Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/vmx/pmu_intel.c
26489 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* KVM PMU support for Intel CPUs
4
*
5
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
6
*
7
* Authors:
8
* Avi Kivity <[email protected]>
9
* Gleb Natapov <[email protected]>
10
*/
11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13
#include <linux/types.h>
14
#include <linux/kvm_host.h>
15
#include <linux/perf_event.h>
16
#include <asm/msr.h>
17
#include <asm/perf_event.h>
18
#include "x86.h"
19
#include "cpuid.h"
20
#include "lapic.h"
21
#include "nested.h"
22
#include "pmu.h"
23
#include "tdx.h"
24
25
/*
26
* Perf's "BASE" is wildly misleading, architectural PMUs use bits 31:16 of ECX
27
* to encode the "type" of counter to read, i.e. this is not a "base". And to
28
* further confuse things, non-architectural PMUs use bit 31 as a flag for
29
* "fast" reads, whereas the "type" is an explicit value.
30
*/
31
#define INTEL_RDPMC_GP 0
32
#define INTEL_RDPMC_FIXED INTEL_PMC_FIXED_RDPMC_BASE
33
34
#define INTEL_RDPMC_TYPE_MASK GENMASK(31, 16)
35
#define INTEL_RDPMC_INDEX_MASK GENMASK(15, 0)
36
37
#define MSR_PMC_FULL_WIDTH_BIT (MSR_IA32_PMC0 - MSR_IA32_PERFCTR0)
38
39
static struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
40
{
41
if (is_td_vcpu(vcpu))
42
return NULL;
43
44
return &to_vmx(vcpu)->lbr_desc;
45
}
46
47
static struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
48
{
49
if (is_td_vcpu(vcpu))
50
return NULL;
51
52
return &to_vmx(vcpu)->lbr_desc.records;
53
}
54
55
#pragma GCC poison to_vmx
56
57
static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data)
58
{
59
struct kvm_pmc *pmc;
60
u64 old_fixed_ctr_ctrl = pmu->fixed_ctr_ctrl;
61
int i;
62
63
pmu->fixed_ctr_ctrl = data;
64
for (i = 0; i < pmu->nr_arch_fixed_counters; i++) {
65
u8 new_ctrl = fixed_ctrl_field(data, i);
66
u8 old_ctrl = fixed_ctrl_field(old_fixed_ctr_ctrl, i);
67
68
if (old_ctrl == new_ctrl)
69
continue;
70
71
pmc = get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + i);
72
73
__set_bit(KVM_FIXED_PMC_BASE_IDX + i, pmu->pmc_in_use);
74
kvm_pmu_request_counter_reprogram(pmc);
75
}
76
}
77
78
static struct kvm_pmc *intel_rdpmc_ecx_to_pmc(struct kvm_vcpu *vcpu,
79
unsigned int idx, u64 *mask)
80
{
81
unsigned int type = idx & INTEL_RDPMC_TYPE_MASK;
82
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
83
struct kvm_pmc *counters;
84
unsigned int num_counters;
85
u64 bitmask;
86
87
/*
88
* The encoding of ECX for RDPMC is different for architectural versus
89
* non-architecturals PMUs (PMUs with version '0'). For architectural
90
* PMUs, bits 31:16 specify the PMC type and bits 15:0 specify the PMC
91
* index. For non-architectural PMUs, bit 31 is a "fast" flag, and
92
* bits 30:0 specify the PMC index.
93
*
94
* Yell and reject attempts to read PMCs for a non-architectural PMU,
95
* as KVM doesn't support such PMUs.
96
*/
97
if (WARN_ON_ONCE(!pmu->version))
98
return NULL;
99
100
/*
101
* General Purpose (GP) PMCs are supported on all PMUs, and fixed PMCs
102
* are supported on all architectural PMUs, i.e. on all virtual PMUs
103
* supported by KVM. Note, KVM only emulates fixed PMCs for PMU v2+,
104
* but the type itself is still valid, i.e. let RDPMC fail due to
105
* accessing a non-existent counter. Reject attempts to read all other
106
* types, which are unknown/unsupported.
107
*/
108
switch (type) {
109
case INTEL_RDPMC_FIXED:
110
counters = pmu->fixed_counters;
111
num_counters = pmu->nr_arch_fixed_counters;
112
bitmask = pmu->counter_bitmask[KVM_PMC_FIXED];
113
break;
114
case INTEL_RDPMC_GP:
115
counters = pmu->gp_counters;
116
num_counters = pmu->nr_arch_gp_counters;
117
bitmask = pmu->counter_bitmask[KVM_PMC_GP];
118
break;
119
default:
120
return NULL;
121
}
122
123
idx &= INTEL_RDPMC_INDEX_MASK;
124
if (idx >= num_counters)
125
return NULL;
126
127
*mask &= bitmask;
128
return &counters[array_index_nospec(idx, num_counters)];
129
}
130
131
static inline u64 vcpu_get_perf_capabilities(struct kvm_vcpu *vcpu)
132
{
133
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
134
return 0;
135
136
return vcpu->arch.perf_capabilities;
137
}
138
139
static inline bool fw_writes_is_enabled(struct kvm_vcpu *vcpu)
140
{
141
return (vcpu_get_perf_capabilities(vcpu) & PMU_CAP_FW_WRITES) != 0;
142
}
143
144
static inline struct kvm_pmc *get_fw_gp_pmc(struct kvm_pmu *pmu, u32 msr)
145
{
146
if (!fw_writes_is_enabled(pmu_to_vcpu(pmu)))
147
return NULL;
148
149
return get_gp_pmc(pmu, msr, MSR_IA32_PMC0);
150
}
151
152
static bool intel_pmu_lbr_is_compatible(struct kvm_vcpu *vcpu)
153
{
154
if (is_td_vcpu(vcpu))
155
return false;
156
157
return cpuid_model_is_consistent(vcpu);
158
}
159
160
bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
161
{
162
if (is_td_vcpu(vcpu))
163
return false;
164
165
return !!vcpu_to_lbr_records(vcpu)->nr;
166
}
167
168
static bool intel_pmu_is_valid_lbr_msr(struct kvm_vcpu *vcpu, u32 index)
169
{
170
struct x86_pmu_lbr *records = vcpu_to_lbr_records(vcpu);
171
bool ret = false;
172
173
if (!intel_pmu_lbr_is_enabled(vcpu))
174
return ret;
175
176
ret = (index == MSR_LBR_SELECT) || (index == MSR_LBR_TOS) ||
177
(index >= records->from && index < records->from + records->nr) ||
178
(index >= records->to && index < records->to + records->nr);
179
180
if (!ret && records->info)
181
ret = (index >= records->info && index < records->info + records->nr);
182
183
return ret;
184
}
185
186
static bool intel_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
187
{
188
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
189
u64 perf_capabilities;
190
int ret;
191
192
switch (msr) {
193
case MSR_CORE_PERF_FIXED_CTR_CTRL:
194
return kvm_pmu_has_perf_global_ctrl(pmu);
195
case MSR_IA32_PEBS_ENABLE:
196
ret = vcpu_get_perf_capabilities(vcpu) & PERF_CAP_PEBS_FORMAT;
197
break;
198
case MSR_IA32_DS_AREA:
199
ret = guest_cpu_cap_has(vcpu, X86_FEATURE_DS);
200
break;
201
case MSR_PEBS_DATA_CFG:
202
perf_capabilities = vcpu_get_perf_capabilities(vcpu);
203
ret = (perf_capabilities & PERF_CAP_PEBS_BASELINE) &&
204
((perf_capabilities & PERF_CAP_PEBS_FORMAT) > 3);
205
break;
206
default:
207
ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0) ||
208
get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0) ||
209
get_fixed_pmc(pmu, msr) || get_fw_gp_pmc(pmu, msr) ||
210
intel_pmu_is_valid_lbr_msr(vcpu, msr);
211
break;
212
}
213
214
return ret;
215
}
216
217
static struct kvm_pmc *intel_msr_idx_to_pmc(struct kvm_vcpu *vcpu, u32 msr)
218
{
219
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
220
struct kvm_pmc *pmc;
221
222
pmc = get_fixed_pmc(pmu, msr);
223
pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0);
224
pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0);
225
226
return pmc;
227
}
228
229
static inline void intel_pmu_release_guest_lbr_event(struct kvm_vcpu *vcpu)
230
{
231
struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
232
233
if (!lbr_desc)
234
return;
235
236
if (lbr_desc->event) {
237
perf_event_release_kernel(lbr_desc->event);
238
lbr_desc->event = NULL;
239
vcpu_to_pmu(vcpu)->event_count--;
240
}
241
}
242
243
int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu)
244
{
245
struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
246
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
247
struct perf_event *event;
248
249
/*
250
* The perf_event_attr is constructed in the minimum efficient way:
251
* - set 'pinned = true' to make it task pinned so that if another
252
* cpu pinned event reclaims LBR, the event->oncpu will be set to -1;
253
* - set '.exclude_host = true' to record guest branches behavior;
254
*
255
* - set '.config = INTEL_FIXED_VLBR_EVENT' to indicates host perf
256
* schedule the event without a real HW counter but a fake one;
257
* check is_guest_lbr_event() and __intel_get_event_constraints();
258
*
259
* - set 'sample_type = PERF_SAMPLE_BRANCH_STACK' and
260
* 'branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK |
261
* PERF_SAMPLE_BRANCH_USER' to configure it as a LBR callstack
262
* event, which helps KVM to save/restore guest LBR records
263
* during host context switches and reduces quite a lot overhead,
264
* check branch_user_callstack() and intel_pmu_lbr_sched_task();
265
*/
266
struct perf_event_attr attr = {
267
.type = PERF_TYPE_RAW,
268
.size = sizeof(attr),
269
.config = INTEL_FIXED_VLBR_EVENT,
270
.sample_type = PERF_SAMPLE_BRANCH_STACK,
271
.pinned = true,
272
.exclude_host = true,
273
.branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK |
274
PERF_SAMPLE_BRANCH_USER,
275
};
276
277
if (WARN_ON_ONCE(!lbr_desc))
278
return 0;
279
280
if (unlikely(lbr_desc->event)) {
281
__set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use);
282
return 0;
283
}
284
285
event = perf_event_create_kernel_counter(&attr, -1,
286
current, NULL, NULL);
287
if (IS_ERR(event)) {
288
pr_debug_ratelimited("%s: failed %ld\n",
289
__func__, PTR_ERR(event));
290
return PTR_ERR(event);
291
}
292
lbr_desc->event = event;
293
pmu->event_count++;
294
__set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use);
295
return 0;
296
}
297
298
/*
299
* It's safe to access LBR msrs from guest when they have not
300
* been passthrough since the host would help restore or reset
301
* the LBR msrs records when the guest LBR event is scheduled in.
302
*/
303
static bool intel_pmu_handle_lbr_msrs_access(struct kvm_vcpu *vcpu,
304
struct msr_data *msr_info, bool read)
305
{
306
struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
307
u32 index = msr_info->index;
308
309
if (!intel_pmu_is_valid_lbr_msr(vcpu, index))
310
return false;
311
312
if (!lbr_desc->event && intel_pmu_create_guest_lbr_event(vcpu) < 0)
313
goto dummy;
314
315
/*
316
* Disable irq to ensure the LBR feature doesn't get reclaimed by the
317
* host at the time the value is read from the msr, and this avoids the
318
* host LBR value to be leaked to the guest. If LBR has been reclaimed,
319
* return 0 on guest reads.
320
*/
321
local_irq_disable();
322
if (lbr_desc->event->state == PERF_EVENT_STATE_ACTIVE) {
323
if (read)
324
rdmsrq(index, msr_info->data);
325
else
326
wrmsrq(index, msr_info->data);
327
__set_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use);
328
local_irq_enable();
329
return true;
330
}
331
clear_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use);
332
local_irq_enable();
333
334
dummy:
335
if (read)
336
msr_info->data = 0;
337
return true;
338
}
339
340
static int intel_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
341
{
342
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
343
struct kvm_pmc *pmc;
344
u32 msr = msr_info->index;
345
346
switch (msr) {
347
case MSR_CORE_PERF_FIXED_CTR_CTRL:
348
msr_info->data = pmu->fixed_ctr_ctrl;
349
break;
350
case MSR_IA32_PEBS_ENABLE:
351
msr_info->data = pmu->pebs_enable;
352
break;
353
case MSR_IA32_DS_AREA:
354
msr_info->data = pmu->ds_area;
355
break;
356
case MSR_PEBS_DATA_CFG:
357
msr_info->data = pmu->pebs_data_cfg;
358
break;
359
default:
360
if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) ||
361
(pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) {
362
u64 val = pmc_read_counter(pmc);
363
msr_info->data =
364
val & pmu->counter_bitmask[KVM_PMC_GP];
365
break;
366
} else if ((pmc = get_fixed_pmc(pmu, msr))) {
367
u64 val = pmc_read_counter(pmc);
368
msr_info->data =
369
val & pmu->counter_bitmask[KVM_PMC_FIXED];
370
break;
371
} else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) {
372
msr_info->data = pmc->eventsel;
373
break;
374
} else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, true)) {
375
break;
376
}
377
return 1;
378
}
379
380
return 0;
381
}
382
383
static int intel_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
384
{
385
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
386
struct kvm_pmc *pmc;
387
u32 msr = msr_info->index;
388
u64 data = msr_info->data;
389
u64 reserved_bits, diff;
390
391
switch (msr) {
392
case MSR_CORE_PERF_FIXED_CTR_CTRL:
393
if (data & pmu->fixed_ctr_ctrl_rsvd)
394
return 1;
395
396
if (pmu->fixed_ctr_ctrl != data)
397
reprogram_fixed_counters(pmu, data);
398
break;
399
case MSR_IA32_PEBS_ENABLE:
400
if (data & pmu->pebs_enable_rsvd)
401
return 1;
402
403
if (pmu->pebs_enable != data) {
404
diff = pmu->pebs_enable ^ data;
405
pmu->pebs_enable = data;
406
reprogram_counters(pmu, diff);
407
}
408
break;
409
case MSR_IA32_DS_AREA:
410
if (is_noncanonical_msr_address(data, vcpu))
411
return 1;
412
413
pmu->ds_area = data;
414
break;
415
case MSR_PEBS_DATA_CFG:
416
if (data & pmu->pebs_data_cfg_rsvd)
417
return 1;
418
419
pmu->pebs_data_cfg = data;
420
break;
421
default:
422
if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) ||
423
(pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) {
424
if ((msr & MSR_PMC_FULL_WIDTH_BIT) &&
425
(data & ~pmu->counter_bitmask[KVM_PMC_GP]))
426
return 1;
427
428
if (!msr_info->host_initiated &&
429
!(msr & MSR_PMC_FULL_WIDTH_BIT))
430
data = (s64)(s32)data;
431
pmc_write_counter(pmc, data);
432
break;
433
} else if ((pmc = get_fixed_pmc(pmu, msr))) {
434
pmc_write_counter(pmc, data);
435
break;
436
} else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) {
437
reserved_bits = pmu->reserved_bits;
438
if ((pmc->idx == 2) &&
439
(pmu->raw_event_mask & HSW_IN_TX_CHECKPOINTED))
440
reserved_bits ^= HSW_IN_TX_CHECKPOINTED;
441
if (data & reserved_bits)
442
return 1;
443
444
if (data != pmc->eventsel) {
445
pmc->eventsel = data;
446
kvm_pmu_request_counter_reprogram(pmc);
447
}
448
break;
449
} else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, false)) {
450
break;
451
}
452
/* Not a known PMU MSR. */
453
return 1;
454
}
455
456
return 0;
457
}
458
459
/*
460
* Map fixed counter events to architectural general purpose event encodings.
461
* Perf doesn't provide APIs to allow KVM to directly program a fixed counter,
462
* and so KVM instead programs the architectural event to effectively request
463
* the fixed counter. Perf isn't guaranteed to use a fixed counter and may
464
* instead program the encoding into a general purpose counter, e.g. if a
465
* different perf_event is already utilizing the requested counter, but the end
466
* result is the same (ignoring the fact that using a general purpose counter
467
* will likely exacerbate counter contention).
468
*
469
* Forcibly inlined to allow asserting on @index at build time, and there should
470
* never be more than one user.
471
*/
472
static __always_inline u64 intel_get_fixed_pmc_eventsel(unsigned int index)
473
{
474
const enum perf_hw_id fixed_pmc_perf_ids[] = {
475
[0] = PERF_COUNT_HW_INSTRUCTIONS,
476
[1] = PERF_COUNT_HW_CPU_CYCLES,
477
[2] = PERF_COUNT_HW_REF_CPU_CYCLES,
478
};
479
u64 eventsel;
480
481
BUILD_BUG_ON(ARRAY_SIZE(fixed_pmc_perf_ids) != KVM_MAX_NR_INTEL_FIXED_COUTNERS);
482
BUILD_BUG_ON(index >= KVM_MAX_NR_INTEL_FIXED_COUTNERS);
483
484
/*
485
* Yell if perf reports support for a fixed counter but perf doesn't
486
* have a known encoding for the associated general purpose event.
487
*/
488
eventsel = perf_get_hw_event_config(fixed_pmc_perf_ids[index]);
489
WARN_ON_ONCE(!eventsel && index < kvm_pmu_cap.num_counters_fixed);
490
return eventsel;
491
}
492
493
static void intel_pmu_enable_fixed_counter_bits(struct kvm_pmu *pmu, u64 bits)
494
{
495
int i;
496
497
for (i = 0; i < pmu->nr_arch_fixed_counters; i++)
498
pmu->fixed_ctr_ctrl_rsvd &= ~intel_fixed_bits_by_idx(i, bits);
499
}
500
501
static void intel_pmu_refresh(struct kvm_vcpu *vcpu)
502
{
503
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
504
struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
505
struct kvm_cpuid_entry2 *entry;
506
union cpuid10_eax eax;
507
union cpuid10_edx edx;
508
u64 perf_capabilities;
509
u64 counter_rsvd;
510
511
if (!lbr_desc)
512
return;
513
514
memset(&lbr_desc->records, 0, sizeof(lbr_desc->records));
515
516
/*
517
* Setting passthrough of LBR MSRs is done only in the VM-Entry loop,
518
* and PMU refresh is disallowed after the vCPU has run, i.e. this code
519
* should never be reached while KVM is passing through MSRs.
520
*/
521
if (KVM_BUG_ON(lbr_desc->msr_passthrough, vcpu->kvm))
522
return;
523
524
entry = kvm_find_cpuid_entry(vcpu, 0xa);
525
if (!entry)
526
return;
527
528
eax.full = entry->eax;
529
edx.full = entry->edx;
530
531
pmu->version = eax.split.version_id;
532
if (!pmu->version)
533
return;
534
535
pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters,
536
kvm_pmu_cap.num_counters_gp);
537
eax.split.bit_width = min_t(int, eax.split.bit_width,
538
kvm_pmu_cap.bit_width_gp);
539
pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1;
540
eax.split.mask_length = min_t(int, eax.split.mask_length,
541
kvm_pmu_cap.events_mask_len);
542
pmu->available_event_types = ~entry->ebx &
543
((1ull << eax.split.mask_length) - 1);
544
545
if (pmu->version == 1) {
546
pmu->nr_arch_fixed_counters = 0;
547
} else {
548
pmu->nr_arch_fixed_counters = min_t(int, edx.split.num_counters_fixed,
549
kvm_pmu_cap.num_counters_fixed);
550
edx.split.bit_width_fixed = min_t(int, edx.split.bit_width_fixed,
551
kvm_pmu_cap.bit_width_fixed);
552
pmu->counter_bitmask[KVM_PMC_FIXED] =
553
((u64)1 << edx.split.bit_width_fixed) - 1;
554
}
555
556
intel_pmu_enable_fixed_counter_bits(pmu, INTEL_FIXED_0_KERNEL |
557
INTEL_FIXED_0_USER |
558
INTEL_FIXED_0_ENABLE_PMI);
559
560
counter_rsvd = ~(((1ull << pmu->nr_arch_gp_counters) - 1) |
561
(((1ull << pmu->nr_arch_fixed_counters) - 1) << KVM_FIXED_PMC_BASE_IDX));
562
pmu->global_ctrl_rsvd = counter_rsvd;
563
564
/*
565
* GLOBAL_STATUS and GLOBAL_OVF_CONTROL (a.k.a. GLOBAL_STATUS_RESET)
566
* share reserved bit definitions. The kernel just happens to use
567
* OVF_CTRL for the names.
568
*/
569
pmu->global_status_rsvd = pmu->global_ctrl_rsvd
570
& ~(MSR_CORE_PERF_GLOBAL_OVF_CTRL_OVF_BUF |
571
MSR_CORE_PERF_GLOBAL_OVF_CTRL_COND_CHGD);
572
if (vmx_pt_mode_is_host_guest())
573
pmu->global_status_rsvd &=
574
~MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI;
575
576
entry = kvm_find_cpuid_entry_index(vcpu, 7, 0);
577
if (entry &&
578
(boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) &&
579
(entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM))) {
580
pmu->reserved_bits ^= HSW_IN_TX;
581
pmu->raw_event_mask |= (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
582
}
583
584
bitmap_set(pmu->all_valid_pmc_idx,
585
0, pmu->nr_arch_gp_counters);
586
bitmap_set(pmu->all_valid_pmc_idx,
587
INTEL_PMC_MAX_GENERIC, pmu->nr_arch_fixed_counters);
588
589
perf_capabilities = vcpu_get_perf_capabilities(vcpu);
590
if (intel_pmu_lbr_is_compatible(vcpu) &&
591
(perf_capabilities & PMU_CAP_LBR_FMT))
592
memcpy(&lbr_desc->records, &vmx_lbr_caps, sizeof(vmx_lbr_caps));
593
else
594
lbr_desc->records.nr = 0;
595
596
if (lbr_desc->records.nr)
597
bitmap_set(pmu->all_valid_pmc_idx, INTEL_PMC_IDX_FIXED_VLBR, 1);
598
599
if (perf_capabilities & PERF_CAP_PEBS_FORMAT) {
600
if (perf_capabilities & PERF_CAP_PEBS_BASELINE) {
601
pmu->pebs_enable_rsvd = counter_rsvd;
602
pmu->reserved_bits &= ~ICL_EVENTSEL_ADAPTIVE;
603
pmu->pebs_data_cfg_rsvd = ~0xff00000full;
604
intel_pmu_enable_fixed_counter_bits(pmu, ICL_FIXED_0_ADAPTIVE);
605
} else {
606
pmu->pebs_enable_rsvd =
607
~((1ull << pmu->nr_arch_gp_counters) - 1);
608
}
609
}
610
}
611
612
static void intel_pmu_init(struct kvm_vcpu *vcpu)
613
{
614
int i;
615
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
616
struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
617
618
if (!lbr_desc)
619
return;
620
621
for (i = 0; i < KVM_MAX_NR_INTEL_GP_COUNTERS; i++) {
622
pmu->gp_counters[i].type = KVM_PMC_GP;
623
pmu->gp_counters[i].vcpu = vcpu;
624
pmu->gp_counters[i].idx = i;
625
pmu->gp_counters[i].current_config = 0;
626
}
627
628
for (i = 0; i < KVM_MAX_NR_INTEL_FIXED_COUTNERS; i++) {
629
pmu->fixed_counters[i].type = KVM_PMC_FIXED;
630
pmu->fixed_counters[i].vcpu = vcpu;
631
pmu->fixed_counters[i].idx = i + KVM_FIXED_PMC_BASE_IDX;
632
pmu->fixed_counters[i].current_config = 0;
633
pmu->fixed_counters[i].eventsel = intel_get_fixed_pmc_eventsel(i);
634
}
635
636
lbr_desc->records.nr = 0;
637
lbr_desc->event = NULL;
638
lbr_desc->msr_passthrough = false;
639
}
640
641
static void intel_pmu_reset(struct kvm_vcpu *vcpu)
642
{
643
intel_pmu_release_guest_lbr_event(vcpu);
644
}
645
646
/*
647
* Emulate LBR_On_PMI behavior for 1 < pmu.version < 4.
648
*
649
* If Freeze_LBR_On_PMI = 1, the LBR is frozen on PMI and
650
* the KVM emulates to clear the LBR bit (bit 0) in IA32_DEBUGCTL.
651
*
652
* Guest needs to re-enable LBR to resume branches recording.
653
*/
654
static void intel_pmu_legacy_freezing_lbrs_on_pmi(struct kvm_vcpu *vcpu)
655
{
656
u64 data = vmx_guest_debugctl_read();
657
658
if (data & DEBUGCTLMSR_FREEZE_LBRS_ON_PMI) {
659
data &= ~DEBUGCTLMSR_LBR;
660
vmx_guest_debugctl_write(vcpu, data);
661
}
662
}
663
664
static void intel_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
665
{
666
u8 version = vcpu_to_pmu(vcpu)->version;
667
668
if (!intel_pmu_lbr_is_enabled(vcpu))
669
return;
670
671
if (version > 1 && version < 4)
672
intel_pmu_legacy_freezing_lbrs_on_pmi(vcpu);
673
}
674
675
static void vmx_update_intercept_for_lbr_msrs(struct kvm_vcpu *vcpu, bool set)
676
{
677
struct x86_pmu_lbr *lbr = vcpu_to_lbr_records(vcpu);
678
int i;
679
680
for (i = 0; i < lbr->nr; i++) {
681
vmx_set_intercept_for_msr(vcpu, lbr->from + i, MSR_TYPE_RW, set);
682
vmx_set_intercept_for_msr(vcpu, lbr->to + i, MSR_TYPE_RW, set);
683
if (lbr->info)
684
vmx_set_intercept_for_msr(vcpu, lbr->info + i, MSR_TYPE_RW, set);
685
}
686
687
vmx_set_intercept_for_msr(vcpu, MSR_LBR_SELECT, MSR_TYPE_RW, set);
688
vmx_set_intercept_for_msr(vcpu, MSR_LBR_TOS, MSR_TYPE_RW, set);
689
}
690
691
static inline void vmx_disable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu)
692
{
693
struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
694
695
if (!lbr_desc->msr_passthrough)
696
return;
697
698
vmx_update_intercept_for_lbr_msrs(vcpu, true);
699
lbr_desc->msr_passthrough = false;
700
}
701
702
static inline void vmx_enable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu)
703
{
704
struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
705
706
if (lbr_desc->msr_passthrough)
707
return;
708
709
vmx_update_intercept_for_lbr_msrs(vcpu, false);
710
lbr_desc->msr_passthrough = true;
711
}
712
713
/*
714
* Higher priority host perf events (e.g. cpu pinned) could reclaim the
715
* pmu resources (e.g. LBR) that were assigned to the guest. This is
716
* usually done via ipi calls (more details in perf_install_in_context).
717
*
718
* Before entering the non-root mode (with irq disabled here), double
719
* confirm that the pmu features enabled to the guest are not reclaimed
720
* by higher priority host events. Otherwise, disallow vcpu's access to
721
* the reclaimed features.
722
*/
723
void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu)
724
{
725
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
726
struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
727
728
if (WARN_ON_ONCE(!lbr_desc))
729
return;
730
731
if (!lbr_desc->event) {
732
vmx_disable_lbr_msrs_passthrough(vcpu);
733
if (vmx_guest_debugctl_read() & DEBUGCTLMSR_LBR)
734
goto warn;
735
if (test_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use))
736
goto warn;
737
return;
738
}
739
740
if (lbr_desc->event->state < PERF_EVENT_STATE_ACTIVE) {
741
vmx_disable_lbr_msrs_passthrough(vcpu);
742
__clear_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use);
743
goto warn;
744
} else
745
vmx_enable_lbr_msrs_passthrough(vcpu);
746
747
return;
748
749
warn:
750
pr_warn_ratelimited("vcpu-%d: fail to passthrough LBR.\n", vcpu->vcpu_id);
751
}
752
753
static void intel_pmu_cleanup(struct kvm_vcpu *vcpu)
754
{
755
if (!(vmx_guest_debugctl_read() & DEBUGCTLMSR_LBR))
756
intel_pmu_release_guest_lbr_event(vcpu);
757
}
758
759
void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu)
760
{
761
struct kvm_pmc *pmc = NULL;
762
int bit, hw_idx;
763
764
kvm_for_each_pmc(pmu, pmc, bit, (unsigned long *)&pmu->global_ctrl) {
765
if (!pmc_speculative_in_use(pmc) ||
766
!pmc_is_globally_enabled(pmc) || !pmc->perf_event)
767
continue;
768
769
/*
770
* A negative index indicates the event isn't mapped to a
771
* physical counter in the host, e.g. due to contention.
772
*/
773
hw_idx = pmc->perf_event->hw.idx;
774
if (hw_idx != pmc->idx && hw_idx > -1)
775
pmu->host_cross_mapped_mask |= BIT_ULL(hw_idx);
776
}
777
}
778
779
struct kvm_pmu_ops intel_pmu_ops __initdata = {
780
.rdpmc_ecx_to_pmc = intel_rdpmc_ecx_to_pmc,
781
.msr_idx_to_pmc = intel_msr_idx_to_pmc,
782
.is_valid_msr = intel_is_valid_msr,
783
.get_msr = intel_pmu_get_msr,
784
.set_msr = intel_pmu_set_msr,
785
.refresh = intel_pmu_refresh,
786
.init = intel_pmu_init,
787
.reset = intel_pmu_reset,
788
.deliver_pmi = intel_pmu_deliver_pmi,
789
.cleanup = intel_pmu_cleanup,
790
.EVENTSEL_EVENT = ARCH_PERFMON_EVENTSEL_EVENT,
791
.MAX_NR_GP_COUNTERS = KVM_MAX_NR_INTEL_GP_COUNTERS,
792
.MIN_NR_GP_COUNTERS = 1,
793
};
794
795