false;
436
}
437
438
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
439
pr_info("KVM is unsupported when running as an SEV guest\n");
440
return false;
441
}
442
443
return true;
444
}
445
446
static bool kvm_is_svm_supported(void)
447
{
448
bool supported;
449
450
migrate_disable();
451
supported = __kvm_is_svm_supported();
452
migrate_enable();
453
454
return supported;
455
}
456
457
static int svm_check_processor_compat(void)
458
{
459
if (!__kvm_is_svm_supported())
460
return -EIO;
461
462
return 0;
463
}
464
465
static void __svm_write_tsc_multiplier(u64 multiplier)
466
{
467
if (multiplier == __this_cpu_read(current_tsc_ratio))
468
return;
469
470
wrmsrq(MSR_AMD64_TSC_RATIO, multiplier);
471
__this_cpu_write(current_tsc_ratio, multiplier);
472
}
473
474
static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
475
{
476
return &sd->save_area->host_sev_es_save;
477
}
478
479
static inline void kvm_cpu_svm_disable(void)
480
{
481
uint64_t efer;
482
483
wrmsrq(MSR_VM_HSAVE_PA, 0);
484
rdmsrq(MSR_EFER, efer);
485
if (efer & EFER_SVME) {
486
/*
487
* Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
488
* NMI aren't blocked.
489
*/
490
stgi();
491
wrmsrq(MSR_EFER, efer & ~EFER_SVME);
492
}
493
}
494
495
static void svm_emergency_disable_virtualization_cpu(void)
496
{
497
kvm_rebooting = true;
498
499
kvm_cpu_svm_disable();
500
}
501
502
static void svm_disable_virtualization_cpu(void)
503
{
504
/* Make sure we clean up behind us */
505
if (tsc_scaling)
506
__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
507
508
kvm_cpu_svm_disable();
509
510
amd_pmu_disable_virt();
511
}
512
513
static int svm_enable_virtualization_cpu(void)
514
{
515
516
struct svm_cpu_data *sd;
517
uint64_t efer;
518
int me = raw_smp_processor_id();
519
520
rdmsrq(MSR_EFER, efer);
521
if (efer & EFER_SVME)
522
return -EBUSY;
523
524
sd = per_cpu_ptr(&svm_data, me);
525
sd->asid_generation = 1;
526
sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
527
sd->next_asid = sd->max_asid + 1;
528
sd->min_asid = max_sev_asid + 1;
529
530
wrmsrq(MSR_EFER, efer | EFER_SVME);
531
532
wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa);
533
534
if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
535
/*
536
* Set the default value, even if we don't use TSC scaling
537
* to avoid having stale value in the msr
538
*/
539
__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
540
}
541
542
543
/*
544
* Get OSVW bits.
545
*
546
* Note that it is possible to have a system with mixed processor
547
* revisions and therefore different OSVW bits. If bits are not the same
548
* on different processors then choose the worst case (i.e. if erratum
549
* is present on one processor and not on another then assume that the
550
* erratum is present everywhere).
551
*/
552
if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
553
u64 len, status = 0;
554
int err;
555
556
err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len);
557
if (!err)
558
err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status);
559
560
if (err)
561
osvw_status = osvw_len = 0;
562
else {
563
if (len < osvw_len)
564
osvw_len = len;
565
osvw_status |= status;
566
osvw_status &= (1ULL << osvw_len) - 1;
567
}
568
} else
569
osvw_status = osvw_len = 0;
570
571
svm_init_erratum_383();
572
573
amd_pmu_enable_virt();
574
575
return 0;
576
}
577
578
static void svm_cpu_uninit(int cpu)
579
{
580
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
581
582
if (!sd->save_area)
583
return;
584
585
kfree(sd->sev_vmcbs);
586
__free_page(__sme_pa_to_page(sd->save_area_pa));
587
sd->save_area_pa = 0;
588
sd->save_area = NULL;
589
}
590
591
static int svm_cpu_init(int cpu)
592
{
593
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
594
struct page *save_area_page;
595
int ret = -ENOMEM;
596
597
memset(sd, 0, sizeof(struct svm_cpu_data));
598
save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
599
if (!save_area_page)
600
return ret;
601
602
ret = sev_cpu_init(sd);
603
if (ret)
604
goto free_save_area;
605
606
sd->save_area = page_address(save_area_page);
607
sd->save_area_pa = __sme_page_pa(save_area_page);
608
return 0;
609
610
free_save_area:
611
__free_page(save_area_page);
612
return ret;
613
614
}
615
616
static void set_dr_intercepts(struct vcpu_svm *svm)
617
{
618
struct vmcb *vmcb = svm->vmcb01.ptr;
619
620
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
621
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
622
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
623
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
624
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
625
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
626
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
627
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
628
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
629
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
630
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
631
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
632
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
633
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
634
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
635
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
636
637
recalc_intercepts(svm);
638
}
639
640
static void clr_dr_intercepts(struct vcpu_svm *svm)
641
{
642
struct vmcb *vmcb = svm->vmcb01.ptr;
643
644
vmcb->control.intercepts[INTERCEPT_DR] = 0;
645
646
recalc_intercepts(svm);
647
}
648
649
static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
650
{
651
/*
652
* For non-nested case:
653
* If the L01 MSR bitmap does not intercept the MSR, then we need to
654
* save it.
655
*
656
* For nested case:
657
* If the L02 MSR bitmap does not intercept the MSR, then we need to
658
* save it.
659
*/
660
void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm :
661
to_svm(vcpu)->msrpm;
662
663
return svm_test_msr_bitmap_write(msrpm, msr);
664
}
665
666
void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
667
{
668
struct vcpu_svm *svm = to_svm(vcpu);
669
void *msrpm = svm->msrpm;
670
671
/* Don't disable interception for MSRs userspace wants to handle. */
672
if (type & MSR_TYPE_R) {
673
if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
674
svm_clear_msr_bitmap_read(msrpm, msr);
675
else
676
svm_set_msr_bitmap_read(msrpm, msr);
677
}
678
679
if (type & MSR_TYPE_W) {
680
if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
681
svm_clear_msr_bitmap_write(msrpm, msr);
682
else
683
svm_set_msr_bitmap_write(msrpm, msr);
684
}
685
686
svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
687
svm->nested.force_msr_bitmap_recalc = true;
688
}
689
690
void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask)
691
{
692
unsigned int order = get_order(size);
693
struct page *pages = alloc_pages(gfp_mask, order);
694
void *pm;
695
696
if (!pages)
697
return NULL;
698
699
/*
700
* Set all bits in the permissions map so that all MSR and I/O accesses
701
* are intercepted by default.
702
*/
703
pm = page_address(pages);
704
memset(pm, 0xff, PAGE_SIZE * (1 << order));
705
706
return pm;
707
}
708
709
static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu)
710
{
711
struct vcpu_svm *svm = to_svm(vcpu);
712
bool intercept = !(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK);
713
714
if (intercept == svm->lbr_msrs_intercepted)
715
return;
716
717
svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept);
718
svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept);
719
svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept);
720
svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept);
721
722
if (sev_es_guest(vcpu->kvm))
723
svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept);
724
725
svm->lbr_msrs_intercepted = intercept;
726
}
727
728
void svm_vcpu_free_msrpm(void *msrpm)
729
{
730
__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
731
}
732
733
static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
734
{
735
struct vcpu_svm *svm = to_svm(vcpu);
736
737
svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW);
738
svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
739
740
#ifdef CONFIG_X86_64
741
svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
742
svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
743
svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
744
svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW);
745
svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW);
746
svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW);
747
#endif
748
749
if (lbrv)
750
svm_recalc_lbr_msr_intercepts(vcpu);
751
752
if (cpu_feature_enabled(X86_FEATURE_IBPB))
753
svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
754
!guest_has_pred_cmd_msr(vcpu));
755
756
if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
757
svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
758
!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
759
760
/*
761
* Disable interception of SPEC_CTRL if KVM doesn't need to manually
762
* context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if
763
* the guest has a non-zero SPEC_CTRL value, i.e. is likely actively
764
* using SPEC_CTRL.
765
*/
766
if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL))
767
svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
768
!guest_has_spec_ctrl_msr(vcpu));
769
else
770
svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
771
!svm->spec_ctrl);
772
773
/*
774
* Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU,
775
* as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits.
776
*/
777
svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW,
778
guest_cpuid_is_intel_compatible(vcpu));
779
svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW,
780
guest_cpuid_is_intel_compatible(vcpu));
781
782
if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
783
svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
784
svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
785
}
786
787
if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
788
bool shstk_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
789
790
svm_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, !shstk_enabled);
791
svm_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, !shstk_enabled);
792
svm_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, !shstk_enabled);
793
svm_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, !shstk_enabled);
794
svm_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, !shstk_enabled);
795
svm_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, !shstk_enabled);
796
}
797
798
if (sev_es_guest(vcpu->kvm))
799
sev_es_recalc_msr_intercepts(vcpu);
800
801
/*
802
* x2APIC intercepts are modified on-demand and cannot be filtered by
803
* userspace.
804
*/
805
}
806
807
void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
808
{
809
to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
810
to_vmcb->save.br_from = from_vmcb->save.br_from;
811
to_vmcb->save.br_to = from_vmcb->save.br_to;
812
to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
813
to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
814
815
vmcb_mark_dirty(to_vmcb, VMCB_LBR);
816
}
817
818
static void __svm_enable_lbrv(struct kvm_vcpu *vcpu)
819
{
820
to_svm(vcpu)->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
821
}
822
823
void svm_enable_lbrv(struct kvm_vcpu *vcpu)
824
{
825
__svm_enable_lbrv(vcpu);
826
svm_recalc_lbr_msr_intercepts(vcpu);
827
}
828
829
static void __svm_disable_lbrv(struct kvm_vcpu *vcpu)
830
{
831
KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
832
to_svm(vcpu)->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
833
}
834
835
void svm_update_lbrv(struct kvm_vcpu *vcpu)
836
{
837
struct vcpu_svm *svm = to_svm(vcpu);
838
bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
839
bool enable_lbrv = (svm->vmcb->save.dbgctl & DEBUGCTLMSR_LBR) ||
840
(is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
841
(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
842
843
if (enable_lbrv && !current_enable_lbrv)
844
__svm_enable_lbrv(vcpu);
845
else if (!enable_lbrv && current_enable_lbrv)
846
__svm_disable_lbrv(vcpu);
847
848
/*
849
* During nested transitions, it is possible that the current VMCB has
850
* LBR_CTL set, but the previous LBR_CTL had it cleared (or vice versa).
851
* In this case, even though LBR_CTL does not need an update, intercepts
852
* do, so always recalculate the intercepts here.
853
*/
854
svm_recalc_lbr_msr_intercepts(vcpu);
855
}
856
857
void disable_nmi_singlestep(struct vcpu_svm *svm)
858
{
859
svm->nmi_singlestep = false;
860
861
if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
862
/* Clear our flags if they were not set by the guest */
863
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
864
svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
865
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
866
svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
867
}
868
}
869
870
static void grow_ple_window(struct kvm_vcpu *vcpu)
871
{
872
struct vcpu_svm *svm = to_svm(vcpu);
873
struct vmcb_control_area *control = &svm->vmcb->control;
874
int old = control->pause_filter_count;
875
876
if (kvm_pause_in_guest(vcpu->kvm))
877
return;
878
879
control->pause_filter_count = __grow_ple_window(old,
880
pause_filter_count,
881
pause_filter_count_grow,
882
pause_filter_count_max);
883
884
if (control->pause_filter_count != old) {
885
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
886
trace_kvm_ple_window_update(vcpu->vcpu_id,
887
control->pause_filter_count, old);
888
}
889
}
890
891
static void shrink_ple_window(struct kvm_vcpu *vcpu)
892
{
893
struct vcpu_svm *svm = to_svm(vcpu);
894
struct vmcb_control_area *control = &svm->vmcb->control;
895
int old = control->pause_filter_count;
896
897
if (kvm_pause_in_guest(vcpu->kvm))
898
return;
899
900
control->pause_filter_count =
901
__shrink_ple_window(old,
902
pause_filter_count,
903
pause_filter_count_shrink,
904
pause_filter_count);
905
if (control->pause_filter_count != old) {
906
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
907
trace_kvm_ple_window_update(vcpu->vcpu_id,
908
control->pause_filter_count, old);
909
}
910
}
911
912
static void svm_hardware_unsetup(void)
913
{
914
int cpu;
915
916
avic_hardware_unsetup();
917
918
sev_hardware_unsetup();
919
920
for_each_possible_cpu(cpu)
921
svm_cpu_uninit(cpu);
922
923
__free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
924
iopm_base = 0;
925
}
926
927
static void init_seg(struct vmcb_seg *seg)
928
{
929
seg->selector = 0;
930
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
931
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
932
seg->limit = 0xffff;
933
seg->base = 0;
934
}
935
936
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
937
{
938
seg->selector = 0;
939
seg->attrib = SVM_SELECTOR_P_MASK | type;
940
seg->limit = 0xffff;
941
seg->base = 0;
942
}
943
944
static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
945
{
946
struct vcpu_svm *svm = to_svm(vcpu);
947
948
return svm->nested.ctl.tsc_offset;
949
}
950
951
static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
952
{
953
struct vcpu_svm *svm = to_svm(vcpu);
954
955
return svm->tsc_ratio_msr;
956
}
957
958
static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
959
{
960
struct vcpu_svm *svm = to_svm(vcpu);
961
962
svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
963
svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
964
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
965
}
966
967
void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
968
{
969
preempt_disable();
970
if (to_svm(vcpu)->guest_state_loaded)
971
__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
972
preempt_enable();
973
}
974
975
/* Evaluate instruction intercepts that depend on guest CPUID features. */
976
static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu)
977
{
978
struct vcpu_svm *svm = to_svm(vcpu);
979
980
/*
981
* Intercept INVPCID if shadow paging is enabled to sync/free shadow
982
* roots, or if INVPCID is disabled in the guest to inject #UD.
983
*/
984
if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
985
if (!npt_enabled ||
986
!guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
987
svm_set_intercept(svm, INTERCEPT_INVPCID);
988
else
989
svm_clr_intercept(svm, INTERCEPT_INVPCID);
990
}
991
992
if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
993
if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
994
svm_clr_intercept(svm, INTERCEPT_RDTSCP);
995
else
996
svm_set_intercept(svm, INTERCEPT_RDTSCP);
997
}
998
999
if (guest_cpuid_is_intel_compatible(vcpu)) {
1000
svm_set_intercept(svm, INTERCEPT_VMLOAD);
1001
svm_set_intercept(svm, INTERCEPT_VMSAVE);
1002
svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1003
} else {
1004
/*
1005
* If hardware supports Virtual VMLOAD VMSAVE then enable it
1006
* in VMCB and clear intercepts to avoid #VMEXIT.
1007
*/
1008
if (vls) {
1009
svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1010
svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1011
svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1012
}
1013
}
1014
}
1015
1016
static void svm_recalc_intercepts(struct kvm_vcpu *vcpu)
1017
{
1018
svm_recalc_instruction_intercepts(vcpu);
1019
svm_recalc_msr_intercepts(vcpu);
1020
}
1021
1022
static void init_vmcb(struct kvm_vcpu *vcpu, bool init_event)
1023
{
1024
struct vcpu_svm *svm = to_svm(vcpu);
1025
struct vmcb *vmcb = svm->vmcb01.ptr;
1026
struct vmcb_control_area *control = &vmcb->control;
1027
struct vmcb_save_area *save = &vmcb->save;
1028
1029
svm_set_intercept(svm, INTERCEPT_CR0_READ);
1030
svm_set_intercept(svm, INTERCEPT_CR3_READ);
1031
svm_set_intercept(svm, INTERCEPT_CR4_READ);
1032
svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1033
svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1034
svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1035
if (!kvm_vcpu_apicv_active(vcpu))
1036
svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1037
1038
set_dr_intercepts(svm);
1039
1040
set_exception_intercept(svm, PF_VECTOR);
1041
set_exception_intercept(svm, UD_VECTOR);
1042
set_exception_intercept(svm, MC_VECTOR);
1043
set_exception_intercept(svm, AC_VECTOR);
1044
set_exception_intercept(svm, DB_VECTOR);
1045
/*
1046
* Guest access to VMware backdoor ports could legitimately
1047
* trigger #GP because of TSS I/O permission bitmap.
1048
* We intercept those #GP and allow access to them anyway
1049
* as VMware does.
1050
*/
1051
if (enable_vmware_backdoor)
1052
set_exception_intercept(svm, GP_VECTOR);
1053
1054
svm_set_intercept(svm, INTERCEPT_INTR);
1055
svm_set_intercept(svm, INTERCEPT_NMI);
1056
1057
if (intercept_smi)
1058
svm_set_intercept(svm, INTERCEPT_SMI);
1059
1060
svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1061
svm_set_intercept(svm, INTERCEPT_RDPMC);
1062
svm_set_intercept(svm, INTERCEPT_CPUID);
1063
svm_set_intercept(svm, INTERCEPT_INVD);
1064
svm_set_intercept(svm, INTERCEPT_INVLPG);
1065
svm_set_intercept(svm, INTERCEPT_INVLPGA);
1066
svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1067
svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1068
svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1069
svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1070
svm_set_intercept(svm, INTERCEPT_VMRUN);
1071
svm_set_intercept(svm, INTERCEPT_VMMCALL);
1072
svm_set_intercept(svm, INTERCEPT_VMLOAD);
1073
svm_set_intercept(svm, INTERCEPT_VMSAVE);
1074
svm_set_intercept(svm, INTERCEPT_STGI);
1075
svm_set_intercept(svm, INTERCEPT_CLGI);
1076
svm_set_intercept(svm, INTERCEPT_SKINIT);
1077
svm_set_intercept(svm, INTERCEPT_WBINVD);
1078
svm_set_intercept(svm, INTERCEPT_XSETBV);
1079
svm_set_intercept(svm, INTERCEPT_RDPRU);
1080
svm_set_intercept(svm, INTERCEPT_RSM);
1081
1082
if (!kvm_mwait_in_guest(vcpu->kvm)) {
1083
svm_set_intercept(svm, INTERCEPT_MONITOR);
1084
svm_set_intercept(svm, INTERCEPT_MWAIT);
1085
}
1086
1087
if (!kvm_hlt_in_guest(vcpu->kvm)) {
1088
if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1089
svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1090
else
1091
svm_set_intercept(svm, INTERCEPT_HLT);
1092
}
1093
1094
control->iopm_base_pa = iopm_base;
1095
control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1096
control->int_ctl = V_INTR_MASKING_MASK;
1097
1098
init_seg(&save->es);
1099
init_seg(&save->ss);
1100
init_seg(&save->ds);
1101
init_seg(&save->fs);
1102
init_seg(&save->gs);
1103
1104
save->cs.selector = 0xf000;
1105
save->cs.base = 0xffff0000;
1106
/* Executable/Readable Code Segment */
1107
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1108
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1109
save->cs.limit = 0xffff;
1110
1111
save->gdtr.base = 0;
1112
save->gdtr.limit = 0xffff;
1113
save->idtr.base = 0;
1114
save->idtr.limit = 0xffff;
1115
1116
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1117
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1118
1119
if (npt_enabled) {
1120
/* Setup VMCB for Nested Paging */
1121
control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1122
svm_clr_intercept(svm, INTERCEPT_INVLPG);
1123
clr_exception_intercept(svm, PF_VECTOR);
1124
svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1125
svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1126
save->g_pat = vcpu->arch.pat;
1127
save->cr3 = 0;
1128
}
1129
svm->current_vmcb->asid_generation = 0;
1130
svm->asid = 0;
1131
1132
svm->nested.vmcb12_gpa = INVALID_GPA;
1133
svm->nested.last_vmcb12_gpa = INVALID_GPA;
1134
1135
if (!kvm_pause_in_guest(vcpu->kvm)) {
1136
control->pause_filter_count = pause_filter_count;
1137
if (pause_filter_thresh)
1138
control->pause_filter_thresh = pause_filter_thresh;
1139
svm_set_intercept(svm, INTERCEPT_PAUSE);
1140
} else {
1141
svm_clr_intercept(svm, INTERCEPT_PAUSE);
1142
}
1143
1144
if (kvm_vcpu_apicv_active(vcpu))
1145
avic_init_vmcb(svm, vmcb);
1146
1147
if (vnmi)
1148
svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1149
1150
if (vgif) {
1151
svm_clr_intercept(svm, INTERCEPT_STGI);
1152
svm_clr_intercept(svm, INTERCEPT_CLGI);
1153
svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1154
}
1155
1156
if (vcpu->kvm->arch.bus_lock_detection_enabled)
1157
svm_set_intercept(svm, INTERCEPT_BUSLOCK);
1158
1159
if (sev_guest(vcpu->kvm))
1160
sev_init_vmcb(svm, init_event);
1161
1162
svm_hv_init_vmcb(vmcb);
1163
1164
kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu);
1165
1166
vmcb_mark_all_dirty(vmcb);
1167
1168
enable_gif(svm);
1169
}
1170
1171
static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1172
{
1173
struct vcpu_svm *svm = to_svm(vcpu);
1174
1175
svm_init_osvw(vcpu);
1176
1177
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1178
vcpu->arch.microcode_version = 0x01000065;
1179
svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1180
1181
svm->nmi_masked = false;
1182
svm->awaiting_iret_completion = false;
1183
}
1184
1185
static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1186
{
1187
struct vcpu_svm *svm = to_svm(vcpu);
1188
1189
svm->spec_ctrl = 0;
1190
svm->virt_spec_ctrl = 0;
1191
1192
init_vmcb(vcpu, init_event);
1193
1194
if (!init_event)
1195
__svm_vcpu_reset(vcpu);
1196
}
1197
1198
void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1199
{
1200
svm->current_vmcb = target_vmcb;
1201
svm->vmcb = target_vmcb->ptr;
1202
}
1203
1204
static int svm_vcpu_precreate(struct kvm *kvm)
1205
{
1206
return avic_alloc_physical_id_table(kvm);
1207
}
1208
1209
static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1210
{
1211
struct vcpu_svm *svm;
1212
struct page *vmcb01_page;
1213
int err;
1214
1215
BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1216
svm = to_svm(vcpu);
1217
1218
err = -ENOMEM;
1219
vmcb01_page = snp_safe_alloc_page();
1220
if (!vmcb01_page)
1221
goto out;
1222
1223
err = sev_vcpu_create(vcpu);
1224
if (err)
1225
goto error_free_vmcb_page;
1226
1227
err = avic_init_vcpu(svm);
1228
if (err)
1229
goto error_free_sev;
1230
1231
svm->msrpm = svm_vcpu_alloc_msrpm();
1232
if (!svm->msrpm) {
1233
err = -ENOMEM;
1234
goto error_free_sev;
1235
}
1236
1237
svm->x2avic_msrs_intercepted = true;
1238
svm->lbr_msrs_intercepted = true;
1239
1240
svm->vmcb01.ptr = page_address(vmcb01_page);
1241
svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1242
svm_switch_vmcb(svm, &svm->vmcb01);
1243
1244
svm->guest_state_loaded = false;
1245
1246
return 0;
1247
1248
error_free_sev:
1249
sev_free_vcpu(vcpu);
1250
error_free_vmcb_page:
1251
__free_page(vmcb01_page);
1252
out:
1253
return err;
1254
}
1255
1256
static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1257
{
1258
struct vcpu_svm *svm = to_svm(vcpu);
1259
1260
WARN_ON_ONCE(!list_empty(&svm->ir_list));
1261
1262
svm_leave_nested(vcpu);
1263
svm_free_nested(svm);
1264
1265
sev_free_vcpu(vcpu);
1266
1267
__free_page(__sme_pa_to_page(svm->vmcb01.pa));
1268
svm_vcpu_free_msrpm(svm->msrpm);
1269
}
1270
1271
#ifdef CONFIG_CPU_MITIGATIONS
1272
static DEFINE_SPINLOCK(srso_lock);
1273
static atomic_t srso_nr_vms;
1274
1275
static void svm_srso_clear_bp_spec_reduce(void *ign)
1276
{
1277
struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
1278
1279
if (!sd->bp_spec_reduce_set)
1280
return;
1281
1282
msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1283
sd->bp_spec_reduce_set = false;
1284
}
1285
1286
static void svm_srso_vm_destroy(void)
1287
{
1288
if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1289
return;
1290
1291
if (atomic_dec_return(&srso_nr_vms))
1292
return;
1293
1294
guard(spinlock)(&srso_lock);
1295
1296
/*
1297
* Verify a new VM didn't come along, acquire the lock, and increment
1298
* the count before this task acquired the lock.
1299
*/
1300
if (atomic_read(&srso_nr_vms))
1301
return;
1302
1303
on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
1304
}
1305
1306
static void svm_srso_vm_init(void)
1307
{
1308
if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1309
return;
1310
1311
/*
1312
* Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
1313
* transition, i.e. destroying the last VM, is fully complete, e.g. so
1314
* that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
1315
*/
1316
if (atomic_inc_not_zero(&srso_nr_vms))
1317
return;
1318
1319
guard(spinlock)(&srso_lock);
1320
1321
atomic_inc(&srso_nr_vms);
1322
}
1323
#else
1324
static void svm_srso_vm_init(void) { }
1325
static void svm_srso_vm_destroy(void) { }
1326
#endif
1327
1328
static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1329
{
1330
struct vcpu_svm *svm = to_svm(vcpu);
1331
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1332
1333
if (sev_es_guest(vcpu->kvm))
1334
sev_es_unmap_ghcb(svm);
1335
1336
if (svm->guest_state_loaded)
1337
return;
1338
1339
/*
1340
* Save additional host state that will be restored on VMEXIT (sev-es)
1341
* or subsequent vmload of host save area.
1342
*/
1343
vmsave(sd->save_area_pa);
1344
if (sev_es_guest(vcpu->kvm))
1345
sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1346
1347
if (tsc_scaling)
1348
__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1349
1350
/*
1351
* TSC_AUX is always virtualized (context switched by hardware) for
1352
* SEV-ES guests when the feature is available. For non-SEV-ES guests,
1353
* context switch TSC_AUX via the user_return MSR infrastructure (not
1354
* all CPUs support TSC_AUX virtualization).
1355
*/
1356
if (likely(tsc_aux_uret_slot >= 0) &&
1357
(!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1358
kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1359
1360
if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
1361
!sd->bp_spec_reduce_set) {
1362
sd->bp_spec_reduce_set = true;
1363
msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1364
}
1365
svm->guest_state_loaded = true;
1366
}
1367
1368
static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1369
{
1370
to_svm(vcpu)->guest_state_loaded = false;
1371
}
1372
1373
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1374
{
1375
if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1376
shrink_ple_window(vcpu);
1377
1378
if (kvm_vcpu_apicv_active(vcpu))
1379
avic_vcpu_load(vcpu, cpu);
1380
}
1381
1382
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1383
{
1384
if (kvm_vcpu_apicv_active(vcpu))
1385
avic_vcpu_put(vcpu);
1386
1387
svm_prepare_host_switch(vcpu);
1388
1389
++vcpu->stat.host_state_reload;
1390
}
1391
1392
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1393
{
1394
struct vcpu_svm *svm = to_svm(vcpu);
1395
unsigned long rflags = svm->vmcb->save.rflags;
1396
1397
if (svm->nmi_singlestep) {
1398
/* Hide our flags if they were not set by the guest */
1399
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1400
rflags &= ~X86_EFLAGS_TF;
1401
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1402
rflags &= ~X86_EFLAGS_RF;
1403
}
1404
return rflags;
1405
}
1406
1407
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1408
{
1409
if (to_svm(vcpu)->nmi_singlestep)
1410
rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1411
1412
/*
1413
* Any change of EFLAGS.VM is accompanied by a reload of SS
1414
* (caused by either a task switch or an inter-privilege IRET),
1415
* so we do not need to update the CPL here.
1416
*/
1417
to_svm(vcpu)->vmcb->save.rflags = rflags;
1418
}
1419
1420
static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1421
{
1422
struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1423
1424
return sev_es_guest(vcpu->kvm)
1425
? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1426
: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1427
}
1428
1429
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1430
{
1431
kvm_register_mark_available(vcpu, reg);
1432
1433
switch (reg) {
1434
case VCPU_EXREG_PDPTR:
1435
/*
1436
* When !npt_enabled, mmu->pdptrs[] is already available since
1437
* it is always updated per SDM when moving to CRs.
1438
*/
1439
if (npt_enabled)
1440
load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1441
break;
1442
default:
1443
KVM_BUG_ON(1, vcpu->kvm);
1444
}
1445
}
1446
1447
static void svm_set_vintr(struct vcpu_svm *svm)
1448
{
1449
struct vmcb_control_area *control;
1450
1451
/*
1452
* The following fields are ignored when AVIC is enabled
1453
*/
1454
WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1455
1456
svm_set_intercept(svm, INTERCEPT_VINTR);
1457
1458
/*
1459
* Recalculating intercepts may have cleared the VINTR intercept. If
1460
* V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1461
* for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1462
* Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1463
* interrupts will never be unblocked while L2 is running.
1464
*/
1465
if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1466
return;
1467
1468
/*
1469
* This is just a dummy VINTR to actually cause a vmexit to happen.
1470
* Actual injection of virtual interrupts happens through EVENTINJ.
1471
*/
1472
control = &svm->vmcb->control;
1473
control->int_vector = 0x0;
1474
control->int_ctl &= ~V_INTR_PRIO_MASK;
1475
control->int_ctl |= V_IRQ_MASK |
1476
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1477
vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1478
}
1479
1480
static void svm_clear_vintr(struct vcpu_svm *svm)
1481
{
1482
svm_clr_intercept(svm, INTERCEPT_VINTR);
1483
1484
/* Drop int_ctl fields related to VINTR injection. */
1485
svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1486
if (is_guest_mode(&svm->vcpu)) {
1487
svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1488
1489
WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1490
(svm->nested.ctl.int_ctl & V_TPR_MASK));
1491
1492
svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1493
V_IRQ_INJECTION_BITS_MASK;
1494
1495
svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1496
}
1497
1498
vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1499
}
1500
1501
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1502
{
1503
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1504
struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1505
1506
switch (seg) {
1507
case VCPU_SREG_CS: return &save->cs;
1508
case VCPU_SREG_DS: return &save->ds;
1509
case VCPU_SREG_ES: return &save->es;
1510
case VCPU_SREG_FS: return &save01->fs;
1511
case VCPU_SREG_GS: return &save01->gs;
1512
case VCPU_SREG_SS: return &save->ss;
1513
case VCPU_SREG_TR: return &save01->tr;
1514
case VCPU_SREG_LDTR: return &save01->ldtr;
1515
}
1516
BUG();
1517
return NULL;
1518
}
1519
1520
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1521
{
1522
struct vmcb_seg *s = svm_seg(vcpu, seg);
1523
1524
return s->base;
1525
}
1526
1527
static void svm_get_segment(struct kvm_vcpu *vcpu,
1528
struct kvm_segment *var, int seg)
1529
{
1530
struct vmcb_seg *s = svm_seg(vcpu, seg);
1531
1532
var->base = s->base;
1533
var->limit = s->limit;
1534
var->selector = s->selector;
1535
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1536
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1537
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1538
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1539
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1540
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1541
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1542
1543
/*
1544
* AMD CPUs circa 2014 track the G bit for all segments except CS.
1545
* However, the SVM spec states that the G bit is not observed by the
1546
* CPU, and some VMware virtual CPUs drop the G bit for all segments.
1547
* So let's synthesize a legal G bit for all segments, this helps
1548
* running KVM nested. It also helps cross-vendor migration, because
1549
* Intel's vmentry has a check on the 'G' bit.
1550
*/
1551
var->g = s->limit > 0xfffff;
1552
1553
/*
1554
* AMD's VMCB does not have an explicit unusable field, so emulate it
1555
* for cross vendor migration purposes by "not present"
1556
*/
1557
var->unusable = !var->present;
1558
1559
switch (seg) {
1560
case VCPU_SREG_TR:
1561
/*
1562
* Work around a bug where the busy flag in the tr selector
1563
* isn't exposed
1564
*/
1565
var->type |= 0x2;
1566
break;
1567
case VCPU_SREG_DS:
1568
case VCPU_SREG_ES:
1569
case VCPU_SREG_FS:
1570
case VCPU_SREG_GS:
1571
/*
1572
* The accessed bit must always be set in the segment
1573
* descriptor cache, although it can be cleared in the
1574
* descriptor, the cached bit always remains at 1. Since
1575
* Intel has a check on this, set it here to support
1576
* cross-vendor migration.
1577
*/
1578
if (!var->unusable)
1579
var->type |= 0x1;
1580
break;
1581
case VCPU_SREG_SS:
1582
/*
1583
* On AMD CPUs sometimes the DB bit in the segment
1584
* descriptor is left as 1, although the whole segment has
1585
* been made unusable. Clear it here to pass an Intel VMX
1586
* entry check when cross vendor migrating.
1587
*/
1588
if (var->unusable)
1589
var->db = 0;
1590
/* This is symmetric with svm_set_segment() */
1591
var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1592
break;
1593
}
1594
}
1595
1596
static int svm_get_cpl(struct kvm_vcpu *vcpu)
1597
{
1598
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1599
1600
return save->cpl;
1601
}
1602
1603
static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1604
{
1605
struct kvm_segment cs;
1606
1607
svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1608
*db = cs.db;
1609
*l = cs.l;
1610
}
1611
1612
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1613
{
1614
struct vcpu_svm *svm = to_svm(vcpu);
1615
1616
dt->size = svm->vmcb->save.idtr.limit;
1617
dt->address = svm->vmcb->save.idtr.base;
1618
}
1619
1620
static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1621
{
1622
struct vcpu_svm *svm = to_svm(vcpu);
1623
1624
svm->vmcb->save.idtr.limit = dt->size;
1625
svm->vmcb->save.idtr.base = dt->address ;
1626
vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1627
}
1628
1629
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1630
{
1631
struct vcpu_svm *svm = to_svm(vcpu);
1632
1633
dt->size = svm->vmcb->save.gdtr.limit;
1634
dt->address = svm->vmcb->save.gdtr.base;
1635
}
1636
1637
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1638
{
1639
struct vcpu_svm *svm = to_svm(vcpu);
1640
1641
svm->vmcb->save.gdtr.limit = dt->size;
1642
svm->vmcb->save.gdtr.base = dt->address ;
1643
vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1644
}
1645
1646
static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1647
{
1648
struct vcpu_svm *svm = to_svm(vcpu);
1649
1650
/*
1651
* For guests that don't set guest_state_protected, the cr3 update is
1652
* handled via kvm_mmu_load() while entering the guest. For guests
1653
* that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1654
* VMCB save area now, since the save area will become the initial
1655
* contents of the VMSA, and future VMCB save area updates won't be
1656
* seen.
1657
*/
1658
if (sev_es_guest(vcpu->kvm)) {
1659
svm->vmcb->save.cr3 = cr3;
1660
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1661
}
1662
}
1663
1664
static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1665
{
1666
return true;
1667
}
1668
1669
void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1670
{
1671
struct vcpu_svm *svm = to_svm(vcpu);
1672
u64 hcr0 = cr0;
1673
bool old_paging = is_paging(vcpu);
1674
1675
#ifdef CONFIG_X86_64
1676
if (vcpu->arch.efer & EFER_LME) {
1677
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1678
vcpu->arch.efer |= EFER_LMA;
1679
if (!vcpu->arch.guest_state_protected)
1680
svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1681
}
1682
1683
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1684
vcpu->arch.efer &= ~EFER_LMA;
1685
if (!vcpu->arch.guest_state_protected)
1686
svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1687
}
1688
}
1689
#endif
1690
vcpu->arch.cr0 = cr0;
1691
1692
if (!npt_enabled) {
1693
hcr0 |= X86_CR0_PG | X86_CR0_WP;
1694
if (old_paging != is_paging(vcpu))
1695
svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1696
}
1697
1698
/*
1699
* re-enable caching here because the QEMU bios
1700
* does not do it - this results in some delay at
1701
* reboot
1702
*/
1703
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1704
hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1705
1706
svm->vmcb->save.cr0 = hcr0;
1707
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1708
1709
/*
1710
* SEV-ES guests must always keep the CR intercepts cleared. CR
1711
* tracking is done using the CR write traps.
1712
*/
1713
if (sev_es_guest(vcpu->kvm))
1714
return;
1715
1716
if (hcr0 == cr0) {
1717
/* Selective CR0 write remains on. */
1718
svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1719
svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1720
} else {
1721
svm_set_intercept(svm, INTERCEPT_CR0_READ);
1722
svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1723
}
1724
}
1725
1726
static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1727
{
1728
return true;
1729
}
1730
1731
void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1732
{
1733
unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1734
unsigned long old_cr4 = vcpu->arch.cr4;
1735
1736
vcpu->arch.cr4 = cr4;
1737
if (!npt_enabled) {
1738
cr4 |= X86_CR4_PAE;
1739
1740
if (!is_paging(vcpu))
1741
cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1742
}
1743
cr4 |= host_cr4_mce;
1744
to_svm(vcpu)->vmcb->save.cr4 = cr4;
1745
vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1746
1747
if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1748
vcpu->arch.cpuid_dynamic_bits_dirty = true;
1749
}
1750
1751
static void svm_set_segment(struct kvm_vcpu *vcpu,
1752
struct kvm_segment *var, int seg)
1753
{
1754
struct vcpu_svm *svm = to_svm(vcpu);
1755
struct vmcb_seg *s = svm_seg(vcpu, seg);
1756
1757
s->base = var->base;
1758
s->limit = var->limit;
1759
s->selector = var->selector;
1760
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1761
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1762
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1763
s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1764
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1765
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1766
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1767
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1768
1769
/*
1770
* This is always accurate, except if SYSRET returned to a segment
1771
* with SS.DPL != 3. Intel does not have this quirk, and always
1772
* forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1773
* would entail passing the CPL to userspace and back.
1774
*/
1775
if (seg == VCPU_SREG_SS)
1776
/* This is symmetric with svm_get_segment() */
1777
svm->vmcb->save.cpl = (var->dpl & 3);
1778
1779
vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1780
}
1781
1782
static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1783
{
1784
struct vcpu_svm *svm = to_svm(vcpu);
1785
1786
clr_exception_intercept(svm, BP_VECTOR);
1787
1788
if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1789
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1790
set_exception_intercept(svm, BP_VECTOR);
1791
}
1792
}
1793
1794
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1795
{
1796
if (sd->next_asid > sd->max_asid) {
1797
++sd->asid_generation;
1798
sd->next_asid = sd->min_asid;
1799
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1800
vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1801
}
1802
1803
svm->current_vmcb->asid_generation = sd->asid_generation;
1804
svm->asid = sd->next_asid++;
1805
}
1806
1807
static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1808
{
1809
struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1810
1811
if (vcpu->arch.guest_state_protected)
1812
return;
1813
1814
if (unlikely(value != vmcb->save.dr6)) {
1815
vmcb->save.dr6 = value;
1816
vmcb_mark_dirty(vmcb, VMCB_DR);
1817
}
1818
}
1819
1820
static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1821
{
1822
struct vcpu_svm *svm = to_svm(vcpu);
1823
1824
if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
1825
return;
1826
1827
get_debugreg(vcpu->arch.db[0], 0);
1828
get_debugreg(vcpu->arch.db[1], 1);
1829
get_debugreg(vcpu->arch.db[2], 2);
1830
get_debugreg(vcpu->arch.db[3], 3);
1831
/*
1832
* We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1833
* because db_interception might need it. We can do it before vmentry.
1834
*/
1835
vcpu->arch.dr6 = svm->vmcb->save.dr6;
1836
vcpu->arch.dr7 = svm->vmcb->save.dr7;
1837
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1838
set_dr_intercepts(svm);
1839
}
1840
1841
static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1842
{
1843
struct vcpu_svm *svm = to_svm(vcpu);
1844
1845
if (vcpu->arch.guest_state_protected)
1846
return;
1847
1848
svm->vmcb->save.dr7 = value;
1849
vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1850
}
1851
1852
static int pf_interception(struct kvm_vcpu *vcpu)
1853
{
1854
struct vcpu_svm *svm = to_svm(vcpu);
1855
1856
u64 fault_address = svm->vmcb->control.exit_info_2;
1857
u64 error_code = svm->vmcb->control.exit_info_1;
1858
1859
return kvm_handle_page_fault(vcpu, error_code, fault_address,
1860
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1861
svm->vmcb->control.insn_bytes : NULL,
1862
svm->vmcb->control.insn_len);
1863
}
1864
1865
static int npf_interception(struct kvm_vcpu *vcpu)
1866
{
1867
struct vcpu_svm *svm = to_svm(vcpu);
1868
int rc;
1869
1870
u64 fault_address = svm->vmcb->control.exit_info_2;
1871
u64 error_code = svm->vmcb->control.exit_info_1;
1872
1873
/*
1874
* WARN if hardware generates a fault with an error code that collides
1875
* with KVM-defined sythentic flags. Clear the flags and continue on,
1876
* i.e. don't terminate the VM, as KVM can't possibly be relying on a
1877
* flag that KVM doesn't know about.
1878
*/
1879
if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
1880
error_code &= ~PFERR_SYNTHETIC_MASK;
1881
1882
if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
1883
error_code |= PFERR_PRIVATE_ACCESS;
1884
1885
trace_kvm_page_fault(vcpu, fault_address, error_code);
1886
rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
1887
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1888
svm->vmcb->control.insn_bytes : NULL,
1889
svm->vmcb->control.insn_len);
1890
1891
if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
1892
sev_handle_rmp_fault(vcpu, fault_address, error_code);
1893
1894
return rc;
1895
}
1896
1897
static int db_interception(struct kvm_vcpu *vcpu)
1898
{
1899
struct kvm_run *kvm_run = vcpu->run;
1900
struct vcpu_svm *svm = to_svm(vcpu);
1901
1902
if (!(vcpu->guest_debug &
1903
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1904
!svm->nmi_singlestep) {
1905
u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1906
kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1907
return 1;
1908
}
1909
1910
if (svm->nmi_singlestep) {
1911
disable_nmi_singlestep(svm);
1912
/* Make sure we check for pending NMIs upon entry */
1913
kvm_make_request(KVM_REQ_EVENT, vcpu);
1914
}
1915
1916
if (vcpu->guest_debug &
1917
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1918
kvm_run->exit_reason = KVM_EXIT_DEBUG;
1919
kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1920
kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1921
kvm_run->debug.arch.pc =
1922
svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1923
kvm_run->debug.arch.exception = DB_VECTOR;
1924
return 0;
1925
}
1926
1927
return 1;
1928
}
1929
1930
static int bp_interception(struct kvm_vcpu *vcpu)
1931
{
1932
struct vcpu_svm *svm = to_svm(vcpu);
1933
struct kvm_run *kvm_run = vcpu->run;
1934
1935
kvm_run->exit_reason = KVM_EXIT_DEBUG;
1936
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1937
kvm_run->debug.arch.exception = BP_VECTOR;
1938
return 0;
1939
}
1940
1941
static int ud_interception(struct kvm_vcpu *vcpu)
1942
{
1943
return handle_ud(vcpu);
1944
}
1945
1946
static int ac_interception(struct kvm_vcpu *vcpu)
1947
{
1948
kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1949
return 1;
1950
}
1951
1952
static bool is_erratum_383(void)
1953
{
1954
int i;
1955
u64 value;
1956
1957
if (!erratum_383_found)
1958
return false;
1959
1960
if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value))
1961
return false;
1962
1963
/* Bit 62 may or may not be set for this mce */
1964
value &= ~(1ULL << 62);
1965
1966
if (value != 0xb600000000010015ULL)
1967
return false;
1968
1969
/* Clear MCi_STATUS registers */
1970
for (i = 0; i < 6; ++i)
1971
native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0);
1972
1973
if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) {
1974
value &= ~(1ULL << 2);
1975
native_write_msr_safe(MSR_IA32_MCG_STATUS, value);
1976
}
1977
1978
/* Flush tlb to evict multi-match entries */
1979
__flush_tlb_all();
1980
1981
return true;
1982
}
1983
1984
static void svm_handle_mce(struct kvm_vcpu *vcpu)
1985
{
1986
if (is_erratum_383()) {
1987
/*
1988
* Erratum 383 triggered. Guest state is corrupt so kill the
1989
* guest.
1990
*/
1991
pr_err("Guest triggered AMD Erratum 383\n");
1992
1993
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1994
1995
return;
1996
}
1997
1998
/*
1999
* On an #MC intercept the MCE handler is not called automatically in
2000
* the host. So do it by hand here.
2001
*/
2002
kvm_machine_check();
2003
}
2004
2005
static int mc_interception(struct kvm_vcpu *vcpu)
2006
{
2007
return 1;
2008
}
2009
2010
static int shutdown_interception(struct kvm_vcpu *vcpu)
2011
{
2012
struct kvm_run *kvm_run = vcpu->run;
2013
struct vcpu_svm *svm = to_svm(vcpu);
2014
2015
2016
/*
2017
* VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2018
* the VMCB in a known good state. Unfortuately, KVM doesn't have
2019
* KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2020
* userspace. At a platform view, INIT is acceptable behavior as
2021
* there exist bare metal platforms that automatically INIT the CPU
2022
* in response to shutdown.
2023
*
2024
* The VM save area for SEV-ES guests has already been encrypted so it
2025
* cannot be reinitialized, i.e. synthesizing INIT is futile.
2026
*/
2027
if (!sev_es_guest(vcpu->kvm)) {
2028
clear_page(svm->vmcb);
2029
#ifdef CONFIG_KVM_SMM
2030
if (is_smm(vcpu))
2031
kvm_smm_changed(vcpu, false);
2032
#endif
2033
kvm_vcpu_reset(vcpu, true);
2034
}
2035
2036
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2037
return 0;
2038
}
2039
2040
static int io_interception(struct kvm_vcpu *vcpu)
2041
{
2042
struct vcpu_svm *svm = to_svm(vcpu);
2043
u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2044
int size, in, string;
2045
unsigned port;
2046
2047
++vcpu->stat.io_exits;
2048
string = (io_info & SVM_IOIO_STR_MASK) != 0;
2049
in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2050
port = io_info >> 16;
2051
size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2052
2053
if (string) {
2054
if (sev_es_guest(vcpu->kvm))
2055
return sev_es_string_io(svm, size, port, in);
2056
else
2057
return kvm_emulate_instruction(vcpu, 0);
2058
}
2059
2060
svm->next_rip = svm->vmcb->control.exit_info_2;
2061
2062
return kvm_fast_pio(vcpu, size, port, in);
2063
}
2064
2065
static int nmi_interception(struct kvm_vcpu *vcpu)
2066
{
2067
return 1;
2068
}
2069
2070
static int smi_interception(struct kvm_vcpu *vcpu)
2071
{
2072
return 1;
2073
}
2074
2075
static int intr_interception(struct kvm_vcpu *vcpu)
2076
{
2077
++vcpu->stat.irq_exits;
2078
return 1;
2079
}
2080
2081
static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2082
{
2083
struct vcpu_svm *svm = to_svm(vcpu);
2084
struct vmcb *vmcb12;
2085
struct kvm_host_map map;
2086
int ret;
2087
2088
if (nested_svm_check_permissions(vcpu))
2089
return 1;
2090
2091
ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2092
if (ret) {
2093
if (ret == -EINVAL)
2094
kvm_inject_gp(vcpu, 0);
2095
return 1;
2096
}
2097
2098
vmcb12 = map.hva;
2099
2100
ret = kvm_skip_emulated_instruction(vcpu);
2101
2102
if (vmload) {
2103
svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2104
svm->sysenter_eip_hi = 0;
2105
svm->sysenter_esp_hi = 0;
2106
} else {
2107
svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2108
}
2109
2110
kvm_vcpu_unmap(vcpu, &map);
2111
2112
return ret;
2113
}
2114
2115
static int vmload_interception(struct kvm_vcpu *vcpu)
2116
{
2117
return vmload_vmsave_interception(vcpu, true);
2118
}
2119
2120
static int vmsave_interception(struct kvm_vcpu *vcpu)
2121
{
2122
return vmload_vmsave_interception(vcpu, false);
2123
}
2124
2125
static int vmrun_interception(struct kvm_vcpu *vcpu)
2126
{
2127
if (nested_svm_check_permissions(vcpu))
2128
return 1;
2129
2130
return nested_svm_vmrun(vcpu);
2131
}
2132
2133
enum {
2134
NONE_SVM_INSTR,
2135
SVM_INSTR_VMRUN,
2136
SVM_INSTR_VMLOAD,
2137
SVM_INSTR_VMSAVE,
2138
};
2139
2140
/* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2141
static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2142
{
2143
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2144
2145
if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2146
return NONE_SVM_INSTR;
2147
2148
switch (ctxt->modrm) {
2149
case 0xd8: /* VMRUN */
2150
return SVM_INSTR_VMRUN;
2151
case 0xda: /* VMLOAD */
2152
return SVM_INSTR_VMLOAD;
2153
case 0xdb: /* VMSAVE */
2154
return SVM_INSTR_VMSAVE;
2155
default:
2156
break;
2157
}
2158
2159
return NONE_SVM_INSTR;
2160
}
2161
2162
static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2163
{
2164
const int guest_mode_exit_codes[] = {
2165
[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2166
[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2167
[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2168
};
2169
int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2170
[SVM_INSTR_VMRUN] = vmrun_interception,
2171
[SVM_INSTR_VMLOAD] = vmload_interception,
2172
[SVM_INSTR_VMSAVE] = vmsave_interception,
2173
};
2174
struct vcpu_svm *svm = to_svm(vcpu);
2175
int ret;
2176
2177
if (is_guest_mode(vcpu)) {
2178
/* Returns '1' or -errno on failure, '0' on success. */
2179
ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2180
if (ret)
2181
return ret;
2182
return 1;
2183
}
2184
return svm_instr_handlers[opcode](vcpu);
2185
}
2186
2187
/*
2188
* #GP handling code. Note that #GP can be triggered under the following two
2189
* cases:
2190
* 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2191
* some AMD CPUs when EAX of these instructions are in the reserved memory
2192
* regions (e.g. SMM memory on host).
2193
* 2) VMware backdoor
2194
*/
2195
static int gp_interception(struct kvm_vcpu *vcpu)
2196
{
2197
struct vcpu_svm *svm = to_svm(vcpu);
2198
u32 error_code = svm->vmcb->control.exit_info_1;
2199
int opcode;
2200
2201
/* Both #GP cases have zero error_code */
2202
if (error_code)
2203
goto reinject;
2204
2205
/* Decode the instruction for usage later */
2206
if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2207
goto reinject;
2208
2209
opcode = svm_instr_opcode(vcpu);
2210
2211
if (opcode == NONE_SVM_INSTR) {
2212
if (!enable_vmware_backdoor)
2213
goto reinject;
2214
2215
/*
2216
* VMware backdoor emulation on #GP interception only handles
2217
* IN{S}, OUT{S}, and RDPMC.
2218
*/
2219
if (!is_guest_mode(vcpu))
2220
return kvm_emulate_instruction(vcpu,
2221
EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2222
} else {
2223
/* All SVM instructions expect page aligned RAX */
2224
if (svm->vmcb->save.rax & ~PAGE_MASK)
2225
goto reinject;
2226
2227
return emulate_svm_instr(vcpu, opcode);
2228
}
2229
2230
reinject:
2231
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2232
return 1;
2233
}
2234
2235
void svm_set_gif(struct vcpu_svm *svm, bool value)
2236
{
2237
if (value) {
2238
/*
2239
* If VGIF is enabled, the STGI intercept is only added to
2240
* detect the opening of the SMI/NMI window; remove it now.
2241
* Likewise, clear the VINTR intercept, we will set it
2242
* again while processing KVM_REQ_EVENT if needed.
2243
*/
2244
if (vgif)
2245
svm_clr_intercept(svm, INTERCEPT_STGI);
2246
if (svm_is_intercept(svm, INTERCEPT_VINTR))
2247
svm_clear_vintr(svm);
2248
2249
enable_gif(svm);
2250
if (svm->vcpu.arch.smi_pending ||
2251
svm->vcpu.arch.nmi_pending ||
2252
kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2253
kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2254
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2255
} else {
2256
disable_gif(svm);
2257
2258
/*
2259
* After a CLGI no interrupts should come. But if vGIF is
2260
* in use, we still rely on the VINTR intercept (rather than
2261
* STGI) to detect an open interrupt window.
2262
*/
2263
if (!vgif)
2264
svm_clear_vintr(svm);
2265
}
2266
}
2267
2268
static int stgi_interception(struct kvm_vcpu *vcpu)
2269
{
2270
int ret;
2271
2272
if (nested_svm_check_permissions(vcpu))
2273
return 1;
2274
2275
ret = kvm_skip_emulated_instruction(vcpu);
2276
svm_set_gif(to_svm(vcpu), true);
2277
return ret;
2278
}
2279
2280
static int clgi_interception(struct kvm_vcpu *vcpu)
2281
{
2282
int ret;
2283
2284
if (nested_svm_check_permissions(vcpu))
2285
return 1;
2286
2287
ret = kvm_skip_emulated_instruction(vcpu);
2288
svm_set_gif(to_svm(vcpu), false);
2289
return ret;
2290
}
2291
2292
static int invlpga_interception(struct kvm_vcpu *vcpu)
2293
{
2294
gva_t gva = kvm_rax_read(vcpu);
2295
u32 asid = kvm_rcx_read(vcpu);
2296
2297
/* FIXME: Handle an address size prefix. */
2298
if (!is_long_mode(vcpu))
2299
gva = (u32)gva;
2300
2301
trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2302
2303
/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2304
kvm_mmu_invlpg(vcpu, gva);
2305
2306
return kvm_skip_emulated_instruction(vcpu);
2307
}
2308
2309
static int skinit_interception(struct kvm_vcpu *vcpu)
2310
{
2311
trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2312
2313
kvm_queue_exception(vcpu, UD_VECTOR);
2314
return 1;
2315
}
2316
2317
static int task_switch_interception(struct kvm_vcpu *vcpu)
2318
{
2319
struct vcpu_svm *svm = to_svm(vcpu);
2320
u16 tss_selector;
2321
int reason;
2322
int int_type = svm->vmcb->control.exit_int_info &
2323
SVM_EXITINTINFO_TYPE_MASK;
2324
int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2325
uint32_t type =
2326
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2327
uint32_t idt_v =
2328
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2329
bool has_error_code = false;
2330
u32 error_code = 0;
2331
2332
tss_selector = (u16)svm->vmcb->control.exit_info_1;
2333
2334
if (svm->vmcb->control.exit_info_2 &
2335
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2336
reason = TASK_SWITCH_IRET;
2337
else if (svm->vmcb->control.exit_info_2 &
2338
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2339
reason = TASK_SWITCH_JMP;
2340
else if (idt_v)
2341
reason = TASK_SWITCH_GATE;
2342
else
2343
reason = TASK_SWITCH_CALL;
2344
2345
if (reason == TASK_SWITCH_GATE) {
2346
switch (type) {
2347
case SVM_EXITINTINFO_TYPE_NMI:
2348
vcpu->arch.nmi_injected = false;
2349
break;
2350
case SVM_EXITINTINFO_TYPE_EXEPT:
2351
if (svm->vmcb->control.exit_info_2 &
2352
(1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2353
has_error_code = true;
2354
error_code =
2355
(u32)svm->vmcb->control.exit_info_2;
2356
}
2357
kvm_clear_exception_queue(vcpu);
2358
break;
2359
case SVM_EXITINTINFO_TYPE_INTR:
2360
case SVM_EXITINTINFO_TYPE_SOFT:
2361
kvm_clear_interrupt_queue(vcpu);
2362
break;
2363
default:
2364
break;
2365
}
2366
}
2367
2368
if (reason != TASK_SWITCH_GATE ||
2369
int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2370
(int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2371
(int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2372
if (!svm_skip_emulated_instruction(vcpu))
2373
return 0;
2374
}
2375
2376
if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2377
int_vec = -1;
2378
2379
return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2380
has_error_code, error_code);
2381
}
2382
2383
static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2384
{
2385
if (!sev_es_guest(svm->vcpu.kvm))
2386
svm_clr_intercept(svm, INTERCEPT_IRET);
2387
}
2388
2389
static void svm_set_iret_intercept(struct vcpu_svm *svm)
2390
{
2391
if (!sev_es_guest(svm->vcpu.kvm))
2392
svm_set_intercept(svm, INTERCEPT_IRET);
2393
}
2394
2395
static int iret_interception(struct kvm_vcpu *vcpu)
2396
{
2397
struct vcpu_svm *svm = to_svm(vcpu);
2398
2399
WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2400
2401
++vcpu->stat.nmi_window_exits;
2402
svm->awaiting_iret_completion = true;
2403
2404
svm_clr_iret_intercept(svm);
2405
svm->nmi_iret_rip = kvm_rip_read(vcpu);
2406
2407
kvm_make_request(KVM_REQ_EVENT, vcpu);
2408
return 1;
2409
}
2410
2411
static int invlpg_interception(struct kvm_vcpu *vcpu)
2412
{
2413
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2414
return kvm_emulate_instruction(vcpu, 0);
2415
2416
kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2417
return kvm_skip_emulated_instruction(vcpu);
2418
}
2419
2420
static int emulate_on_interception(struct kvm_vcpu *vcpu)
2421
{
2422
return kvm_emulate_instruction(vcpu, 0);
2423
}
2424
2425
static int rsm_interception(struct kvm_vcpu *vcpu)
2426
{
2427
return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2428
}
2429
2430
static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2431
unsigned long val)
2432
{
2433
struct vcpu_svm *svm = to_svm(vcpu);
2434
unsigned long cr0 = vcpu->arch.cr0;
2435
bool ret = false;
2436
2437
if (!is_guest_mode(vcpu) ||
2438
(!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2439
return false;
2440
2441
cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2442
val &= ~SVM_CR0_SELECTIVE_MASK;
2443
2444
if (cr0 ^ val) {
2445
svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2446
svm->vmcb->control.exit_code_hi = 0;
2447
ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2448
}
2449
2450
return ret;
2451
}
2452
2453
#define CR_VALID (1ULL << 63)
2454
2455
static int cr_interception(struct kvm_vcpu *vcpu)
2456
{
2457
struct vcpu_svm *svm = to_svm(vcpu);
2458
int reg, cr;
2459
unsigned long val;
2460
int err;
2461
2462
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2463
return emulate_on_interception(vcpu);
2464
2465
if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2466
return emulate_on_interception(vcpu);
2467
2468
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2469
if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2470
cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2471
else
2472
cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2473
2474
err = 0;
2475
if (cr >= 16) { /* mov to cr */
2476
cr -= 16;
2477
val = kvm_register_read(vcpu, reg);
2478
trace_kvm_cr_write(cr, val);
2479
switch (cr) {
2480
case 0:
2481
if (!check_selective_cr0_intercepted(vcpu, val))
2482
err = kvm_set_cr0(vcpu, val);
2483
else
2484
return 1;
2485
2486
break;
2487
case 3:
2488
err = kvm_set_cr3(vcpu, val);
2489
break;
2490
case 4:
2491
err = kvm_set_cr4(vcpu, val);
2492
break;
2493
case 8:
2494
err = kvm_set_cr8(vcpu, val);
2495
break;
2496
default:
2497
WARN(1, "unhandled write to CR%d", cr);
2498
kvm_queue_exception(vcpu, UD_VECTOR);
2499
return 1;
2500
}
2501
} else { /* mov from cr */
2502
switch (cr) {
2503
case 0:
2504
val = kvm_read_cr0(vcpu);
2505
break;
2506
case 2:
2507
val = vcpu->arch.cr2;
2508
break;
2509
case 3:
2510
val = kvm_read_cr3(vcpu);
2511
break;
2512
case 4:
2513
val = kvm_read_cr4(vcpu);
2514
break;
2515
case 8:
2516
val = kvm_get_cr8(vcpu);
2517
break;
2518
default:
2519
WARN(1, "unhandled read from CR%d", cr);
2520
kvm_queue_exception(vcpu, UD_VECTOR);
2521
return 1;
2522
}
2523
kvm_register_write(vcpu, reg, val);
2524
trace_kvm_cr_read(cr, val);
2525
}
2526
return kvm_complete_insn_gp(vcpu, err);
2527
}
2528
2529
static int cr_trap(struct kvm_vcpu *vcpu)
2530
{
2531
struct vcpu_svm *svm = to_svm(vcpu);
2532
unsigned long old_value, new_value;
2533
unsigned int cr;
2534
int ret = 0;
2535
2536
new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2537
2538
cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2539
switch (cr) {
2540
case 0:
2541
old_value = kvm_read_cr0(vcpu);
2542
svm_set_cr0(vcpu, new_value);
2543
2544
kvm_post_set_cr0(vcpu, old_value, new_value);
2545
break;
2546
case 4:
2547
old_value = kvm_read_cr4(vcpu);
2548
svm_set_cr4(vcpu, new_value);
2549
2550
kvm_post_set_cr4(vcpu, old_value, new_value);
2551
break;
2552
case 8:
2553
ret = kvm_set_cr8(vcpu, new_value);
2554
break;
2555
default:
2556
WARN(1, "unhandled CR%d write trap", cr);
2557
kvm_queue_exception(vcpu, UD_VECTOR);
2558
return 1;
2559
}
2560
2561
return kvm_complete_insn_gp(vcpu, ret);
2562
}
2563
2564
static int dr_interception(struct kvm_vcpu *vcpu)
2565
{
2566
struct vcpu_svm *svm = to_svm(vcpu);
2567
int reg, dr;
2568
int err = 0;
2569
2570
/*
2571
* SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2572
* for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2573
*/
2574
if (sev_es_guest(vcpu->kvm))
2575
return 1;
2576
2577
if (vcpu->guest_debug == 0) {
2578
/*
2579
* No more DR vmexits; force a reload of the debug registers
2580
* and reenter on this instruction. The next vmexit will
2581
* retrieve the full state of the debug registers.
2582
*/
2583
clr_dr_intercepts(svm);
2584
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2585
return 1;
2586
}
2587
2588
if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2589
return emulate_on_interception(vcpu);
2590
2591
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2592
dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2593
if (dr >= 16) { /* mov to DRn */
2594
dr -= 16;
2595
err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2596
} else {
2597
kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2598
}
2599
2600
return kvm_complete_insn_gp(vcpu, err);
2601
}
2602
2603
static int cr8_write_interception(struct kvm_vcpu *vcpu)
2604
{
2605
int r;
2606
2607
u8 cr8_prev = kvm_get_cr8(vcpu);
2608
/* instruction emulation calls kvm_set_cr8() */
2609
r = cr_interception(vcpu);
2610
if (lapic_in_kernel(vcpu))
2611
return r;
2612
if (cr8_prev <= kvm_get_cr8(vcpu))
2613
return r;
2614
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2615
return 0;
2616
}
2617
2618
static int efer_trap(struct kvm_vcpu *vcpu)
2619
{
2620
struct msr_data msr_info;
2621
int ret;
2622
2623
/*
2624
* Clear the EFER_SVME bit from EFER. The SVM code always sets this
2625
* bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2626
* whether the guest has X86_FEATURE_SVM - this avoids a failure if
2627
* the guest doesn't have X86_FEATURE_SVM.
2628
*/
2629
msr_info.host_initiated = false;
2630
msr_info.index = MSR_EFER;
2631
msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2632
ret = kvm_set_msr_common(vcpu, &msr_info);
2633
2634
return kvm_complete_insn_gp(vcpu, ret);
2635
}
2636
2637
static int svm_get_feature_msr(u32 msr, u64 *data)
2638
{
2639
*data = 0;
2640
2641
switch (msr) {
2642
case MSR_AMD64_DE_CFG:
2643
if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2644
*data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2645
break;
2646
default:
2647
return KVM_MSR_RET_UNSUPPORTED;
2648
}
2649
2650
return 0;
2651
}
2652
2653
static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu,
2654
struct msr_data *msr_info)
2655
{
2656
return sev_es_guest(vcpu->kvm) && vcpu->arch.guest_state_protected &&
2657
msr_info->index != MSR_IA32_XSS &&
2658
!msr_write_intercepted(vcpu, msr_info->index);
2659
}
2660
2661
static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2662
{
2663
struct vcpu_svm *svm = to_svm(vcpu);
2664
2665
if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2666
msr_info->data = 0;
2667
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2668
}
2669
2670
switch (msr_info->index) {
2671
case MSR_AMD64_TSC_RATIO:
2672
if (!msr_info->host_initiated &&
2673
!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2674
return 1;
2675
msr_info->data = svm->tsc_ratio_msr;
2676
break;
2677
case MSR_STAR:
2678
msr_info->data = svm->vmcb01.ptr->save.star;
2679
break;
2680
#ifdef CONFIG_X86_64
2681
case MSR_LSTAR:
2682
msr_info->data = svm->vmcb01.ptr->save.lstar;
2683
break;
2684
case MSR_CSTAR:
2685
msr_info->data = svm->vmcb01.ptr->save.cstar;
2686
break;
2687
case MSR_GS_BASE:
2688
msr_info->data = svm->vmcb01.ptr->save.gs.base;
2689
break;
2690
case MSR_FS_BASE:
2691
msr_info->data = svm->vmcb01.ptr->save.fs.base;
2692
break;
2693
case MSR_KERNEL_GS_BASE:
2694
msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2695
break;
2696
case MSR_SYSCALL_MASK:
2697
msr_info->data = svm->vmcb01.ptr->save.sfmask;
2698
break;
2699
#endif
2700
case MSR_IA32_SYSENTER_CS:
2701
msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2702
break;
2703
case MSR_IA32_SYSENTER_EIP:
2704
msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2705
if (guest_cpuid_is_intel_compatible(vcpu))
2706
msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2707
break;
2708
case MSR_IA32_SYSENTER_ESP:
2709
msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2710
if (guest_cpuid_is_intel_compatible(vcpu))
2711
msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2712
break;
2713
case MSR_IA32_S_CET:
2714
msr_info->data = svm->vmcb->save.s_cet;
2715
break;
2716
case MSR_IA32_INT_SSP_TAB:
2717
msr_info->data = svm->vmcb->save.isst_addr;
2718
break;
2719
case MSR_KVM_INTERNAL_GUEST_SSP:
2720
msr_info->data = svm->vmcb->save.ssp;
2721
break;
2722
case MSR_TSC_AUX:
2723
msr_info->data = svm->tsc_aux;
2724
break;
2725
case MSR_IA32_DEBUGCTLMSR:
2726
msr_info->data = svm->vmcb->save.dbgctl;
2727
break;
2728
case MSR_IA32_LASTBRANCHFROMIP:
2729
msr_info->data = svm->vmcb->save.br_from;
2730
break;
2731
case MSR_IA32_LASTBRANCHTOIP:
2732
msr_info->data = svm->vmcb->save.br_to;
2733
break;
2734
case MSR_IA32_LASTINTFROMIP:
2735
msr_info->data = svm->vmcb->save.last_excp_from;
2736
break;
2737
case MSR_IA32_LASTINTTOIP:
2738
msr_info->data = svm->vmcb->save.last_excp_to;
2739
break;
2740
case MSR_VM_HSAVE_PA:
2741
msr_info->data = svm->nested.hsave_msr;
2742
break;
2743
case MSR_VM_CR:
2744
msr_info->data = svm->nested.vm_cr_msr;
2745
break;
2746
case MSR_IA32_SPEC_CTRL:
2747
if (!msr_info->host_initiated &&
2748
!guest_has_spec_ctrl_msr(vcpu))
2749
return 1;
2750
2751
if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2752
msr_info->data = svm->vmcb->save.spec_ctrl;
2753
else
2754
msr_info->data = svm->spec_ctrl;
2755
break;
2756
case MSR_AMD64_VIRT_SPEC_CTRL:
2757
if (!msr_info->host_initiated &&
2758
!guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2759
return 1;
2760
2761
msr_info->data = svm->virt_spec_ctrl;
2762
break;
2763
case MSR_F15H_IC_CFG: {
2764
2765
int family, model;
2766
2767
family = guest_cpuid_family(vcpu);
2768
model = guest_cpuid_model(vcpu);
2769
2770
if (family < 0 || model < 0)
2771
return kvm_get_msr_common(vcpu, msr_info);
2772
2773
msr_info->data = 0;
2774
2775
if (family == 0x15 &&
2776
(model >= 0x2 && model < 0x20))
2777
msr_info->data = 0x1E;
2778
}
2779
break;
2780
case MSR_AMD64_DE_CFG:
2781
msr_info->data = svm->msr_decfg;
2782
break;
2783
default:
2784
return kvm_get_msr_common(vcpu, msr_info);
2785
}
2786
return 0;
2787
}
2788
2789
static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2790
{
2791
struct vcpu_svm *svm = to_svm(vcpu);
2792
if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2793
return kvm_complete_insn_gp(vcpu, err);
2794
2795
svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
2796
return 1;
2797
}
2798
2799
static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2800
{
2801
struct vcpu_svm *svm = to_svm(vcpu);
2802
int svm_dis, chg_mask;
2803
2804
if (data & ~SVM_VM_CR_VALID_MASK)
2805
return 1;
2806
2807
chg_mask = SVM_VM_CR_VALID_MASK;
2808
2809
if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2810
chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2811
2812
svm->nested.vm_cr_msr &= ~chg_mask;
2813
svm->nested.vm_cr_msr |= (data & chg_mask);
2814
2815
svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2816
2817
/* check for svm_disable while efer.svme is set */
2818
if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2819
return 1;
2820
2821
return 0;
2822
}
2823
2824
static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2825
{
2826
struct vcpu_svm *svm = to_svm(vcpu);
2827
int ret = 0;
2828
2829
u32 ecx = msr->index;
2830
u64 data = msr->data;
2831
2832
if (sev_es_prevent_msr_access(vcpu, msr))
2833
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2834
2835
switch (ecx) {
2836
case MSR_AMD64_TSC_RATIO:
2837
2838
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
2839
2840
if (!msr->host_initiated)
2841
return 1;
2842
/*
2843
* In case TSC scaling is not enabled, always
2844
* leave this MSR at the default value.
2845
*
2846
* Due to bug in qemu 6.2.0, it would try to set
2847
* this msr to 0 if tsc scaling is not enabled.
2848
* Ignore this value as well.
2849
*/
2850
if (data != 0 && data != svm->tsc_ratio_msr)
2851
return 1;
2852
break;
2853
}
2854
2855
if (data & SVM_TSC_RATIO_RSVD)
2856
return 1;
2857
2858
svm->tsc_ratio_msr = data;
2859
2860
if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
2861
is_guest_mode(vcpu))
2862
nested_svm_update_tsc_ratio_msr(vcpu);
2863
2864
break;
2865
case MSR_IA32_CR_PAT:
2866
ret = kvm_set_msr_common(vcpu, msr);
2867
if (ret)
2868
break;
2869
2870
svm->vmcb01.ptr->save.g_pat = data;
2871
if (is_guest_mode(vcpu))
2872
nested_vmcb02_compute_g_pat(svm);
2873
vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2874
break;
2875
case MSR_IA32_SPEC_CTRL:
2876
if (!msr->host_initiated &&
2877
!guest_has_spec_ctrl_msr(vcpu))
2878
return 1;
2879
2880
if (kvm_spec_ctrl_test_value(data))
2881
return 1;
2882
2883
if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2884
svm->vmcb->save.spec_ctrl = data;
2885
else
2886
svm->spec_ctrl = data;
2887
if (!data)
2888
break;
2889
2890
/*
2891
* For non-nested:
2892
* When it's written (to non-zero) for the first time, pass
2893
* it through.
2894
*
2895
* For nested:
2896
* The handling of the MSR bitmap for L2 guests is done in
2897
* nested_svm_merge_msrpm().
2898
* We update the L1 MSR bit as well since it will end up
2899
* touching the MSR anyway now.
2900
*/
2901
svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
2902
break;
2903
case MSR_AMD64_VIRT_SPEC_CTRL:
2904
if (!msr->host_initiated &&
2905
!guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2906
return 1;
2907
2908
if (data & ~SPEC_CTRL_SSBD)
2909
return 1;
2910
2911
svm->virt_spec_ctrl = data;
2912
break;
2913
case MSR_STAR:
2914
svm->vmcb01.ptr->save.star = data;
2915
break;
2916
#ifdef CONFIG_X86_64
2917
case MSR_LSTAR:
2918
svm->vmcb01.ptr->save.lstar = data;
2919
break;
2920
case MSR_CSTAR:
2921
svm->vmcb01.ptr->save.cstar = data;
2922
break;
2923
case MSR_GS_BASE:
2924
svm->vmcb01.ptr->save.gs.base = data;
2925
break;
2926
case MSR_FS_BASE:
2927
svm->vmcb01.ptr->save.fs.base = data;
2928
break;
2929
case MSR_KERNEL_GS_BASE:
2930
svm->vmcb01.ptr->save.kernel_gs_base = data;
2931
break;
2932
case MSR_SYSCALL_MASK:
2933
svm->vmcb01.ptr->save.sfmask = data;
2934
break;
2935
#endif
2936
case MSR_IA32_SYSENTER_CS:
2937
svm->vmcb01.ptr->save.sysenter_cs = data;
2938
break;
2939
case MSR_IA32_SYSENTER_EIP:
2940
svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2941
/*
2942
* We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2943
* when we spoof an Intel vendor ID (for cross vendor migration).
2944
* In this case we use this intercept to track the high
2945
* 32 bit part of these msrs to support Intel's
2946
* implementation of SYSENTER/SYSEXIT.
2947
*/
2948
svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2949
break;
2950
case MSR_IA32_SYSENTER_ESP:
2951
svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2952
svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2953
break;
2954
case MSR_IA32_S_CET:
2955
svm->vmcb->save.s_cet = data;
2956
vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2957
break;
2958
case MSR_IA32_INT_SSP_TAB:
2959
svm->vmcb->save.isst_addr = data;
2960
vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2961
break;
2962
case MSR_KVM_INTERNAL_GUEST_SSP:
2963
svm->vmcb->save.ssp = data;
2964
vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2965
break;
2966
case MSR_TSC_AUX:
2967
/*
2968
* TSC_AUX is always virtualized for SEV-ES guests when the
2969
* feature is available. The user return MSR support is not
2970
* required in this case because TSC_AUX is restored on #VMEXIT
2971
* from the host save area.
2972
*/
2973
if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
2974
break;
2975
2976
/*
2977
* TSC_AUX is usually changed only during boot and never read
2978
* directly. Intercept TSC_AUX and switch it via user return.
2979
*/
2980
preempt_disable();
2981
ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2982
preempt_enable();
2983
if (ret)
2984
break;
2985
2986
svm->tsc_aux = data;
2987
break;
2988
case MSR_IA32_DEBUGCTLMSR:
2989
if (!lbrv) {
2990
kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
2991
break;
2992
}
2993
2994
/*
2995
* Suppress BTF as KVM doesn't virtualize BTF, but there's no
2996
* way to communicate lack of support to the guest.
2997
*/
2998
if (data & DEBUGCTLMSR_BTF) {
2999
kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
3000
data &= ~DEBUGCTLMSR_BTF;
3001
}
3002
3003
if (data & DEBUGCTL_RESERVED_BITS)
3004
return 1;
3005
3006
if (svm->vmcb->save.dbgctl == data)
3007
break;
3008
3009
svm->vmcb->save.dbgctl = data;
3010
vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
3011
svm_update_lbrv(vcpu);
3012
break;
3013
case MSR_VM_HSAVE_PA:
3014
/*
3015
* Old kernels did not validate the value written to
3016
* MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3017
* value to allow live migrating buggy or malicious guests
3018
* originating from those kernels.
3019
*/
3020
if (!msr->host_initiated && !page_address_valid(vcpu, data))
3021
return 1;
3022
3023
svm->nested.hsave_msr = data & PAGE_MASK;
3024
break;
3025
case MSR_VM_CR:
3026
return svm_set_vm_cr(vcpu, data);
3027
case MSR_VM_IGNNE:
3028
kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3029
break;
3030
case MSR_AMD64_DE_CFG: {
3031
u64 supported_de_cfg;
3032
3033
if (svm_get_feature_msr(ecx, &supported_de_cfg))
3034
return 1;
3035
3036
if (data & ~supported_de_cfg)
3037
return 1;
3038
3039
svm->msr_decfg = data;
3040
break;
3041
}
3042
default:
3043
return kvm_set_msr_common(vcpu, msr);
3044
}
3045
return ret;
3046
}
3047
3048
static int msr_interception(struct kvm_vcpu *vcpu)
3049
{
3050
if (to_svm(vcpu)->vmcb->control.exit_info_1)
3051
return kvm_emulate_wrmsr(vcpu);
3052
else
3053
return kvm_emulate_rdmsr(vcpu);
3054
}
3055
3056
static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3057
{
3058
kvm_make_request(KVM_REQ_EVENT, vcpu);
3059
svm_clear_vintr(to_svm(vcpu));
3060
3061
/*
3062
* If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3063
* In this case AVIC was temporarily disabled for
3064
* requesting the IRQ window and we have to re-enable it.
3065
*
3066
* If running nested, still remove the VM wide AVIC inhibit to
3067
* support case in which the interrupt window was requested when the
3068
* vCPU was not running nested.
3069
3070
* All vCPUs which run still run nested, will remain to have their
3071
* AVIC still inhibited due to per-cpu AVIC inhibition.
3072
*/
3073
kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3074
3075
++vcpu->stat.irq_window_exits;
3076
return 1;
3077
}
3078
3079
static int pause_interception(struct kvm_vcpu *vcpu)
3080
{
3081
bool in_kernel;
3082
/*
3083
* CPL is not made available for an SEV-ES guest, therefore
3084
* vcpu->arch.preempted_in_kernel can never be true. Just
3085
* set in_kernel to false as well.
3086
*/
3087
in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3088
3089
grow_ple_window(vcpu);
3090
3091
kvm_vcpu_on_spin(vcpu, in_kernel);
3092
return kvm_skip_emulated_instruction(vcpu);
3093
}
3094
3095
static int invpcid_interception(struct kvm_vcpu *vcpu)
3096
{
3097
struct vcpu_svm *svm = to_svm(vcpu);
3098
unsigned long type;
3099
gva_t gva;
3100
3101
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3102
kvm_queue_exception(vcpu, UD_VECTOR);
3103
return 1;
3104
}
3105
3106
/*
3107
* For an INVPCID intercept:
3108
* EXITINFO1 provides the linear address of the memory operand.
3109
* EXITINFO2 provides the contents of the register operand.
3110
*/
3111
type = svm->vmcb->control.exit_info_2;
3112
gva = svm->vmcb->control.exit_info_1;
3113
3114
/*
3115
* FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3116
* stack segment is used. The intercept takes priority over all
3117
* #GP checks except CPL>0, but somehow still generates a linear
3118
* address? The APM is sorely lacking.
3119
*/
3120
if (is_noncanonical_address(gva, vcpu, 0)) {
3121
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3122
return 1;
3123
}
3124
3125
return kvm_handle_invpcid(vcpu, type, gva);
3126
}
3127
3128
static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu)
3129
{
3130
struct vcpu_svm *svm = to_svm(vcpu);
3131
3132
/*
3133
* If userspace has NOT changed RIP, then KVM's ABI is to let the guest
3134
* execute the bus-locking instruction. Set the bus lock counter to '1'
3135
* to effectively step past the bus lock.
3136
*/
3137
if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))
3138
svm->vmcb->control.bus_lock_counter = 1;
3139
3140
return 1;
3141
}
3142
3143
static int bus_lock_exit(struct kvm_vcpu *vcpu)
3144
{
3145
struct vcpu_svm *svm = to_svm(vcpu);
3146
3147
vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
3148
vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
3149
3150
vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
3151
vcpu->arch.complete_userspace_io = complete_userspace_buslock;
3152
3153
if (is_guest_mode(vcpu))
3154
svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip;
3155
3156
return 0;
3157
}
3158
3159
static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3160
[SVM_EXIT_READ_CR0] = cr_interception,
3161
[SVM_EXIT_READ_CR3] = cr_interception,
3162
[SVM_EXIT_READ_CR4] = cr_interception,
3163
[SVM_EXIT_READ_CR8] = cr_interception,
3164
[SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3165
[SVM_EXIT_WRITE_CR0] = cr_interception,
3166
[SVM_EXIT_WRITE_CR3] = cr_interception,
3167
[SVM_EXIT_WRITE_CR4] = cr_interception,
3168
[SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3169
[SVM_EXIT_READ_DR0] = dr_interception,
3170
[SVM_EXIT_READ_DR1] = dr_interception,
3171
[SVM_EXIT_READ_DR2] = dr_interception,
3172
[SVM_EXIT_READ_DR3] = dr_interception,
3173
[SVM_EXIT_READ_DR4] = dr_interception,
3174
[SVM_EXIT_READ_DR5] = dr_interception,
3175
[SVM_EXIT_READ_DR6] = dr_interception,
3176
[SVM_EXIT_READ_DR7] = dr_interception,
3177
[SVM_EXIT_WRITE_DR0] = dr_interception,
3178
[SVM_EXIT_WRITE_DR1] = dr_interception,
3179
[SVM_EXIT_WRITE_DR2] = dr_interception,
3180
[SVM_EXIT_WRITE_DR3] = dr_interception,
3181
[SVM_EXIT_WRITE_DR4] = dr_interception,
3182
[SVM_EXIT_WRITE_DR5] = dr_interception,
3183
[SVM_EXIT_WRITE_DR6] = dr_interception,
3184
[SVM_EXIT_WRITE_DR7] = dr_interception,
3185
[SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3186
[SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3187
[SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3188
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3189
[SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3190
[SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3191
[SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3192
[SVM_EXIT_INTR] = intr_interception,
3193
[SVM_EXIT_NMI] = nmi_interception,
3194
[SVM_EXIT_SMI] = smi_interception,
3195
[SVM_EXIT_VINTR] = interrupt_window_interception,
3196
[SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3197
[SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3198
[SVM_EXIT_IRET] = iret_interception,
3199
[SVM_EXIT_INVD] = kvm_emulate_invd,
3200
[SVM_EXIT_PAUSE] = pause_interception,
3201
[SVM_EXIT_HLT] = kvm_emulate_halt,
3202
[SVM_EXIT_INVLPG] = invlpg_interception,
3203
[SVM_EXIT_INVLPGA] = invlpga_interception,
3204
[SVM_EXIT_IOIO] = io_interception,
3205
[SVM_EXIT_MSR] = msr_interception,
3206
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3207
[SVM_EXIT_SHUTDOWN] = shutdown_interception,
3208
[SVM_EXIT_VMRUN] = vmrun_interception,
3209
[SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3210
[SVM_EXIT_VMLOAD] = vmload_interception,
3211
[SVM_EXIT_VMSAVE] = vmsave_interception,
3212
[SVM_EXIT_STGI] = stgi_interception,
3213
[SVM_EXIT_CLGI] = clgi_interception,
3214
[SVM_EXIT_SKINIT] = skinit_interception,
3215
[SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3216
[SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3217
[SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3218
[SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3219
[SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3220
[SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3221
[SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3222
[SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3223
[SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3224
[SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3225
[SVM_EXIT_INVPCID] = invpcid_interception,
3226
[SVM_EXIT_IDLE_HLT] = kvm_emulate_halt,
3227
[SVM_EXIT_NPF] = npf_interception,
3228
[SVM_EXIT_BUS_LOCK] = bus_lock_exit,
3229
[SVM_EXIT_RSM] = rsm_interception,
3230
[SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3231
[SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3232
#ifdef CONFIG_KVM_AMD_SEV
3233
[SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3234
#endif
3235
};
3236
3237
static void dump_vmcb(struct kvm_vcpu *vcpu)
3238
{
3239
struct vcpu_svm *svm = to_svm(vcpu);
3240
struct vmcb_control_area *control = &svm->vmcb->control;
3241
struct vmcb_save_area *save = &svm->vmcb->save;
3242
struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3243
char *vm_type;
3244
3245
if (!dump_invalid_vmcb) {
3246
pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3247
return;
3248
}
3249
3250
guard(mutex)(&vmcb_dump_mutex);
3251
3252
vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" :
3253
sev_es_guest(vcpu->kvm) ? "SEV-ES" :
3254
sev_guest(vcpu->kvm) ? "SEV" : "SVM";
3255
3256
pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n",
3257
vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3258
pr_err("VMCB Control Area:\n");
3259
pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3260
pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3261
pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3262
pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3263
pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3264
pr_err("%-20s%08x %08x\n", "intercepts:",
3265
control->intercepts[INTERCEPT_WORD3],
3266
control->intercepts[INTERCEPT_WORD4]);
3267
pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3268
pr_err("%-20s%d\n", "pause filter threshold:",
3269
control->pause_filter_thresh);
3270
pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3271
pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3272
pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3273
pr_err("%-20s%d\n", "asid:", control->asid);
3274
pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3275
pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3276
pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3277
pr_err("%-20s%08x\n", "int_state:", control->int_state);
3278
pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3279
pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3280
pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3281
pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3282
pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3283
pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3284
pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3285
pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3286
pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3287
pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3288
pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3289
pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3290
pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3291
pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3292
pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3293
pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3294
pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3295
pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features);
3296
pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features);
3297
3298
if (sev_es_guest(vcpu->kvm)) {
3299
save = sev_decrypt_vmsa(vcpu);
3300
if (!save)
3301
goto no_vmsa;
3302
3303
save01 = save;
3304
}
3305
3306
pr_err("VMCB State Save Area:\n");
3307
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3308
"es:",
3309
save->es.selector, save->es.attrib,
3310
save->es.limit, save->es.base);
3311
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3312
"cs:",
3313
save->cs.selector, save->cs.attrib,
3314
save->cs.limit, save->cs.base);
3315
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3316
"ss:",
3317
save->ss.selector, save->ss.attrib,
3318
save->ss.limit, save->ss.base);
3319
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3320
"ds:",
3321
save->ds.selector, save->ds.attrib,
3322
save->ds.limit, save->ds.base);
3323
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3324
"fs:",
3325
save01->fs.selector, save01->fs.attrib,
3326
save01->fs.limit, save01->fs.base);
3327
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3328
"gs:",
3329
save01->gs.selector, save01->gs.attrib,
3330
save01->gs.limit, save01->gs.base);
3331
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3332
"gdtr:",
3333
save->gdtr.selector, save->gdtr.attrib,
3334
save->gdtr.limit, save->gdtr.base);
3335
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3336
"ldtr:",
3337
save01->ldtr.selector, save01->ldtr.attrib,
3338
save01->ldtr.limit, save01->ldtr.base);
3339
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3340
"idtr:",
3341
save->idtr.selector, save->idtr.attrib,
3342
save->idtr.limit, save->idtr.base);
3343
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3344
"tr:",
3345
save01->tr.selector, save01->tr.attrib,
3346
save01->tr.limit, save01->tr.base);
3347
pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3348
save->vmpl, save->cpl, save->efer);
3349
pr_err("%-15s %016llx %-13s %016llx\n",
3350
"cr0:", save->cr0, "cr2:", save->cr2);
3351
pr_err("%-15s %016llx %-13s %016llx\n",
3352
"cr3:", save->cr3, "cr4:", save->cr4);
3353
pr_err("%-15s %016llx %-13s %016llx\n",
3354
"dr6:", save->dr6, "dr7:", save->dr7);
3355
pr_err("%-15s %016llx %-13s %016llx\n",
3356
"rip:", save->rip, "rflags:", save->rflags);
3357
pr_err("%-15s %016llx %-13s %016llx\n",
3358
"rsp:", save->rsp, "rax:", save->rax);
3359
pr_err("%-15s %016llx %-13s %016llx\n",
3360
"s_cet:", save->s_cet, "ssp:", save->ssp);
3361
pr_err("%-15s %016llx\n",
3362
"isst_addr:", save->isst_addr);
3363
pr_err("%-15s %016llx %-13s %016llx\n",
3364
"star:", save01->star, "lstar:", save01->lstar);
3365
pr_err("%-15s %016llx %-13s %016llx\n",
3366
"cstar:", save01->cstar, "sfmask:", save01->sfmask);
3367
pr_err("%-15s %016llx %-13s %016llx\n",
3368
"kernel_gs_base:", save01->kernel_gs_base,
3369
"sysenter_cs:", save01->sysenter_cs);
3370
pr_err("%-15s %016llx %-13s %016llx\n",
3371
"sysenter_esp:", save01->sysenter_esp,
3372
"sysenter_eip:", save01->sysenter_eip);
3373
pr_err("%-15s %016llx %-13s %016llx\n",
3374
"gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3375
pr_err("%-15s %016llx %-13s %016llx\n",
3376
"br_from:", save->br_from, "br_to:", save->br_to);
3377
pr_err("%-15s %016llx %-13s %016llx\n",
3378
"excp_from:", save->last_excp_from,
3379
"excp_to:", save->last_excp_to);
3380
3381
if (sev_es_guest(vcpu->kvm)) {
3382
struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save;
3383
3384
pr_err("%-15s %016llx\n",
3385
"sev_features", vmsa->sev_features);
3386
3387
pr_err("%-15s %016llx %-13s %016llx\n",
3388
"pl0_ssp:", vmsa->pl0_ssp, "pl1_ssp:", vmsa->pl1_ssp);
3389
pr_err("%-15s %016llx %-13s %016llx\n",
3390
"pl2_ssp:", vmsa->pl2_ssp, "pl3_ssp:", vmsa->pl3_ssp);
3391
pr_err("%-15s %016llx\n",
3392
"u_cet:", vmsa->u_cet);
3393
3394
pr_err("%-15s %016llx %-13s %016llx\n",
3395
"rax:", vmsa->rax, "rbx:", vmsa->rbx);
3396
pr_err("%-15s %016llx %-13s %016llx\n",
3397
"rcx:", vmsa->rcx, "rdx:", vmsa->rdx);
3398
pr_err("%-15s %016llx %-13s %016llx\n",
3399
"rsi:", vmsa->rsi, "rdi:", vmsa->rdi);
3400
pr_err("%-15s %016llx %-13s %016llx\n",
3401
"rbp:", vmsa->rbp, "rsp:", vmsa->rsp);
3402
pr_err("%-15s %016llx %-13s %016llx\n",
3403
"r8:", vmsa->r8, "r9:", vmsa->r9);
3404
pr_err("%-15s %016llx %-13s %016llx\n",
3405
"r10:", vmsa->r10, "r11:", vmsa->r11);
3406
pr_err("%-15s %016llx %-13s %016llx\n",
3407
"r12:", vmsa->r12, "r13:", vmsa->r13);
3408
pr_err("%-15s %016llx %-13s %016llx\n",
3409
"r14:", vmsa->r14, "r15:", vmsa->r15);
3410
pr_err("%-15s %016llx %-13s %016llx\n",
3411
"xcr0:", vmsa->xcr0, "xss:", vmsa->xss);
3412
} else {
3413
pr_err("%-15s %016llx %-13s %016lx\n",
3414
"rax:", save->rax, "rbx:",
3415
vcpu->arch.regs[VCPU_REGS_RBX]);
3416
pr_err("%-15s %016lx %-13s %016lx\n",
3417
"rcx:", vcpu->arch.regs[VCPU_REGS_RCX],
3418
"rdx:", vcpu->arch.regs[VCPU_REGS_RDX]);
3419
pr_err("%-15s %016lx %-13s %016lx\n",
3420
"rsi:", vcpu->arch.regs[VCPU_REGS_RSI],
3421
"rdi:", vcpu->arch.regs[VCPU_REGS_RDI]);
3422
pr_err("%-15s %016lx %-13s %016llx\n",
3423
"rbp:", vcpu->arch.regs[VCPU_REGS_RBP],
3424
"rsp:", save->rsp);
3425
#ifdef CONFIG_X86_64
3426
pr_err("%-15s %016lx %-13s %016lx\n",
3427
"r8:", vcpu->arch.regs[VCPU_REGS_R8],
3428
"r9:", vcpu->arch.regs[VCPU_REGS_R9]);
3429
pr_err("%-15s %016lx %-13s %016lx\n",
3430
"r10:", vcpu->arch.regs[VCPU_REGS_R10],
3431
"r11:", vcpu->arch.regs[VCPU_REGS_R11]);
3432
pr_err("%-15s %016lx %-13s %016lx\n",
3433
"r12:", vcpu->arch.regs[VCPU_REGS_R12],
3434
"r13:", vcpu->arch.regs[VCPU_REGS_R13]);
3435
pr_err("%-15s %016lx %-13s %016lx\n",
3436
"r14:", vcpu->arch.regs[VCPU_REGS_R14],
3437
"r15:", vcpu->arch.regs[VCPU_REGS_R15]);
3438
#endif
3439
}
3440
3441
no_vmsa:
3442
if (sev_es_guest(vcpu->kvm))
3443
sev_free_decrypted_vmsa(vcpu, save);
3444
}
3445
3446
static bool svm_check_exit_valid(u64 exit_code)
3447
{
3448
return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3449
svm_exit_handlers[exit_code]);
3450
}
3451
3452
static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3453
{
3454
dump_vmcb(vcpu);
3455
kvm_prepare_unexpected_reason_exit(vcpu, exit_code);
3456
return 0;
3457
}
3458
3459
int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3460
{
3461
if (!svm_check_exit_valid(exit_code))
3462
return svm_handle_invalid_exit(vcpu, exit_code);
3463
3464
#ifdef CONFIG_MITIGATION_RETPOLINE
3465
if (exit_code == SVM_EXIT_MSR)
3466
return msr_interception(vcpu);
3467
else if (exit_code == SVM_EXIT_VINTR)
3468
return interrupt_window_interception(vcpu);
3469
else if (exit_code == SVM_EXIT_INTR)
3470
return intr_interception(vcpu);
3471
else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3472
return kvm_emulate_halt(vcpu);
3473
else if (exit_code == SVM_EXIT_NPF)
3474
return npf_interception(vcpu);
3475
#ifdef CONFIG_KVM_AMD_SEV
3476
else if (exit_code == SVM_EXIT_VMGEXIT)
3477
return sev_handle_vmgexit(vcpu);
3478
#endif
3479
#endif
3480
return svm_exit_handlers[exit_code](vcpu);
3481
}
3482
3483
static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3484
u64 *info1, u64 *info2,
3485
u32 *intr_info, u32 *error_code)
3486
{
3487
struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3488
3489
*reason = control->exit_code;
3490
*info1 = control->exit_info_1;
3491
*info2 = control->exit_info_2;
3492
*intr_info = control->exit_int_info;
3493
if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3494
(*intr_info & SVM_EXITINTINFO_VALID_ERR))
3495
*error_code = control->exit_int_info_err;
3496
else
3497
*error_code = 0;
3498
}
3499
3500
static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3501
u32 *error_code)
3502
{
3503
struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3504
3505
*intr_info = control->event_inj;
3506
3507
if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3508
(*intr_info & SVM_EXITINTINFO_VALID_ERR))
3509
*error_code = control->event_inj_err;
3510
else
3511
*error_code = 0;
3512
3513
}
3514
3515
static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3516
{
3517
struct vcpu_svm *svm = to_svm(vcpu);
3518
struct kvm_run *kvm_run = vcpu->run;
3519
u32 exit_code = svm->vmcb->control.exit_code;
3520
3521
/* SEV-ES guests must use the CR write traps to track CR registers. */
3522
if (!sev_es_guest(vcpu->kvm)) {
3523
if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3524
vcpu->arch.cr0 = svm->vmcb->save.cr0;
3525
if (npt_enabled)
3526
vcpu->arch.cr3 = svm->vmcb->save.cr3;
3527
}
3528
3529
if (is_guest_mode(vcpu)) {
3530
int vmexit;
3531
3532
trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3533
3534
vmexit = nested_svm_exit_special(svm);
3535
3536
if (vmexit == NESTED_EXIT_CONTINUE)
3537
vmexit = nested_svm_exit_handled(svm);
3538
3539
if (vmexit == NESTED_EXIT_DONE)
3540
return 1;
3541
}
3542
3543
if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3544
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3545
kvm_run->fail_entry.hardware_entry_failure_reason
3546
= svm->vmcb->control.exit_code;
3547
kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3548
dump_vmcb(vcpu);
3549
return 0;
3550
}
3551
3552
if (exit_fastpath != EXIT_FASTPATH_NONE)
3553
return 1;
3554
3555
return svm_invoke_exit_handler(vcpu, exit_code);
3556
}
3557
3558
static int pre_svm_run(struct kvm_vcpu *vcpu)
3559
{
3560
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3561
struct vcpu_svm *svm = to_svm(vcpu);
3562
3563
/*
3564
* If the previous vmrun of the vmcb occurred on a different physical
3565
* cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3566
* vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3567
*/
3568
if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3569
svm->current_vmcb->asid_generation = 0;
3570
vmcb_mark_all_dirty(svm->vmcb);
3571
svm->current_vmcb->cpu = vcpu->cpu;
3572
}
3573
3574
if (sev_guest(vcpu->kvm))
3575
return pre_sev_run(svm, vcpu->cpu);
3576
3577
/* FIXME: handle wraparound of asid_generation */
3578
if (svm->current_vmcb->asid_generation != sd->asid_generation)
3579
new_asid(svm, sd);
3580
3581
return 0;
3582
}
3583
3584
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3585
{
3586
struct vcpu_svm *svm = to_svm(vcpu);
3587
3588
svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3589
3590
if (svm->nmi_l1_to_l2)
3591
return;
3592
3593
/*
3594
* No need to manually track NMI masking when vNMI is enabled, hardware
3595
* automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3596
* case where software directly injects an NMI.
3597
*/
3598
if (!is_vnmi_enabled(svm)) {
3599
svm->nmi_masked = true;
3600
svm_set_iret_intercept(svm);
3601
}
3602
++vcpu->stat.nmi_injections;
3603
}
3604
3605
static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3606
{
3607
struct vcpu_svm *svm = to_svm(vcpu);
3608
3609
if (!is_vnmi_enabled(svm))
3610
return false;
3611
3612
return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3613
}
3614
3615
static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3616
{
3617
struct vcpu_svm *svm = to_svm(vcpu);
3618
3619
if (!is_vnmi_enabled(svm))
3620
return false;
3621
3622
if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3623
return false;
3624
3625
svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3626
vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3627
3628
/*
3629
* Because the pending NMI is serviced by hardware, KVM can't know when
3630
* the NMI is "injected", but for all intents and purposes, passing the
3631
* NMI off to hardware counts as injection.
3632
*/
3633
++vcpu->stat.nmi_injections;
3634
3635
return true;
3636
}
3637
3638
static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3639
{
3640
struct kvm_queued_interrupt *intr = &vcpu->arch.interrupt;
3641
struct vcpu_svm *svm = to_svm(vcpu);
3642
u32 type;
3643
3644
if (intr->soft) {
3645
if (svm_update_soft_interrupt_rip(vcpu, intr->nr))
3646
return;
3647
3648
type = SVM_EVTINJ_TYPE_SOFT;
3649
} else {
3650
type = SVM_EVTINJ_TYPE_INTR;
3651
}
3652
3653
trace_kvm_inj_virq(intr->nr, intr->soft, reinjected);
3654
++vcpu->stat.irq_injections;
3655
3656
svm->vmcb->control.event_inj = intr->nr | SVM_EVTINJ_VALID | type;
3657
}
3658
3659
void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3660
int trig_mode, int vector)
3661
{
3662
/*
3663
* apic->apicv_active must be read after vcpu->mode.
3664
* Pairs with smp_store_release in vcpu_enter_guest.
3665
*/
3666
bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3667
3668
/* Note, this is called iff the local APIC is in-kernel. */
3669
if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3670
/* Process the interrupt via kvm_check_and_inject_events(). */
3671
kvm_make_request(KVM_REQ_EVENT, vcpu);
3672
kvm_vcpu_kick(vcpu);
3673
return;
3674
}
3675
3676
trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3677
if (in_guest_mode) {
3678
/*
3679
* Signal the doorbell to tell hardware to inject the IRQ. If
3680
* the vCPU exits the guest before the doorbell chimes, hardware
3681
* will automatically process AVIC interrupts at the next VMRUN.
3682
*/
3683
avic_ring_doorbell(vcpu);
3684
} else {
3685
/*
3686
* Wake the vCPU if it was blocking. KVM will then detect the
3687
* pending IRQ when checking if the vCPU has a wake event.
3688
*/
3689
kvm_vcpu_wake_up(vcpu);
3690
}
3691
}
3692
3693
static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3694
int trig_mode, int vector)
3695
{
3696
kvm_lapic_set_irr(vector, apic);
3697
3698
/*
3699
* Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3700
* vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3701
* the read of guest_mode. This guarantees that either VMRUN will see
3702
* and process the new vIRR entry, or that svm_complete_interrupt_delivery
3703
* will signal the doorbell if the CPU has already entered the guest.
3704
*/
3705
smp_mb__after_atomic();
3706
svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3707
}
3708
3709
static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3710
{
3711
struct vcpu_svm *svm = to_svm(vcpu);
3712
3713
/*
3714
* SEV-ES guests must always keep the CR intercepts cleared. CR
3715
* tracking is done using the CR write traps.
3716
*/
3717
if (sev_es_guest(vcpu->kvm))
3718
return;
3719
3720
if (nested_svm_virtualize_tpr(vcpu))
3721
return;
3722
3723
svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3724
3725
if (irr == -1)
3726
return;
3727
3728
if (tpr >= irr)
3729
svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3730
}
3731
3732
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3733
{
3734
struct vcpu_svm *svm = to_svm(vcpu);
3735
3736
if (is_vnmi_enabled(svm))
3737
return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3738
else
3739
return svm->nmi_masked;
3740
}
3741
3742
static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3743
{
3744
struct vcpu_svm *svm = to_svm(vcpu);
3745
3746
if (is_vnmi_enabled(svm)) {
3747
if (masked)
3748
svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3749
else
3750
svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3751
3752
} else {
3753
svm->nmi_masked = masked;
3754
if (masked)
3755
svm_set_iret_intercept(svm);
3756
else
3757
svm_clr_iret_intercept(svm);
3758
}
3759
}
3760
3761
bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3762
{
3763
struct vcpu_svm *svm = to_svm(vcpu);
3764
struct vmcb *vmcb = svm->vmcb;
3765
3766
if (!gif_set(svm))
3767
return true;
3768
3769
if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3770
return false;
3771
3772
if (svm_get_nmi_mask(vcpu))
3773
return true;
3774
3775
return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3776
}
3777
3778
static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3779
{
3780
struct vcpu_svm *svm = to_svm(vcpu);
3781
if (svm->nested.nested_run_pending)
3782
return -EBUSY;
3783
3784
if (svm_nmi_blocked(vcpu))
3785
return 0;
3786
3787
/* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3788
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3789
return -EBUSY;
3790
return 1;
3791
}
3792
3793
bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3794
{
3795
struct vcpu_svm *svm = to_svm(vcpu);
3796
struct vmcb *vmcb = svm->vmcb;
3797
3798
if (!gif_set(svm))
3799
return true;
3800
3801
if (is_guest_mode(vcpu)) {
3802
/* As long as interrupts are being delivered... */
3803
if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3804
? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3805
: !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3806
return true;
3807
3808
/* ... vmexits aren't blocked by the interrupt shadow */
3809
if (nested_exit_on_intr(svm))
3810
return false;
3811
} else {
3812
if (!svm_get_if_flag(vcpu))
3813
return true;
3814
}
3815
3816
return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3817
}
3818
3819
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3820
{
3821
struct vcpu_svm *svm = to_svm(vcpu);
3822
3823
if (svm->nested.nested_run_pending)
3824
return -EBUSY;
3825
3826
if (svm_interrupt_blocked(vcpu))
3827
return 0;
3828
3829
/*
3830
* An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3831
* e.g. if the IRQ arrived asynchronously after checking nested events.
3832
*/
3833
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3834
return -EBUSY;
3835
3836
return 1;
3837
}
3838
3839
static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3840
{
3841
struct vcpu_svm *svm = to_svm(vcpu);
3842
3843
/*
3844
* In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3845
* 1, because that's a separate STGI/VMRUN intercept. The next time we
3846
* get that intercept, this function will be called again though and
3847
* we'll get the vintr intercept. However, if the vGIF feature is
3848
* enabled, the STGI interception will not occur. Enable the irq
3849
* window under the assumption that the hardware will set the GIF.
3850
*/
3851
if (vgif || gif_set(svm)) {
3852
/*
3853
* IRQ window is not needed when AVIC is enabled,
3854
* unless we have pending ExtINT since it cannot be injected
3855
* via AVIC. In such case, KVM needs to temporarily disable AVIC,
3856
* and fallback to injecting IRQ via V_IRQ.
3857
*
3858
* If running nested, AVIC is already locally inhibited
3859
* on this vCPU, therefore there is no need to request
3860
* the VM wide AVIC inhibition.
3861
*/
3862
if (!is_guest_mode(vcpu))
3863
kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3864
3865
svm_set_vintr(svm);
3866
}
3867
}
3868
3869
static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3870
{
3871
struct vcpu_svm *svm = to_svm(vcpu);
3872
3873
/*
3874
* If NMIs are outright masked, i.e. the vCPU is already handling an
3875
* NMI, and KVM has not yet intercepted an IRET, then there is nothing
3876
* more to do at this time as KVM has already enabled IRET intercepts.
3877
* If KVM has already intercepted IRET, then single-step over the IRET,
3878
* as NMIs aren't architecturally unmasked until the IRET completes.
3879
*
3880
* If vNMI is enabled, KVM should never request an NMI window if NMIs
3881
* are masked, as KVM allows at most one to-be-injected NMI and one
3882
* pending NMI. If two NMIs arrive simultaneously, KVM will inject one
3883
* NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3884
* unmasked. KVM _will_ request an NMI window in some situations, e.g.
3885
* if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3886
* inject the NMI. In those situations, KVM needs to single-step over
3887
* the STI shadow or intercept STGI.
3888
*/
3889
if (svm_get_nmi_mask(vcpu)) {
3890
WARN_ON_ONCE(is_vnmi_enabled(svm));
3891
3892
if (!svm->awaiting_iret_completion)
3893
return; /* IRET will cause a vm exit */
3894
}
3895
3896
/*
3897
* SEV-ES guests are responsible for signaling when a vCPU is ready to
3898
* receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3899
* KVM can't intercept and single-step IRET to detect when NMIs are
3900
* unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
3901
*
3902
* Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3903
* ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3904
* supported NAEs in the GHCB protocol.
3905
*/
3906
if (sev_es_guest(vcpu->kvm))
3907
return;
3908
3909
if (!gif_set(svm)) {
3910
if (vgif)
3911
svm_set_intercept(svm, INTERCEPT_STGI);
3912
return; /* STGI will cause a vm exit */
3913
}
3914
3915
/*
3916
* Something prevents NMI from been injected. Single step over possible
3917
* problem (IRET or exception injection or interrupt shadow)
3918
*/
3919
svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3920
svm->nmi_singlestep = true;
3921
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3922
}
3923
3924
static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3925
{
3926
struct vcpu_svm *svm = to_svm(vcpu);
3927
3928
/*
3929
* Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3930
* A TLB flush for the current ASID flushes both "host" and "guest" TLB
3931
* entries, and thus is a superset of Hyper-V's fine grained flushing.
3932
*/
3933
kvm_hv_vcpu_purge_flush_tlb(vcpu);
3934
3935
/*
3936
* Flush only the current ASID even if the TLB flush was invoked via
3937
* kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3938
* ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3939
* unconditionally does a TLB flush on both nested VM-Enter and nested
3940
* VM-Exit (via kvm_mmu_reset_context()).
3941
*/
3942
if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3943
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3944
else
3945
svm->current_vmcb->asid_generation--;
3946
}
3947
3948
static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3949
{
3950
hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3951
3952
/*
3953
* When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3954
* flush the NPT mappings via hypercall as flushing the ASID only
3955
* affects virtual to physical mappings, it does not invalidate guest
3956
* physical to host physical mappings.
3957
*/
3958
if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3959
hyperv_flush_guest_mapping(root_tdp);
3960
3961
svm_flush_tlb_asid(vcpu);
3962
}
3963
3964
static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3965
{
3966
/*
3967
* When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3968
* flushes should be routed to hv_flush_remote_tlbs() without requesting
3969
* a "regular" remote flush. Reaching this point means either there's
3970
* a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3971
* which might be fatal to the guest. Yell, but try to recover.
3972
*/
3973
if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3974
hv_flush_remote_tlbs(vcpu->kvm);
3975
3976
svm_flush_tlb_asid(vcpu);
3977
}
3978
3979
static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3980
{
3981
struct vcpu_svm *svm = to_svm(vcpu);
3982
3983
invlpga(gva, svm->vmcb->control.asid);
3984
}
3985
3986
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3987
{
3988
struct vcpu_svm *svm = to_svm(vcpu);
3989
3990
if (nested_svm_virtualize_tpr(vcpu))
3991
return;
3992
3993
if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3994
int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3995
kvm_set_cr8(vcpu, cr8);
3996
}
3997
}
3998
3999
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4000
{
4001
struct vcpu_svm *svm = to_svm(vcpu);
4002
u64 cr8;
4003
4004
if (nested_svm_virtualize_tpr(vcpu))
4005
return;
4006
4007
cr8 = kvm_get_cr8(vcpu);
4008
svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4009
svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4010
}
4011
4012
static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4013
int type)
4014
{
4015
bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4016
bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4017
struct vcpu_svm *svm = to_svm(vcpu);
4018
4019
/*
4020
* If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4021
* associated with the original soft exception/interrupt. next_rip is
4022
* cleared on all exits that can occur while vectoring an event, so KVM
4023
* needs to manually set next_rip for re-injection. Unlike the !nrips
4024
* case below, this needs to be done if and only if KVM is re-injecting
4025
* the same event, i.e. if the event is a soft exception/interrupt,
4026
* otherwise next_rip is unused on VMRUN.
4027
*/
4028
if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4029
kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4030
svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4031
/*
4032
* If NRIPS isn't enabled, KVM must manually advance RIP prior to
4033
* injecting the soft exception/interrupt. That advancement needs to
4034
* be unwound if vectoring didn't complete. Note, the new event may
4035
* not be the injected event, e.g. if KVM injected an INTn, the INTn
4036
* hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4037
* be the reported vectored event, but RIP still needs to be unwound.
4038
*/
4039
else if (!nrips && (is_soft || is_exception) &&
4040
kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4041
kvm_rip_write(vcpu, svm->soft_int_old_rip);
4042
}
4043
4044
static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4045
{
4046
struct vcpu_svm *svm = to_svm(vcpu);
4047
u8 vector;
4048
int type;
4049
u32 exitintinfo = svm->vmcb->control.exit_int_info;
4050
bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4051
bool soft_int_injected = svm->soft_int_injected;
4052
4053
svm->nmi_l1_to_l2 = false;
4054
svm->soft_int_injected = false;
4055
4056
/*
4057
* If we've made progress since setting awaiting_iret_completion, we've
4058
* executed an IRET and can allow NMI injection.
4059
*/
4060
if (svm->awaiting_iret_completion &&
4061
kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4062
svm->awaiting_iret_completion = false;
4063
svm->nmi_masked = false;
4064
kvm_make_request(KVM_REQ_EVENT, vcpu);
4065
}
4066
4067
vcpu->arch.nmi_injected = false;
4068
kvm_clear_exception_queue(vcpu);
4069
kvm_clear_interrupt_queue(vcpu);
4070
4071
if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4072
return;
4073
4074
kvm_make_request(KVM_REQ_EVENT, vcpu);
4075
4076
vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4077
type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4078
4079
if (soft_int_injected)
4080
svm_complete_soft_interrupt(vcpu, vector, type);
4081
4082
switch (type) {
4083
case SVM_EXITINTINFO_TYPE_NMI:
4084
vcpu->arch.nmi_injected = true;
4085
svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4086
break;
4087
case SVM_EXITINTINFO_TYPE_EXEPT: {
4088
u32 error_code = 0;
4089
4090
/*
4091
* Never re-inject a #VC exception.
4092
*/
4093
if (vector == X86_TRAP_VC)
4094
break;
4095
4096
if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4097
error_code = svm->vmcb->control.exit_int_info_err;
4098
4099
kvm_requeue_exception(vcpu, vector,
4100
exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4101
error_code);
4102
break;
4103
}
4104
case SVM_EXITINTINFO_TYPE_INTR:
4105
kvm_queue_interrupt(vcpu, vector, false);
4106
break;
4107
case SVM_EXITINTINFO_TYPE_SOFT:
4108
kvm_queue_interrupt(vcpu, vector, true);
4109
break;
4110
default:
4111
break;
4112
}
4113
4114
}
4115
4116
static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4117
{
4118
struct vcpu_svm *svm = to_svm(vcpu);
4119
struct vmcb_control_area *control = &svm->vmcb->control;
4120
4121
control->exit_int_info = control->event_inj;
4122
control->exit_int_info_err = control->event_inj_err;
4123
control->event_inj = 0;
4124
svm_complete_interrupts(vcpu);
4125
}
4126
4127
static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4128
{
4129
if (to_kvm_sev_info(vcpu->kvm)->need_init)
4130
return -EINVAL;
4131
4132
return 1;
4133
}
4134
4135
static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4136
{
4137
struct vcpu_svm *svm = to_svm(vcpu);
4138
struct vmcb_control_area *control = &svm->vmcb->control;
4139
4140
/*
4141
* Next RIP must be provided as IRQs are disabled, and accessing guest
4142
* memory to decode the instruction might fault, i.e. might sleep.
4143
*/
4144
if (!nrips || !control->next_rip)
4145
return EXIT_FASTPATH_NONE;
4146
4147
if (is_guest_mode(vcpu))
4148
return EXIT_FASTPATH_NONE;
4149
4150
switch (control->exit_code) {
4151
case SVM_EXIT_MSR:
4152
if (!control->exit_info_1)
4153
break;
4154
return handle_fastpath_wrmsr(vcpu);
4155
case SVM_EXIT_HLT:
4156
return handle_fastpath_hlt(vcpu);
4157
case SVM_EXIT_INVD:
4158
return handle_fastpath_invd(vcpu);
4159
default:
4160
break;
4161
}
4162
4163
return EXIT_FASTPATH_NONE;
4164
}
4165
4166
static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4167
{
4168
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4169
struct vcpu_svm *svm = to_svm(vcpu);
4170
4171
guest_state_enter_irqoff();
4172
4173
/*
4174
* Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4175
* VMRUN controls whether or not physical IRQs are masked (KVM always
4176
* runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the
4177
* temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4178
* into guest state if delivery of an event during VMRUN triggers a
4179
* #VMEXIT, and the guest_state transitions already tell lockdep that
4180
* IRQs are being enabled/disabled. Note! GIF=0 for the entirety of
4181
* this path, so IRQs aren't actually unmasked while running host code.
4182
*/
4183
raw_local_irq_enable();
4184
4185
amd_clear_divider();
4186
4187
if (sev_es_guest(vcpu->kvm))
4188
__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4189
sev_es_host_save_area(sd));
4190
else
4191
__svm_vcpu_run(svm, spec_ctrl_intercepted);
4192
4193
raw_local_irq_disable();
4194
4195
guest_state_exit_irqoff();
4196
}
4197
4198
static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
4199
{
4200
bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
4201
struct vcpu_svm *svm = to_svm(vcpu);
4202
bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4203
4204
trace_kvm_entry(vcpu, force_immediate_exit);
4205
4206
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4207
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4208
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4209
4210
/*
4211
* Disable singlestep if we're injecting an interrupt/exception.
4212
* We don't want our modified rflags to be pushed on the stack where
4213
* we might not be able to easily reset them if we disabled NMI
4214
* singlestep later.
4215
*/
4216
if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4217
/*
4218
* Event injection happens before external interrupts cause a
4219
* vmexit and interrupts are disabled here, so smp_send_reschedule
4220
* is enough to force an immediate vmexit.
4221
*/
4222
disable_nmi_singlestep(svm);
4223
force_immediate_exit = true;
4224
}
4225
4226
if (force_immediate_exit)
4227
smp_send_reschedule(vcpu->cpu);
4228
4229
if (pre_svm_run(vcpu)) {
4230
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4231
vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4232
vcpu->run->fail_entry.cpu = vcpu->cpu;
4233
return EXIT_FASTPATH_EXIT_USERSPACE;
4234
}
4235
4236
sync_lapic_to_cr8(vcpu);
4237
4238
if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4239
svm->vmcb->control.asid = svm->asid;
4240
vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4241
}
4242
svm->vmcb->save.cr2 = vcpu->arch.cr2;
4243
4244
svm_hv_update_vp_id(svm->vmcb, vcpu);
4245
4246
/*
4247
* Run with all-zero DR6 unless the guest can write DR6 freely, so that
4248
* KVM can get the exact cause of a #DB. Note, loading guest DR6 from
4249
* KVM's snapshot is only necessary when DR accesses won't exit.
4250
*/
4251
if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6))
4252
svm_set_dr6(vcpu, vcpu->arch.dr6);
4253
else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4254
svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4255
4256
clgi();
4257
4258
/*
4259
* Hardware only context switches DEBUGCTL if LBR virtualization is
4260
* enabled. Manually load DEBUGCTL if necessary (and restore it after
4261
* VM-Exit), as running with the host's DEBUGCTL can negatively affect
4262
* guest state and can even be fatal, e.g. due to Bus Lock Detect.
4263
*/
4264
if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4265
vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4266
update_debugctlmsr(svm->vmcb->save.dbgctl);
4267
4268
kvm_wait_lapic_expire(vcpu);
4269
4270
/*
4271
* If this vCPU has touched SPEC_CTRL, restore the guest's value if
4272
* it's non-zero. Since vmentry is serialising on affected CPUs, there
4273
* is no need to worry about the conditional branch over the wrmsr
4274
* being speculatively taken.
4275
*/
4276
if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4277
x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4278
4279
svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4280
4281
if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4282
x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4283
4284
if (!sev_es_guest(vcpu->kvm)) {
4285
vcpu->arch.cr2 = svm->vmcb->save.cr2;
4286
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4287
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4288
vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4289
}
4290
vcpu->arch.regs_dirty = 0;
4291
4292
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4293
kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4294
4295
if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4296
vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4297
update_debugctlmsr(vcpu->arch.host_debugctl);
4298
4299
stgi();
4300
4301
/* Any pending NMI will happen here */
4302
4303
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4304
kvm_after_interrupt(vcpu);
4305
4306
sync_cr8_to_lapic(vcpu);
4307
4308
svm->next_rip = 0;
4309
if (is_guest_mode(vcpu)) {
4310
nested_sync_control_from_vmcb02(svm);
4311
4312
/* Track VMRUNs that have made past consistency checking */
4313
if (svm->nested.nested_run_pending &&
4314
svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4315
++vcpu->stat.nested_run;
4316
4317
svm->nested.nested_run_pending = 0;
4318
}
4319
4320
svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4321
vmcb_mark_all_clean(svm->vmcb);
4322
4323
/* if exit due to PF check for async PF */
4324
if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4325
vcpu->arch.apf.host_apf_flags =
4326
kvm_read_and_reset_apf_flags();
4327
4328
vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4329
4330
trace_kvm_exit(vcpu, KVM_ISA_SVM);
4331
4332
svm_complete_interrupts(vcpu);
4333
4334
return svm_exit_handlers_fastpath(vcpu);
4335
}
4336
4337
static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4338
int root_level)
4339
{
4340
struct vcpu_svm *svm = to_svm(vcpu);
4341
unsigned long cr3;
4342
4343
if (npt_enabled) {
4344
svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4345
vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4346
4347
hv_track_root_tdp(vcpu, root_hpa);
4348
4349
cr3 = vcpu->arch.cr3;
4350
} else if (root_level >= PT64_ROOT_4LEVEL) {
4351
cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4352
} else {
4353
/* PCID in the guest should be impossible with a 32-bit MMU. */
4354
WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4355
cr3 = root_hpa;
4356
}
4357
4358
svm->vmcb->save.cr3 = cr3;
4359
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4360
}
4361
4362
static void
4363
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4364
{
4365
/*
4366
* Patch in the VMMCALL instruction:
4367
*/
4368
hypercall[0] = 0x0f;
4369
hypercall[1] = 0x01;
4370
hypercall[2] = 0xd9;
4371
}
4372
4373
/*
4374
* The kvm parameter can be NULL (module initialization, or invocation before
4375
* VM creation). Be sure to check the kvm parameter before using it.
4376
*/
4377
static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4378
{
4379
switch (index) {
4380
case MSR_IA32_MCG_EXT_CTL:
4381
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4382
return false;
4383
case MSR_IA32_SMBASE:
4384
if (!IS_ENABLED(CONFIG_KVM_SMM))
4385
return false;
4386
/* SEV-ES guests do not support SMM, so report false */
4387
if (kvm && sev_es_guest(kvm))
4388
return false;
4389
break;
4390
default:
4391
break;
4392
}
4393
4394
return true;
4395
}
4396
4397
static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4398
{
4399
struct vcpu_svm *svm = to_svm(vcpu);
4400
4401
/*
4402
* SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4403
* can only disable all variants of by disallowing CR4.OSXSAVE from
4404
* being set. As a result, if the host has XSAVE and XSAVES, and the
4405
* guest has XSAVE enabled, the guest can execute XSAVES without
4406
* faulting. Treat XSAVES as enabled in this case regardless of
4407
* whether it's advertised to the guest so that KVM context switches
4408
* XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
4409
* the guest read/write access to the host's XSS.
4410
*/
4411
guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4412
boot_cpu_has(X86_FEATURE_XSAVES) &&
4413
guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4414
4415
/*
4416
* Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4417
* VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4418
* SVM on Intel is bonkers and extremely unlikely to work).
4419
*/
4420
if (guest_cpuid_is_intel_compatible(vcpu))
4421
guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4422
4423
if (sev_guest(vcpu->kvm))
4424
sev_vcpu_after_set_cpuid(svm);
4425
}
4426
4427
static bool svm_has_wbinvd_exit(void)
4428
{
4429
return true;
4430
}
4431
4432
#define PRE_EX(exit) { .exit_code = (exit), \
4433
.stage = X86_ICPT_PRE_EXCEPT, }
4434
#define POST_EX(exit) { .exit_code = (exit), \
4435
.stage = X86_ICPT_POST_EXCEPT, }
4436
#define POST_MEM(exit) { .exit_code = (exit), \
4437
.stage = X86_ICPT_POST_MEMACCESS, }
4438
4439
static const struct __x86_intercept {
4440
u32 exit_code;
4441
enum x86_intercept_stage stage;
4442
} x86_intercept_map[] = {
4443
[x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4444
[x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4445
[x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4446
[x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4447
[x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4448
[x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4449
[x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4450
[x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4451
[x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4452
[x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4453
[x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4454
[x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4455
[x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4456
[x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4457
[x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4458
[x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4459
[x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4460
[x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4461
[x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4462
[x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4463
[x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4464
[x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4465
[x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4466
[x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4467
[x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4468
[x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4469
[x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4470
[x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4471
[x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4472
[x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4473
[x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4474
[x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4475
[x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4476
[x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4477
[x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4478
[x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4479
[x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4480
[x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4481
[x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4482
[x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4483
[x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4484
[x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4485
[x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4486
[x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4487
[x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4488
[x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4489
[x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4490
};
4491
4492
#undef PRE_EX
4493
#undef POST_EX
4494
#undef POST_MEM
4495
4496
static int svm_check_intercept(struct kvm_vcpu *vcpu,
4497
struct x86_instruction_info *info,
4498
enum x86_intercept_stage stage,
4499
struct x86_exception *exception)
4500
{
4501
struct vcpu_svm *svm = to_svm(vcpu);
4502
int vmexit, ret = X86EMUL_CONTINUE;
4503
struct __x86_intercept icpt_info;
4504
struct vmcb *vmcb = svm->vmcb;
4505
4506
if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4507
goto out;
4508
4509
icpt_info = x86_intercept_map[info->intercept];
4510
4511
if (stage != icpt_info.stage)
4512
goto out;
4513
4514
switch (icpt_info.exit_code) {
4515
case SVM_EXIT_READ_CR0:
4516
if (info->intercept == x86_intercept_cr_read)
4517
icpt_info.exit_code += info->modrm_reg;
4518
break;
4519
case SVM_EXIT_WRITE_CR0: {
4520
unsigned long cr0, val;
4521
4522
/*
4523
* Adjust the exit code accordingly if a CR other than CR0 is
4524
* being written, and skip straight to the common handling as
4525
* only CR0 has an additional selective intercept.
4526
*/
4527
if (info->intercept == x86_intercept_cr_write && info->modrm_reg) {
4528
icpt_info.exit_code += info->modrm_reg;
4529
break;
4530
}
4531
4532
/*
4533
* Convert the exit_code to SVM_EXIT_CR0_SEL_WRITE if a
4534
* selective CR0 intercept is triggered (the common logic will
4535
* treat the selective intercept as being enabled). Note, the
4536
* unconditional intercept has higher priority, i.e. this is
4537
* only relevant if *only* the selective intercept is enabled.
4538
*/
4539
if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_CR0_WRITE) ||
4540
!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))
4541
break;
4542
4543
/* CLTS never triggers INTERCEPT_SELECTIVE_CR0 */
4544
if (info->intercept == x86_intercept_clts)
4545
break;
4546
4547
/* LMSW always triggers INTERCEPT_SELECTIVE_CR0 */
4548
if (info->intercept == x86_intercept_lmsw) {
4549
icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4550
break;
4551
}
4552
4553
/*
4554
* MOV-to-CR0 only triggers INTERCEPT_SELECTIVE_CR0 if any bit
4555
* other than SVM_CR0_SELECTIVE_MASK is changed.
4556
*/
4557
cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4558
val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4559
if (cr0 ^ val)
4560
icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4561
break;
4562
}
4563
case SVM_EXIT_READ_DR0:
4564
case SVM_EXIT_WRITE_DR0:
4565
icpt_info.exit_code += info->modrm_reg;
4566
break;
4567
case SVM_EXIT_MSR:
4568
if (info->intercept == x86_intercept_wrmsr)
4569
vmcb->control.exit_info_1 = 1;
4570
else
4571
vmcb->control.exit_info_1 = 0;
4572
break;
4573
case SVM_EXIT_PAUSE:
4574
/*
4575
* We get this for NOP only, but pause
4576
* is rep not, check this here
4577
*/
4578
if (info->rep_prefix != REPE_PREFIX)
4579
goto out;
4580
break;
4581
case SVM_EXIT_IOIO: {
4582
u64 exit_info;
4583
u32 bytes;
4584
4585
if (info->intercept == x86_intercept_in ||
4586
info->intercept == x86_intercept_ins) {
4587
exit_info = ((info->src_val & 0xffff) << 16) |
4588
SVM_IOIO_TYPE_MASK;
4589
bytes = info->dst_bytes;
4590
} else {
4591
exit_info = (info->dst_val & 0xffff) << 16;
4592
bytes = info->src_bytes;
4593
}
4594
4595
if (info->intercept == x86_intercept_outs ||
4596
info->intercept == x86_intercept_ins)
4597
exit_info |= SVM_IOIO_STR_MASK;
4598
4599
if (info->rep_prefix)
4600
exit_info |= SVM_IOIO_REP_MASK;
4601
4602
bytes = min(bytes, 4u);
4603
4604
exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4605
4606
exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4607
4608
vmcb->control.exit_info_1 = exit_info;
4609
vmcb->control.exit_info_2 = info->next_rip;
4610
4611
break;
4612
}
4613
default:
4614
break;
4615
}
4616
4617
/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4618
if (static_cpu_has(X86_FEATURE_NRIPS))
4619
vmcb->control.next_rip = info->next_rip;
4620
vmcb->control.exit_code = icpt_info.exit_code;
4621
vmcb->control.exit_code_hi = 0;
4622
vmexit = nested_svm_exit_handled(svm);
4623
4624
ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4625
: X86EMUL_CONTINUE;
4626
4627
out:
4628
return ret;
4629
}
4630
4631
static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4632
{
4633
switch (to_svm(vcpu)->vmcb->control.exit_code) {
4634
case SVM_EXIT_EXCP_BASE + MC_VECTOR:
4635
svm_handle_mce(vcpu);
4636
break;
4637
case SVM_EXIT_INTR:
4638
vcpu->arch.at_instruction_boundary = true;
4639
break;
4640
default:
4641
break;
4642
}
4643
}
4644
4645
static void svm_setup_mce(struct kvm_vcpu *vcpu)
4646
{
4647
/* [63:9] are reserved. */
4648
vcpu->arch.mcg_cap &= 0x1ff;
4649
}
4650
4651
#ifdef CONFIG_KVM_SMM
4652
bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4653
{
4654
struct vcpu_svm *svm = to_svm(vcpu);
4655
4656
/* Per APM Vol.2 15.22.2 "Response to SMI" */
4657
if (!gif_set(svm))
4658
return true;
4659
4660
return is_smm(vcpu);
4661
}
4662
4663
static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4664
{
4665
struct vcpu_svm *svm = to_svm(vcpu);
4666
if (svm->nested.nested_run_pending)
4667
return -EBUSY;
4668
4669
if (svm_smi_blocked(vcpu))
4670
return 0;
4671
4672
/* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4673
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4674
return -EBUSY;
4675
4676
return 1;
4677
}
4678
4679
static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4680
{
4681
struct vcpu_svm *svm = to_svm(vcpu);
4682
struct kvm_host_map map_save;
4683
int ret;
4684
4685
if (!is_guest_mode(vcpu))
4686
return 0;
4687
4688
/*
4689
* 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4690
* responsible for ensuring nested SVM and SMIs are mutually exclusive.
4691
*/
4692
4693
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4694
return 1;
4695
4696
smram->smram64.svm_guest_flag = 1;
4697
smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4698
4699
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4700
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4701
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4702
4703
ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4704
if (ret)
4705
return ret;
4706
4707
/*
4708
* KVM uses VMCB01 to store L1 host state while L2 runs but
4709
* VMCB01 is going to be used during SMM and thus the state will
4710
* be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4711
* area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4712
* format of the area is identical to guest save area offsetted
4713
* by 0x400 (matches the offset of 'struct vmcb_save_area'
4714
* within 'struct vmcb'). Note: HSAVE area may also be used by
4715
* L1 hypervisor to save additional host context (e.g. KVM does
4716
* that, see svm_prepare_switch_to_guest()) which must be
4717
* preserved.
4718
*/
4719
if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4720
return 1;
4721
4722
BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4723
4724
svm_copy_vmrun_state(map_save.hva + 0x400,
4725
&svm->vmcb01.ptr->save);
4726
4727
kvm_vcpu_unmap(vcpu, &map_save);
4728
return 0;
4729
}
4730
4731
static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4732
{
4733
struct vcpu_svm *svm = to_svm(vcpu);
4734
struct kvm_host_map map, map_save;
4735
struct vmcb *vmcb12;
4736
int ret;
4737
4738
const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4739
4740
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4741
return 0;
4742
4743
/* Non-zero if SMI arrived while vCPU was in guest mode. */
4744
if (!smram64->svm_guest_flag)
4745
return 0;
4746
4747
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4748
return 1;
4749
4750
if (!(smram64->efer & EFER_SVME))
4751
return 1;
4752
4753
if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4754
return 1;
4755
4756
ret = 1;
4757
if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4758
goto unmap_map;
4759
4760
if (svm_allocate_nested(svm))
4761
goto unmap_save;
4762
4763
/*
4764
* Restore L1 host state from L1 HSAVE area as VMCB01 was
4765
* used during SMM (see svm_enter_smm())
4766
*/
4767
4768
svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4769
4770
/*
4771
* Enter the nested guest now
4772
*/
4773
4774
vmcb_mark_all_dirty(svm->vmcb01.ptr);
4775
4776
vmcb12 = map.hva;
4777
nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4778
nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4779
ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4780
4781
if (ret)
4782
goto unmap_save;
4783
4784
svm->nested.nested_run_pending = 1;
4785
4786
unmap_save:
4787
kvm_vcpu_unmap(vcpu, &map_save);
4788
unmap_map:
4789
kvm_vcpu_unmap(vcpu, &map);
4790
return ret;
4791
}
4792
4793
static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4794
{
4795
struct vcpu_svm *svm = to_svm(vcpu);
4796
4797
if (!gif_set(svm)) {
4798
if (vgif)
4799
svm_set_intercept(svm, INTERCEPT_STGI);
4800
/* STGI will cause a vm exit */
4801
} else {
4802
/* We must be in SMM; RSM will cause a vmexit anyway. */
4803
}
4804
}
4805
#endif
4806
4807
static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4808
void *insn, int insn_len)
4809
{
4810
struct vcpu_svm *svm = to_svm(vcpu);
4811
bool smep, smap, is_user;
4812
u64 error_code;
4813
4814
/* Check that emulation is possible during event vectoring */
4815
if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4816
!kvm_can_emulate_event_vectoring(emul_type))
4817
return X86EMUL_UNHANDLEABLE_VECTORING;
4818
4819
/* Emulation is always possible when KVM has access to all guest state. */
4820
if (!sev_guest(vcpu->kvm))
4821
return X86EMUL_CONTINUE;
4822
4823
/* #UD and #GP should never be intercepted for SEV guests. */
4824
WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4825
EMULTYPE_TRAP_UD_FORCED |
4826
EMULTYPE_VMWARE_GP));
4827
4828
/*
4829
* Emulation is impossible for SEV-ES guests as KVM doesn't have access
4830
* to guest register state.
4831
*/
4832
if (sev_es_guest(vcpu->kvm))
4833
return X86EMUL_RETRY_INSTR;
4834
4835
/*
4836
* Emulation is possible if the instruction is already decoded, e.g.
4837
* when completing I/O after returning from userspace.
4838
*/
4839
if (emul_type & EMULTYPE_NO_DECODE)
4840
return X86EMUL_CONTINUE;
4841
4842
/*
4843
* Emulation is possible for SEV guests if and only if a prefilled
4844
* buffer containing the bytes of the intercepted instruction is
4845
* available. SEV guest memory is encrypted with a guest specific key
4846
* and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4847
* decode garbage.
4848
*
4849
* If KVM is NOT trying to simply skip an instruction, inject #UD if
4850
* KVM reached this point without an instruction buffer. In practice,
4851
* this path should never be hit by a well-behaved guest, e.g. KVM
4852
* doesn't intercept #UD or #GP for SEV guests, but this path is still
4853
* theoretically reachable, e.g. via unaccelerated fault-like AVIC
4854
* access, and needs to be handled by KVM to avoid putting the guest
4855
* into an infinite loop. Injecting #UD is somewhat arbitrary, but
4856
* its the least awful option given lack of insight into the guest.
4857
*
4858
* If KVM is trying to skip an instruction, simply resume the guest.
4859
* If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4860
* will attempt to re-inject the INT3/INTO and skip the instruction.
4861
* In that scenario, retrying the INT3/INTO and hoping the guest will
4862
* make forward progress is the only option that has a chance of
4863
* success (and in practice it will work the vast majority of the time).
4864
*/
4865
if (unlikely(!insn)) {
4866
if (emul_type & EMULTYPE_SKIP)
4867
return X86EMUL_UNHANDLEABLE;
4868
4869
kvm_queue_exception(vcpu, UD_VECTOR);
4870
return X86EMUL_PROPAGATE_FAULT;
4871
}
4872
4873
/*
4874
* Emulate for SEV guests if the insn buffer is not empty. The buffer
4875
* will be empty if the DecodeAssist microcode cannot fetch bytes for
4876
* the faulting instruction because the code fetch itself faulted, e.g.
4877
* the guest attempted to fetch from emulated MMIO or a guest page
4878
* table used to translate CS:RIP resides in emulated MMIO.
4879
*/
4880
if (likely(insn_len))
4881
return X86EMUL_CONTINUE;
4882
4883
/*
4884
* Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4885
*
4886
* Errata:
4887
* When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4888
* possible that CPU microcode implementing DecodeAssist will fail to
4889
* read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4890
* be '0'. This happens because microcode reads CS:RIP using a _data_
4891
* loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4892
* gives up and does not fill the instruction bytes buffer.
4893
*
4894
* As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4895
* supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4896
* triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4897
* GuestIntrBytes field of the VMCB.
4898
*
4899
* This does _not_ mean that the erratum has been encountered, as the
4900
* DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4901
* #PF, e.g. if the guest attempt to execute from emulated MMIO and
4902
* encountered a reserved/not-present #PF.
4903
*
4904
* To hit the erratum, the following conditions must be true:
4905
* 1. CR4.SMAP=1 (obviously).
4906
* 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4907
* have been hit as the guest would have encountered a SMEP
4908
* violation #PF, not a #NPF.
4909
* 3. The #NPF is not due to a code fetch, in which case failure to
4910
* retrieve the instruction bytes is legitimate (see abvoe).
4911
*
4912
* In addition, don't apply the erratum workaround if the #NPF occurred
4913
* while translating guest page tables (see below).
4914
*/
4915
error_code = svm->vmcb->control.exit_info_1;
4916
if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4917
goto resume_guest;
4918
4919
smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4920
smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4921
is_user = svm_get_cpl(vcpu) == 3;
4922
if (smap && (!smep || is_user)) {
4923
pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4924
4925
/*
4926
* If the fault occurred in userspace, arbitrarily inject #GP
4927
* to avoid killing the guest and to hopefully avoid confusing
4928
* the guest kernel too much, e.g. injecting #PF would not be
4929
* coherent with respect to the guest's page tables. Request
4930
* triple fault if the fault occurred in the kernel as there's
4931
* no fault that KVM can inject without confusing the guest.
4932
* In practice, the triple fault is moot as no sane SEV kernel
4933
* will execute from user memory while also running with SMAP=1.
4934
*/
4935
if (is_user)
4936
kvm_inject_gp(vcpu, 0);
4937
else
4938
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4939
return X86EMUL_PROPAGATE_FAULT;
4940
}
4941
4942
resume_guest:
4943
/*
4944
* If the erratum was not hit, simply resume the guest and let it fault
4945
* again. While awful, e.g. the vCPU may get stuck in an infinite loop
4946
* if the fault is at CPL=0, it's the lesser of all evils. Exiting to
4947
* userspace will kill the guest, and letting the emulator read garbage
4948
* will yield random behavior and potentially corrupt the guest.
4949
*
4950
* Simply resuming the guest is technically not a violation of the SEV
4951
* architecture. AMD's APM states that all code fetches and page table
4952
* accesses for SEV guest are encrypted, regardless of the C-Bit. The
4953
* APM also states that encrypted accesses to MMIO are "ignored", but
4954
* doesn't explicitly define "ignored", i.e. doing nothing and letting
4955
* the guest spin is technically "ignoring" the access.
4956
*/
4957
return X86EMUL_RETRY_INSTR;
4958
}
4959
4960
static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4961
{
4962
struct vcpu_svm *svm = to_svm(vcpu);
4963
4964
return !gif_set(svm);
4965
}
4966
4967
static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4968
{
4969
if (!sev_es_guest(vcpu->kvm))
4970
return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4971
4972
sev_vcpu_deliver_sipi_vector(vcpu, vector);
4973
}
4974
4975
static void svm_vm_destroy(struct kvm *kvm)
4976
{
4977
avic_vm_destroy(kvm);
4978
sev_vm_destroy(kvm);
4979
4980
svm_srso_vm_destroy();
4981
}
4982
4983
static int svm_vm_init(struct kvm *kvm)
4984
{
4985
int type = kvm->arch.vm_type;
4986
4987
if (type != KVM_X86_DEFAULT_VM &&
4988
type != KVM_X86_SW_PROTECTED_VM) {
4989
kvm->arch.has_protected_state =
4990
(type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
4991
to_kvm_sev_info(kvm)->need_init = true;
4992
4993
kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
4994
kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
4995
}
4996
4997
if (!pause_filter_count || !pause_filter_thresh)
4998
kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
4999
5000
if (enable_apicv) {
5001
int ret = avic_vm_init(kvm);
5002
if (ret)
5003
return ret;
5004
}
5005
5006
svm_srso_vm_init();
5007
return 0;
5008
}
5009
5010
static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
5011
{
5012
struct page *page = snp_safe_alloc_page();
5013
5014
if (!page)
5015
return NULL;
5016
5017
return page_address(page);
5018
}
5019
5020
struct kvm_x86_ops svm_x86_ops __initdata = {
5021
.name = KBUILD_MODNAME,
5022
5023
.check_processor_compatibility = svm_check_processor_compat,
5024
5025
.hardware_unsetup = svm_hardware_unsetup,
5026
.enable_virtualization_cpu = svm_enable_virtualization_cpu,
5027
.disable_virtualization_cpu = svm_disable_virtualization_cpu,
5028
.emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5029
.has_emulated_msr = svm_has_emulated_msr,
5030
5031
.vcpu_precreate = svm_vcpu_precreate,
5032
.vcpu_create = svm_vcpu_create,
5033
.vcpu_free = svm_vcpu_free,
5034
.vcpu_reset = svm_vcpu_reset,
5035
5036
.vm_size = sizeof(struct kvm_svm),
5037
.vm_init = svm_vm_init,
5038
.vm_destroy = svm_vm_destroy,
5039
5040
.prepare_switch_to_guest = svm_prepare_switch_to_guest,
5041
.vcpu_load = svm_vcpu_load,
5042
.vcpu_put = svm_vcpu_put,
5043
.vcpu_blocking = avic_vcpu_blocking,
5044
.vcpu_unblocking = avic_vcpu_unblocking,
5045
5046
.update_exception_bitmap = svm_update_exception_bitmap,
5047
.get_feature_msr = svm_get_feature_msr,
5048
.get_msr = svm_get_msr,
5049
.set_msr = svm_set_msr,
5050
.get_segment_base = svm_get_segment_base,
5051
.get_segment = svm_get_segment,
5052
.set_segment = svm_set_segment,
5053
.get_cpl = svm_get_cpl,
5054
.get_cpl_no_cache = svm_get_cpl,
5055
.get_cs_db_l_bits = svm_get_cs_db_l_bits,
5056
.is_valid_cr0 = svm_is_valid_cr0,
5057
.set_cr0 = svm_set_cr0,
5058
.post_set_cr3 = sev_post_set_cr3,
5059
.is_valid_cr4 = svm_is_valid_cr4,
5060
.set_cr4 = svm_set_cr4,
5061
.set_efer = svm_set_efer,
5062
.get_idt = svm_get_idt,
5063
.set_idt = svm_set_idt,
5064
.get_gdt = svm_get_gdt,
5065
.set_gdt = svm_set_gdt,
5066
.set_dr7 = svm_set_dr7,
5067
.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5068
.cache_reg = svm_cache_reg,
5069
.get_rflags = svm_get_rflags,
5070
.set_rflags = svm_set_rflags,
5071
.get_if_flag = svm_get_if_flag,
5072
5073
.flush_tlb_all = svm_flush_tlb_all,
5074
.flush_tlb_current = svm_flush_tlb_current,
5075
.flush_tlb_gva = svm_flush_tlb_gva,
5076
.flush_tlb_guest = svm_flush_tlb_asid,
5077
5078
.vcpu_pre_run = svm_vcpu_pre_run,
5079
.vcpu_run = svm_vcpu_run,
5080
.handle_exit = svm_handle_exit,
5081
.skip_emulated_instruction = svm_skip_emulated_instruction,
5082
.update_emulated_instruction = NULL,
5083
.set_interrupt_shadow = svm_set_interrupt_shadow,
5084
.get_interrupt_shadow = svm_get_interrupt_shadow,
5085
.patch_hypercall = svm_patch_hypercall,
5086
.inject_irq = svm_inject_irq,
5087
.inject_nmi = svm_inject_nmi,
5088
.is_vnmi_pending = svm_is_vnmi_pending,
5089
.set_vnmi_pending = svm_set_vnmi_pending,
5090
.inject_exception = svm_inject_exception,
5091
.cancel_injection = svm_cancel_injection,
5092
.interrupt_allowed = svm_interrupt_allowed,
5093
.nmi_allowed = svm_nmi_allowed,
5094
.get_nmi_mask = svm_get_nmi_mask,
5095
.set_nmi_mask = svm_set_nmi_mask,
5096
.enable_nmi_window = svm_enable_nmi_window,
5097
.enable_irq_window = svm_enable_irq_window,
5098
.update_cr8_intercept = svm_update_cr8_intercept,
5099
5100
.x2apic_icr_is_split = true,
5101
.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5102
.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5103
.apicv_post_state_restore = avic_apicv_post_state_restore,
5104
.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5105
5106
.get_exit_info = svm_get_exit_info,
5107
.get_entry_info = svm_get_entry_info,
5108
5109
.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5110
5111
.has_wbinvd_exit = svm_has_wbinvd_exit,
5112
5113
.get_l2_tsc_offset = svm_get_l2_tsc_offset,
5114
.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5115
.write_tsc_offset = svm_write_tsc_offset,
5116
.write_tsc_multiplier = svm_write_tsc_multiplier,
5117
5118
.load_mmu_pgd = svm_load_mmu_pgd,
5119
5120
.check_intercept = svm_check_intercept,
5121
.handle_exit_irqoff = svm_handle_exit_irqoff,
5122
5123
.nested_ops = &svm_nested_ops,
5124
5125
.deliver_interrupt = svm_deliver_interrupt,
5126
.pi_update_irte = avic_pi_update_irte,
5127
.setup_mce = svm_setup_mce,
5128
5129
#ifdef CONFIG_KVM_SMM
5130
.smi_allowed = svm_smi_allowed,
5131
.enter_smm = svm_enter_smm,
5132
.leave_smm = svm_leave_smm,
5133
.enable_smi_window = svm_enable_smi_window,
5134
#endif
5135
5136
#ifdef CONFIG_KVM_AMD_SEV
5137
.dev_get_attr = sev_dev_get_attr,
5138
.mem_enc_ioctl = sev_mem_enc_ioctl,
5139
.mem_enc_register_region = sev_mem_enc_register_region,
5140
.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5141
.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5142
5143
.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5144
.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5145
#endif
5146
.check_emulate_instruction = svm_check_emulate_instruction,
5147
5148
.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5149
5150
.recalc_intercepts = svm_recalc_intercepts,
5151
.complete_emulated_msr = svm_complete_emulated_msr,
5152
5153
.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5154
.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5155
.alloc_apic_backing_page = svm_alloc_apic_backing_page,
5156
5157
.gmem_prepare = sev_gmem_prepare,
5158
.gmem_invalidate = sev_gmem_invalidate,
5159
.gmem_max_mapping_level = sev_gmem_max_mapping_level,
5160
};
5161
5162
/*
5163
* The default MMIO mask is a single bit (excluding the present bit),
5164
* which could conflict with the memory encryption bit. Check for
5165
* memory encryption support and override the default MMIO mask if
5166
* memory encryption is enabled.
5167
*/
5168
static __init void svm_adjust_mmio_mask(void)
5169
{
5170
unsigned int enc_bit, mask_bit;
5171
u64 msr, mask;
5172
5173
/* If there is no memory encryption support, use existing mask */
5174
if (cpuid_eax(0x80000000) < 0x8000001f)
5175
return;
5176
5177
/* If memory encryption is not enabled, use existing mask */
5178
rdmsrq(MSR_AMD64_SYSCFG, msr);
5179
if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5180
return;
5181
5182
enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5183
mask_bit = boot_cpu_data.x86_phys_bits;
5184
5185
/* Increment the mask bit if it is the same as the encryption bit */
5186
if (enc_bit == mask_bit)
5187
mask_bit++;
5188
5189
/*
5190
* If the mask bit location is below 52, then some bits above the
5191
* physical addressing limit will always be reserved, so use the
5192
* rsvd_bits() function to generate the mask. This mask, along with
5193
* the present bit, will be used to generate a page fault with
5194
* PFER.RSV = 1.
5195
*
5196
* If the mask bit location is 52 (or above), then clear the mask.
5197
*/
5198
mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5199
5200
kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5201
}
5202
5203
static __init void svm_set_cpu_caps(void)
5204
{
5205
kvm_set_cpu_caps();
5206
5207
kvm_caps.supported_perf_cap = 0;
5208
5209
kvm_cpu_cap_clear(X86_FEATURE_IBT);
5210
5211
/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5212
if (nested) {
5213
kvm_cpu_cap_set(X86_FEATURE_SVM);
5214
kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5215
5216
/*
5217
* KVM currently flushes TLBs on *every* nested SVM transition,
5218
* and so for all intents and purposes KVM supports flushing by
5219
* ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5220
*/
5221
kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5222
5223
if (nrips)
5224
kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5225
5226
if (npt_enabled)
5227
kvm_cpu_cap_set(X86_FEATURE_NPT);
5228
5229
if (tsc_scaling)
5230
kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5231
5232
if (vls)
5233
kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5234
if (lbrv)
5235
kvm_cpu_cap_set(X86_FEATURE_LBRV);
5236
5237
if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5238
kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5239
5240
if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5241
kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5242
5243
if (vgif)
5244
kvm_cpu_cap_set(X86_FEATURE_VGIF);
5245
5246
if (vnmi)
5247
kvm_cpu_cap_set(X86_FEATURE_VNMI);
5248
5249
/* Nested VM can receive #VMEXIT instead of triggering #GP */
5250
kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5251
}
5252
5253
if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD))
5254
kvm_caps.has_bus_lock_exit = true;
5255
5256
/* CPUID 0x80000008 */
5257
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5258
boot_cpu_has(X86_FEATURE_AMD_SSBD))
5259
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5260
5261
if (enable_pmu) {
5262
/*
5263
* Enumerate support for PERFCTR_CORE if and only if KVM has
5264
* access to enough counters to virtualize "core" support,
5265
* otherwise limit vPMU support to the legacy number of counters.
5266
*/
5267
if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5268
kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5269
kvm_pmu_cap.num_counters_gp);
5270
else
5271
kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5272
5273
if (kvm_pmu_cap.version != 2 ||
5274
!kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5275
kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5276
}
5277
5278
/* CPUID 0x8000001F (SME/SEV features) */
5279
sev_set_cpu_caps();
5280
5281
/*
5282
* Clear capabilities that are automatically configured by common code,
5283
* but that require explicit SVM support (that isn't yet implemented).
5284
*/
5285
kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5286
kvm_cpu_cap_clear(X86_FEATURE_MSR_IMM);
5287
5288
kvm_setup_xss_caps();
5289
}
5290
5291
static __init int svm_hardware_setup(void)
5292
{
5293
void *iopm_va;
5294
int cpu, r;
5295
5296
/*
5297
* NX is required for shadow paging and for NPT if the NX huge pages
5298
* mitigation is enabled.
5299
*/
5300
if (!boot_cpu_has(X86_FEATURE_NX)) {
5301
pr_err_ratelimited("NX (Execute Disable) not supported\n");
5302
return -EOPNOTSUPP;
5303
}
5304
kvm_enable_efer_bits(EFER_NX);
5305
5306
kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5307
XFEATURE_MASK_BNDCSR);
5308
5309
if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5310
kvm_enable_efer_bits(EFER_FFXSR);
5311
5312
if (tsc_scaling) {
5313
if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5314
tsc_scaling = false;
5315
} else {
5316
pr_info("TSC scaling supported\n");
5317
kvm_caps.has_tsc_control = true;
5318
}
5319
}
5320
kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5321
kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5322
5323
tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5324
5325
if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5326
kvm_enable_efer_bits(EFER_AUTOIBRS);
5327
5328
/* Check for pause filtering support */
5329
if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5330
pause_filter_count = 0;
5331
pause_filter_thresh = 0;
5332
} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5333
pause_filter_thresh = 0;
5334
}
5335
5336
if (nested) {
5337
pr_info("Nested Virtualization enabled\n");
5338
kvm_enable_efer_bits(EFER_SVME);
5339
if (!boot_cpu_has(X86_FEATURE_EFER_LMSLE_MBZ))
5340
kvm_enable_efer_bits(EFER_LMSLE);
5341
5342
r = nested_svm_init_msrpm_merge_offsets();
5343
if (r)
5344
return r;
5345
}
5346
5347
/*
5348
* KVM's MMU doesn't support using 2-level paging for itself, and thus
5349
* NPT isn't supported if the host is using 2-level paging since host
5350
* CR4 is unchanged on VMRUN.
5351
*/
5352
if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5353
npt_enabled = false;
5354
5355
if (!boot_cpu_has(X86_FEATURE_NPT))
5356
npt_enabled = false;
5357
5358
/* Force VM NPT level equal to the host's paging level */
5359
kvm_configure_mmu(npt_enabled, get_npt_level(),
5360
get_npt_level(), PG_LEVEL_1G);
5361
pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5362
5363
/*
5364
* It seems that on AMD processors PTE's accessed bit is
5365
* being set by the CPU hardware before the NPF vmexit.
5366
* This is not expected behaviour and our tests fail because
5367
* of it.
5368
* A workaround here is to disable support for
5369
* GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5370
* In this case userspace can know if there is support using
5371
* KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5372
* it
5373
* If future AMD CPU models change the behaviour described above,
5374
* this variable can be changed accordingly
5375
*/
5376
allow_smaller_maxphyaddr = !npt_enabled;
5377
5378
/* Setup shadow_me_value and shadow_me_mask */
5379
kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5380
5381
svm_adjust_mmio_mask();
5382
5383
nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5384
5385
if (lbrv) {
5386
if (!boot_cpu_has(X86_FEATURE_LBRV))
5387
lbrv = false;
5388
else
5389
pr_info("LBR virtualization supported\n");
5390
}
5391
5392
iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL);
5393
if (!iopm_va)
5394
return -ENOMEM;
5395
5396
iopm_base = __sme_set(__pa(iopm_va));
5397
5398
/*
5399
* Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5400
* may be modified by svm_adjust_mmio_mask()), as well as nrips.
5401
*/
5402
sev_hardware_setup();
5403
5404
svm_hv_hardware_setup();
5405
5406
enable_apicv = avic_hardware_setup();
5407
if (!enable_apicv) {
5408
enable_ipiv = false;
5409
svm_x86_ops.vcpu_blocking = NULL;
5410
svm_x86_ops.vcpu_unblocking = NULL;
5411
svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5412
}
5413
5414
if (vls) {
5415
if (!npt_enabled ||
5416
!boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5417
!IS_ENABLED(CONFIG_X86_64)) {
5418
vls = false;
5419
} else {
5420
pr_info("Virtual VMLOAD VMSAVE supported\n");
5421
}
5422
}
5423
5424
if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5425
svm_gp_erratum_intercept = false;
5426
5427
if (vgif) {
5428
if (!boot_cpu_has(X86_FEATURE_VGIF))
5429
vgif = false;
5430
else
5431
pr_info("Virtual GIF supported\n");
5432
}
5433
5434
vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5435
if (vnmi)
5436
pr_info("Virtual NMI enabled\n");
5437
5438
if (!vnmi) {
5439
svm_x86_ops.is_vnmi_pending = NULL;
5440
svm_x86_ops.set_vnmi_pending = NULL;
5441
}
5442
5443
if (!enable_pmu)
5444
pr_info("PMU virtualization is disabled\n");
5445
5446
svm_set_cpu_caps();
5447
5448
kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED;
5449
5450
for_each_possible_cpu(cpu) {
5451
r = svm_cpu_init(cpu);
5452
if (r)
5453
goto err;
5454
}
5455
5456
return 0;
5457
5458
err:
5459
svm_hardware_unsetup();
5460
return r;
5461
}
5462
5463
5464
static struct kvm_x86_init_ops svm_init_ops __initdata = {
5465
.hardware_setup = svm_hardware_setup,
5466
5467
.runtime_ops = &svm_x86_ops,
5468
.pmu_ops = &amd_pmu_ops,
5469
};
5470
5471
static void __svm_exit(void)
5472
{
5473
kvm_x86_vendor_exit();
5474
}
5475
5476
static int __init svm_init(void)
5477
{
5478
int r;
5479
5480
KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm);
5481
5482
__unused_size_checks();
5483
5484
if (!kvm_is_svm_supported())
5485
return -EOPNOTSUPP;
5486
5487
r = kvm_x86_vendor_init(&svm_init_ops);
5488
if (r)
5489
return r;
5490
5491
/*
5492
* Common KVM initialization _must_ come last, after this, /dev/kvm is
5493
* exposed to userspace!
5494
*/
5495
r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5496
THIS_MODULE);
5497
if (r)
5498
goto err_kvm_init;
5499
5500
return 0;
5501
5502
err_kvm_init:
5503
__svm_exit();
5504
return r;
5505
}
5506
5507
static void __exit svm_exit(void)
5508
{
5509
kvm_exit();
5510
__svm_exit();
5511
}
5512
5513
module_init(svm_init)
5514
module_exit(svm_exit)
5515
5516