Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/svm/svm.h
51485 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Kernel-based Virtual Machine driver for Linux
4
*
5
* AMD SVM support
6
*
7
* Copyright (C) 2006 Qumranet, Inc.
8
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
9
*
10
* Authors:
11
* Yaniv Kamay <[email protected]>
12
* Avi Kivity <[email protected]>
13
*/
14
15
#ifndef __SVM_SVM_H
16
#define __SVM_SVM_H
17
18
#include <linux/kvm_types.h>
19
#include <linux/kvm_host.h>
20
#include <linux/bits.h>
21
22
#include <asm/svm.h>
23
#include <asm/sev-common.h>
24
25
#include "cpuid.h"
26
#include "kvm_cache_regs.h"
27
28
/*
29
* Helpers to convert to/from physical addresses for pages whose address is
30
* consumed directly by hardware. Even though it's a physical address, SVM
31
* often restricts the address to the natural width, hence 'unsigned long'
32
* instead of 'hpa_t'.
33
*/
34
static inline unsigned long __sme_page_pa(struct page *page)
35
{
36
return __sme_set(page_to_pfn(page) << PAGE_SHIFT);
37
}
38
39
static inline struct page *__sme_pa_to_page(unsigned long pa)
40
{
41
return pfn_to_page(__sme_clr(pa) >> PAGE_SHIFT);
42
}
43
44
#define IOPM_SIZE PAGE_SIZE * 3
45
#define MSRPM_SIZE PAGE_SIZE * 2
46
47
extern bool npt_enabled;
48
extern int nrips;
49
extern int vgif;
50
extern bool intercept_smi;
51
extern bool vnmi;
52
extern int lbrv;
53
54
extern int tsc_aux_uret_slot __ro_after_init;
55
56
extern struct kvm_x86_ops svm_x86_ops __initdata;
57
58
/*
59
* Clean bits in VMCB.
60
* VMCB_ALL_CLEAN_MASK might also need to
61
* be updated if this enum is modified.
62
*/
63
enum {
64
VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
65
pause filter count */
66
VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
67
VMCB_ASID, /* ASID */
68
VMCB_INTR, /* int_ctl, int_vector */
69
VMCB_NPT, /* npt_en, nCR3, gPAT */
70
VMCB_CR, /* CR0, CR3, CR4, EFER */
71
VMCB_DR, /* DR6, DR7 */
72
VMCB_DT, /* GDT, IDT */
73
VMCB_SEG, /* CS, DS, SS, ES, CPL */
74
VMCB_CR2, /* CR2 only */
75
VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
76
VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
77
* AVIC PHYSICAL_TABLE pointer,
78
* AVIC LOGICAL_TABLE pointer
79
*/
80
VMCB_CET, /* S_CET, SSP, ISST_ADDR */
81
VMCB_SW = 31, /* Reserved for hypervisor/software use */
82
};
83
84
#define VMCB_ALL_CLEAN_MASK ( \
85
(1U << VMCB_INTERCEPTS) | (1U << VMCB_PERM_MAP) | \
86
(1U << VMCB_ASID) | (1U << VMCB_INTR) | \
87
(1U << VMCB_NPT) | (1U << VMCB_CR) | (1U << VMCB_DR) | \
88
(1U << VMCB_DT) | (1U << VMCB_SEG) | (1U << VMCB_CR2) | \
89
(1U << VMCB_LBR) | (1U << VMCB_AVIC) | (1U << VMCB_CET) | \
90
(1U << VMCB_SW))
91
92
/* TPR and CR2 are always written before VMRUN */
93
#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
94
95
struct kvm_sev_info {
96
bool active; /* SEV enabled guest */
97
bool es_active; /* SEV-ES enabled guest */
98
bool need_init; /* waiting for SEV_INIT2 */
99
unsigned int asid; /* ASID used for this guest */
100
unsigned int handle; /* SEV firmware handle */
101
int fd; /* SEV device fd */
102
unsigned long policy;
103
unsigned long pages_locked; /* Number of pages locked */
104
struct list_head regions_list; /* List of registered regions */
105
u64 ap_jump_table; /* SEV-ES AP Jump Table address */
106
u64 vmsa_features;
107
u16 ghcb_version; /* Highest guest GHCB protocol version allowed */
108
struct kvm *enc_context_owner; /* Owner of copied encryption context */
109
struct list_head mirror_vms; /* List of VMs mirroring */
110
struct list_head mirror_entry; /* Use as a list entry of mirrors */
111
struct misc_cg *misc_cg; /* For misc cgroup accounting */
112
atomic_t migration_in_progress;
113
void *snp_context; /* SNP guest context page */
114
void *guest_req_buf; /* Bounce buffer for SNP Guest Request input */
115
void *guest_resp_buf; /* Bounce buffer for SNP Guest Request output */
116
struct mutex guest_req_mutex; /* Must acquire before using bounce buffers */
117
cpumask_var_t have_run_cpus; /* CPUs that have done VMRUN for this VM. */
118
};
119
120
struct kvm_svm {
121
struct kvm kvm;
122
123
/* Struct members for AVIC */
124
u32 avic_vm_id;
125
u32 *avic_logical_id_table;
126
u64 *avic_physical_id_table;
127
struct hlist_node hnode;
128
129
struct kvm_sev_info sev_info;
130
};
131
132
struct kvm_vcpu;
133
134
struct kvm_vmcb_info {
135
struct vmcb *ptr;
136
unsigned long pa;
137
int cpu;
138
uint64_t asid_generation;
139
};
140
141
struct vmcb_save_area_cached {
142
u64 efer;
143
u64 cr4;
144
u64 cr3;
145
u64 cr0;
146
u64 dr7;
147
u64 dr6;
148
};
149
150
struct vmcb_ctrl_area_cached {
151
u32 intercepts[MAX_INTERCEPT];
152
u16 pause_filter_thresh;
153
u16 pause_filter_count;
154
u64 iopm_base_pa;
155
u64 msrpm_base_pa;
156
u64 tsc_offset;
157
u32 asid;
158
u8 tlb_ctl;
159
u32 int_ctl;
160
u32 int_vector;
161
u32 int_state;
162
u32 exit_code;
163
u32 exit_code_hi;
164
u64 exit_info_1;
165
u64 exit_info_2;
166
u32 exit_int_info;
167
u32 exit_int_info_err;
168
u64 nested_ctl;
169
u32 event_inj;
170
u32 event_inj_err;
171
u64 next_rip;
172
u64 nested_cr3;
173
u64 virt_ext;
174
u32 clean;
175
u64 bus_lock_rip;
176
union {
177
#if IS_ENABLED(CONFIG_HYPERV) || IS_ENABLED(CONFIG_KVM_HYPERV)
178
struct hv_vmcb_enlightenments hv_enlightenments;
179
#endif
180
u8 reserved_sw[32];
181
};
182
};
183
184
struct svm_nested_state {
185
struct kvm_vmcb_info vmcb02;
186
u64 hsave_msr;
187
u64 vm_cr_msr;
188
u64 vmcb12_gpa;
189
u64 last_vmcb12_gpa;
190
191
/*
192
* The MSR permissions map used for vmcb02, which is the merge result
193
* of vmcb01 and vmcb12
194
*/
195
void *msrpm;
196
197
/* A VMRUN has started but has not yet been performed, so
198
* we cannot inject a nested vmexit yet. */
199
bool nested_run_pending;
200
201
/* cache for control fields of the guest */
202
struct vmcb_ctrl_area_cached ctl;
203
204
/*
205
* Note: this struct is not kept up-to-date while L2 runs; it is only
206
* valid within nested_svm_vmrun.
207
*/
208
struct vmcb_save_area_cached save;
209
210
bool initialized;
211
212
/*
213
* Indicates whether MSR bitmap for L2 needs to be rebuilt due to
214
* changes in MSR bitmap for L1 or switching to a different L2. Note,
215
* this flag can only be used reliably in conjunction with a paravirt L1
216
* which informs L0 whether any changes to MSR bitmap for L2 were done
217
* on its side.
218
*/
219
bool force_msr_bitmap_recalc;
220
};
221
222
struct vcpu_sev_es_state {
223
/* SEV-ES support */
224
struct sev_es_save_area *vmsa;
225
struct ghcb *ghcb;
226
u8 valid_bitmap[16];
227
struct kvm_host_map ghcb_map;
228
bool received_first_sipi;
229
unsigned int ap_reset_hold_type;
230
231
/* SEV-ES scratch area support */
232
u64 sw_scratch;
233
void *ghcb_sa;
234
u32 ghcb_sa_len;
235
bool ghcb_sa_sync;
236
bool ghcb_sa_free;
237
238
/* SNP Page-State-Change buffer entries currently being processed */
239
u16 psc_idx;
240
u16 psc_inflight;
241
bool psc_2m;
242
243
u64 ghcb_registered_gpa;
244
245
struct mutex snp_vmsa_mutex; /* Used to handle concurrent updates of VMSA. */
246
gpa_t snp_vmsa_gpa;
247
bool snp_ap_waiting_for_reset;
248
bool snp_has_guest_vmsa;
249
};
250
251
struct vcpu_svm {
252
struct kvm_vcpu vcpu;
253
/* vmcb always points at current_vmcb->ptr, it's purely a shorthand. */
254
struct vmcb *vmcb;
255
struct kvm_vmcb_info vmcb01;
256
struct kvm_vmcb_info *current_vmcb;
257
u32 asid;
258
u32 sysenter_esp_hi;
259
u32 sysenter_eip_hi;
260
uint64_t tsc_aux;
261
262
u64 msr_decfg;
263
264
u64 next_rip;
265
266
u64 spec_ctrl;
267
268
u64 tsc_ratio_msr;
269
/*
270
* Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
271
* translated into the appropriate L2_CFG bits on the host to
272
* perform speculative control.
273
*/
274
u64 virt_spec_ctrl;
275
276
void *msrpm;
277
278
ulong nmi_iret_rip;
279
280
struct svm_nested_state nested;
281
282
/* NMI mask value, used when vNMI is not enabled */
283
bool nmi_masked;
284
285
/*
286
* True when NMIs are still masked but guest IRET was just intercepted
287
* and KVM is waiting for RIP to change, which will signal that the
288
* intercepted IRET was retired and thus NMI can be unmasked.
289
*/
290
bool awaiting_iret_completion;
291
292
/*
293
* Set when KVM is awaiting IRET completion and needs to inject NMIs as
294
* soon as the IRET completes (e.g. NMI is pending injection). KVM
295
* temporarily steals RFLAGS.TF to single-step the guest in this case
296
* in order to regain control as soon as the NMI-blocking condition
297
* goes away.
298
*/
299
bool nmi_singlestep;
300
u64 nmi_singlestep_guest_rflags;
301
302
bool nmi_l1_to_l2;
303
304
unsigned long soft_int_csbase;
305
unsigned long soft_int_old_rip;
306
unsigned long soft_int_next_rip;
307
bool soft_int_injected;
308
309
u32 ldr_reg;
310
u32 dfr_reg;
311
312
/* This is essentially a shadow of the vCPU's actual entry in the
313
* Physical ID table that is programmed into the VMCB, i.e. that is
314
* seen by the CPU. If IPI virtualization is disabled, IsRunning is
315
* only ever set in the shadow, i.e. is never propagated to the "real"
316
* table, so that hardware never sees IsRunning=1.
317
*/
318
u64 avic_physical_id_entry;
319
320
/*
321
* Per-vCPU list of irqfds that are eligible to post IRQs directly to
322
* the vCPU (a.k.a. device posted IRQs, a.k.a. IRQ bypass). The list
323
* is used to reconfigure IRTEs when the vCPU is loaded/put (to set the
324
* target pCPU), when AVIC is toggled on/off (to (de)activate bypass),
325
* and if the irqfd becomes ineligible for posting (to put the IRTE
326
* back into remapped mode).
327
*/
328
struct list_head ir_list;
329
raw_spinlock_t ir_list_lock;
330
331
struct vcpu_sev_es_state sev_es;
332
333
bool guest_state_loaded;
334
335
bool x2avic_msrs_intercepted;
336
bool lbr_msrs_intercepted;
337
338
/* Guest GIF value, used when vGIF is not enabled */
339
bool guest_gif;
340
};
341
342
struct svm_cpu_data {
343
u64 asid_generation;
344
u32 max_asid;
345
u32 next_asid;
346
u32 min_asid;
347
348
bool bp_spec_reduce_set;
349
350
struct vmcb *save_area;
351
unsigned long save_area_pa;
352
353
/* index = sev_asid, value = vmcb pointer */
354
struct vmcb **sev_vmcbs;
355
};
356
357
DECLARE_PER_CPU(struct svm_cpu_data, svm_data);
358
359
void recalc_intercepts(struct vcpu_svm *svm);
360
361
static __always_inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
362
{
363
return container_of(kvm, struct kvm_svm, kvm);
364
}
365
366
static __always_inline struct kvm_sev_info *to_kvm_sev_info(struct kvm *kvm)
367
{
368
return &to_kvm_svm(kvm)->sev_info;
369
}
370
371
#ifdef CONFIG_KVM_AMD_SEV
372
static __always_inline bool sev_guest(struct kvm *kvm)
373
{
374
return to_kvm_sev_info(kvm)->active;
375
}
376
static __always_inline bool sev_es_guest(struct kvm *kvm)
377
{
378
struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
379
380
return sev->es_active && !WARN_ON_ONCE(!sev->active);
381
}
382
383
static __always_inline bool sev_snp_guest(struct kvm *kvm)
384
{
385
struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
386
387
return (sev->vmsa_features & SVM_SEV_FEAT_SNP_ACTIVE) &&
388
!WARN_ON_ONCE(!sev_es_guest(kvm));
389
}
390
#else
391
#define sev_guest(kvm) false
392
#define sev_es_guest(kvm) false
393
#define sev_snp_guest(kvm) false
394
#endif
395
396
static inline bool ghcb_gpa_is_registered(struct vcpu_svm *svm, u64 val)
397
{
398
return svm->sev_es.ghcb_registered_gpa == val;
399
}
400
401
static inline void vmcb_mark_all_dirty(struct vmcb *vmcb)
402
{
403
vmcb->control.clean = 0;
404
}
405
406
static inline void vmcb_mark_all_clean(struct vmcb *vmcb)
407
{
408
vmcb->control.clean = VMCB_ALL_CLEAN_MASK
409
& ~VMCB_ALWAYS_DIRTY_MASK;
410
}
411
412
static inline void vmcb_mark_dirty(struct vmcb *vmcb, int bit)
413
{
414
vmcb->control.clean &= ~(1 << bit);
415
}
416
417
static inline bool vmcb_is_dirty(struct vmcb *vmcb, int bit)
418
{
419
return !test_bit(bit, (unsigned long *)&vmcb->control.clean);
420
}
421
422
static __always_inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
423
{
424
return container_of(vcpu, struct vcpu_svm, vcpu);
425
}
426
427
/*
428
* Only the PDPTRs are loaded on demand into the shadow MMU. All other
429
* fields are synchronized on VM-Exit, because accessing the VMCB is cheap.
430
*
431
* CR3 might be out of date in the VMCB but it is not marked dirty; instead,
432
* KVM_REQ_LOAD_MMU_PGD is always requested when the cached vcpu->arch.cr3
433
* is changed. svm_load_mmu_pgd() then syncs the new CR3 value into the VMCB.
434
*/
435
#define SVM_REGS_LAZY_LOAD_SET (1 << VCPU_EXREG_PDPTR)
436
437
static inline void vmcb_set_intercept(struct vmcb_control_area *control, u32 bit)
438
{
439
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
440
__set_bit(bit, (unsigned long *)&control->intercepts);
441
}
442
443
static inline void vmcb_clr_intercept(struct vmcb_control_area *control, u32 bit)
444
{
445
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
446
__clear_bit(bit, (unsigned long *)&control->intercepts);
447
}
448
449
static inline bool vmcb_is_intercept(struct vmcb_control_area *control, u32 bit)
450
{
451
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
452
return test_bit(bit, (unsigned long *)&control->intercepts);
453
}
454
455
static inline bool vmcb12_is_intercept(struct vmcb_ctrl_area_cached *control, u32 bit)
456
{
457
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
458
return test_bit(bit, (unsigned long *)&control->intercepts);
459
}
460
461
static inline void set_exception_intercept(struct vcpu_svm *svm, u32 bit)
462
{
463
struct vmcb *vmcb = svm->vmcb01.ptr;
464
465
WARN_ON_ONCE(bit >= 32);
466
vmcb_set_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
467
468
recalc_intercepts(svm);
469
}
470
471
static inline void clr_exception_intercept(struct vcpu_svm *svm, u32 bit)
472
{
473
struct vmcb *vmcb = svm->vmcb01.ptr;
474
475
WARN_ON_ONCE(bit >= 32);
476
vmcb_clr_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
477
478
recalc_intercepts(svm);
479
}
480
481
static inline void svm_set_intercept(struct vcpu_svm *svm, int bit)
482
{
483
struct vmcb *vmcb = svm->vmcb01.ptr;
484
485
vmcb_set_intercept(&vmcb->control, bit);
486
487
recalc_intercepts(svm);
488
}
489
490
static inline void svm_clr_intercept(struct vcpu_svm *svm, int bit)
491
{
492
struct vmcb *vmcb = svm->vmcb01.ptr;
493
494
vmcb_clr_intercept(&vmcb->control, bit);
495
496
recalc_intercepts(svm);
497
}
498
499
static inline bool svm_is_intercept(struct vcpu_svm *svm, int bit)
500
{
501
return vmcb_is_intercept(&svm->vmcb->control, bit);
502
}
503
504
static inline bool nested_vgif_enabled(struct vcpu_svm *svm)
505
{
506
return guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_VGIF) &&
507
(svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK);
508
}
509
510
static inline struct vmcb *get_vgif_vmcb(struct vcpu_svm *svm)
511
{
512
if (!vgif)
513
return NULL;
514
515
if (is_guest_mode(&svm->vcpu) && !nested_vgif_enabled(svm))
516
return svm->nested.vmcb02.ptr;
517
else
518
return svm->vmcb01.ptr;
519
}
520
521
static inline void enable_gif(struct vcpu_svm *svm)
522
{
523
struct vmcb *vmcb = get_vgif_vmcb(svm);
524
525
if (vmcb)
526
vmcb->control.int_ctl |= V_GIF_MASK;
527
else
528
svm->guest_gif = true;
529
}
530
531
static inline void disable_gif(struct vcpu_svm *svm)
532
{
533
struct vmcb *vmcb = get_vgif_vmcb(svm);
534
535
if (vmcb)
536
vmcb->control.int_ctl &= ~V_GIF_MASK;
537
else
538
svm->guest_gif = false;
539
}
540
541
static inline bool gif_set(struct vcpu_svm *svm)
542
{
543
struct vmcb *vmcb = get_vgif_vmcb(svm);
544
545
if (vmcb)
546
return !!(vmcb->control.int_ctl & V_GIF_MASK);
547
else
548
return svm->guest_gif;
549
}
550
551
static inline bool nested_npt_enabled(struct vcpu_svm *svm)
552
{
553
return svm->nested.ctl.nested_ctl & SVM_NESTED_CTL_NP_ENABLE;
554
}
555
556
static inline bool nested_vnmi_enabled(struct vcpu_svm *svm)
557
{
558
return guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_VNMI) &&
559
(svm->nested.ctl.int_ctl & V_NMI_ENABLE_MASK);
560
}
561
562
static inline bool is_x2apic_msrpm_offset(u32 offset)
563
{
564
/* 4 msrs per u8, and 4 u8 in u32 */
565
u32 msr = offset * 16;
566
567
return (msr >= APIC_BASE_MSR) &&
568
(msr < (APIC_BASE_MSR + 0x100));
569
}
570
571
static inline struct vmcb *get_vnmi_vmcb_l1(struct vcpu_svm *svm)
572
{
573
if (!vnmi)
574
return NULL;
575
576
if (is_guest_mode(&svm->vcpu))
577
return NULL;
578
else
579
return svm->vmcb01.ptr;
580
}
581
582
static inline bool is_vnmi_enabled(struct vcpu_svm *svm)
583
{
584
struct vmcb *vmcb = get_vnmi_vmcb_l1(svm);
585
586
if (vmcb)
587
return !!(vmcb->control.int_ctl & V_NMI_ENABLE_MASK);
588
else
589
return false;
590
}
591
592
static inline void svm_vmgexit_set_return_code(struct vcpu_svm *svm,
593
u64 response, u64 data)
594
{
595
ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, response);
596
ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, data);
597
}
598
599
static inline void svm_vmgexit_inject_exception(struct vcpu_svm *svm, u8 vector)
600
{
601
u64 data = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT | vector;
602
603
svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_ISSUE_EXCEPTION, data);
604
}
605
606
static inline void svm_vmgexit_bad_input(struct vcpu_svm *svm, u64 suberror)
607
{
608
svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_MALFORMED_INPUT, suberror);
609
}
610
611
static inline void svm_vmgexit_success(struct vcpu_svm *svm, u64 data)
612
{
613
svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_NO_ACTION, data);
614
}
615
616
static inline void svm_vmgexit_no_action(struct vcpu_svm *svm, u64 data)
617
{
618
svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_NO_ACTION, data);
619
}
620
621
/*
622
* The MSRPM is 8KiB in size, divided into four 2KiB ranges (the fourth range
623
* is reserved). Each MSR within a range is covered by two bits, one each for
624
* read (bit 0) and write (bit 1), where a bit value of '1' means intercepted.
625
*/
626
#define SVM_MSRPM_BYTES_PER_RANGE 2048
627
#define SVM_BITS_PER_MSR 2
628
#define SVM_MSRS_PER_BYTE (BITS_PER_BYTE / SVM_BITS_PER_MSR)
629
#define SVM_MSRS_PER_RANGE (SVM_MSRPM_BYTES_PER_RANGE * SVM_MSRS_PER_BYTE)
630
static_assert(SVM_MSRS_PER_RANGE == 8192);
631
#define SVM_MSRPM_OFFSET_MASK (SVM_MSRS_PER_RANGE - 1)
632
633
static __always_inline int svm_msrpm_bit_nr(u32 msr)
634
{
635
int range_nr;
636
637
switch (msr & ~SVM_MSRPM_OFFSET_MASK) {
638
case 0:
639
range_nr = 0;
640
break;
641
case 0xc0000000:
642
range_nr = 1;
643
break;
644
case 0xc0010000:
645
range_nr = 2;
646
break;
647
default:
648
return -EINVAL;
649
}
650
651
return range_nr * SVM_MSRPM_BYTES_PER_RANGE * BITS_PER_BYTE +
652
(msr & SVM_MSRPM_OFFSET_MASK) * SVM_BITS_PER_MSR;
653
}
654
655
#define __BUILD_SVM_MSR_BITMAP_HELPER(rtype, action, bitop, access, bit_rw) \
656
static inline rtype svm_##action##_msr_bitmap_##access(unsigned long *bitmap, \
657
u32 msr) \
658
{ \
659
int bit_nr; \
660
\
661
bit_nr = svm_msrpm_bit_nr(msr); \
662
if (bit_nr < 0) \
663
return (rtype)true; \
664
\
665
return bitop##_bit(bit_nr + bit_rw, bitmap); \
666
}
667
668
#define BUILD_SVM_MSR_BITMAP_HELPERS(ret_type, action, bitop) \
669
__BUILD_SVM_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0) \
670
__BUILD_SVM_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 1)
671
672
BUILD_SVM_MSR_BITMAP_HELPERS(bool, test, test)
673
BUILD_SVM_MSR_BITMAP_HELPERS(void, clear, __clear)
674
BUILD_SVM_MSR_BITMAP_HELPERS(void, set, __set)
675
676
#define DEBUGCTL_RESERVED_BITS (~DEBUGCTLMSR_LBR)
677
678
/* svm.c */
679
extern bool dump_invalid_vmcb;
680
681
void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask);
682
683
static inline void *svm_vcpu_alloc_msrpm(void)
684
{
685
return svm_alloc_permissions_map(MSRPM_SIZE, GFP_KERNEL_ACCOUNT);
686
}
687
688
void svm_vcpu_free_msrpm(void *msrpm);
689
void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb);
690
void svm_enable_lbrv(struct kvm_vcpu *vcpu);
691
void svm_update_lbrv(struct kvm_vcpu *vcpu);
692
693
int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer);
694
void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
695
void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
696
void disable_nmi_singlestep(struct vcpu_svm *svm);
697
bool svm_smi_blocked(struct kvm_vcpu *vcpu);
698
bool svm_nmi_blocked(struct kvm_vcpu *vcpu);
699
bool svm_interrupt_blocked(struct kvm_vcpu *vcpu);
700
void svm_set_gif(struct vcpu_svm *svm, bool value);
701
int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code);
702
void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
703
int read, int write);
704
void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
705
int trig_mode, int vec);
706
707
void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set);
708
709
static inline void svm_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
710
u32 msr, int type)
711
{
712
svm_set_intercept_for_msr(vcpu, msr, type, false);
713
}
714
715
static inline void svm_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
716
u32 msr, int type)
717
{
718
svm_set_intercept_for_msr(vcpu, msr, type, true);
719
}
720
721
/* nested.c */
722
723
#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
724
#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
725
#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
726
727
static inline bool nested_svm_virtualize_tpr(struct kvm_vcpu *vcpu)
728
{
729
struct vcpu_svm *svm = to_svm(vcpu);
730
731
return is_guest_mode(vcpu) && (svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK);
732
}
733
734
static inline bool nested_exit_on_smi(struct vcpu_svm *svm)
735
{
736
return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SMI);
737
}
738
739
static inline bool nested_exit_on_intr(struct vcpu_svm *svm)
740
{
741
return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INTR);
742
}
743
744
static inline bool nested_exit_on_nmi(struct vcpu_svm *svm)
745
{
746
return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_NMI);
747
}
748
749
int __init nested_svm_init_msrpm_merge_offsets(void);
750
751
int enter_svm_guest_mode(struct kvm_vcpu *vcpu,
752
u64 vmcb_gpa, struct vmcb *vmcb12, bool from_vmrun);
753
void svm_leave_nested(struct kvm_vcpu *vcpu);
754
void svm_free_nested(struct vcpu_svm *svm);
755
int svm_allocate_nested(struct vcpu_svm *svm);
756
int nested_svm_vmrun(struct kvm_vcpu *vcpu);
757
void svm_copy_vmrun_state(struct vmcb_save_area *to_save,
758
struct vmcb_save_area *from_save);
759
void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb);
760
int nested_svm_vmexit(struct vcpu_svm *svm);
761
762
static inline int nested_svm_simple_vmexit(struct vcpu_svm *svm, u32 exit_code)
763
{
764
svm->vmcb->control.exit_code = exit_code;
765
svm->vmcb->control.exit_code_hi = 0;
766
svm->vmcb->control.exit_info_1 = 0;
767
svm->vmcb->control.exit_info_2 = 0;
768
return nested_svm_vmexit(svm);
769
}
770
771
int nested_svm_exit_handled(struct vcpu_svm *svm);
772
int nested_svm_check_permissions(struct kvm_vcpu *vcpu);
773
int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
774
bool has_error_code, u32 error_code);
775
int nested_svm_exit_special(struct vcpu_svm *svm);
776
void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu);
777
void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu);
778
void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm,
779
struct vmcb_control_area *control);
780
void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm,
781
struct vmcb_save_area *save);
782
void nested_sync_control_from_vmcb02(struct vcpu_svm *svm);
783
void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm);
784
void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb);
785
786
extern struct kvm_x86_nested_ops svm_nested_ops;
787
788
/* avic.c */
789
#define AVIC_REQUIRED_APICV_INHIBITS \
790
( \
791
BIT(APICV_INHIBIT_REASON_DISABLED) | \
792
BIT(APICV_INHIBIT_REASON_ABSENT) | \
793
BIT(APICV_INHIBIT_REASON_HYPERV) | \
794
BIT(APICV_INHIBIT_REASON_NESTED) | \
795
BIT(APICV_INHIBIT_REASON_IRQWIN) | \
796
BIT(APICV_INHIBIT_REASON_PIT_REINJ) | \
797
BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
798
BIT(APICV_INHIBIT_REASON_SEV) | \
799
BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
800
BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
801
BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) | \
802
BIT(APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED) | \
803
BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG) \
804
)
805
806
bool __init avic_hardware_setup(void);
807
void avic_hardware_unsetup(void);
808
int avic_alloc_physical_id_table(struct kvm *kvm);
809
void avic_vm_destroy(struct kvm *kvm);
810
int avic_vm_init(struct kvm *kvm);
811
void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb);
812
int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu);
813
int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu);
814
int avic_init_vcpu(struct vcpu_svm *svm);
815
void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
816
void avic_vcpu_put(struct kvm_vcpu *vcpu);
817
void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu);
818
void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu);
819
int avic_pi_update_irte(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm,
820
unsigned int host_irq, uint32_t guest_irq,
821
struct kvm_vcpu *vcpu, u32 vector);
822
void avic_vcpu_blocking(struct kvm_vcpu *vcpu);
823
void avic_vcpu_unblocking(struct kvm_vcpu *vcpu);
824
void avic_ring_doorbell(struct kvm_vcpu *vcpu);
825
unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu);
826
void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu);
827
828
829
/* sev.c */
830
831
int pre_sev_run(struct vcpu_svm *svm, int cpu);
832
void sev_init_vmcb(struct vcpu_svm *svm, bool init_event);
833
void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm);
834
int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in);
835
void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu);
836
void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
837
void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa);
838
void sev_es_unmap_ghcb(struct vcpu_svm *svm);
839
840
#ifdef CONFIG_KVM_AMD_SEV
841
int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp);
842
int sev_mem_enc_register_region(struct kvm *kvm,
843
struct kvm_enc_region *range);
844
int sev_mem_enc_unregister_region(struct kvm *kvm,
845
struct kvm_enc_region *range);
846
int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd);
847
int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd);
848
void sev_guest_memory_reclaimed(struct kvm *kvm);
849
int sev_handle_vmgexit(struct kvm_vcpu *vcpu);
850
851
/* These symbols are used in common code and are stubbed below. */
852
853
struct page *snp_safe_alloc_page_node(int node, gfp_t gfp);
854
static inline struct page *snp_safe_alloc_page(void)
855
{
856
return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT);
857
}
858
859
int sev_vcpu_create(struct kvm_vcpu *vcpu);
860
void sev_free_vcpu(struct kvm_vcpu *vcpu);
861
void sev_vm_destroy(struct kvm *kvm);
862
void __init sev_set_cpu_caps(void);
863
void __init sev_hardware_setup(void);
864
void sev_hardware_unsetup(void);
865
int sev_cpu_init(struct svm_cpu_data *sd);
866
int sev_dev_get_attr(u32 group, u64 attr, u64 *val);
867
extern unsigned int max_sev_asid;
868
void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code);
869
int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
870
void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
871
int sev_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private);
872
struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu);
873
void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa);
874
#else
875
static inline struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
876
{
877
return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
878
}
879
880
static inline struct page *snp_safe_alloc_page(void)
881
{
882
return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT);
883
}
884
885
static inline int sev_vcpu_create(struct kvm_vcpu *vcpu) { return 0; }
886
static inline void sev_free_vcpu(struct kvm_vcpu *vcpu) {}
887
static inline void sev_vm_destroy(struct kvm *kvm) {}
888
static inline void __init sev_set_cpu_caps(void) {}
889
static inline void __init sev_hardware_setup(void) {}
890
static inline void sev_hardware_unsetup(void) {}
891
static inline int sev_cpu_init(struct svm_cpu_data *sd) { return 0; }
892
static inline int sev_dev_get_attr(u32 group, u64 attr, u64 *val) { return -ENXIO; }
893
#define max_sev_asid 0
894
static inline void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) {}
895
static inline int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
896
{
897
return 0;
898
}
899
static inline void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) {}
900
static inline int sev_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private)
901
{
902
return 0;
903
}
904
905
static inline struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu)
906
{
907
return NULL;
908
}
909
static inline void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa) {}
910
#endif
911
912
/* vmenter.S */
913
914
void __svm_sev_es_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted,
915
struct sev_es_save_area *hostsa);
916
void __svm_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted);
917
918
#define DEFINE_KVM_GHCB_ACCESSORS(field) \
919
static __always_inline u64 kvm_ghcb_get_##field(struct vcpu_svm *svm) \
920
{ \
921
return READ_ONCE(svm->sev_es.ghcb->save.field); \
922
} \
923
\
924
static __always_inline bool kvm_ghcb_##field##_is_valid(const struct vcpu_svm *svm) \
925
{ \
926
return test_bit(GHCB_BITMAP_IDX(field), \
927
(unsigned long *)&svm->sev_es.valid_bitmap); \
928
} \
929
\
930
static __always_inline u64 kvm_ghcb_get_##field##_if_valid(struct vcpu_svm *svm) \
931
{ \
932
return kvm_ghcb_##field##_is_valid(svm) ? kvm_ghcb_get_##field(svm) : 0; \
933
}
934
935
DEFINE_KVM_GHCB_ACCESSORS(cpl)
936
DEFINE_KVM_GHCB_ACCESSORS(rax)
937
DEFINE_KVM_GHCB_ACCESSORS(rcx)
938
DEFINE_KVM_GHCB_ACCESSORS(rdx)
939
DEFINE_KVM_GHCB_ACCESSORS(rbx)
940
DEFINE_KVM_GHCB_ACCESSORS(rsi)
941
DEFINE_KVM_GHCB_ACCESSORS(sw_exit_code)
942
DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_1)
943
DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_2)
944
DEFINE_KVM_GHCB_ACCESSORS(sw_scratch)
945
DEFINE_KVM_GHCB_ACCESSORS(xcr0)
946
DEFINE_KVM_GHCB_ACCESSORS(xss)
947
948
#endif
949
950