#ifndef __SVM_SVM_H
#define __SVM_SVM_H
#include <linux/kvm_types.h>
#include <linux/kvm_host.h>
#include <linux/bits.h>
#include <asm/svm.h>
#include <asm/sev-common.h>
#include "cpuid.h"
#include "kvm_cache_regs.h"
static inline unsigned long __sme_page_pa(struct page *page)
{
return __sme_set(page_to_pfn(page) << PAGE_SHIFT);
}
static inline struct page *__sme_pa_to_page(unsigned long pa)
{
return pfn_to_page(__sme_clr(pa) >> PAGE_SHIFT);
}
#define IOPM_SIZE PAGE_SIZE * 3
#define MSRPM_SIZE PAGE_SIZE * 2
extern bool npt_enabled;
extern int nrips;
extern int vgif;
extern bool intercept_smi;
extern bool x2avic_enabled;
extern bool vnmi;
extern int lbrv;
enum {
VMCB_INTERCEPTS,
VMCB_PERM_MAP,
VMCB_ASID,
VMCB_INTR,
VMCB_NPT,
VMCB_CR,
VMCB_DR,
VMCB_DT,
VMCB_SEG,
VMCB_CR2,
VMCB_LBR,
VMCB_AVIC,
VMCB_SW = 31,
};
#define VMCB_ALL_CLEAN_MASK ( \
(1U << VMCB_INTERCEPTS) | (1U << VMCB_PERM_MAP) | \
(1U << VMCB_ASID) | (1U << VMCB_INTR) | \
(1U << VMCB_NPT) | (1U << VMCB_CR) | (1U << VMCB_DR) | \
(1U << VMCB_DT) | (1U << VMCB_SEG) | (1U << VMCB_CR2) | \
(1U << VMCB_LBR) | (1U << VMCB_AVIC) | \
(1U << VMCB_SW))
#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
struct kvm_sev_info {
bool active;
bool es_active;
bool need_init;
unsigned int asid;
unsigned int handle;
int fd;
unsigned long policy;
unsigned long pages_locked;
struct list_head regions_list;
u64 ap_jump_table;
u64 vmsa_features;
u16 ghcb_version;
struct kvm *enc_context_owner;
struct list_head mirror_vms;
struct list_head mirror_entry;
struct misc_cg *misc_cg;
atomic_t migration_in_progress;
void *snp_context;
void *guest_req_buf;
void *guest_resp_buf;
struct mutex guest_req_mutex;
cpumask_var_t have_run_cpus;
};
#define SEV_POLICY_NODBG BIT_ULL(0)
#define SNP_POLICY_DEBUG BIT_ULL(19)
struct kvm_svm {
struct kvm kvm;
u32 avic_vm_id;
u32 *avic_logical_id_table;
u64 *avic_physical_id_table;
struct hlist_node hnode;
struct kvm_sev_info sev_info;
};
struct kvm_vcpu;
struct kvm_vmcb_info {
struct vmcb *ptr;
unsigned long pa;
int cpu;
uint64_t asid_generation;
};
struct vmcb_save_area_cached {
u64 efer;
u64 cr4;
u64 cr3;
u64 cr0;
u64 dr7;
u64 dr6;
};
struct vmcb_ctrl_area_cached {
u32 intercepts[MAX_INTERCEPT];
u16 pause_filter_thresh;
u16 pause_filter_count;
u64 iopm_base_pa;
u64 msrpm_base_pa;
u64 tsc_offset;
u32 asid;
u8 tlb_ctl;
u32 int_ctl;
u32 int_vector;
u32 int_state;
u32 exit_code;
u32 exit_code_hi;
u64 exit_info_1;
u64 exit_info_2;
u32 exit_int_info;
u32 exit_int_info_err;
u64 nested_ctl;
u32 event_inj;
u32 event_inj_err;
u64 next_rip;
u64 nested_cr3;
u64 virt_ext;
u32 clean;
u64 bus_lock_rip;
union {
#if IS_ENABLED(CONFIG_HYPERV) || IS_ENABLED(CONFIG_KVM_HYPERV)
struct hv_vmcb_enlightenments hv_enlightenments;
#endif
u8 reserved_sw[32];
};
};
struct svm_nested_state {
struct kvm_vmcb_info vmcb02;
u64 hsave_msr;
u64 vm_cr_msr;
u64 vmcb12_gpa;
u64 last_vmcb12_gpa;
void *msrpm;
bool nested_run_pending;
struct vmcb_ctrl_area_cached ctl;
struct vmcb_save_area_cached save;
bool initialized;
bool force_msr_bitmap_recalc;
};
struct vcpu_sev_es_state {
struct sev_es_save_area *vmsa;
struct ghcb *ghcb;
u8 valid_bitmap[16];
struct kvm_host_map ghcb_map;
bool received_first_sipi;
unsigned int ap_reset_hold_type;
u64 sw_scratch;
void *ghcb_sa;
u32 ghcb_sa_len;
bool ghcb_sa_sync;
bool ghcb_sa_free;
u16 psc_idx;
u16 psc_inflight;
bool psc_2m;
u64 ghcb_registered_gpa;
struct mutex snp_vmsa_mutex;
gpa_t snp_vmsa_gpa;
bool snp_ap_waiting_for_reset;
bool snp_has_guest_vmsa;
};
struct vcpu_svm {
struct kvm_vcpu vcpu;
struct vmcb *vmcb;
struct kvm_vmcb_info vmcb01;
struct kvm_vmcb_info *current_vmcb;
u32 asid;
u32 sysenter_esp_hi;
u32 sysenter_eip_hi;
uint64_t tsc_aux;
u64 msr_decfg;
u64 next_rip;
u64 spec_ctrl;
u64 tsc_ratio_msr;
u64 virt_spec_ctrl;
void *msrpm;
ulong nmi_iret_rip;
struct svm_nested_state nested;
bool nmi_masked;
bool awaiting_iret_completion;
bool nmi_singlestep;
u64 nmi_singlestep_guest_rflags;
bool nmi_l1_to_l2;
unsigned long soft_int_csbase;
unsigned long soft_int_old_rip;
unsigned long soft_int_next_rip;
bool soft_int_injected;
u32 ldr_reg;
u32 dfr_reg;
u64 avic_physical_id_entry;
struct list_head ir_list;
spinlock_t ir_list_lock;
struct vcpu_sev_es_state sev_es;
bool guest_state_loaded;
bool x2avic_msrs_intercepted;
bool guest_gif;
};
struct svm_cpu_data {
u64 asid_generation;
u32 max_asid;
u32 next_asid;
u32 min_asid;
bool bp_spec_reduce_set;
struct vmcb *save_area;
unsigned long save_area_pa;
struct vmcb **sev_vmcbs;
};
DECLARE_PER_CPU(struct svm_cpu_data, svm_data);
void recalc_intercepts(struct vcpu_svm *svm);
static __always_inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
{
return container_of(kvm, struct kvm_svm, kvm);
}
static __always_inline struct kvm_sev_info *to_kvm_sev_info(struct kvm *kvm)
{
return &to_kvm_svm(kvm)->sev_info;
}
#ifdef CONFIG_KVM_AMD_SEV
static __always_inline bool sev_guest(struct kvm *kvm)
{
return to_kvm_sev_info(kvm)->active;
}
static __always_inline bool sev_es_guest(struct kvm *kvm)
{
struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
return sev->es_active && !WARN_ON_ONCE(!sev->active);
}
static __always_inline bool sev_snp_guest(struct kvm *kvm)
{
struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
return (sev->vmsa_features & SVM_SEV_FEAT_SNP_ACTIVE) &&
!WARN_ON_ONCE(!sev_es_guest(kvm));
}
#else
#define sev_guest(kvm) false
#define sev_es_guest(kvm) false
#define sev_snp_guest(kvm) false
#endif
static inline bool ghcb_gpa_is_registered(struct vcpu_svm *svm, u64 val)
{
return svm->sev_es.ghcb_registered_gpa == val;
}
static inline void vmcb_mark_all_dirty(struct vmcb *vmcb)
{
vmcb->control.clean = 0;
}
static inline void vmcb_mark_all_clean(struct vmcb *vmcb)
{
vmcb->control.clean = VMCB_ALL_CLEAN_MASK
& ~VMCB_ALWAYS_DIRTY_MASK;
}
static inline void vmcb_mark_dirty(struct vmcb *vmcb, int bit)
{
vmcb->control.clean &= ~(1 << bit);
}
static inline bool vmcb_is_dirty(struct vmcb *vmcb, int bit)
{
return !test_bit(bit, (unsigned long *)&vmcb->control.clean);
}
static __always_inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_svm, vcpu);
}
#define SVM_REGS_LAZY_LOAD_SET (1 << VCPU_EXREG_PDPTR)
static inline void vmcb_set_intercept(struct vmcb_control_area *control, u32 bit)
{
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
__set_bit(bit, (unsigned long *)&control->intercepts);
}
static inline void vmcb_clr_intercept(struct vmcb_control_area *control, u32 bit)
{
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
__clear_bit(bit, (unsigned long *)&control->intercepts);
}
static inline bool vmcb_is_intercept(struct vmcb_control_area *control, u32 bit)
{
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
return test_bit(bit, (unsigned long *)&control->intercepts);
}
static inline bool vmcb12_is_intercept(struct vmcb_ctrl_area_cached *control, u32 bit)
{
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
return test_bit(bit, (unsigned long *)&control->intercepts);
}
static inline void set_exception_intercept(struct vcpu_svm *svm, u32 bit)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
WARN_ON_ONCE(bit >= 32);
vmcb_set_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
recalc_intercepts(svm);
}
static inline void clr_exception_intercept(struct vcpu_svm *svm, u32 bit)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
WARN_ON_ONCE(bit >= 32);
vmcb_clr_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
recalc_intercepts(svm);
}
static inline void svm_set_intercept(struct vcpu_svm *svm, int bit)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
vmcb_set_intercept(&vmcb->control, bit);
recalc_intercepts(svm);
}
static inline void svm_clr_intercept(struct vcpu_svm *svm, int bit)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
vmcb_clr_intercept(&vmcb->control, bit);
recalc_intercepts(svm);
}
static inline bool svm_is_intercept(struct vcpu_svm *svm, int bit)
{
return vmcb_is_intercept(&svm->vmcb->control, bit);
}
static inline bool nested_vgif_enabled(struct vcpu_svm *svm)
{
return guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_VGIF) &&
(svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK);
}
static inline struct vmcb *get_vgif_vmcb(struct vcpu_svm *svm)
{
if (!vgif)
return NULL;
if (is_guest_mode(&svm->vcpu) && !nested_vgif_enabled(svm))
return svm->nested.vmcb02.ptr;
else
return svm->vmcb01.ptr;
}
static inline void enable_gif(struct vcpu_svm *svm)
{
struct vmcb *vmcb = get_vgif_vmcb(svm);
if (vmcb)
vmcb->control.int_ctl |= V_GIF_MASK;
else
svm->guest_gif = true;
}
static inline void disable_gif(struct vcpu_svm *svm)
{
struct vmcb *vmcb = get_vgif_vmcb(svm);
if (vmcb)
vmcb->control.int_ctl &= ~V_GIF_MASK;
else
svm->guest_gif = false;
}
static inline bool gif_set(struct vcpu_svm *svm)
{
struct vmcb *vmcb = get_vgif_vmcb(svm);
if (vmcb)
return !!(vmcb->control.int_ctl & V_GIF_MASK);
else
return svm->guest_gif;
}
static inline bool nested_npt_enabled(struct vcpu_svm *svm)
{
return svm->nested.ctl.nested_ctl & SVM_NESTED_CTL_NP_ENABLE;
}
static inline bool nested_vnmi_enabled(struct vcpu_svm *svm)
{
return guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_VNMI) &&
(svm->nested.ctl.int_ctl & V_NMI_ENABLE_MASK);
}
static inline bool is_x2apic_msrpm_offset(u32 offset)
{
u32 msr = offset * 16;
return (msr >= APIC_BASE_MSR) &&
(msr < (APIC_BASE_MSR + 0x100));
}
static inline struct vmcb *get_vnmi_vmcb_l1(struct vcpu_svm *svm)
{
if (!vnmi)
return NULL;
if (is_guest_mode(&svm->vcpu))
return NULL;
else
return svm->vmcb01.ptr;
}
static inline bool is_vnmi_enabled(struct vcpu_svm *svm)
{
struct vmcb *vmcb = get_vnmi_vmcb_l1(svm);
if (vmcb)
return !!(vmcb->control.int_ctl & V_NMI_ENABLE_MASK);
else
return false;
}
static inline void svm_vmgexit_set_return_code(struct vcpu_svm *svm,
u64 response, u64 data)
{
ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, response);
ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, data);
}
static inline void svm_vmgexit_inject_exception(struct vcpu_svm *svm, u8 vector)
{
u64 data = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT | vector;
svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_ISSUE_EXCEPTION, data);
}
static inline void svm_vmgexit_bad_input(struct vcpu_svm *svm, u64 suberror)
{
svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_MALFORMED_INPUT, suberror);
}
static inline void svm_vmgexit_success(struct vcpu_svm *svm, u64 data)
{
svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_NO_ACTION, data);
}
static inline void svm_vmgexit_no_action(struct vcpu_svm *svm, u64 data)
{
svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_NO_ACTION, data);
}
#define SVM_MSRPM_BYTES_PER_RANGE 2048
#define SVM_BITS_PER_MSR 2
#define SVM_MSRS_PER_BYTE (BITS_PER_BYTE / SVM_BITS_PER_MSR)
#define SVM_MSRS_PER_RANGE (SVM_MSRPM_BYTES_PER_RANGE * SVM_MSRS_PER_BYTE)
static_assert(SVM_MSRS_PER_RANGE == 8192);
#define SVM_MSRPM_OFFSET_MASK (SVM_MSRS_PER_RANGE - 1)
static __always_inline int svm_msrpm_bit_nr(u32 msr)
{
int range_nr;
switch (msr & ~SVM_MSRPM_OFFSET_MASK) {
case 0:
range_nr = 0;
break;
case 0xc0000000:
range_nr = 1;
break;
case 0xc0010000:
range_nr = 2;
break;
default:
return -EINVAL;
}
return range_nr * SVM_MSRPM_BYTES_PER_RANGE * BITS_PER_BYTE +
(msr & SVM_MSRPM_OFFSET_MASK) * SVM_BITS_PER_MSR;
}
#define __BUILD_SVM_MSR_BITMAP_HELPER(rtype, action, bitop, access, bit_rw) \
static inline rtype svm_##action##_msr_bitmap_##access(unsigned long *bitmap, \
u32 msr) \
{ \
int bit_nr; \
\
bit_nr = svm_msrpm_bit_nr(msr); \
if (bit_nr < 0) \
return (rtype)true; \
\
return bitop##_bit(bit_nr + bit_rw, bitmap); \
}
#define BUILD_SVM_MSR_BITMAP_HELPERS(ret_type, action, bitop) \
__BUILD_SVM_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0) \
__BUILD_SVM_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 1)
BUILD_SVM_MSR_BITMAP_HELPERS(bool, test, test)
BUILD_SVM_MSR_BITMAP_HELPERS(void, clear, __clear)
BUILD_SVM_MSR_BITMAP_HELPERS(void, set, __set)
#define DEBUGCTL_RESERVED_BITS (~DEBUGCTLMSR_LBR)
extern bool dump_invalid_vmcb;
void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask);
static inline void *svm_vcpu_alloc_msrpm(void)
{
return svm_alloc_permissions_map(MSRPM_SIZE, GFP_KERNEL_ACCOUNT);
}
void svm_vcpu_free_msrpm(void *msrpm);
void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb);
void svm_enable_lbrv(struct kvm_vcpu *vcpu);
void svm_update_lbrv(struct kvm_vcpu *vcpu);
int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer);
void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
void disable_nmi_singlestep(struct vcpu_svm *svm);
bool svm_smi_blocked(struct kvm_vcpu *vcpu);
bool svm_nmi_blocked(struct kvm_vcpu *vcpu);
bool svm_interrupt_blocked(struct kvm_vcpu *vcpu);
void svm_set_gif(struct vcpu_svm *svm, bool value);
int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code);
void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
int read, int write);
void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool disable);
void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
int trig_mode, int vec);
void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set);
static inline void svm_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
u32 msr, int type)
{
svm_set_intercept_for_msr(vcpu, msr, type, false);
}
static inline void svm_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
u32 msr, int type)
{
svm_set_intercept_for_msr(vcpu, msr, type, true);
}
#define NESTED_EXIT_HOST 0
#define NESTED_EXIT_DONE 1
#define NESTED_EXIT_CONTINUE 2
static inline bool nested_svm_virtualize_tpr(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return is_guest_mode(vcpu) && (svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK);
}
static inline bool nested_exit_on_smi(struct vcpu_svm *svm)
{
return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SMI);
}
static inline bool nested_exit_on_intr(struct vcpu_svm *svm)
{
return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INTR);
}
static inline bool nested_exit_on_nmi(struct vcpu_svm *svm)
{
return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_NMI);
}
int __init nested_svm_init_msrpm_merge_offsets(void);
int enter_svm_guest_mode(struct kvm_vcpu *vcpu,
u64 vmcb_gpa, struct vmcb *vmcb12, bool from_vmrun);
void svm_leave_nested(struct kvm_vcpu *vcpu);
void svm_free_nested(struct vcpu_svm *svm);
int svm_allocate_nested(struct vcpu_svm *svm);
int nested_svm_vmrun(struct kvm_vcpu *vcpu);
void svm_copy_vmrun_state(struct vmcb_save_area *to_save,
struct vmcb_save_area *from_save);
void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb);
int nested_svm_vmexit(struct vcpu_svm *svm);
static inline int nested_svm_simple_vmexit(struct vcpu_svm *svm, u32 exit_code)
{
svm->vmcb->control.exit_code = exit_code;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
return nested_svm_vmexit(svm);
}
int nested_svm_exit_handled(struct vcpu_svm *svm);
int nested_svm_check_permissions(struct kvm_vcpu *vcpu);
int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
bool has_error_code, u32 error_code);
int nested_svm_exit_special(struct vcpu_svm *svm);
void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu);
void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu);
void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm,
struct vmcb_control_area *control);
void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm,
struct vmcb_save_area *save);
void nested_sync_control_from_vmcb02(struct vcpu_svm *svm);
void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm);
void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb);
extern struct kvm_x86_nested_ops svm_nested_ops;
#define AVIC_REQUIRED_APICV_INHIBITS \
( \
BIT(APICV_INHIBIT_REASON_DISABLED) | \
BIT(APICV_INHIBIT_REASON_ABSENT) | \
BIT(APICV_INHIBIT_REASON_HYPERV) | \
BIT(APICV_INHIBIT_REASON_NESTED) | \
BIT(APICV_INHIBIT_REASON_IRQWIN) | \
BIT(APICV_INHIBIT_REASON_PIT_REINJ) | \
BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
BIT(APICV_INHIBIT_REASON_SEV) | \
BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) | \
BIT(APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED) | \
BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG) \
)
bool avic_hardware_setup(void);
int avic_ga_log_notifier(u32 ga_tag);
void avic_vm_destroy(struct kvm *kvm);
int avic_vm_init(struct kvm *kvm);
void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb);
int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu);
int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu);
int avic_init_vcpu(struct vcpu_svm *svm);
void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
void avic_vcpu_put(struct kvm_vcpu *vcpu);
void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu);
void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu);
int avic_pi_update_irte(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm,
unsigned int host_irq, uint32_t guest_irq,
struct kvm_vcpu *vcpu, u32 vector);
void avic_vcpu_blocking(struct kvm_vcpu *vcpu);
void avic_vcpu_unblocking(struct kvm_vcpu *vcpu);
void avic_ring_doorbell(struct kvm_vcpu *vcpu);
unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu);
void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu);
int pre_sev_run(struct vcpu_svm *svm, int cpu);
void sev_init_vmcb(struct vcpu_svm *svm);
void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm);
int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in);
void sev_es_vcpu_reset(struct vcpu_svm *svm);
void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu);
void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa);
void sev_es_unmap_ghcb(struct vcpu_svm *svm);
#ifdef CONFIG_KVM_AMD_SEV
int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp);
int sev_mem_enc_register_region(struct kvm *kvm,
struct kvm_enc_region *range);
int sev_mem_enc_unregister_region(struct kvm *kvm,
struct kvm_enc_region *range);
int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd);
int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd);
void sev_guest_memory_reclaimed(struct kvm *kvm);
int sev_handle_vmgexit(struct kvm_vcpu *vcpu);
struct page *snp_safe_alloc_page_node(int node, gfp_t gfp);
static inline struct page *snp_safe_alloc_page(void)
{
return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT);
}
void sev_free_vcpu(struct kvm_vcpu *vcpu);
void sev_vm_destroy(struct kvm *kvm);
void __init sev_set_cpu_caps(void);
void __init sev_hardware_setup(void);
void sev_hardware_unsetup(void);
int sev_cpu_init(struct svm_cpu_data *sd);
int sev_dev_get_attr(u32 group, u64 attr, u64 *val);
extern unsigned int max_sev_asid;
void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code);
void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu);
int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn);
struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu);
void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa);
#else
static inline struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
{
return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
}
static inline struct page *snp_safe_alloc_page(void)
{
return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT);
}
static inline void sev_free_vcpu(struct kvm_vcpu *vcpu) {}
static inline void sev_vm_destroy(struct kvm *kvm) {}
static inline void __init sev_set_cpu_caps(void) {}
static inline void __init sev_hardware_setup(void) {}
static inline void sev_hardware_unsetup(void) {}
static inline int sev_cpu_init(struct svm_cpu_data *sd) { return 0; }
static inline int sev_dev_get_attr(u32 group, u64 attr, u64 *val) { return -ENXIO; }
#define max_sev_asid 0
static inline void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) {}
static inline void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) {}
static inline int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
{
return 0;
}
static inline void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) {}
static inline int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
{
return 0;
}
static inline struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu)
{
return NULL;
}
static inline void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa) {}
#endif
void __svm_sev_es_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted,
struct sev_es_save_area *hostsa);
void __svm_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted);
#define DEFINE_KVM_GHCB_ACCESSORS(field) \
static __always_inline bool kvm_ghcb_##field##_is_valid(const struct vcpu_svm *svm) \
{ \
return test_bit(GHCB_BITMAP_IDX(field), \
(unsigned long *)&svm->sev_es.valid_bitmap); \
} \
\
static __always_inline u64 kvm_ghcb_get_##field##_if_valid(struct vcpu_svm *svm, struct ghcb *ghcb) \
{ \
return kvm_ghcb_##field##_is_valid(svm) ? ghcb->save.field : 0; \
} \
DEFINE_KVM_GHCB_ACCESSORS(cpl)
DEFINE_KVM_GHCB_ACCESSORS(rax)
DEFINE_KVM_GHCB_ACCESSORS(rcx)
DEFINE_KVM_GHCB_ACCESSORS(rdx)
DEFINE_KVM_GHCB_ACCESSORS(rbx)
DEFINE_KVM_GHCB_ACCESSORS(rsi)
DEFINE_KVM_GHCB_ACCESSORS(sw_exit_code)
DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_1)
DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_2)
DEFINE_KVM_GHCB_ACCESSORS(sw_scratch)
DEFINE_KVM_GHCB_ACCESSORS(xcr0)
#endif