Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/vmx/vmx.c
26489 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Kernel-based Virtual Machine driver for Linux
4
*
5
* This module enables machines with Intel VT-x extensions to run virtual
6
* machines without emulation or binary translation.
7
*
8
* Copyright (C) 2006 Qumranet, Inc.
9
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
10
*
11
* Authors:
12
* Avi Kivity <[email protected]>
13
* Yaniv Kamay <[email protected]>
14
*/
15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17
#include <linux/highmem.h>
18
#include <linux/hrtimer.h>
19
#include <linux/kernel.h>
20
#include <linux/kvm_host.h>
21
#include <linux/module.h>
22
#include <linux/moduleparam.h>
23
#include <linux/mod_devicetable.h>
24
#include <linux/mm.h>
25
#include <linux/objtool.h>
26
#include <linux/sched.h>
27
#include <linux/sched/smt.h>
28
#include <linux/slab.h>
29
#include <linux/tboot.h>
30
#include <linux/trace_events.h>
31
#include <linux/entry-kvm.h>
32
33
#include <asm/apic.h>
34
#include <asm/asm.h>
35
#include <asm/cpu.h>
36
#include <asm/cpu_device_id.h>
37
#include <asm/debugreg.h>
38
#include <asm/desc.h>
39
#include <asm/fpu/api.h>
40
#include <asm/fpu/xstate.h>
41
#include <asm/fred.h>
42
#include <asm/idtentry.h>
43
#include <asm/io.h>
44
#include <asm/irq_remapping.h>
45
#include <asm/reboot.h>
46
#include <asm/perf_event.h>
47
#include <asm/mmu_context.h>
48
#include <asm/mshyperv.h>
49
#include <asm/msr.h>
50
#include <asm/mwait.h>
51
#include <asm/spec-ctrl.h>
52
#include <asm/vmx.h>
53
54
#include <trace/events/ipi.h>
55
56
#include "capabilities.h"
57
#include "common.h"
58
#include "cpuid.h"
59
#include "hyperv.h"
60
#include "kvm_onhyperv.h"
61
#include "irq.h"
62
#include "kvm_cache_regs.h"
63
#include "lapic.h"
64
#include "mmu.h"
65
#include "nested.h"
66
#include "pmu.h"
67
#include "sgx.h"
68
#include "trace.h"
69
#include "vmcs.h"
70
#include "vmcs12.h"
71
#include "vmx.h"
72
#include "x86.h"
73
#include "x86_ops.h"
74
#include "smm.h"
75
#include "vmx_onhyperv.h"
76
#include "posted_intr.h"
77
78
#include "mmu/spte.h"
79
80
MODULE_AUTHOR("Qumranet");
81
MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
82
MODULE_LICENSE("GPL");
83
84
#ifdef MODULE
85
static const struct x86_cpu_id vmx_cpu_id[] = {
86
X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
87
{}
88
};
89
MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
90
#endif
91
92
bool __read_mostly enable_vpid = 1;
93
module_param_named(vpid, enable_vpid, bool, 0444);
94
95
static bool __read_mostly enable_vnmi = 1;
96
module_param_named(vnmi, enable_vnmi, bool, 0444);
97
98
bool __read_mostly flexpriority_enabled = 1;
99
module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
100
101
bool __read_mostly enable_ept = 1;
102
module_param_named(ept, enable_ept, bool, 0444);
103
104
bool __read_mostly enable_unrestricted_guest = 1;
105
module_param_named(unrestricted_guest,
106
enable_unrestricted_guest, bool, 0444);
107
108
bool __read_mostly enable_ept_ad_bits = 1;
109
module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
110
111
static bool __read_mostly emulate_invalid_guest_state = true;
112
module_param(emulate_invalid_guest_state, bool, 0444);
113
114
static bool __read_mostly fasteoi = 1;
115
module_param(fasteoi, bool, 0444);
116
117
module_param(enable_apicv, bool, 0444);
118
module_param(enable_ipiv, bool, 0444);
119
120
module_param(enable_device_posted_irqs, bool, 0444);
121
122
/*
123
* If nested=1, nested virtualization is supported, i.e., guests may use
124
* VMX and be a hypervisor for its own guests. If nested=0, guests may not
125
* use VMX instructions.
126
*/
127
static bool __read_mostly nested = 1;
128
module_param(nested, bool, 0444);
129
130
bool __read_mostly enable_pml = 1;
131
module_param_named(pml, enable_pml, bool, 0444);
132
133
static bool __read_mostly error_on_inconsistent_vmcs_config = true;
134
module_param(error_on_inconsistent_vmcs_config, bool, 0444);
135
136
static bool __read_mostly dump_invalid_vmcs = 0;
137
module_param(dump_invalid_vmcs, bool, 0644);
138
139
#define MSR_BITMAP_MODE_X2APIC 1
140
#define MSR_BITMAP_MODE_X2APIC_APICV 2
141
142
#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
143
144
/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
145
static int __read_mostly cpu_preemption_timer_multi;
146
static bool __read_mostly enable_preemption_timer = 1;
147
#ifdef CONFIG_X86_64
148
module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
149
#endif
150
151
extern bool __read_mostly allow_smaller_maxphyaddr;
152
module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
153
154
#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
155
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
156
#define KVM_VM_CR0_ALWAYS_ON \
157
(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
158
159
#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
160
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
161
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
162
163
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
164
165
#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
166
RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
167
RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
168
RTIT_STATUS_BYTECNT))
169
170
/*
171
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
172
* ple_gap: upper bound on the amount of time between two successive
173
* executions of PAUSE in a loop. Also indicate if ple enabled.
174
* According to test, this time is usually smaller than 128 cycles.
175
* ple_window: upper bound on the amount of time a guest is allowed to execute
176
* in a PAUSE loop. Tests indicate that most spinlocks are held for
177
* less than 2^12 cycles
178
* Time is measured based on a counter that runs at the same rate as the TSC,
179
* refer SDM volume 3b section 21.6.13 & 22.1.3.
180
*/
181
static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
182
module_param(ple_gap, uint, 0444);
183
184
static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
185
module_param(ple_window, uint, 0444);
186
187
/* Default doubles per-vcpu window every exit. */
188
static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
189
module_param(ple_window_grow, uint, 0444);
190
191
/* Default resets per-vcpu window every exit to ple_window. */
192
static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
193
module_param(ple_window_shrink, uint, 0444);
194
195
/* Default is to compute the maximum so we can never overflow. */
196
static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
197
module_param(ple_window_max, uint, 0444);
198
199
/* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
200
int __read_mostly pt_mode = PT_MODE_SYSTEM;
201
#ifdef CONFIG_BROKEN
202
module_param(pt_mode, int, S_IRUGO);
203
#endif
204
205
struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
206
207
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209
static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210
211
/* Storage for pre module init parameter parsing */
212
static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213
214
static const struct {
215
const char *option;
216
bool for_parse;
217
} vmentry_l1d_param[] = {
218
[VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
219
[VMENTER_L1D_FLUSH_NEVER] = {"never", true},
220
[VMENTER_L1D_FLUSH_COND] = {"cond", true},
221
[VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
222
[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223
[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224
};
225
226
#define L1D_CACHE_ORDER 4
227
static void *vmx_l1d_flush_pages;
228
229
static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230
{
231
struct page *page;
232
unsigned int i;
233
234
if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236
return 0;
237
}
238
239
if (!enable_ept) {
240
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241
return 0;
242
}
243
244
if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
245
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
246
return 0;
247
}
248
249
/* If set to auto use the default l1tf mitigation method */
250
if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
251
switch (l1tf_mitigation) {
252
case L1TF_MITIGATION_OFF:
253
l1tf = VMENTER_L1D_FLUSH_NEVER;
254
break;
255
case L1TF_MITIGATION_AUTO:
256
case L1TF_MITIGATION_FLUSH_NOWARN:
257
case L1TF_MITIGATION_FLUSH:
258
case L1TF_MITIGATION_FLUSH_NOSMT:
259
l1tf = VMENTER_L1D_FLUSH_COND;
260
break;
261
case L1TF_MITIGATION_FULL:
262
case L1TF_MITIGATION_FULL_FORCE:
263
l1tf = VMENTER_L1D_FLUSH_ALWAYS;
264
break;
265
}
266
} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
267
l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268
}
269
270
if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
271
!boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
272
/*
273
* This allocation for vmx_l1d_flush_pages is not tied to a VM
274
* lifetime and so should not be charged to a memcg.
275
*/
276
page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
277
if (!page)
278
return -ENOMEM;
279
vmx_l1d_flush_pages = page_address(page);
280
281
/*
282
* Initialize each page with a different pattern in
283
* order to protect against KSM in the nested
284
* virtualization case.
285
*/
286
for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
287
memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
288
PAGE_SIZE);
289
}
290
}
291
292
l1tf_vmx_mitigation = l1tf;
293
294
if (l1tf != VMENTER_L1D_FLUSH_NEVER)
295
static_branch_enable(&vmx_l1d_should_flush);
296
else
297
static_branch_disable(&vmx_l1d_should_flush);
298
299
if (l1tf == VMENTER_L1D_FLUSH_COND)
300
static_branch_enable(&vmx_l1d_flush_cond);
301
else
302
static_branch_disable(&vmx_l1d_flush_cond);
303
return 0;
304
}
305
306
static int vmentry_l1d_flush_parse(const char *s)
307
{
308
unsigned int i;
309
310
if (s) {
311
for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
312
if (vmentry_l1d_param[i].for_parse &&
313
sysfs_streq(s, vmentry_l1d_param[i].option))
314
return i;
315
}
316
}
317
return -EINVAL;
318
}
319
320
static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
321
{
322
int l1tf, ret;
323
324
l1tf = vmentry_l1d_flush_parse(s);
325
if (l1tf < 0)
326
return l1tf;
327
328
if (!boot_cpu_has(X86_BUG_L1TF))
329
return 0;
330
331
/*
332
* Has vmx_init() run already? If not then this is the pre init
333
* parameter parsing. In that case just store the value and let
334
* vmx_init() do the proper setup after enable_ept has been
335
* established.
336
*/
337
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
338
vmentry_l1d_flush_param = l1tf;
339
return 0;
340
}
341
342
mutex_lock(&vmx_l1d_flush_mutex);
343
ret = vmx_setup_l1d_flush(l1tf);
344
mutex_unlock(&vmx_l1d_flush_mutex);
345
return ret;
346
}
347
348
static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
349
{
350
if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
351
return sysfs_emit(s, "???\n");
352
353
return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
354
}
355
356
static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
357
{
358
u64 msr;
359
360
if (!vmx->disable_fb_clear)
361
return;
362
363
msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL);
364
msr |= FB_CLEAR_DIS;
365
native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr);
366
/* Cache the MSR value to avoid reading it later */
367
vmx->msr_ia32_mcu_opt_ctrl = msr;
368
}
369
370
static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
371
{
372
if (!vmx->disable_fb_clear)
373
return;
374
375
vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
376
native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
377
}
378
379
static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
380
{
381
/*
382
* Disable VERW's behavior of clearing CPU buffers for the guest if the
383
* CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
384
* the mitigation. Disabling the clearing behavior provides a
385
* performance boost for guests that aren't aware that manually clearing
386
* CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
387
* and VM-Exit.
388
*/
389
vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
390
(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
391
!boot_cpu_has_bug(X86_BUG_MDS) &&
392
!boot_cpu_has_bug(X86_BUG_TAA);
393
394
/*
395
* If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
396
* at VMEntry. Skip the MSR read/write when a guest has no use case to
397
* execute VERW.
398
*/
399
if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
400
((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
401
(vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
402
(vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
403
(vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
404
(vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
405
vmx->disable_fb_clear = false;
406
}
407
408
static const struct kernel_param_ops vmentry_l1d_flush_ops = {
409
.set = vmentry_l1d_flush_set,
410
.get = vmentry_l1d_flush_get,
411
};
412
module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
413
414
static u32 vmx_segment_access_rights(struct kvm_segment *var);
415
416
void vmx_vmexit(void);
417
418
#define vmx_insn_failed(fmt...) \
419
do { \
420
WARN_ONCE(1, fmt); \
421
pr_warn_ratelimited(fmt); \
422
} while (0)
423
424
noinline void vmread_error(unsigned long field)
425
{
426
vmx_insn_failed("vmread failed: field=%lx\n", field);
427
}
428
429
#ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
430
noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
431
{
432
if (fault) {
433
kvm_spurious_fault();
434
} else {
435
instrumentation_begin();
436
vmread_error(field);
437
instrumentation_end();
438
}
439
}
440
#endif
441
442
noinline void vmwrite_error(unsigned long field, unsigned long value)
443
{
444
vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
445
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
446
}
447
448
noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
449
{
450
vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
451
vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
452
}
453
454
noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455
{
456
vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
457
vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
458
}
459
460
noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
461
{
462
vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
463
ext, vpid, gva);
464
}
465
466
noinline void invept_error(unsigned long ext, u64 eptp)
467
{
468
vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
469
}
470
471
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
472
DEFINE_PER_CPU(struct vmcs *, current_vmcs);
473
/*
474
* We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
475
* when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
476
*/
477
static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
478
479
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
480
static DEFINE_SPINLOCK(vmx_vpid_lock);
481
482
struct vmcs_config vmcs_config __ro_after_init;
483
struct vmx_capability vmx_capability __ro_after_init;
484
485
#define VMX_SEGMENT_FIELD(seg) \
486
[VCPU_SREG_##seg] = { \
487
.selector = GUEST_##seg##_SELECTOR, \
488
.base = GUEST_##seg##_BASE, \
489
.limit = GUEST_##seg##_LIMIT, \
490
.ar_bytes = GUEST_##seg##_AR_BYTES, \
491
}
492
493
static const struct kvm_vmx_segment_field {
494
unsigned selector;
495
unsigned base;
496
unsigned limit;
497
unsigned ar_bytes;
498
} kvm_vmx_segment_fields[] = {
499
VMX_SEGMENT_FIELD(CS),
500
VMX_SEGMENT_FIELD(DS),
501
VMX_SEGMENT_FIELD(ES),
502
VMX_SEGMENT_FIELD(FS),
503
VMX_SEGMENT_FIELD(GS),
504
VMX_SEGMENT_FIELD(SS),
505
VMX_SEGMENT_FIELD(TR),
506
VMX_SEGMENT_FIELD(LDTR),
507
};
508
509
510
static unsigned long host_idt_base;
511
512
#if IS_ENABLED(CONFIG_HYPERV)
513
static bool __read_mostly enlightened_vmcs = true;
514
module_param(enlightened_vmcs, bool, 0444);
515
516
static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
517
{
518
struct hv_enlightened_vmcs *evmcs;
519
hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
520
521
if (partition_assist_page == INVALID_PAGE)
522
return -ENOMEM;
523
524
evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
525
526
evmcs->partition_assist_page = partition_assist_page;
527
evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
528
evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
529
530
return 0;
531
}
532
533
static __init void hv_init_evmcs(void)
534
{
535
int cpu;
536
537
if (!enlightened_vmcs)
538
return;
539
540
/*
541
* Enlightened VMCS usage should be recommended and the host needs
542
* to support eVMCS v1 or above.
543
*/
544
if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
545
(ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
546
KVM_EVMCS_VERSION) {
547
548
/* Check that we have assist pages on all online CPUs */
549
for_each_online_cpu(cpu) {
550
if (!hv_get_vp_assist_page(cpu)) {
551
enlightened_vmcs = false;
552
break;
553
}
554
}
555
556
if (enlightened_vmcs) {
557
pr_info("Using Hyper-V Enlightened VMCS\n");
558
static_branch_enable(&__kvm_is_using_evmcs);
559
}
560
561
if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
562
vt_x86_ops.enable_l2_tlb_flush
563
= hv_enable_l2_tlb_flush;
564
} else {
565
enlightened_vmcs = false;
566
}
567
}
568
569
static void hv_reset_evmcs(void)
570
{
571
struct hv_vp_assist_page *vp_ap;
572
573
if (!kvm_is_using_evmcs())
574
return;
575
576
/*
577
* KVM should enable eVMCS if and only if all CPUs have a VP assist
578
* page, and should reject CPU onlining if eVMCS is enabled the CPU
579
* doesn't have a VP assist page allocated.
580
*/
581
vp_ap = hv_get_vp_assist_page(smp_processor_id());
582
if (WARN_ON_ONCE(!vp_ap))
583
return;
584
585
/*
586
* Reset everything to support using non-enlightened VMCS access later
587
* (e.g. when we reload the module with enlightened_vmcs=0)
588
*/
589
vp_ap->nested_control.features.directhypercall = 0;
590
vp_ap->current_nested_vmcs = 0;
591
vp_ap->enlighten_vmentry = 0;
592
}
593
594
#else /* IS_ENABLED(CONFIG_HYPERV) */
595
static void hv_init_evmcs(void) {}
596
static void hv_reset_evmcs(void) {}
597
#endif /* IS_ENABLED(CONFIG_HYPERV) */
598
599
/*
600
* Comment's format: document - errata name - stepping - processor name.
601
* Refer from
602
* https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
603
*/
604
static u32 vmx_preemption_cpu_tfms[] = {
605
/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
606
0x000206E6,
607
/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
608
/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
609
/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
610
0x00020652,
611
/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
612
0x00020655,
613
/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
614
/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
615
/*
616
* 320767.pdf - AAP86 - B1 -
617
* i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
618
*/
619
0x000106E5,
620
/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
621
0x000106A0,
622
/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
623
0x000106A1,
624
/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
625
0x000106A4,
626
/* 321333.pdf - AAM126 - D0 - Xeon 3500 */
627
/* 321324.pdf - AAK139 - D0 - Xeon 5500 */
628
/* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
629
0x000106A5,
630
/* Xeon E3-1220 V2 */
631
0x000306A8,
632
};
633
634
static inline bool cpu_has_broken_vmx_preemption_timer(void)
635
{
636
u32 eax = cpuid_eax(0x00000001), i;
637
638
/* Clear the reserved bits */
639
eax &= ~(0x3U << 14 | 0xfU << 28);
640
for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
641
if (eax == vmx_preemption_cpu_tfms[i])
642
return true;
643
644
return false;
645
}
646
647
static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
648
{
649
return flexpriority_enabled && lapic_in_kernel(vcpu);
650
}
651
652
struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
653
{
654
int i;
655
656
i = kvm_find_user_return_msr(msr);
657
if (i >= 0)
658
return &vmx->guest_uret_msrs[i];
659
return NULL;
660
}
661
662
static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
663
struct vmx_uret_msr *msr, u64 data)
664
{
665
unsigned int slot = msr - vmx->guest_uret_msrs;
666
int ret = 0;
667
668
if (msr->load_into_hardware) {
669
preempt_disable();
670
ret = kvm_set_user_return_msr(slot, data, msr->mask);
671
preempt_enable();
672
}
673
if (!ret)
674
msr->data = data;
675
return ret;
676
}
677
678
/*
679
* Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
680
*
681
* Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
682
* atomically track post-VMXON state, e.g. this may be called in NMI context.
683
* Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
684
* faults are guaranteed to be due to the !post-VMXON check unless the CPU is
685
* magically in RM, VM86, compat mode, or at CPL>0.
686
*/
687
static int kvm_cpu_vmxoff(void)
688
{
689
asm goto("1: vmxoff\n\t"
690
_ASM_EXTABLE(1b, %l[fault])
691
::: "cc", "memory" : fault);
692
693
cr4_clear_bits(X86_CR4_VMXE);
694
return 0;
695
696
fault:
697
cr4_clear_bits(X86_CR4_VMXE);
698
return -EIO;
699
}
700
701
void vmx_emergency_disable_virtualization_cpu(void)
702
{
703
int cpu = raw_smp_processor_id();
704
struct loaded_vmcs *v;
705
706
kvm_rebooting = true;
707
708
/*
709
* Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
710
* set in task context. If this races with VMX is disabled by an NMI,
711
* VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
712
* kvm_rebooting set.
713
*/
714
if (!(__read_cr4() & X86_CR4_VMXE))
715
return;
716
717
list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
718
loaded_vmcss_on_cpu_link) {
719
vmcs_clear(v->vmcs);
720
if (v->shadow_vmcs)
721
vmcs_clear(v->shadow_vmcs);
722
}
723
724
kvm_cpu_vmxoff();
725
}
726
727
static void __loaded_vmcs_clear(void *arg)
728
{
729
struct loaded_vmcs *loaded_vmcs = arg;
730
int cpu = raw_smp_processor_id();
731
732
if (loaded_vmcs->cpu != cpu)
733
return; /* vcpu migration can race with cpu offline */
734
if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
735
per_cpu(current_vmcs, cpu) = NULL;
736
737
vmcs_clear(loaded_vmcs->vmcs);
738
if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
739
vmcs_clear(loaded_vmcs->shadow_vmcs);
740
741
list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
742
743
/*
744
* Ensure all writes to loaded_vmcs, including deleting it from its
745
* current percpu list, complete before setting loaded_vmcs->cpu to
746
* -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
747
* and add loaded_vmcs to its percpu list before it's deleted from this
748
* cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
749
*/
750
smp_wmb();
751
752
loaded_vmcs->cpu = -1;
753
loaded_vmcs->launched = 0;
754
}
755
756
void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
757
{
758
int cpu = loaded_vmcs->cpu;
759
760
if (cpu != -1)
761
smp_call_function_single(cpu,
762
__loaded_vmcs_clear, loaded_vmcs, 1);
763
}
764
765
static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
766
unsigned field)
767
{
768
bool ret;
769
u32 mask = 1 << (seg * SEG_FIELD_NR + field);
770
771
if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
772
kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
773
vmx->segment_cache.bitmask = 0;
774
}
775
ret = vmx->segment_cache.bitmask & mask;
776
vmx->segment_cache.bitmask |= mask;
777
return ret;
778
}
779
780
static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
781
{
782
u16 *p = &vmx->segment_cache.seg[seg].selector;
783
784
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
785
*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
786
return *p;
787
}
788
789
static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
790
{
791
ulong *p = &vmx->segment_cache.seg[seg].base;
792
793
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
794
*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
795
return *p;
796
}
797
798
static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
799
{
800
u32 *p = &vmx->segment_cache.seg[seg].limit;
801
802
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
803
*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
804
return *p;
805
}
806
807
static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
808
{
809
u32 *p = &vmx->segment_cache.seg[seg].ar;
810
811
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
812
*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
813
return *p;
814
}
815
816
void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
817
{
818
u32 eb;
819
820
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
821
(1u << DB_VECTOR) | (1u << AC_VECTOR);
822
/*
823
* #VE isn't used for VMX. To test against unexpected changes
824
* related to #VE for VMX, intercept unexpected #VE and warn on it.
825
*/
826
if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
827
eb |= 1u << VE_VECTOR;
828
/*
829
* Guest access to VMware backdoor ports could legitimately
830
* trigger #GP because of TSS I/O permission bitmap.
831
* We intercept those #GP and allow access to them anyway
832
* as VMware does.
833
*/
834
if (enable_vmware_backdoor)
835
eb |= (1u << GP_VECTOR);
836
if ((vcpu->guest_debug &
837
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
838
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
839
eb |= 1u << BP_VECTOR;
840
if (to_vmx(vcpu)->rmode.vm86_active)
841
eb = ~0;
842
if (!vmx_need_pf_intercept(vcpu))
843
eb &= ~(1u << PF_VECTOR);
844
845
/* When we are running a nested L2 guest and L1 specified for it a
846
* certain exception bitmap, we must trap the same exceptions and pass
847
* them to L1. When running L2, we will only handle the exceptions
848
* specified above if L1 did not want them.
849
*/
850
if (is_guest_mode(vcpu))
851
eb |= get_vmcs12(vcpu)->exception_bitmap;
852
else {
853
int mask = 0, match = 0;
854
855
if (enable_ept && (eb & (1u << PF_VECTOR))) {
856
/*
857
* If EPT is enabled, #PF is currently only intercepted
858
* if MAXPHYADDR is smaller on the guest than on the
859
* host. In that case we only care about present,
860
* non-reserved faults. For vmcs02, however, PFEC_MASK
861
* and PFEC_MATCH are set in prepare_vmcs02_rare.
862
*/
863
mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
864
match = PFERR_PRESENT_MASK;
865
}
866
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
867
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
868
}
869
870
/*
871
* Disabling xfd interception indicates that dynamic xfeatures
872
* might be used in the guest. Always trap #NM in this case
873
* to save guest xfd_err timely.
874
*/
875
if (vcpu->arch.xfd_no_write_intercept)
876
eb |= (1u << NM_VECTOR);
877
878
vmcs_write32(EXCEPTION_BITMAP, eb);
879
}
880
881
/*
882
* Check if MSR is intercepted for currently loaded MSR bitmap.
883
*/
884
static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
885
{
886
if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
887
return true;
888
889
return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
890
}
891
892
unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
893
{
894
unsigned int flags = 0;
895
896
if (vmx->loaded_vmcs->launched)
897
flags |= VMX_RUN_VMRESUME;
898
899
/*
900
* If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
901
* to change it directly without causing a vmexit. In that case read
902
* it after vmexit and store it in vmx->spec_ctrl.
903
*/
904
if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
905
flags |= VMX_RUN_SAVE_SPEC_CTRL;
906
907
if (static_branch_unlikely(&cpu_buf_vm_clear) &&
908
kvm_vcpu_can_access_host_mmio(&vmx->vcpu))
909
flags |= VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO;
910
911
return flags;
912
}
913
914
static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
915
unsigned long entry, unsigned long exit)
916
{
917
vm_entry_controls_clearbit(vmx, entry);
918
vm_exit_controls_clearbit(vmx, exit);
919
}
920
921
int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
922
{
923
unsigned int i;
924
925
for (i = 0; i < m->nr; ++i) {
926
if (m->val[i].index == msr)
927
return i;
928
}
929
return -ENOENT;
930
}
931
932
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
933
{
934
int i;
935
struct msr_autoload *m = &vmx->msr_autoload;
936
937
switch (msr) {
938
case MSR_EFER:
939
if (cpu_has_load_ia32_efer()) {
940
clear_atomic_switch_msr_special(vmx,
941
VM_ENTRY_LOAD_IA32_EFER,
942
VM_EXIT_LOAD_IA32_EFER);
943
return;
944
}
945
break;
946
case MSR_CORE_PERF_GLOBAL_CTRL:
947
if (cpu_has_load_perf_global_ctrl()) {
948
clear_atomic_switch_msr_special(vmx,
949
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
950
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
951
return;
952
}
953
break;
954
}
955
i = vmx_find_loadstore_msr_slot(&m->guest, msr);
956
if (i < 0)
957
goto skip_guest;
958
--m->guest.nr;
959
m->guest.val[i] = m->guest.val[m->guest.nr];
960
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
961
962
skip_guest:
963
i = vmx_find_loadstore_msr_slot(&m->host, msr);
964
if (i < 0)
965
return;
966
967
--m->host.nr;
968
m->host.val[i] = m->host.val[m->host.nr];
969
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
970
}
971
972
static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
973
unsigned long entry, unsigned long exit,
974
unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
975
u64 guest_val, u64 host_val)
976
{
977
vmcs_write64(guest_val_vmcs, guest_val);
978
if (host_val_vmcs != HOST_IA32_EFER)
979
vmcs_write64(host_val_vmcs, host_val);
980
vm_entry_controls_setbit(vmx, entry);
981
vm_exit_controls_setbit(vmx, exit);
982
}
983
984
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
985
u64 guest_val, u64 host_val, bool entry_only)
986
{
987
int i, j = 0;
988
struct msr_autoload *m = &vmx->msr_autoload;
989
990
switch (msr) {
991
case MSR_EFER:
992
if (cpu_has_load_ia32_efer()) {
993
add_atomic_switch_msr_special(vmx,
994
VM_ENTRY_LOAD_IA32_EFER,
995
VM_EXIT_LOAD_IA32_EFER,
996
GUEST_IA32_EFER,
997
HOST_IA32_EFER,
998
guest_val, host_val);
999
return;
1000
}
1001
break;
1002
case MSR_CORE_PERF_GLOBAL_CTRL:
1003
if (cpu_has_load_perf_global_ctrl()) {
1004
add_atomic_switch_msr_special(vmx,
1005
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1006
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1007
GUEST_IA32_PERF_GLOBAL_CTRL,
1008
HOST_IA32_PERF_GLOBAL_CTRL,
1009
guest_val, host_val);
1010
return;
1011
}
1012
break;
1013
case MSR_IA32_PEBS_ENABLE:
1014
/* PEBS needs a quiescent period after being disabled (to write
1015
* a record). Disabling PEBS through VMX MSR swapping doesn't
1016
* provide that period, so a CPU could write host's record into
1017
* guest's memory.
1018
*/
1019
wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1020
}
1021
1022
i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1023
if (!entry_only)
1024
j = vmx_find_loadstore_msr_slot(&m->host, msr);
1025
1026
if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1027
(j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1028
printk_once(KERN_WARNING "Not enough msr switch entries. "
1029
"Can't add msr %x\n", msr);
1030
return;
1031
}
1032
if (i < 0) {
1033
i = m->guest.nr++;
1034
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1035
}
1036
m->guest.val[i].index = msr;
1037
m->guest.val[i].value = guest_val;
1038
1039
if (entry_only)
1040
return;
1041
1042
if (j < 0) {
1043
j = m->host.nr++;
1044
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1045
}
1046
m->host.val[j].index = msr;
1047
m->host.val[j].value = host_val;
1048
}
1049
1050
static bool update_transition_efer(struct vcpu_vmx *vmx)
1051
{
1052
u64 guest_efer = vmx->vcpu.arch.efer;
1053
u64 ignore_bits = 0;
1054
int i;
1055
1056
/* Shadow paging assumes NX to be available. */
1057
if (!enable_ept)
1058
guest_efer |= EFER_NX;
1059
1060
/*
1061
* LMA and LME handled by hardware; SCE meaningless outside long mode.
1062
*/
1063
ignore_bits |= EFER_SCE;
1064
#ifdef CONFIG_X86_64
1065
ignore_bits |= EFER_LMA | EFER_LME;
1066
/* SCE is meaningful only in long mode on Intel */
1067
if (guest_efer & EFER_LMA)
1068
ignore_bits &= ~(u64)EFER_SCE;
1069
#endif
1070
1071
/*
1072
* On EPT, we can't emulate NX, so we must switch EFER atomically.
1073
* On CPUs that support "load IA32_EFER", always switch EFER
1074
* atomically, since it's faster than switching it manually.
1075
*/
1076
if (cpu_has_load_ia32_efer() ||
1077
(enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1078
if (!(guest_efer & EFER_LMA))
1079
guest_efer &= ~EFER_LME;
1080
if (guest_efer != kvm_host.efer)
1081
add_atomic_switch_msr(vmx, MSR_EFER,
1082
guest_efer, kvm_host.efer, false);
1083
else
1084
clear_atomic_switch_msr(vmx, MSR_EFER);
1085
return false;
1086
}
1087
1088
i = kvm_find_user_return_msr(MSR_EFER);
1089
if (i < 0)
1090
return false;
1091
1092
clear_atomic_switch_msr(vmx, MSR_EFER);
1093
1094
guest_efer &= ~ignore_bits;
1095
guest_efer |= kvm_host.efer & ignore_bits;
1096
1097
vmx->guest_uret_msrs[i].data = guest_efer;
1098
vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1099
1100
return true;
1101
}
1102
1103
#ifdef CONFIG_X86_32
1104
/*
1105
* On 32-bit kernels, VM exits still load the FS and GS bases from the
1106
* VMCS rather than the segment table. KVM uses this helper to figure
1107
* out the current bases to poke them into the VMCS before entry.
1108
*/
1109
static unsigned long segment_base(u16 selector)
1110
{
1111
struct desc_struct *table;
1112
unsigned long v;
1113
1114
if (!(selector & ~SEGMENT_RPL_MASK))
1115
return 0;
1116
1117
table = get_current_gdt_ro();
1118
1119
if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1120
u16 ldt_selector = kvm_read_ldt();
1121
1122
if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1123
return 0;
1124
1125
table = (struct desc_struct *)segment_base(ldt_selector);
1126
}
1127
v = get_desc_base(&table[selector >> 3]);
1128
return v;
1129
}
1130
#endif
1131
1132
static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1133
{
1134
return vmx_pt_mode_is_host_guest() &&
1135
!(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1136
}
1137
1138
static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1139
{
1140
/* The base must be 128-byte aligned and a legal physical address. */
1141
return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1142
}
1143
1144
static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1145
{
1146
u32 i;
1147
1148
wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1149
wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1150
wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1151
wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1152
for (i = 0; i < addr_range; i++) {
1153
wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1154
wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1155
}
1156
}
1157
1158
static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1159
{
1160
u32 i;
1161
1162
rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1163
rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1164
rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1165
rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1166
for (i = 0; i < addr_range; i++) {
1167
rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1168
rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1169
}
1170
}
1171
1172
static void pt_guest_enter(struct vcpu_vmx *vmx)
1173
{
1174
if (vmx_pt_mode_is_system())
1175
return;
1176
1177
/*
1178
* GUEST_IA32_RTIT_CTL is already set in the VMCS.
1179
* Save host state before VM entry.
1180
*/
1181
rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1182
if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1183
wrmsrq(MSR_IA32_RTIT_CTL, 0);
1184
pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1185
pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1186
}
1187
}
1188
1189
static void pt_guest_exit(struct vcpu_vmx *vmx)
1190
{
1191
if (vmx_pt_mode_is_system())
1192
return;
1193
1194
if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1195
pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1196
pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1197
}
1198
1199
/*
1200
* KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1201
* i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1202
*/
1203
if (vmx->pt_desc.host.ctl)
1204
wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1205
}
1206
1207
void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1208
unsigned long fs_base, unsigned long gs_base)
1209
{
1210
if (unlikely(fs_sel != host->fs_sel)) {
1211
if (!(fs_sel & 7))
1212
vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1213
else
1214
vmcs_write16(HOST_FS_SELECTOR, 0);
1215
host->fs_sel = fs_sel;
1216
}
1217
if (unlikely(gs_sel != host->gs_sel)) {
1218
if (!(gs_sel & 7))
1219
vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1220
else
1221
vmcs_write16(HOST_GS_SELECTOR, 0);
1222
host->gs_sel = gs_sel;
1223
}
1224
if (unlikely(fs_base != host->fs_base)) {
1225
vmcs_writel(HOST_FS_BASE, fs_base);
1226
host->fs_base = fs_base;
1227
}
1228
if (unlikely(gs_base != host->gs_base)) {
1229
vmcs_writel(HOST_GS_BASE, gs_base);
1230
host->gs_base = gs_base;
1231
}
1232
}
1233
1234
void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1235
{
1236
struct vcpu_vmx *vmx = to_vmx(vcpu);
1237
struct vcpu_vt *vt = to_vt(vcpu);
1238
struct vmcs_host_state *host_state;
1239
#ifdef CONFIG_X86_64
1240
int cpu = raw_smp_processor_id();
1241
#endif
1242
unsigned long fs_base, gs_base;
1243
u16 fs_sel, gs_sel;
1244
int i;
1245
1246
/*
1247
* Note that guest MSRs to be saved/restored can also be changed
1248
* when guest state is loaded. This happens when guest transitions
1249
* to/from long-mode by setting MSR_EFER.LMA.
1250
*/
1251
if (!vmx->guest_uret_msrs_loaded) {
1252
vmx->guest_uret_msrs_loaded = true;
1253
for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1254
if (!vmx->guest_uret_msrs[i].load_into_hardware)
1255
continue;
1256
1257
kvm_set_user_return_msr(i,
1258
vmx->guest_uret_msrs[i].data,
1259
vmx->guest_uret_msrs[i].mask);
1260
}
1261
}
1262
1263
if (vmx->nested.need_vmcs12_to_shadow_sync)
1264
nested_sync_vmcs12_to_shadow(vcpu);
1265
1266
if (vt->guest_state_loaded)
1267
return;
1268
1269
host_state = &vmx->loaded_vmcs->host_state;
1270
1271
/*
1272
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1273
* allow segment selectors with cpl > 0 or ti == 1.
1274
*/
1275
host_state->ldt_sel = kvm_read_ldt();
1276
1277
#ifdef CONFIG_X86_64
1278
savesegment(ds, host_state->ds_sel);
1279
savesegment(es, host_state->es_sel);
1280
1281
gs_base = cpu_kernelmode_gs_base(cpu);
1282
if (likely(is_64bit_mm(current->mm))) {
1283
current_save_fsgs();
1284
fs_sel = current->thread.fsindex;
1285
gs_sel = current->thread.gsindex;
1286
fs_base = current->thread.fsbase;
1287
vt->msr_host_kernel_gs_base = current->thread.gsbase;
1288
} else {
1289
savesegment(fs, fs_sel);
1290
savesegment(gs, gs_sel);
1291
fs_base = read_msr(MSR_FS_BASE);
1292
vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1293
}
1294
1295
wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1296
#else
1297
savesegment(fs, fs_sel);
1298
savesegment(gs, gs_sel);
1299
fs_base = segment_base(fs_sel);
1300
gs_base = segment_base(gs_sel);
1301
#endif
1302
1303
vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1304
vt->guest_state_loaded = true;
1305
}
1306
1307
static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1308
{
1309
struct vmcs_host_state *host_state;
1310
1311
if (!vmx->vt.guest_state_loaded)
1312
return;
1313
1314
host_state = &vmx->loaded_vmcs->host_state;
1315
1316
++vmx->vcpu.stat.host_state_reload;
1317
1318
#ifdef CONFIG_X86_64
1319
rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1320
#endif
1321
if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1322
kvm_load_ldt(host_state->ldt_sel);
1323
#ifdef CONFIG_X86_64
1324
load_gs_index(host_state->gs_sel);
1325
#else
1326
loadsegment(gs, host_state->gs_sel);
1327
#endif
1328
}
1329
if (host_state->fs_sel & 7)
1330
loadsegment(fs, host_state->fs_sel);
1331
#ifdef CONFIG_X86_64
1332
if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1333
loadsegment(ds, host_state->ds_sel);
1334
loadsegment(es, host_state->es_sel);
1335
}
1336
#endif
1337
invalidate_tss_limit();
1338
#ifdef CONFIG_X86_64
1339
wrmsrq(MSR_KERNEL_GS_BASE, vmx->vt.msr_host_kernel_gs_base);
1340
#endif
1341
load_fixmap_gdt(raw_smp_processor_id());
1342
vmx->vt.guest_state_loaded = false;
1343
vmx->guest_uret_msrs_loaded = false;
1344
}
1345
1346
#ifdef CONFIG_X86_64
1347
static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1348
{
1349
preempt_disable();
1350
if (vmx->vt.guest_state_loaded)
1351
rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1352
preempt_enable();
1353
return vmx->msr_guest_kernel_gs_base;
1354
}
1355
1356
static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1357
{
1358
preempt_disable();
1359
if (vmx->vt.guest_state_loaded)
1360
wrmsrq(MSR_KERNEL_GS_BASE, data);
1361
preempt_enable();
1362
vmx->msr_guest_kernel_gs_base = data;
1363
}
1364
#endif
1365
1366
static void grow_ple_window(struct kvm_vcpu *vcpu)
1367
{
1368
struct vcpu_vmx *vmx = to_vmx(vcpu);
1369
unsigned int old = vmx->ple_window;
1370
1371
vmx->ple_window = __grow_ple_window(old, ple_window,
1372
ple_window_grow,
1373
ple_window_max);
1374
1375
if (vmx->ple_window != old) {
1376
vmx->ple_window_dirty = true;
1377
trace_kvm_ple_window_update(vcpu->vcpu_id,
1378
vmx->ple_window, old);
1379
}
1380
}
1381
1382
static void shrink_ple_window(struct kvm_vcpu *vcpu)
1383
{
1384
struct vcpu_vmx *vmx = to_vmx(vcpu);
1385
unsigned int old = vmx->ple_window;
1386
1387
vmx->ple_window = __shrink_ple_window(old, ple_window,
1388
ple_window_shrink,
1389
ple_window);
1390
1391
if (vmx->ple_window != old) {
1392
vmx->ple_window_dirty = true;
1393
trace_kvm_ple_window_update(vcpu->vcpu_id,
1394
vmx->ple_window, old);
1395
}
1396
}
1397
1398
void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1399
{
1400
struct vcpu_vmx *vmx = to_vmx(vcpu);
1401
bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1402
struct vmcs *prev;
1403
1404
if (!already_loaded) {
1405
loaded_vmcs_clear(vmx->loaded_vmcs);
1406
local_irq_disable();
1407
1408
/*
1409
* Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1410
* this cpu's percpu list, otherwise it may not yet be deleted
1411
* from its previous cpu's percpu list. Pairs with the
1412
* smb_wmb() in __loaded_vmcs_clear().
1413
*/
1414
smp_rmb();
1415
1416
list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1417
&per_cpu(loaded_vmcss_on_cpu, cpu));
1418
local_irq_enable();
1419
}
1420
1421
prev = per_cpu(current_vmcs, cpu);
1422
if (prev != vmx->loaded_vmcs->vmcs) {
1423
per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1424
vmcs_load(vmx->loaded_vmcs->vmcs);
1425
}
1426
1427
if (!already_loaded) {
1428
void *gdt = get_current_gdt_ro();
1429
1430
/*
1431
* Flush all EPTP/VPID contexts, the new pCPU may have stale
1432
* TLB entries from its previous association with the vCPU.
1433
*/
1434
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1435
1436
/*
1437
* Linux uses per-cpu TSS and GDT, so set these when switching
1438
* processors. See 22.2.4.
1439
*/
1440
vmcs_writel(HOST_TR_BASE,
1441
(unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1442
vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1443
1444
if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1445
/* 22.2.3 */
1446
vmcs_writel(HOST_IA32_SYSENTER_ESP,
1447
(unsigned long)(cpu_entry_stack(cpu) + 1));
1448
}
1449
1450
vmx->loaded_vmcs->cpu = cpu;
1451
}
1452
}
1453
1454
/*
1455
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
1456
* vcpu mutex is already taken.
1457
*/
1458
void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1459
{
1460
if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1461
shrink_ple_window(vcpu);
1462
1463
vmx_vcpu_load_vmcs(vcpu, cpu);
1464
1465
vmx_vcpu_pi_load(vcpu, cpu);
1466
}
1467
1468
void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1469
{
1470
vmx_vcpu_pi_put(vcpu);
1471
1472
vmx_prepare_switch_to_host(to_vmx(vcpu));
1473
}
1474
1475
bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1476
{
1477
return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1478
}
1479
1480
unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1481
{
1482
struct vcpu_vmx *vmx = to_vmx(vcpu);
1483
unsigned long rflags, save_rflags;
1484
1485
if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1486
kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1487
rflags = vmcs_readl(GUEST_RFLAGS);
1488
if (vmx->rmode.vm86_active) {
1489
rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1490
save_rflags = vmx->rmode.save_rflags;
1491
rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1492
}
1493
vmx->rflags = rflags;
1494
}
1495
return vmx->rflags;
1496
}
1497
1498
void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1499
{
1500
struct vcpu_vmx *vmx = to_vmx(vcpu);
1501
unsigned long old_rflags;
1502
1503
/*
1504
* Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1505
* is an unrestricted guest in order to mark L2 as needing emulation
1506
* if L1 runs L2 as a restricted guest.
1507
*/
1508
if (is_unrestricted_guest(vcpu)) {
1509
kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1510
vmx->rflags = rflags;
1511
vmcs_writel(GUEST_RFLAGS, rflags);
1512
return;
1513
}
1514
1515
old_rflags = vmx_get_rflags(vcpu);
1516
vmx->rflags = rflags;
1517
if (vmx->rmode.vm86_active) {
1518
vmx->rmode.save_rflags = rflags;
1519
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1520
}
1521
vmcs_writel(GUEST_RFLAGS, rflags);
1522
1523
if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1524
vmx->vt.emulation_required = vmx_emulation_required(vcpu);
1525
}
1526
1527
bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1528
{
1529
return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1530
}
1531
1532
u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1533
{
1534
u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1535
int ret = 0;
1536
1537
if (interruptibility & GUEST_INTR_STATE_STI)
1538
ret |= KVM_X86_SHADOW_INT_STI;
1539
if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1540
ret |= KVM_X86_SHADOW_INT_MOV_SS;
1541
1542
return ret;
1543
}
1544
1545
void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1546
{
1547
u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1548
u32 interruptibility = interruptibility_old;
1549
1550
interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1551
1552
if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1553
interruptibility |= GUEST_INTR_STATE_MOV_SS;
1554
else if (mask & KVM_X86_SHADOW_INT_STI)
1555
interruptibility |= GUEST_INTR_STATE_STI;
1556
1557
if ((interruptibility != interruptibility_old))
1558
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1559
}
1560
1561
static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1562
{
1563
struct vcpu_vmx *vmx = to_vmx(vcpu);
1564
unsigned long value;
1565
1566
/*
1567
* Any MSR write that attempts to change bits marked reserved will
1568
* case a #GP fault.
1569
*/
1570
if (data & vmx->pt_desc.ctl_bitmask)
1571
return 1;
1572
1573
/*
1574
* Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1575
* result in a #GP unless the same write also clears TraceEn.
1576
*/
1577
if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1578
(data & RTIT_CTL_TRACEEN) &&
1579
data != vmx->pt_desc.guest.ctl)
1580
return 1;
1581
1582
/*
1583
* WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1584
* and FabricEn would cause #GP, if
1585
* CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1586
*/
1587
if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1588
!(data & RTIT_CTL_FABRIC_EN) &&
1589
!intel_pt_validate_cap(vmx->pt_desc.caps,
1590
PT_CAP_single_range_output))
1591
return 1;
1592
1593
/*
1594
* MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1595
* utilize encodings marked reserved will cause a #GP fault.
1596
*/
1597
value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1598
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1599
!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1600
RTIT_CTL_MTC_RANGE_OFFSET, &value))
1601
return 1;
1602
value = intel_pt_validate_cap(vmx->pt_desc.caps,
1603
PT_CAP_cycle_thresholds);
1604
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1605
!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1606
RTIT_CTL_CYC_THRESH_OFFSET, &value))
1607
return 1;
1608
value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1609
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1610
!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1611
RTIT_CTL_PSB_FREQ_OFFSET, &value))
1612
return 1;
1613
1614
/*
1615
* If ADDRx_CFG is reserved or the encodings is >2 will
1616
* cause a #GP fault.
1617
*/
1618
value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1619
if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1620
return 1;
1621
value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1622
if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1623
return 1;
1624
value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1625
if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1626
return 1;
1627
value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1628
if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1629
return 1;
1630
1631
return 0;
1632
}
1633
1634
int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1635
void *insn, int insn_len)
1636
{
1637
/*
1638
* Emulation of instructions in SGX enclaves is impossible as RIP does
1639
* not point at the failing instruction, and even if it did, the code
1640
* stream is inaccessible. Inject #UD instead of exiting to userspace
1641
* so that guest userspace can't DoS the guest simply by triggering
1642
* emulation (enclaves are CPL3 only).
1643
*/
1644
if (vmx_get_exit_reason(vcpu).enclave_mode) {
1645
kvm_queue_exception(vcpu, UD_VECTOR);
1646
return X86EMUL_PROPAGATE_FAULT;
1647
}
1648
1649
/* Check that emulation is possible during event vectoring */
1650
if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1651
!kvm_can_emulate_event_vectoring(emul_type))
1652
return X86EMUL_UNHANDLEABLE_VECTORING;
1653
1654
return X86EMUL_CONTINUE;
1655
}
1656
1657
static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1658
{
1659
union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
1660
unsigned long rip, orig_rip;
1661
u32 instr_len;
1662
1663
/*
1664
* Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1665
* undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1666
* set when EPT misconfig occurs. In practice, real hardware updates
1667
* VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1668
* (namely Hyper-V) don't set it due to it being undefined behavior,
1669
* i.e. we end up advancing IP with some random value.
1670
*/
1671
if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1672
exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1673
instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1674
1675
/*
1676
* Emulating an enclave's instructions isn't supported as KVM
1677
* cannot access the enclave's memory or its true RIP, e.g. the
1678
* vmcs.GUEST_RIP points at the exit point of the enclave, not
1679
* the RIP that actually triggered the VM-Exit. But, because
1680
* most instructions that cause VM-Exit will #UD in an enclave,
1681
* most instruction-based VM-Exits simply do not occur.
1682
*
1683
* There are a few exceptions, notably the debug instructions
1684
* INT1ICEBRK and INT3, as they are allowed in debug enclaves
1685
* and generate #DB/#BP as expected, which KVM might intercept.
1686
* But again, the CPU does the dirty work and saves an instr
1687
* length of zero so VMMs don't shoot themselves in the foot.
1688
* WARN if KVM tries to skip a non-zero length instruction on
1689
* a VM-Exit from an enclave.
1690
*/
1691
if (!instr_len)
1692
goto rip_updated;
1693
1694
WARN_ONCE(exit_reason.enclave_mode,
1695
"skipping instruction after SGX enclave VM-Exit");
1696
1697
orig_rip = kvm_rip_read(vcpu);
1698
rip = orig_rip + instr_len;
1699
#ifdef CONFIG_X86_64
1700
/*
1701
* We need to mask out the high 32 bits of RIP if not in 64-bit
1702
* mode, but just finding out that we are in 64-bit mode is
1703
* quite expensive. Only do it if there was a carry.
1704
*/
1705
if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1706
rip = (u32)rip;
1707
#endif
1708
kvm_rip_write(vcpu, rip);
1709
} else {
1710
if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1711
return 0;
1712
}
1713
1714
rip_updated:
1715
/* skipping an emulated instruction also counts */
1716
vmx_set_interrupt_shadow(vcpu, 0);
1717
1718
return 1;
1719
}
1720
1721
/*
1722
* Recognizes a pending MTF VM-exit and records the nested state for later
1723
* delivery.
1724
*/
1725
void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1726
{
1727
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1728
struct vcpu_vmx *vmx = to_vmx(vcpu);
1729
1730
if (!is_guest_mode(vcpu))
1731
return;
1732
1733
/*
1734
* Per the SDM, MTF takes priority over debug-trap exceptions besides
1735
* TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1736
* or ICEBP (in the emulator proper), and skipping of ICEBP after an
1737
* intercepted #DB deliberately avoids single-step #DB and MTF updates
1738
* as ICEBP is higher priority than both. As instruction emulation is
1739
* completed at this point (i.e. KVM is at the instruction boundary),
1740
* any #DB exception pending delivery must be a debug-trap of lower
1741
* priority than MTF. Record the pending MTF state to be delivered in
1742
* vmx_check_nested_events().
1743
*/
1744
if (nested_cpu_has_mtf(vmcs12) &&
1745
(!vcpu->arch.exception.pending ||
1746
vcpu->arch.exception.vector == DB_VECTOR) &&
1747
(!vcpu->arch.exception_vmexit.pending ||
1748
vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1749
vmx->nested.mtf_pending = true;
1750
kvm_make_request(KVM_REQ_EVENT, vcpu);
1751
} else {
1752
vmx->nested.mtf_pending = false;
1753
}
1754
}
1755
1756
int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1757
{
1758
vmx_update_emulated_instruction(vcpu);
1759
return skip_emulated_instruction(vcpu);
1760
}
1761
1762
static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1763
{
1764
/*
1765
* Ensure that we clear the HLT state in the VMCS. We don't need to
1766
* explicitly skip the instruction because if the HLT state is set,
1767
* then the instruction is already executing and RIP has already been
1768
* advanced.
1769
*/
1770
if (kvm_hlt_in_guest(vcpu->kvm) &&
1771
vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1772
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1773
}
1774
1775
void vmx_inject_exception(struct kvm_vcpu *vcpu)
1776
{
1777
struct kvm_queued_exception *ex = &vcpu->arch.exception;
1778
u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1779
struct vcpu_vmx *vmx = to_vmx(vcpu);
1780
1781
kvm_deliver_exception_payload(vcpu, ex);
1782
1783
if (ex->has_error_code) {
1784
/*
1785
* Despite the error code being architecturally defined as 32
1786
* bits, and the VMCS field being 32 bits, Intel CPUs and thus
1787
* VMX don't actually supporting setting bits 31:16. Hardware
1788
* will (should) never provide a bogus error code, but AMD CPUs
1789
* do generate error codes with bits 31:16 set, and so KVM's
1790
* ABI lets userspace shove in arbitrary 32-bit values. Drop
1791
* the upper bits to avoid VM-Fail, losing information that
1792
* doesn't really exist is preferable to killing the VM.
1793
*/
1794
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1795
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1796
}
1797
1798
if (vmx->rmode.vm86_active) {
1799
int inc_eip = 0;
1800
if (kvm_exception_is_soft(ex->vector))
1801
inc_eip = vcpu->arch.event_exit_inst_len;
1802
kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1803
return;
1804
}
1805
1806
WARN_ON_ONCE(vmx->vt.emulation_required);
1807
1808
if (kvm_exception_is_soft(ex->vector)) {
1809
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1810
vmx->vcpu.arch.event_exit_inst_len);
1811
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1812
} else
1813
intr_info |= INTR_TYPE_HARD_EXCEPTION;
1814
1815
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1816
1817
vmx_clear_hlt(vcpu);
1818
}
1819
1820
static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1821
bool load_into_hardware)
1822
{
1823
struct vmx_uret_msr *uret_msr;
1824
1825
uret_msr = vmx_find_uret_msr(vmx, msr);
1826
if (!uret_msr)
1827
return;
1828
1829
uret_msr->load_into_hardware = load_into_hardware;
1830
}
1831
1832
/*
1833
* Configuring user return MSRs to automatically save, load, and restore MSRs
1834
* that need to be shoved into hardware when running the guest. Note, omitting
1835
* an MSR here does _NOT_ mean it's not emulated, only that it will not be
1836
* loaded into hardware when running the guest.
1837
*/
1838
static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1839
{
1840
#ifdef CONFIG_X86_64
1841
bool load_syscall_msrs;
1842
1843
/*
1844
* The SYSCALL MSRs are only needed on long mode guests, and only
1845
* when EFER.SCE is set.
1846
*/
1847
load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1848
(vmx->vcpu.arch.efer & EFER_SCE);
1849
1850
vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1851
vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1852
vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1853
#endif
1854
vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1855
1856
vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1857
guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1858
guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1859
1860
/*
1861
* hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1862
* kernel and old userspace. If those guests run on a tsx=off host, do
1863
* allow guests to use TSX_CTRL, but don't change the value in hardware
1864
* so that TSX remains always disabled.
1865
*/
1866
vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1867
1868
/*
1869
* The set of MSRs to load may have changed, reload MSRs before the
1870
* next VM-Enter.
1871
*/
1872
vmx->guest_uret_msrs_loaded = false;
1873
}
1874
1875
u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1876
{
1877
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1878
1879
if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1880
return vmcs12->tsc_offset;
1881
1882
return 0;
1883
}
1884
1885
u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1886
{
1887
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1888
1889
if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1890
nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1891
return vmcs12->tsc_multiplier;
1892
1893
return kvm_caps.default_tsc_scaling_ratio;
1894
}
1895
1896
void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1897
{
1898
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1899
}
1900
1901
void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1902
{
1903
vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1904
}
1905
1906
/*
1907
* Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1908
* guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1909
* backwards compatibility even though KVM doesn't support emulating SMX. And
1910
* because userspace set "VMX in SMX", the guest must also be allowed to set it,
1911
* e.g. if the MSR is left unlocked and the guest does a RMW operation.
1912
*/
1913
#define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1914
FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1915
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1916
FEAT_CTL_SGX_LC_ENABLED | \
1917
FEAT_CTL_SGX_ENABLED | \
1918
FEAT_CTL_LMCE_ENABLED)
1919
1920
static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1921
struct msr_data *msr)
1922
{
1923
uint64_t valid_bits;
1924
1925
/*
1926
* Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1927
* exposed to the guest.
1928
*/
1929
WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1930
~KVM_SUPPORTED_FEATURE_CONTROL);
1931
1932
if (!msr->host_initiated &&
1933
(vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1934
return false;
1935
1936
if (msr->host_initiated)
1937
valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1938
else
1939
valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1940
1941
return !(msr->data & ~valid_bits);
1942
}
1943
1944
int vmx_get_feature_msr(u32 msr, u64 *data)
1945
{
1946
switch (msr) {
1947
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1948
if (!nested)
1949
return 1;
1950
return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
1951
default:
1952
return KVM_MSR_RET_UNSUPPORTED;
1953
}
1954
}
1955
1956
/*
1957
* Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1958
* Returns 0 on success, non-0 otherwise.
1959
* Assumes vcpu_load() was already called.
1960
*/
1961
int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1962
{
1963
struct vcpu_vmx *vmx = to_vmx(vcpu);
1964
struct vmx_uret_msr *msr;
1965
u32 index;
1966
1967
switch (msr_info->index) {
1968
#ifdef CONFIG_X86_64
1969
case MSR_FS_BASE:
1970
msr_info->data = vmcs_readl(GUEST_FS_BASE);
1971
break;
1972
case MSR_GS_BASE:
1973
msr_info->data = vmcs_readl(GUEST_GS_BASE);
1974
break;
1975
case MSR_KERNEL_GS_BASE:
1976
msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1977
break;
1978
#endif
1979
case MSR_EFER:
1980
return kvm_get_msr_common(vcpu, msr_info);
1981
case MSR_IA32_TSX_CTRL:
1982
if (!msr_info->host_initiated &&
1983
!(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1984
return 1;
1985
goto find_uret_msr;
1986
case MSR_IA32_UMWAIT_CONTROL:
1987
if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1988
return 1;
1989
1990
msr_info->data = vmx->msr_ia32_umwait_control;
1991
break;
1992
case MSR_IA32_SPEC_CTRL:
1993
if (!msr_info->host_initiated &&
1994
!guest_has_spec_ctrl_msr(vcpu))
1995
return 1;
1996
1997
msr_info->data = to_vmx(vcpu)->spec_ctrl;
1998
break;
1999
case MSR_IA32_SYSENTER_CS:
2000
msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2001
break;
2002
case MSR_IA32_SYSENTER_EIP:
2003
msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2004
break;
2005
case MSR_IA32_SYSENTER_ESP:
2006
msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2007
break;
2008
case MSR_IA32_BNDCFGS:
2009
if (!kvm_mpx_supported() ||
2010
(!msr_info->host_initiated &&
2011
!guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2012
return 1;
2013
msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2014
break;
2015
case MSR_IA32_MCG_EXT_CTL:
2016
if (!msr_info->host_initiated &&
2017
!(vmx->msr_ia32_feature_control &
2018
FEAT_CTL_LMCE_ENABLED))
2019
return 1;
2020
msr_info->data = vcpu->arch.mcg_ext_ctl;
2021
break;
2022
case MSR_IA32_FEAT_CTL:
2023
msr_info->data = vmx->msr_ia32_feature_control;
2024
break;
2025
case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2026
if (!msr_info->host_initiated &&
2027
!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2028
return 1;
2029
msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2030
[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2031
break;
2032
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2033
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2034
return 1;
2035
if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2036
&msr_info->data))
2037
return 1;
2038
#ifdef CONFIG_KVM_HYPERV
2039
/*
2040
* Enlightened VMCS v1 doesn't have certain VMCS fields but
2041
* instead of just ignoring the features, different Hyper-V
2042
* versions are either trying to use them and fail or do some
2043
* sanity checking and refuse to boot. Filter all unsupported
2044
* features out.
2045
*/
2046
if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2047
nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2048
&msr_info->data);
2049
#endif
2050
break;
2051
case MSR_IA32_RTIT_CTL:
2052
if (!vmx_pt_mode_is_host_guest())
2053
return 1;
2054
msr_info->data = vmx->pt_desc.guest.ctl;
2055
break;
2056
case MSR_IA32_RTIT_STATUS:
2057
if (!vmx_pt_mode_is_host_guest())
2058
return 1;
2059
msr_info->data = vmx->pt_desc.guest.status;
2060
break;
2061
case MSR_IA32_RTIT_CR3_MATCH:
2062
if (!vmx_pt_mode_is_host_guest() ||
2063
!intel_pt_validate_cap(vmx->pt_desc.caps,
2064
PT_CAP_cr3_filtering))
2065
return 1;
2066
msr_info->data = vmx->pt_desc.guest.cr3_match;
2067
break;
2068
case MSR_IA32_RTIT_OUTPUT_BASE:
2069
if (!vmx_pt_mode_is_host_guest() ||
2070
(!intel_pt_validate_cap(vmx->pt_desc.caps,
2071
PT_CAP_topa_output) &&
2072
!intel_pt_validate_cap(vmx->pt_desc.caps,
2073
PT_CAP_single_range_output)))
2074
return 1;
2075
msr_info->data = vmx->pt_desc.guest.output_base;
2076
break;
2077
case MSR_IA32_RTIT_OUTPUT_MASK:
2078
if (!vmx_pt_mode_is_host_guest() ||
2079
(!intel_pt_validate_cap(vmx->pt_desc.caps,
2080
PT_CAP_topa_output) &&
2081
!intel_pt_validate_cap(vmx->pt_desc.caps,
2082
PT_CAP_single_range_output)))
2083
return 1;
2084
msr_info->data = vmx->pt_desc.guest.output_mask;
2085
break;
2086
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2087
index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2088
if (!vmx_pt_mode_is_host_guest() ||
2089
(index >= 2 * vmx->pt_desc.num_address_ranges))
2090
return 1;
2091
if (index % 2)
2092
msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2093
else
2094
msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2095
break;
2096
case MSR_IA32_DEBUGCTLMSR:
2097
msr_info->data = vmx_guest_debugctl_read();
2098
break;
2099
default:
2100
find_uret_msr:
2101
msr = vmx_find_uret_msr(vmx, msr_info->index);
2102
if (msr) {
2103
msr_info->data = msr->data;
2104
break;
2105
}
2106
return kvm_get_msr_common(vcpu, msr_info);
2107
}
2108
2109
return 0;
2110
}
2111
2112
static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2113
u64 data)
2114
{
2115
#ifdef CONFIG_X86_64
2116
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2117
return (u32)data;
2118
#endif
2119
return (unsigned long)data;
2120
}
2121
2122
u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2123
{
2124
u64 debugctl = 0;
2125
2126
if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2127
(host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2128
debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2129
2130
if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2131
(host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2132
debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2133
2134
if (boot_cpu_has(X86_FEATURE_RTM) &&
2135
(host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)))
2136
debugctl |= DEBUGCTLMSR_RTM_DEBUG;
2137
2138
return debugctl;
2139
}
2140
2141
bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated)
2142
{
2143
u64 invalid;
2144
2145
invalid = data & ~vmx_get_supported_debugctl(vcpu, host_initiated);
2146
if (invalid & (DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR)) {
2147
kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2148
invalid &= ~(DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR);
2149
}
2150
return !invalid;
2151
}
2152
2153
/*
2154
* Writes msr value into the appropriate "register".
2155
* Returns 0 on success, non-0 otherwise.
2156
* Assumes vcpu_load() was already called.
2157
*/
2158
int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2159
{
2160
struct vcpu_vmx *vmx = to_vmx(vcpu);
2161
struct vmx_uret_msr *msr;
2162
int ret = 0;
2163
u32 msr_index = msr_info->index;
2164
u64 data = msr_info->data;
2165
u32 index;
2166
2167
switch (msr_index) {
2168
case MSR_EFER:
2169
ret = kvm_set_msr_common(vcpu, msr_info);
2170
break;
2171
#ifdef CONFIG_X86_64
2172
case MSR_FS_BASE:
2173
vmx_segment_cache_clear(vmx);
2174
vmcs_writel(GUEST_FS_BASE, data);
2175
break;
2176
case MSR_GS_BASE:
2177
vmx_segment_cache_clear(vmx);
2178
vmcs_writel(GUEST_GS_BASE, data);
2179
break;
2180
case MSR_KERNEL_GS_BASE:
2181
vmx_write_guest_kernel_gs_base(vmx, data);
2182
break;
2183
case MSR_IA32_XFD:
2184
ret = kvm_set_msr_common(vcpu, msr_info);
2185
/*
2186
* Always intercepting WRMSR could incur non-negligible
2187
* overhead given xfd might be changed frequently in
2188
* guest context switch. Disable write interception
2189
* upon the first write with a non-zero value (indicating
2190
* potential usage on dynamic xfeatures). Also update
2191
* exception bitmap to trap #NM for proper virtualization
2192
* of guest xfd_err.
2193
*/
2194
if (!ret && data) {
2195
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2196
MSR_TYPE_RW);
2197
vcpu->arch.xfd_no_write_intercept = true;
2198
vmx_update_exception_bitmap(vcpu);
2199
}
2200
break;
2201
#endif
2202
case MSR_IA32_SYSENTER_CS:
2203
if (is_guest_mode(vcpu))
2204
get_vmcs12(vcpu)->guest_sysenter_cs = data;
2205
vmcs_write32(GUEST_SYSENTER_CS, data);
2206
break;
2207
case MSR_IA32_SYSENTER_EIP:
2208
if (is_guest_mode(vcpu)) {
2209
data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2210
get_vmcs12(vcpu)->guest_sysenter_eip = data;
2211
}
2212
vmcs_writel(GUEST_SYSENTER_EIP, data);
2213
break;
2214
case MSR_IA32_SYSENTER_ESP:
2215
if (is_guest_mode(vcpu)) {
2216
data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2217
get_vmcs12(vcpu)->guest_sysenter_esp = data;
2218
}
2219
vmcs_writel(GUEST_SYSENTER_ESP, data);
2220
break;
2221
case MSR_IA32_DEBUGCTLMSR:
2222
if (!vmx_is_valid_debugctl(vcpu, data, msr_info->host_initiated))
2223
return 1;
2224
2225
data &= vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2226
2227
if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2228
VM_EXIT_SAVE_DEBUG_CONTROLS)
2229
get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2230
2231
vmx_guest_debugctl_write(vcpu, data);
2232
2233
if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2234
(data & DEBUGCTLMSR_LBR))
2235
intel_pmu_create_guest_lbr_event(vcpu);
2236
return 0;
2237
case MSR_IA32_BNDCFGS:
2238
if (!kvm_mpx_supported() ||
2239
(!msr_info->host_initiated &&
2240
!guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2241
return 1;
2242
if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2243
(data & MSR_IA32_BNDCFGS_RSVD))
2244
return 1;
2245
2246
if (is_guest_mode(vcpu) &&
2247
((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2248
(vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2249
get_vmcs12(vcpu)->guest_bndcfgs = data;
2250
2251
vmcs_write64(GUEST_BNDCFGS, data);
2252
break;
2253
case MSR_IA32_UMWAIT_CONTROL:
2254
if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2255
return 1;
2256
2257
/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2258
if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2259
return 1;
2260
2261
vmx->msr_ia32_umwait_control = data;
2262
break;
2263
case MSR_IA32_SPEC_CTRL:
2264
if (!msr_info->host_initiated &&
2265
!guest_has_spec_ctrl_msr(vcpu))
2266
return 1;
2267
2268
if (kvm_spec_ctrl_test_value(data))
2269
return 1;
2270
2271
vmx->spec_ctrl = data;
2272
if (!data)
2273
break;
2274
2275
/*
2276
* For non-nested:
2277
* When it's written (to non-zero) for the first time, pass
2278
* it through.
2279
*
2280
* For nested:
2281
* The handling of the MSR bitmap for L2 guests is done in
2282
* nested_vmx_prepare_msr_bitmap. We should not touch the
2283
* vmcs02.msr_bitmap here since it gets completely overwritten
2284
* in the merging. We update the vmcs01 here for L1 as well
2285
* since it will end up touching the MSR anyway now.
2286
*/
2287
vmx_disable_intercept_for_msr(vcpu,
2288
MSR_IA32_SPEC_CTRL,
2289
MSR_TYPE_RW);
2290
break;
2291
case MSR_IA32_TSX_CTRL:
2292
if (!msr_info->host_initiated &&
2293
!(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2294
return 1;
2295
if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2296
return 1;
2297
goto find_uret_msr;
2298
case MSR_IA32_CR_PAT:
2299
ret = kvm_set_msr_common(vcpu, msr_info);
2300
if (ret)
2301
break;
2302
2303
if (is_guest_mode(vcpu) &&
2304
get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2305
get_vmcs12(vcpu)->guest_ia32_pat = data;
2306
2307
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2308
vmcs_write64(GUEST_IA32_PAT, data);
2309
break;
2310
case MSR_IA32_MCG_EXT_CTL:
2311
if ((!msr_info->host_initiated &&
2312
!(to_vmx(vcpu)->msr_ia32_feature_control &
2313
FEAT_CTL_LMCE_ENABLED)) ||
2314
(data & ~MCG_EXT_CTL_LMCE_EN))
2315
return 1;
2316
vcpu->arch.mcg_ext_ctl = data;
2317
break;
2318
case MSR_IA32_FEAT_CTL:
2319
if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2320
return 1;
2321
2322
vmx->msr_ia32_feature_control = data;
2323
if (msr_info->host_initiated && data == 0)
2324
vmx_leave_nested(vcpu);
2325
2326
/* SGX may be enabled/disabled by guest's firmware */
2327
vmx_write_encls_bitmap(vcpu, NULL);
2328
break;
2329
case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2330
/*
2331
* On real hardware, the LE hash MSRs are writable before
2332
* the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2333
* at which point SGX related bits in IA32_FEATURE_CONTROL
2334
* become writable.
2335
*
2336
* KVM does not emulate SGX activation for simplicity, so
2337
* allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2338
* is unlocked. This is technically not architectural
2339
* behavior, but it's close enough.
2340
*/
2341
if (!msr_info->host_initiated &&
2342
(!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2343
((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2344
!(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2345
return 1;
2346
vmx->msr_ia32_sgxlepubkeyhash
2347
[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2348
break;
2349
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2350
if (!msr_info->host_initiated)
2351
return 1; /* they are read-only */
2352
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2353
return 1;
2354
return vmx_set_vmx_msr(vcpu, msr_index, data);
2355
case MSR_IA32_RTIT_CTL:
2356
if (!vmx_pt_mode_is_host_guest() ||
2357
vmx_rtit_ctl_check(vcpu, data) ||
2358
vmx->nested.vmxon)
2359
return 1;
2360
vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2361
vmx->pt_desc.guest.ctl = data;
2362
pt_update_intercept_for_msr(vcpu);
2363
break;
2364
case MSR_IA32_RTIT_STATUS:
2365
if (!pt_can_write_msr(vmx))
2366
return 1;
2367
if (data & MSR_IA32_RTIT_STATUS_MASK)
2368
return 1;
2369
vmx->pt_desc.guest.status = data;
2370
break;
2371
case MSR_IA32_RTIT_CR3_MATCH:
2372
if (!pt_can_write_msr(vmx))
2373
return 1;
2374
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2375
PT_CAP_cr3_filtering))
2376
return 1;
2377
vmx->pt_desc.guest.cr3_match = data;
2378
break;
2379
case MSR_IA32_RTIT_OUTPUT_BASE:
2380
if (!pt_can_write_msr(vmx))
2381
return 1;
2382
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2383
PT_CAP_topa_output) &&
2384
!intel_pt_validate_cap(vmx->pt_desc.caps,
2385
PT_CAP_single_range_output))
2386
return 1;
2387
if (!pt_output_base_valid(vcpu, data))
2388
return 1;
2389
vmx->pt_desc.guest.output_base = data;
2390
break;
2391
case MSR_IA32_RTIT_OUTPUT_MASK:
2392
if (!pt_can_write_msr(vmx))
2393
return 1;
2394
if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2395
PT_CAP_topa_output) &&
2396
!intel_pt_validate_cap(vmx->pt_desc.caps,
2397
PT_CAP_single_range_output))
2398
return 1;
2399
vmx->pt_desc.guest.output_mask = data;
2400
break;
2401
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2402
if (!pt_can_write_msr(vmx))
2403
return 1;
2404
index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2405
if (index >= 2 * vmx->pt_desc.num_address_ranges)
2406
return 1;
2407
if (is_noncanonical_msr_address(data, vcpu))
2408
return 1;
2409
if (index % 2)
2410
vmx->pt_desc.guest.addr_b[index / 2] = data;
2411
else
2412
vmx->pt_desc.guest.addr_a[index / 2] = data;
2413
break;
2414
case MSR_IA32_PERF_CAPABILITIES:
2415
if (data & PMU_CAP_LBR_FMT) {
2416
if ((data & PMU_CAP_LBR_FMT) !=
2417
(kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2418
return 1;
2419
if (!cpuid_model_is_consistent(vcpu))
2420
return 1;
2421
}
2422
if (data & PERF_CAP_PEBS_FORMAT) {
2423
if ((data & PERF_CAP_PEBS_MASK) !=
2424
(kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2425
return 1;
2426
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2427
return 1;
2428
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2429
return 1;
2430
if (!cpuid_model_is_consistent(vcpu))
2431
return 1;
2432
}
2433
ret = kvm_set_msr_common(vcpu, msr_info);
2434
break;
2435
2436
default:
2437
find_uret_msr:
2438
msr = vmx_find_uret_msr(vmx, msr_index);
2439
if (msr)
2440
ret = vmx_set_guest_uret_msr(vmx, msr, data);
2441
else
2442
ret = kvm_set_msr_common(vcpu, msr_info);
2443
}
2444
2445
/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2446
if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2447
vmx_update_fb_clear_dis(vcpu, vmx);
2448
2449
return ret;
2450
}
2451
2452
void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2453
{
2454
unsigned long guest_owned_bits;
2455
2456
kvm_register_mark_available(vcpu, reg);
2457
2458
switch (reg) {
2459
case VCPU_REGS_RSP:
2460
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2461
break;
2462
case VCPU_REGS_RIP:
2463
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2464
break;
2465
case VCPU_EXREG_PDPTR:
2466
if (enable_ept)
2467
ept_save_pdptrs(vcpu);
2468
break;
2469
case VCPU_EXREG_CR0:
2470
guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2471
2472
vcpu->arch.cr0 &= ~guest_owned_bits;
2473
vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2474
break;
2475
case VCPU_EXREG_CR3:
2476
/*
2477
* When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2478
* CR3 is loaded into hardware, not the guest's CR3.
2479
*/
2480
if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2481
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2482
break;
2483
case VCPU_EXREG_CR4:
2484
guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2485
2486
vcpu->arch.cr4 &= ~guest_owned_bits;
2487
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2488
break;
2489
default:
2490
KVM_BUG_ON(1, vcpu->kvm);
2491
break;
2492
}
2493
}
2494
2495
/*
2496
* There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2497
* directly instead of going through cpu_has(), to ensure KVM is trapping
2498
* ENCLS whenever it's supported in hardware. It does not matter whether
2499
* the host OS supports or has enabled SGX.
2500
*/
2501
static bool cpu_has_sgx(void)
2502
{
2503
return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2504
}
2505
2506
static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2507
{
2508
u32 vmx_msr_low, vmx_msr_high;
2509
u32 ctl = ctl_min | ctl_opt;
2510
2511
rdmsr(msr, vmx_msr_low, vmx_msr_high);
2512
2513
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2514
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2515
2516
/* Ensure minimum (required) set of control bits are supported. */
2517
if (ctl_min & ~ctl)
2518
return -EIO;
2519
2520
*result = ctl;
2521
return 0;
2522
}
2523
2524
static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2525
{
2526
u64 allowed;
2527
2528
rdmsrq(msr, allowed);
2529
2530
return ctl_opt & allowed;
2531
}
2532
2533
#define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls) \
2534
({ \
2535
int i, r = 0; \
2536
\
2537
BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls)); \
2538
BUILD_BUG_ON(sizeof(pairs[0].exit_control) != sizeof(exit_controls)); \
2539
\
2540
for (i = 0; i < ARRAY_SIZE(pairs); i++) { \
2541
typeof(entry_controls) n_ctrl = pairs[i].entry_control; \
2542
typeof(exit_controls) x_ctrl = pairs[i].exit_control; \
2543
\
2544
if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl)) \
2545
continue; \
2546
\
2547
pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, " \
2548
"entry = %llx (%llx), exit = %llx (%llx)\n", \
2549
(u64)(entry_controls & n_ctrl), (u64)n_ctrl, \
2550
(u64)(exit_controls & x_ctrl), (u64)x_ctrl); \
2551
\
2552
if (error_on_inconsistent_vmcs_config) \
2553
r = -EIO; \
2554
\
2555
entry_controls &= ~n_ctrl; \
2556
exit_controls &= ~x_ctrl; \
2557
} \
2558
r; \
2559
})
2560
2561
static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2562
struct vmx_capability *vmx_cap)
2563
{
2564
u32 _pin_based_exec_control = 0;
2565
u32 _cpu_based_exec_control = 0;
2566
u32 _cpu_based_2nd_exec_control = 0;
2567
u64 _cpu_based_3rd_exec_control = 0;
2568
u32 _vmexit_control = 0;
2569
u32 _vmentry_control = 0;
2570
u64 basic_msr;
2571
u64 misc_msr;
2572
2573
/*
2574
* LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2575
* SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2576
* intercepts writes to PAT and EFER, i.e. never enables those controls.
2577
*/
2578
struct {
2579
u32 entry_control;
2580
u32 exit_control;
2581
} const vmcs_entry_exit_pairs[] = {
2582
{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2583
{ VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2584
{ VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2585
{ VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2586
{ VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2587
};
2588
2589
memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2590
2591
if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2592
KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2593
MSR_IA32_VMX_PROCBASED_CTLS,
2594
&_cpu_based_exec_control))
2595
return -EIO;
2596
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2597
if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2598
KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2599
MSR_IA32_VMX_PROCBASED_CTLS2,
2600
&_cpu_based_2nd_exec_control))
2601
return -EIO;
2602
}
2603
if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2604
_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2605
2606
#ifndef CONFIG_X86_64
2607
if (!(_cpu_based_2nd_exec_control &
2608
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2609
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2610
#endif
2611
2612
if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2613
_cpu_based_2nd_exec_control &= ~(
2614
SECONDARY_EXEC_APIC_REGISTER_VIRT |
2615
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2616
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2617
2618
rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2619
&vmx_cap->ept, &vmx_cap->vpid);
2620
2621
if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2622
vmx_cap->ept) {
2623
pr_warn_once("EPT CAP should not exist if not support "
2624
"1-setting enable EPT VM-execution control\n");
2625
2626
if (error_on_inconsistent_vmcs_config)
2627
return -EIO;
2628
2629
vmx_cap->ept = 0;
2630
_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2631
}
2632
if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2633
vmx_cap->vpid) {
2634
pr_warn_once("VPID CAP should not exist if not support "
2635
"1-setting enable VPID VM-execution control\n");
2636
2637
if (error_on_inconsistent_vmcs_config)
2638
return -EIO;
2639
2640
vmx_cap->vpid = 0;
2641
}
2642
2643
if (!cpu_has_sgx())
2644
_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2645
2646
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2647
_cpu_based_3rd_exec_control =
2648
adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2649
MSR_IA32_VMX_PROCBASED_CTLS3);
2650
2651
if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2652
KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2653
MSR_IA32_VMX_EXIT_CTLS,
2654
&_vmexit_control))
2655
return -EIO;
2656
2657
if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2658
KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2659
MSR_IA32_VMX_PINBASED_CTLS,
2660
&_pin_based_exec_control))
2661
return -EIO;
2662
2663
if (cpu_has_broken_vmx_preemption_timer())
2664
_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2665
if (!(_cpu_based_2nd_exec_control &
2666
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2667
_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2668
2669
if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2670
KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2671
MSR_IA32_VMX_ENTRY_CTLS,
2672
&_vmentry_control))
2673
return -EIO;
2674
2675
if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2676
_vmentry_control, _vmexit_control))
2677
return -EIO;
2678
2679
/*
2680
* Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2681
* can't be used due to an errata where VM Exit may incorrectly clear
2682
* IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2683
* MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2684
*/
2685
switch (boot_cpu_data.x86_vfm) {
2686
case INTEL_NEHALEM_EP: /* AAK155 */
2687
case INTEL_NEHALEM: /* AAP115 */
2688
case INTEL_WESTMERE: /* AAT100 */
2689
case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */
2690
case INTEL_NEHALEM_EX: /* BA97 */
2691
_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2692
_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2693
pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2694
"does not work properly. Using workaround\n");
2695
break;
2696
default:
2697
break;
2698
}
2699
2700
rdmsrq(MSR_IA32_VMX_BASIC, basic_msr);
2701
2702
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2703
if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2704
return -EIO;
2705
2706
#ifdef CONFIG_X86_64
2707
/*
2708
* KVM expects to be able to shove all legal physical addresses into
2709
* VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2710
* 0 for processors that support Intel 64 architecture".
2711
*/
2712
if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2713
return -EIO;
2714
#endif
2715
2716
/* Require Write-Back (WB) memory type for VMCS accesses. */
2717
if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2718
return -EIO;
2719
2720
rdmsrq(MSR_IA32_VMX_MISC, misc_msr);
2721
2722
vmcs_conf->basic = basic_msr;
2723
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2724
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2725
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2726
vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2727
vmcs_conf->vmexit_ctrl = _vmexit_control;
2728
vmcs_conf->vmentry_ctrl = _vmentry_control;
2729
vmcs_conf->misc = misc_msr;
2730
2731
#if IS_ENABLED(CONFIG_HYPERV)
2732
if (enlightened_vmcs)
2733
evmcs_sanitize_exec_ctrls(vmcs_conf);
2734
#endif
2735
2736
return 0;
2737
}
2738
2739
static bool __kvm_is_vmx_supported(void)
2740
{
2741
int cpu = smp_processor_id();
2742
2743
if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2744
pr_err("VMX not supported by CPU %d\n", cpu);
2745
return false;
2746
}
2747
2748
if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2749
!this_cpu_has(X86_FEATURE_VMX)) {
2750
pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2751
return false;
2752
}
2753
2754
return true;
2755
}
2756
2757
static bool kvm_is_vmx_supported(void)
2758
{
2759
bool supported;
2760
2761
migrate_disable();
2762
supported = __kvm_is_vmx_supported();
2763
migrate_enable();
2764
2765
return supported;
2766
}
2767
2768
int vmx_check_processor_compat(void)
2769
{
2770
int cpu = raw_smp_processor_id();
2771
struct vmcs_config vmcs_conf;
2772
struct vmx_capability vmx_cap;
2773
2774
if (!__kvm_is_vmx_supported())
2775
return -EIO;
2776
2777
if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2778
pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2779
return -EIO;
2780
}
2781
if (nested)
2782
nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2783
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2784
pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2785
return -EIO;
2786
}
2787
return 0;
2788
}
2789
2790
static int kvm_cpu_vmxon(u64 vmxon_pointer)
2791
{
2792
u64 msr;
2793
2794
cr4_set_bits(X86_CR4_VMXE);
2795
2796
asm goto("1: vmxon %[vmxon_pointer]\n\t"
2797
_ASM_EXTABLE(1b, %l[fault])
2798
: : [vmxon_pointer] "m"(vmxon_pointer)
2799
: : fault);
2800
return 0;
2801
2802
fault:
2803
WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2804
rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2805
cr4_clear_bits(X86_CR4_VMXE);
2806
2807
return -EFAULT;
2808
}
2809
2810
int vmx_enable_virtualization_cpu(void)
2811
{
2812
int cpu = raw_smp_processor_id();
2813
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2814
int r;
2815
2816
if (cr4_read_shadow() & X86_CR4_VMXE)
2817
return -EBUSY;
2818
2819
/*
2820
* This can happen if we hot-added a CPU but failed to allocate
2821
* VP assist page for it.
2822
*/
2823
if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2824
return -EFAULT;
2825
2826
intel_pt_handle_vmx(1);
2827
2828
r = kvm_cpu_vmxon(phys_addr);
2829
if (r) {
2830
intel_pt_handle_vmx(0);
2831
return r;
2832
}
2833
2834
return 0;
2835
}
2836
2837
static void vmclear_local_loaded_vmcss(void)
2838
{
2839
int cpu = raw_smp_processor_id();
2840
struct loaded_vmcs *v, *n;
2841
2842
list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2843
loaded_vmcss_on_cpu_link)
2844
__loaded_vmcs_clear(v);
2845
}
2846
2847
void vmx_disable_virtualization_cpu(void)
2848
{
2849
vmclear_local_loaded_vmcss();
2850
2851
if (kvm_cpu_vmxoff())
2852
kvm_spurious_fault();
2853
2854
hv_reset_evmcs();
2855
2856
intel_pt_handle_vmx(0);
2857
}
2858
2859
struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2860
{
2861
int node = cpu_to_node(cpu);
2862
struct page *pages;
2863
struct vmcs *vmcs;
2864
2865
pages = __alloc_pages_node(node, flags, 0);
2866
if (!pages)
2867
return NULL;
2868
vmcs = page_address(pages);
2869
memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2870
2871
/* KVM supports Enlightened VMCS v1 only */
2872
if (kvm_is_using_evmcs())
2873
vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2874
else
2875
vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2876
2877
if (shadow)
2878
vmcs->hdr.shadow_vmcs = 1;
2879
return vmcs;
2880
}
2881
2882
void free_vmcs(struct vmcs *vmcs)
2883
{
2884
free_page((unsigned long)vmcs);
2885
}
2886
2887
/*
2888
* Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2889
*/
2890
void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2891
{
2892
if (!loaded_vmcs->vmcs)
2893
return;
2894
loaded_vmcs_clear(loaded_vmcs);
2895
free_vmcs(loaded_vmcs->vmcs);
2896
loaded_vmcs->vmcs = NULL;
2897
if (loaded_vmcs->msr_bitmap)
2898
free_page((unsigned long)loaded_vmcs->msr_bitmap);
2899
WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2900
}
2901
2902
int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2903
{
2904
loaded_vmcs->vmcs = alloc_vmcs(false);
2905
if (!loaded_vmcs->vmcs)
2906
return -ENOMEM;
2907
2908
vmcs_clear(loaded_vmcs->vmcs);
2909
2910
loaded_vmcs->shadow_vmcs = NULL;
2911
loaded_vmcs->hv_timer_soft_disabled = false;
2912
loaded_vmcs->cpu = -1;
2913
loaded_vmcs->launched = 0;
2914
2915
if (cpu_has_vmx_msr_bitmap()) {
2916
loaded_vmcs->msr_bitmap = (unsigned long *)
2917
__get_free_page(GFP_KERNEL_ACCOUNT);
2918
if (!loaded_vmcs->msr_bitmap)
2919
goto out_vmcs;
2920
memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2921
}
2922
2923
memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2924
memset(&loaded_vmcs->controls_shadow, 0,
2925
sizeof(struct vmcs_controls_shadow));
2926
2927
return 0;
2928
2929
out_vmcs:
2930
free_loaded_vmcs(loaded_vmcs);
2931
return -ENOMEM;
2932
}
2933
2934
static void free_kvm_area(void)
2935
{
2936
int cpu;
2937
2938
for_each_possible_cpu(cpu) {
2939
free_vmcs(per_cpu(vmxarea, cpu));
2940
per_cpu(vmxarea, cpu) = NULL;
2941
}
2942
}
2943
2944
static __init int alloc_kvm_area(void)
2945
{
2946
int cpu;
2947
2948
for_each_possible_cpu(cpu) {
2949
struct vmcs *vmcs;
2950
2951
vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2952
if (!vmcs) {
2953
free_kvm_area();
2954
return -ENOMEM;
2955
}
2956
2957
/*
2958
* When eVMCS is enabled, alloc_vmcs_cpu() sets
2959
* vmcs->revision_id to KVM_EVMCS_VERSION instead of
2960
* revision_id reported by MSR_IA32_VMX_BASIC.
2961
*
2962
* However, even though not explicitly documented by
2963
* TLFS, VMXArea passed as VMXON argument should
2964
* still be marked with revision_id reported by
2965
* physical CPU.
2966
*/
2967
if (kvm_is_using_evmcs())
2968
vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2969
2970
per_cpu(vmxarea, cpu) = vmcs;
2971
}
2972
return 0;
2973
}
2974
2975
static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2976
struct kvm_segment *save)
2977
{
2978
if (!emulate_invalid_guest_state) {
2979
/*
2980
* CS and SS RPL should be equal during guest entry according
2981
* to VMX spec, but in reality it is not always so. Since vcpu
2982
* is in the middle of the transition from real mode to
2983
* protected mode it is safe to assume that RPL 0 is a good
2984
* default value.
2985
*/
2986
if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2987
save->selector &= ~SEGMENT_RPL_MASK;
2988
save->dpl = save->selector & SEGMENT_RPL_MASK;
2989
save->s = 1;
2990
}
2991
__vmx_set_segment(vcpu, save, seg);
2992
}
2993
2994
static void enter_pmode(struct kvm_vcpu *vcpu)
2995
{
2996
unsigned long flags;
2997
struct vcpu_vmx *vmx = to_vmx(vcpu);
2998
2999
/*
3000
* Update real mode segment cache. It may be not up-to-date if segment
3001
* register was written while vcpu was in a guest mode.
3002
*/
3003
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3004
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3005
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3006
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3007
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3008
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3009
3010
vmx->rmode.vm86_active = 0;
3011
3012
__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3013
3014
flags = vmcs_readl(GUEST_RFLAGS);
3015
flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3016
flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3017
vmcs_writel(GUEST_RFLAGS, flags);
3018
3019
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3020
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3021
3022
vmx_update_exception_bitmap(vcpu);
3023
3024
fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3025
fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3026
fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3027
fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3028
fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3029
fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3030
}
3031
3032
static void fix_rmode_seg(int seg, struct kvm_segment *save)
3033
{
3034
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3035
struct kvm_segment var = *save;
3036
3037
var.dpl = 0x3;
3038
if (seg == VCPU_SREG_CS)
3039
var.type = 0x3;
3040
3041
if (!emulate_invalid_guest_state) {
3042
var.selector = var.base >> 4;
3043
var.base = var.base & 0xffff0;
3044
var.limit = 0xffff;
3045
var.g = 0;
3046
var.db = 0;
3047
var.present = 1;
3048
var.s = 1;
3049
var.l = 0;
3050
var.unusable = 0;
3051
var.type = 0x3;
3052
var.avl = 0;
3053
if (save->base & 0xf)
3054
pr_warn_once("segment base is not paragraph aligned "
3055
"when entering protected mode (seg=%d)", seg);
3056
}
3057
3058
vmcs_write16(sf->selector, var.selector);
3059
vmcs_writel(sf->base, var.base);
3060
vmcs_write32(sf->limit, var.limit);
3061
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3062
}
3063
3064
static void enter_rmode(struct kvm_vcpu *vcpu)
3065
{
3066
unsigned long flags;
3067
struct vcpu_vmx *vmx = to_vmx(vcpu);
3068
struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3069
3070
/*
3071
* KVM should never use VM86 to virtualize Real Mode when L2 is active,
3072
* as using VM86 is unnecessary if unrestricted guest is enabled, and
3073
* if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3074
* should VM-Fail and KVM should reject userspace attempts to stuff
3075
* CR0.PG=0 when L2 is active.
3076
*/
3077
WARN_ON_ONCE(is_guest_mode(vcpu));
3078
3079
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3080
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3081
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3082
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3083
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3084
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3085
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3086
3087
vmx->rmode.vm86_active = 1;
3088
3089
vmx_segment_cache_clear(vmx);
3090
3091
vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3092
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3093
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3094
3095
flags = vmcs_readl(GUEST_RFLAGS);
3096
vmx->rmode.save_rflags = flags;
3097
3098
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3099
3100
vmcs_writel(GUEST_RFLAGS, flags);
3101
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3102
vmx_update_exception_bitmap(vcpu);
3103
3104
fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3105
fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3106
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3107
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3108
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3109
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3110
}
3111
3112
int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3113
{
3114
struct vcpu_vmx *vmx = to_vmx(vcpu);
3115
3116
/* Nothing to do if hardware doesn't support EFER. */
3117
if (!vmx_find_uret_msr(vmx, MSR_EFER))
3118
return 0;
3119
3120
vcpu->arch.efer = efer;
3121
#ifdef CONFIG_X86_64
3122
if (efer & EFER_LMA)
3123
vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3124
else
3125
vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3126
#else
3127
if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3128
return 1;
3129
#endif
3130
3131
vmx_setup_uret_msrs(vmx);
3132
return 0;
3133
}
3134
3135
#ifdef CONFIG_X86_64
3136
3137
static void enter_lmode(struct kvm_vcpu *vcpu)
3138
{
3139
u32 guest_tr_ar;
3140
3141
vmx_segment_cache_clear(to_vmx(vcpu));
3142
3143
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3144
if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3145
pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3146
__func__);
3147
vmcs_write32(GUEST_TR_AR_BYTES,
3148
(guest_tr_ar & ~VMX_AR_TYPE_MASK)
3149
| VMX_AR_TYPE_BUSY_64_TSS);
3150
}
3151
vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3152
}
3153
3154
static void exit_lmode(struct kvm_vcpu *vcpu)
3155
{
3156
vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3157
}
3158
3159
#endif
3160
3161
void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3162
{
3163
struct vcpu_vmx *vmx = to_vmx(vcpu);
3164
3165
/*
3166
* INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3167
* the CPU is not required to invalidate guest-physical mappings on
3168
* VM-Entry, even if VPID is disabled. Guest-physical mappings are
3169
* associated with the root EPT structure and not any particular VPID
3170
* (INVVPID also isn't required to invalidate guest-physical mappings).
3171
*/
3172
if (enable_ept) {
3173
ept_sync_global();
3174
} else if (enable_vpid) {
3175
if (cpu_has_vmx_invvpid_global()) {
3176
vpid_sync_vcpu_global();
3177
} else {
3178
vpid_sync_vcpu_single(vmx->vpid);
3179
vpid_sync_vcpu_single(vmx->nested.vpid02);
3180
}
3181
}
3182
}
3183
3184
static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3185
{
3186
if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3187
return nested_get_vpid02(vcpu);
3188
return to_vmx(vcpu)->vpid;
3189
}
3190
3191
void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3192
{
3193
struct kvm_mmu *mmu = vcpu->arch.mmu;
3194
u64 root_hpa = mmu->root.hpa;
3195
3196
/* No flush required if the current context is invalid. */
3197
if (!VALID_PAGE(root_hpa))
3198
return;
3199
3200
if (enable_ept)
3201
ept_sync_context(construct_eptp(vcpu, root_hpa,
3202
mmu->root_role.level));
3203
else
3204
vpid_sync_context(vmx_get_current_vpid(vcpu));
3205
}
3206
3207
void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3208
{
3209
/*
3210
* vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3211
* vmx_flush_tlb_guest() for an explanation of why this is ok.
3212
*/
3213
vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3214
}
3215
3216
void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3217
{
3218
/*
3219
* vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3220
* vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3221
* required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3222
* disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3223
* i.e. no explicit INVVPID is necessary.
3224
*/
3225
vpid_sync_context(vmx_get_current_vpid(vcpu));
3226
}
3227
3228
void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3229
{
3230
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3231
3232
if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3233
return;
3234
3235
if (is_pae_paging(vcpu)) {
3236
vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3237
vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3238
vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3239
vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3240
}
3241
}
3242
3243
void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3244
{
3245
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3246
3247
if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3248
return;
3249
3250
mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3251
mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3252
mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3253
mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3254
3255
kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3256
}
3257
3258
#define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3259
CPU_BASED_CR3_STORE_EXITING)
3260
3261
bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3262
{
3263
if (is_guest_mode(vcpu))
3264
return nested_guest_cr0_valid(vcpu, cr0);
3265
3266
if (to_vmx(vcpu)->nested.vmxon)
3267
return nested_host_cr0_valid(vcpu, cr0);
3268
3269
return true;
3270
}
3271
3272
void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3273
{
3274
struct vcpu_vmx *vmx = to_vmx(vcpu);
3275
unsigned long hw_cr0, old_cr0_pg;
3276
u32 tmp;
3277
3278
old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3279
3280
hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3281
if (enable_unrestricted_guest)
3282
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3283
else {
3284
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3285
if (!enable_ept)
3286
hw_cr0 |= X86_CR0_WP;
3287
3288
if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3289
enter_pmode(vcpu);
3290
3291
if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3292
enter_rmode(vcpu);
3293
}
3294
3295
vmcs_writel(CR0_READ_SHADOW, cr0);
3296
vmcs_writel(GUEST_CR0, hw_cr0);
3297
vcpu->arch.cr0 = cr0;
3298
kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3299
3300
#ifdef CONFIG_X86_64
3301
if (vcpu->arch.efer & EFER_LME) {
3302
if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3303
enter_lmode(vcpu);
3304
else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3305
exit_lmode(vcpu);
3306
}
3307
#endif
3308
3309
if (enable_ept && !enable_unrestricted_guest) {
3310
/*
3311
* Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3312
* the below code _enables_ CR3 exiting, vmx_cache_reg() will
3313
* (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3314
* KVM's CR3 is installed.
3315
*/
3316
if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3317
vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3318
3319
/*
3320
* When running with EPT but not unrestricted guest, KVM must
3321
* intercept CR3 accesses when paging is _disabled_. This is
3322
* necessary because restricted guests can't actually run with
3323
* paging disabled, and so KVM stuffs its own CR3 in order to
3324
* run the guest when identity mapped page tables.
3325
*
3326
* Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3327
* update, it may be stale with respect to CR3 interception,
3328
* e.g. after nested VM-Enter.
3329
*
3330
* Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3331
* stores to forward them to L1, even if KVM does not need to
3332
* intercept them to preserve its identity mapped page tables.
3333
*/
3334
if (!(cr0 & X86_CR0_PG)) {
3335
exec_controls_setbit(vmx, CR3_EXITING_BITS);
3336
} else if (!is_guest_mode(vcpu)) {
3337
exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3338
} else {
3339
tmp = exec_controls_get(vmx);
3340
tmp &= ~CR3_EXITING_BITS;
3341
tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3342
exec_controls_set(vmx, tmp);
3343
}
3344
3345
/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3346
if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3347
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3348
3349
/*
3350
* When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3351
* GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3352
*/
3353
if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3354
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3355
}
3356
3357
/* depends on vcpu->arch.cr0 to be set to a new value */
3358
vmx->vt.emulation_required = vmx_emulation_required(vcpu);
3359
}
3360
3361
static int vmx_get_max_ept_level(void)
3362
{
3363
if (cpu_has_vmx_ept_5levels())
3364
return 5;
3365
return 4;
3366
}
3367
3368
u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3369
{
3370
u64 eptp = VMX_EPTP_MT_WB;
3371
3372
eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3373
3374
if (enable_ept_ad_bits &&
3375
(!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3376
eptp |= VMX_EPTP_AD_ENABLE_BIT;
3377
eptp |= root_hpa;
3378
3379
return eptp;
3380
}
3381
3382
void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3383
{
3384
struct kvm *kvm = vcpu->kvm;
3385
bool update_guest_cr3 = true;
3386
unsigned long guest_cr3;
3387
u64 eptp;
3388
3389
if (enable_ept) {
3390
eptp = construct_eptp(vcpu, root_hpa, root_level);
3391
vmcs_write64(EPT_POINTER, eptp);
3392
3393
hv_track_root_tdp(vcpu, root_hpa);
3394
3395
if (!enable_unrestricted_guest && !is_paging(vcpu))
3396
guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3397
else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3398
guest_cr3 = vcpu->arch.cr3;
3399
else /* vmcs.GUEST_CR3 is already up-to-date. */
3400
update_guest_cr3 = false;
3401
vmx_ept_load_pdptrs(vcpu);
3402
} else {
3403
guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3404
kvm_get_active_cr3_lam_bits(vcpu);
3405
}
3406
3407
if (update_guest_cr3)
3408
vmcs_writel(GUEST_CR3, guest_cr3);
3409
}
3410
3411
bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3412
{
3413
/*
3414
* We operate under the default treatment of SMM, so VMX cannot be
3415
* enabled under SMM. Note, whether or not VMXE is allowed at all,
3416
* i.e. is a reserved bit, is handled by common x86 code.
3417
*/
3418
if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3419
return false;
3420
3421
if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3422
return false;
3423
3424
return true;
3425
}
3426
3427
void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3428
{
3429
unsigned long old_cr4 = kvm_read_cr4(vcpu);
3430
struct vcpu_vmx *vmx = to_vmx(vcpu);
3431
unsigned long hw_cr4;
3432
3433
/*
3434
* Pass through host's Machine Check Enable value to hw_cr4, which
3435
* is in force while we are in guest mode. Do not let guests control
3436
* this bit, even if host CR4.MCE == 0.
3437
*/
3438
hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3439
if (enable_unrestricted_guest)
3440
hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3441
else if (vmx->rmode.vm86_active)
3442
hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3443
else
3444
hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3445
3446
if (vmx_umip_emulated()) {
3447
if (cr4 & X86_CR4_UMIP) {
3448
secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3449
hw_cr4 &= ~X86_CR4_UMIP;
3450
} else if (!is_guest_mode(vcpu) ||
3451
!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3452
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3453
}
3454
}
3455
3456
vcpu->arch.cr4 = cr4;
3457
kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3458
3459
if (!enable_unrestricted_guest) {
3460
if (enable_ept) {
3461
if (!is_paging(vcpu)) {
3462
hw_cr4 &= ~X86_CR4_PAE;
3463
hw_cr4 |= X86_CR4_PSE;
3464
} else if (!(cr4 & X86_CR4_PAE)) {
3465
hw_cr4 &= ~X86_CR4_PAE;
3466
}
3467
}
3468
3469
/*
3470
* SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3471
* hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3472
* to be manually disabled when guest switches to non-paging
3473
* mode.
3474
*
3475
* If !enable_unrestricted_guest, the CPU is always running
3476
* with CR0.PG=1 and CR4 needs to be modified.
3477
* If enable_unrestricted_guest, the CPU automatically
3478
* disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3479
*/
3480
if (!is_paging(vcpu))
3481
hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3482
}
3483
3484
vmcs_writel(CR4_READ_SHADOW, cr4);
3485
vmcs_writel(GUEST_CR4, hw_cr4);
3486
3487
if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3488
vcpu->arch.cpuid_dynamic_bits_dirty = true;
3489
}
3490
3491
void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3492
{
3493
struct vcpu_vmx *vmx = to_vmx(vcpu);
3494
u32 ar;
3495
3496
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3497
*var = vmx->rmode.segs[seg];
3498
if (seg == VCPU_SREG_TR
3499
|| var->selector == vmx_read_guest_seg_selector(vmx, seg))
3500
return;
3501
var->base = vmx_read_guest_seg_base(vmx, seg);
3502
var->selector = vmx_read_guest_seg_selector(vmx, seg);
3503
return;
3504
}
3505
var->base = vmx_read_guest_seg_base(vmx, seg);
3506
var->limit = vmx_read_guest_seg_limit(vmx, seg);
3507
var->selector = vmx_read_guest_seg_selector(vmx, seg);
3508
ar = vmx_read_guest_seg_ar(vmx, seg);
3509
var->unusable = (ar >> 16) & 1;
3510
var->type = ar & 15;
3511
var->s = (ar >> 4) & 1;
3512
var->dpl = (ar >> 5) & 3;
3513
/*
3514
* Some userspaces do not preserve unusable property. Since usable
3515
* segment has to be present according to VMX spec we can use present
3516
* property to amend userspace bug by making unusable segment always
3517
* nonpresent. vmx_segment_access_rights() already marks nonpresent
3518
* segment as unusable.
3519
*/
3520
var->present = !var->unusable;
3521
var->avl = (ar >> 12) & 1;
3522
var->l = (ar >> 13) & 1;
3523
var->db = (ar >> 14) & 1;
3524
var->g = (ar >> 15) & 1;
3525
}
3526
3527
u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3528
{
3529
struct kvm_segment s;
3530
3531
if (to_vmx(vcpu)->rmode.vm86_active) {
3532
vmx_get_segment(vcpu, &s, seg);
3533
return s.base;
3534
}
3535
return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3536
}
3537
3538
static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3539
{
3540
struct vcpu_vmx *vmx = to_vmx(vcpu);
3541
int ar;
3542
3543
if (unlikely(vmx->rmode.vm86_active))
3544
return 0;
3545
3546
if (no_cache)
3547
ar = vmcs_read32(GUEST_SS_AR_BYTES);
3548
else
3549
ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3550
return VMX_AR_DPL(ar);
3551
}
3552
3553
int vmx_get_cpl(struct kvm_vcpu *vcpu)
3554
{
3555
return __vmx_get_cpl(vcpu, false);
3556
}
3557
3558
int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3559
{
3560
return __vmx_get_cpl(vcpu, true);
3561
}
3562
3563
static u32 vmx_segment_access_rights(struct kvm_segment *var)
3564
{
3565
u32 ar;
3566
3567
ar = var->type & 15;
3568
ar |= (var->s & 1) << 4;
3569
ar |= (var->dpl & 3) << 5;
3570
ar |= (var->present & 1) << 7;
3571
ar |= (var->avl & 1) << 12;
3572
ar |= (var->l & 1) << 13;
3573
ar |= (var->db & 1) << 14;
3574
ar |= (var->g & 1) << 15;
3575
ar |= (var->unusable || !var->present) << 16;
3576
3577
return ar;
3578
}
3579
3580
void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3581
{
3582
struct vcpu_vmx *vmx = to_vmx(vcpu);
3583
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3584
3585
vmx_segment_cache_clear(vmx);
3586
3587
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3588
vmx->rmode.segs[seg] = *var;
3589
if (seg == VCPU_SREG_TR)
3590
vmcs_write16(sf->selector, var->selector);
3591
else if (var->s)
3592
fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3593
return;
3594
}
3595
3596
vmcs_writel(sf->base, var->base);
3597
vmcs_write32(sf->limit, var->limit);
3598
vmcs_write16(sf->selector, var->selector);
3599
3600
/*
3601
* Fix the "Accessed" bit in AR field of segment registers for older
3602
* qemu binaries.
3603
* IA32 arch specifies that at the time of processor reset the
3604
* "Accessed" bit in the AR field of segment registers is 1. And qemu
3605
* is setting it to 0 in the userland code. This causes invalid guest
3606
* state vmexit when "unrestricted guest" mode is turned on.
3607
* Fix for this setup issue in cpu_reset is being pushed in the qemu
3608
* tree. Newer qemu binaries with that qemu fix would not need this
3609
* kvm hack.
3610
*/
3611
if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3612
var->type |= 0x1; /* Accessed */
3613
3614
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3615
}
3616
3617
void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3618
{
3619
__vmx_set_segment(vcpu, var, seg);
3620
3621
to_vmx(vcpu)->vt.emulation_required = vmx_emulation_required(vcpu);
3622
}
3623
3624
void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3625
{
3626
u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3627
3628
*db = (ar >> 14) & 1;
3629
*l = (ar >> 13) & 1;
3630
}
3631
3632
void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3633
{
3634
dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3635
dt->address = vmcs_readl(GUEST_IDTR_BASE);
3636
}
3637
3638
void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3639
{
3640
vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3641
vmcs_writel(GUEST_IDTR_BASE, dt->address);
3642
}
3643
3644
void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3645
{
3646
dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3647
dt->address = vmcs_readl(GUEST_GDTR_BASE);
3648
}
3649
3650
void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3651
{
3652
vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3653
vmcs_writel(GUEST_GDTR_BASE, dt->address);
3654
}
3655
3656
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3657
{
3658
struct kvm_segment var;
3659
u32 ar;
3660
3661
vmx_get_segment(vcpu, &var, seg);
3662
var.dpl = 0x3;
3663
if (seg == VCPU_SREG_CS)
3664
var.type = 0x3;
3665
ar = vmx_segment_access_rights(&var);
3666
3667
if (var.base != (var.selector << 4))
3668
return false;
3669
if (var.limit != 0xffff)
3670
return false;
3671
if (ar != 0xf3)
3672
return false;
3673
3674
return true;
3675
}
3676
3677
static bool code_segment_valid(struct kvm_vcpu *vcpu)
3678
{
3679
struct kvm_segment cs;
3680
unsigned int cs_rpl;
3681
3682
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3683
cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3684
3685
if (cs.unusable)
3686
return false;
3687
if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3688
return false;
3689
if (!cs.s)
3690
return false;
3691
if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3692
if (cs.dpl > cs_rpl)
3693
return false;
3694
} else {
3695
if (cs.dpl != cs_rpl)
3696
return false;
3697
}
3698
if (!cs.present)
3699
return false;
3700
3701
/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3702
return true;
3703
}
3704
3705
static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3706
{
3707
struct kvm_segment ss;
3708
unsigned int ss_rpl;
3709
3710
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3711
ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3712
3713
if (ss.unusable)
3714
return true;
3715
if (ss.type != 3 && ss.type != 7)
3716
return false;
3717
if (!ss.s)
3718
return false;
3719
if (ss.dpl != ss_rpl) /* DPL != RPL */
3720
return false;
3721
if (!ss.present)
3722
return false;
3723
3724
return true;
3725
}
3726
3727
static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3728
{
3729
struct kvm_segment var;
3730
unsigned int rpl;
3731
3732
vmx_get_segment(vcpu, &var, seg);
3733
rpl = var.selector & SEGMENT_RPL_MASK;
3734
3735
if (var.unusable)
3736
return true;
3737
if (!var.s)
3738
return false;
3739
if (!var.present)
3740
return false;
3741
if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3742
if (var.dpl < rpl) /* DPL < RPL */
3743
return false;
3744
}
3745
3746
/* TODO: Add other members to kvm_segment_field to allow checking for other access
3747
* rights flags
3748
*/
3749
return true;
3750
}
3751
3752
static bool tr_valid(struct kvm_vcpu *vcpu)
3753
{
3754
struct kvm_segment tr;
3755
3756
vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3757
3758
if (tr.unusable)
3759
return false;
3760
if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3761
return false;
3762
if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3763
return false;
3764
if (!tr.present)
3765
return false;
3766
3767
return true;
3768
}
3769
3770
static bool ldtr_valid(struct kvm_vcpu *vcpu)
3771
{
3772
struct kvm_segment ldtr;
3773
3774
vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3775
3776
if (ldtr.unusable)
3777
return true;
3778
if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3779
return false;
3780
if (ldtr.type != 2)
3781
return false;
3782
if (!ldtr.present)
3783
return false;
3784
3785
return true;
3786
}
3787
3788
static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3789
{
3790
struct kvm_segment cs, ss;
3791
3792
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3793
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3794
3795
return ((cs.selector & SEGMENT_RPL_MASK) ==
3796
(ss.selector & SEGMENT_RPL_MASK));
3797
}
3798
3799
/*
3800
* Check if guest state is valid. Returns true if valid, false if
3801
* not.
3802
* We assume that registers are always usable
3803
*/
3804
bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3805
{
3806
/* real mode guest state checks */
3807
if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3808
if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3809
return false;
3810
if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3811
return false;
3812
if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3813
return false;
3814
if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3815
return false;
3816
if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3817
return false;
3818
if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3819
return false;
3820
} else {
3821
/* protected mode guest state checks */
3822
if (!cs_ss_rpl_check(vcpu))
3823
return false;
3824
if (!code_segment_valid(vcpu))
3825
return false;
3826
if (!stack_segment_valid(vcpu))
3827
return false;
3828
if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3829
return false;
3830
if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3831
return false;
3832
if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3833
return false;
3834
if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3835
return false;
3836
if (!tr_valid(vcpu))
3837
return false;
3838
if (!ldtr_valid(vcpu))
3839
return false;
3840
}
3841
/* TODO:
3842
* - Add checks on RIP
3843
* - Add checks on RFLAGS
3844
*/
3845
3846
return true;
3847
}
3848
3849
static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3850
{
3851
const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3852
u16 data;
3853
int i;
3854
3855
for (i = 0; i < 3; i++) {
3856
if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3857
return -EFAULT;
3858
}
3859
3860
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3861
if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3862
return -EFAULT;
3863
3864
data = ~0;
3865
if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3866
return -EFAULT;
3867
3868
return 0;
3869
}
3870
3871
static int init_rmode_identity_map(struct kvm *kvm)
3872
{
3873
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3874
int i, r = 0;
3875
void __user *uaddr;
3876
u32 tmp;
3877
3878
/* Protect kvm_vmx->ept_identity_pagetable_done. */
3879
mutex_lock(&kvm->slots_lock);
3880
3881
if (likely(kvm_vmx->ept_identity_pagetable_done))
3882
goto out;
3883
3884
if (!kvm_vmx->ept_identity_map_addr)
3885
kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3886
3887
uaddr = __x86_set_memory_region(kvm,
3888
IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3889
kvm_vmx->ept_identity_map_addr,
3890
PAGE_SIZE);
3891
if (IS_ERR(uaddr)) {
3892
r = PTR_ERR(uaddr);
3893
goto out;
3894
}
3895
3896
/* Set up identity-mapping pagetable for EPT in real mode */
3897
for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3898
tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3899
_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3900
if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3901
r = -EFAULT;
3902
goto out;
3903
}
3904
}
3905
kvm_vmx->ept_identity_pagetable_done = true;
3906
3907
out:
3908
mutex_unlock(&kvm->slots_lock);
3909
return r;
3910
}
3911
3912
static void seg_setup(int seg)
3913
{
3914
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3915
unsigned int ar;
3916
3917
vmcs_write16(sf->selector, 0);
3918
vmcs_writel(sf->base, 0);
3919
vmcs_write32(sf->limit, 0xffff);
3920
ar = 0x93;
3921
if (seg == VCPU_SREG_CS)
3922
ar |= 0x08; /* code segment */
3923
3924
vmcs_write32(sf->ar_bytes, ar);
3925
}
3926
3927
int allocate_vpid(void)
3928
{
3929
int vpid;
3930
3931
if (!enable_vpid)
3932
return 0;
3933
spin_lock(&vmx_vpid_lock);
3934
vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3935
if (vpid < VMX_NR_VPIDS)
3936
__set_bit(vpid, vmx_vpid_bitmap);
3937
else
3938
vpid = 0;
3939
spin_unlock(&vmx_vpid_lock);
3940
return vpid;
3941
}
3942
3943
void free_vpid(int vpid)
3944
{
3945
if (!enable_vpid || vpid == 0)
3946
return;
3947
spin_lock(&vmx_vpid_lock);
3948
__clear_bit(vpid, vmx_vpid_bitmap);
3949
spin_unlock(&vmx_vpid_lock);
3950
}
3951
3952
static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3953
{
3954
/*
3955
* When KVM is a nested hypervisor on top of Hyper-V and uses
3956
* 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3957
* bitmap has changed.
3958
*/
3959
if (kvm_is_using_evmcs()) {
3960
struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3961
3962
if (evmcs->hv_enlightenments_control.msr_bitmap)
3963
evmcs->hv_clean_fields &=
3964
~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3965
}
3966
3967
vmx->nested.force_msr_bitmap_recalc = true;
3968
}
3969
3970
void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
3971
{
3972
struct vcpu_vmx *vmx = to_vmx(vcpu);
3973
unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3974
3975
if (!cpu_has_vmx_msr_bitmap())
3976
return;
3977
3978
vmx_msr_bitmap_l01_changed(vmx);
3979
3980
if (type & MSR_TYPE_R) {
3981
if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
3982
vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3983
else
3984
vmx_set_msr_bitmap_read(msr_bitmap, msr);
3985
}
3986
3987
if (type & MSR_TYPE_W) {
3988
if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
3989
vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3990
else
3991
vmx_set_msr_bitmap_write(msr_bitmap, msr);
3992
}
3993
}
3994
3995
static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3996
{
3997
/*
3998
* x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
3999
* of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4000
* i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4001
*/
4002
const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4003
const int write_idx = read_idx + (0x800 / sizeof(u64));
4004
struct vcpu_vmx *vmx = to_vmx(vcpu);
4005
u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4006
u8 mode;
4007
4008
if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4009
return;
4010
4011
if (cpu_has_secondary_exec_ctrls() &&
4012
(secondary_exec_controls_get(vmx) &
4013
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4014
mode = MSR_BITMAP_MODE_X2APIC;
4015
if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4016
mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4017
} else {
4018
mode = 0;
4019
}
4020
4021
if (mode == vmx->x2apic_msr_bitmap_mode)
4022
return;
4023
4024
vmx->x2apic_msr_bitmap_mode = mode;
4025
4026
/*
4027
* Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4028
* registers (0x840 and above) intercepted, KVM doesn't support them.
4029
* Intercept all writes by default and poke holes as needed. Pass
4030
* through reads for all valid registers by default in x2APIC+APICv
4031
* mode, only the current timer count needs on-demand emulation by KVM.
4032
*/
4033
if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4034
msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4035
else
4036
msr_bitmap[read_idx] = ~0ull;
4037
msr_bitmap[write_idx] = ~0ull;
4038
4039
/*
4040
* TPR reads and writes can be virtualized even if virtual interrupt
4041
* delivery is not in use.
4042
*/
4043
vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4044
!(mode & MSR_BITMAP_MODE_X2APIC));
4045
4046
if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4047
vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4048
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4049
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4050
if (enable_ipiv)
4051
vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4052
}
4053
}
4054
4055
void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4056
{
4057
struct vcpu_vmx *vmx = to_vmx(vcpu);
4058
bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4059
u32 i;
4060
4061
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4062
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4063
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4064
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4065
for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4066
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4067
vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4068
}
4069
}
4070
4071
void vmx_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4072
{
4073
if (!cpu_has_vmx_msr_bitmap())
4074
return;
4075
4076
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
4077
#ifdef CONFIG_X86_64
4078
vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
4079
vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
4080
vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
4081
#endif
4082
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
4083
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
4084
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
4085
if (kvm_cstate_in_guest(vcpu->kvm)) {
4086
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
4087
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
4088
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
4089
vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
4090
}
4091
if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
4092
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
4093
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
4094
}
4095
4096
/* PT MSRs can be passed through iff PT is exposed to the guest. */
4097
if (vmx_pt_mode_is_host_guest())
4098
pt_update_intercept_for_msr(vcpu);
4099
4100
if (vcpu->arch.xfd_no_write_intercept)
4101
vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, MSR_TYPE_RW);
4102
4103
vmx_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
4104
!to_vmx(vcpu)->spec_ctrl);
4105
4106
if (kvm_cpu_cap_has(X86_FEATURE_XFD))
4107
vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
4108
!guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
4109
4110
if (cpu_feature_enabled(X86_FEATURE_IBPB))
4111
vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
4112
!guest_has_pred_cmd_msr(vcpu));
4113
4114
if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
4115
vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
4116
!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4117
4118
/*
4119
* x2APIC and LBR MSR intercepts are modified on-demand and cannot be
4120
* filtered by userspace.
4121
*/
4122
}
4123
4124
static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4125
int vector)
4126
{
4127
struct vcpu_vmx *vmx = to_vmx(vcpu);
4128
4129
/*
4130
* DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4131
* and freed, and must not be accessed outside of vcpu->mutex. The
4132
* vCPU's cached PI NV is valid if and only if posted interrupts
4133
* enabled in its vmcs12, i.e. checking the vector also checks that
4134
* L1 has enabled posted interrupts for L2.
4135
*/
4136
if (is_guest_mode(vcpu) &&
4137
vector == vmx->nested.posted_intr_nv) {
4138
/*
4139
* If a posted intr is not recognized by hardware,
4140
* we will accomplish it in the next vmentry.
4141
*/
4142
vmx->nested.pi_pending = true;
4143
kvm_make_request(KVM_REQ_EVENT, vcpu);
4144
4145
/*
4146
* This pairs with the smp_mb_*() after setting vcpu->mode in
4147
* vcpu_enter_guest() to guarantee the vCPU sees the event
4148
* request if triggering a posted interrupt "fails" because
4149
* vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4150
* the smb_wmb() in kvm_make_request() only ensures everything
4151
* done before making the request is visible when the request
4152
* is visible, it doesn't ensure ordering between the store to
4153
* vcpu->requests and the load from vcpu->mode.
4154
*/
4155
smp_mb__after_atomic();
4156
4157
/* the PIR and ON have been set by L1. */
4158
kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4159
return 0;
4160
}
4161
return -1;
4162
}
4163
/*
4164
* Send interrupt to vcpu via posted interrupt way.
4165
* 1. If target vcpu is running(non-root mode), send posted interrupt
4166
* notification to vcpu and hardware will sync PIR to vIRR atomically.
4167
* 2. If target vcpu isn't running(root mode), kick it to pick up the
4168
* interrupt from PIR in next vmentry.
4169
*/
4170
static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4171
{
4172
struct vcpu_vt *vt = to_vt(vcpu);
4173
int r;
4174
4175
r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4176
if (!r)
4177
return 0;
4178
4179
/* Note, this is called iff the local APIC is in-kernel. */
4180
if (!vcpu->arch.apic->apicv_active)
4181
return -1;
4182
4183
__vmx_deliver_posted_interrupt(vcpu, &vt->pi_desc, vector);
4184
return 0;
4185
}
4186
4187
void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4188
int trig_mode, int vector)
4189
{
4190
struct kvm_vcpu *vcpu = apic->vcpu;
4191
4192
if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4193
kvm_lapic_set_irr(vector, apic);
4194
kvm_make_request(KVM_REQ_EVENT, vcpu);
4195
kvm_vcpu_kick(vcpu);
4196
} else {
4197
trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4198
trig_mode, vector);
4199
}
4200
}
4201
4202
/*
4203
* Set up the vmcs's constant host-state fields, i.e., host-state fields that
4204
* will not change in the lifetime of the guest.
4205
* Note that host-state that does change is set elsewhere. E.g., host-state
4206
* that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4207
*/
4208
void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4209
{
4210
u32 low32, high32;
4211
unsigned long tmpl;
4212
unsigned long cr0, cr3, cr4;
4213
4214
cr0 = read_cr0();
4215
WARN_ON(cr0 & X86_CR0_TS);
4216
vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4217
4218
/*
4219
* Save the most likely value for this task's CR3 in the VMCS.
4220
* We can't use __get_current_cr3_fast() because we're not atomic.
4221
*/
4222
cr3 = __read_cr3();
4223
vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4224
vmx->loaded_vmcs->host_state.cr3 = cr3;
4225
4226
/* Save the most likely value for this task's CR4 in the VMCS. */
4227
cr4 = cr4_read_shadow();
4228
vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4229
vmx->loaded_vmcs->host_state.cr4 = cr4;
4230
4231
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4232
#ifdef CONFIG_X86_64
4233
/*
4234
* Load null selectors, so we can avoid reloading them in
4235
* vmx_prepare_switch_to_host(), in case userspace uses
4236
* the null selectors too (the expected case).
4237
*/
4238
vmcs_write16(HOST_DS_SELECTOR, 0);
4239
vmcs_write16(HOST_ES_SELECTOR, 0);
4240
#else
4241
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4242
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4243
#endif
4244
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4245
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4246
4247
vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4248
4249
vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4250
4251
rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4252
vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4253
4254
/*
4255
* SYSENTER is used for 32-bit system calls on either 32-bit or
4256
* 64-bit kernels. It is always zero If neither is allowed, otherwise
4257
* vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4258
* have already done so!).
4259
*/
4260
if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4261
vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4262
4263
rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl);
4264
vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4265
4266
if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4267
rdmsr(MSR_IA32_CR_PAT, low32, high32);
4268
vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4269
}
4270
4271
if (cpu_has_load_ia32_efer())
4272
vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4273
}
4274
4275
void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4276
{
4277
struct kvm_vcpu *vcpu = &vmx->vcpu;
4278
4279
vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4280
~vcpu->arch.cr4_guest_rsvd_bits;
4281
if (!enable_ept) {
4282
vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4283
vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4284
}
4285
if (is_guest_mode(&vmx->vcpu))
4286
vcpu->arch.cr4_guest_owned_bits &=
4287
~get_vmcs12(vcpu)->cr4_guest_host_mask;
4288
vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4289
}
4290
4291
static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4292
{
4293
u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4294
4295
if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4296
pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4297
4298
if (!enable_vnmi)
4299
pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4300
4301
if (!enable_preemption_timer)
4302
pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4303
4304
return pin_based_exec_ctrl;
4305
}
4306
4307
static u32 vmx_vmentry_ctrl(void)
4308
{
4309
u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4310
4311
if (vmx_pt_mode_is_system())
4312
vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4313
VM_ENTRY_LOAD_IA32_RTIT_CTL);
4314
/*
4315
* IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4316
*/
4317
vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4318
VM_ENTRY_LOAD_IA32_EFER |
4319
VM_ENTRY_IA32E_MODE);
4320
4321
return vmentry_ctrl;
4322
}
4323
4324
static u32 vmx_vmexit_ctrl(void)
4325
{
4326
u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4327
4328
/*
4329
* Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4330
* nested virtualization and thus allowed to be set in vmcs12.
4331
*/
4332
vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4333
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4334
4335
if (vmx_pt_mode_is_system())
4336
vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4337
VM_EXIT_CLEAR_IA32_RTIT_CTL);
4338
/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4339
return vmexit_ctrl &
4340
~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4341
}
4342
4343
void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4344
{
4345
struct vcpu_vmx *vmx = to_vmx(vcpu);
4346
4347
if (is_guest_mode(vcpu)) {
4348
vmx->nested.update_vmcs01_apicv_status = true;
4349
return;
4350
}
4351
4352
pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4353
4354
if (kvm_vcpu_apicv_active(vcpu)) {
4355
secondary_exec_controls_setbit(vmx,
4356
SECONDARY_EXEC_APIC_REGISTER_VIRT |
4357
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4358
if (enable_ipiv)
4359
tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4360
} else {
4361
secondary_exec_controls_clearbit(vmx,
4362
SECONDARY_EXEC_APIC_REGISTER_VIRT |
4363
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4364
if (enable_ipiv)
4365
tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4366
}
4367
4368
vmx_update_msr_bitmap_x2apic(vcpu);
4369
}
4370
4371
static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4372
{
4373
u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4374
4375
/*
4376
* Not used by KVM, but fully supported for nesting, i.e. are allowed in
4377
* vmcs12 and propagated to vmcs02 when set in vmcs12.
4378
*/
4379
exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4380
CPU_BASED_USE_IO_BITMAPS |
4381
CPU_BASED_MONITOR_TRAP_FLAG |
4382
CPU_BASED_PAUSE_EXITING);
4383
4384
/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4385
exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4386
CPU_BASED_NMI_WINDOW_EXITING);
4387
4388
if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4389
exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4390
4391
if (!cpu_need_tpr_shadow(&vmx->vcpu))
4392
exec_control &= ~CPU_BASED_TPR_SHADOW;
4393
4394
#ifdef CONFIG_X86_64
4395
if (exec_control & CPU_BASED_TPR_SHADOW)
4396
exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4397
CPU_BASED_CR8_STORE_EXITING);
4398
else
4399
exec_control |= CPU_BASED_CR8_STORE_EXITING |
4400
CPU_BASED_CR8_LOAD_EXITING;
4401
#endif
4402
/* No need to intercept CR3 access or INVPLG when using EPT. */
4403
if (enable_ept)
4404
exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4405
CPU_BASED_CR3_STORE_EXITING |
4406
CPU_BASED_INVLPG_EXITING);
4407
if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4408
exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4409
CPU_BASED_MONITOR_EXITING);
4410
if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4411
exec_control &= ~CPU_BASED_HLT_EXITING;
4412
return exec_control;
4413
}
4414
4415
static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4416
{
4417
u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4418
4419
/*
4420
* IPI virtualization relies on APICv. Disable IPI virtualization if
4421
* APICv is inhibited.
4422
*/
4423
if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4424
exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4425
4426
return exec_control;
4427
}
4428
4429
/*
4430
* Adjust a single secondary execution control bit to intercept/allow an
4431
* instruction in the guest. This is usually done based on whether or not a
4432
* feature has been exposed to the guest in order to correctly emulate faults.
4433
*/
4434
static inline void
4435
vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4436
u32 control, bool enabled, bool exiting)
4437
{
4438
/*
4439
* If the control is for an opt-in feature, clear the control if the
4440
* feature is not exposed to the guest, i.e. not enabled. If the
4441
* control is opt-out, i.e. an exiting control, clear the control if
4442
* the feature _is_ exposed to the guest, i.e. exiting/interception is
4443
* disabled for the associated instruction. Note, the caller is
4444
* responsible presetting exec_control to set all supported bits.
4445
*/
4446
if (enabled == exiting)
4447
*exec_control &= ~control;
4448
4449
/*
4450
* Update the nested MSR settings so that a nested VMM can/can't set
4451
* controls for features that are/aren't exposed to the guest.
4452
*/
4453
if (nested &&
4454
kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4455
/*
4456
* All features that can be added or removed to VMX MSRs must
4457
* be supported in the first place for nested virtualization.
4458
*/
4459
if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4460
enabled = false;
4461
4462
if (enabled)
4463
vmx->nested.msrs.secondary_ctls_high |= control;
4464
else
4465
vmx->nested.msrs.secondary_ctls_high &= ~control;
4466
}
4467
}
4468
4469
/*
4470
* Wrapper macro for the common case of adjusting a secondary execution control
4471
* based on a single guest CPUID bit, with a dedicated feature bit. This also
4472
* verifies that the control is actually supported by KVM and hardware.
4473
*/
4474
#define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4475
({ \
4476
struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4477
bool __enabled; \
4478
\
4479
if (cpu_has_vmx_##name()) { \
4480
__enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name); \
4481
vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4482
__enabled, exiting); \
4483
} \
4484
})
4485
4486
/* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4487
#define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4488
vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4489
4490
#define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4491
vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4492
4493
static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4494
{
4495
struct kvm_vcpu *vcpu = &vmx->vcpu;
4496
4497
u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4498
4499
if (vmx_pt_mode_is_system())
4500
exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4501
if (!cpu_need_virtualize_apic_accesses(vcpu))
4502
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4503
if (vmx->vpid == 0)
4504
exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4505
if (!enable_ept) {
4506
exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4507
exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4508
enable_unrestricted_guest = 0;
4509
}
4510
if (!enable_unrestricted_guest)
4511
exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4512
if (kvm_pause_in_guest(vmx->vcpu.kvm))
4513
exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4514
if (!kvm_vcpu_apicv_active(vcpu))
4515
exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4516
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4517
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4518
4519
/*
4520
* KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4521
* base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4522
*/
4523
exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4524
4525
/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4526
* in vmx_set_cr4. */
4527
exec_control &= ~SECONDARY_EXEC_DESC;
4528
4529
/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4530
(handle_vmptrld).
4531
We can NOT enable shadow_vmcs here because we don't have yet
4532
a current VMCS12
4533
*/
4534
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4535
4536
/*
4537
* PML is enabled/disabled when dirty logging of memsmlots changes, but
4538
* it needs to be set here when dirty logging is already active, e.g.
4539
* if this vCPU was created after dirty logging was enabled.
4540
*/
4541
if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4542
exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4543
4544
vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4545
4546
/*
4547
* RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4548
* feature is exposed to the guest. This creates a virtualization hole
4549
* if both are supported in hardware but only one is exposed to the
4550
* guest, but letting the guest execute RDTSCP or RDPID when either one
4551
* is advertised is preferable to emulating the advertised instruction
4552
* in KVM on #UD, and obviously better than incorrectly injecting #UD.
4553
*/
4554
if (cpu_has_vmx_rdtscp()) {
4555
bool rdpid_or_rdtscp_enabled =
4556
guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4557
guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4558
4559
vmx_adjust_secondary_exec_control(vmx, &exec_control,
4560
SECONDARY_EXEC_ENABLE_RDTSCP,
4561
rdpid_or_rdtscp_enabled, false);
4562
}
4563
4564
vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4565
4566
vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4567
vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4568
4569
vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4570
ENABLE_USR_WAIT_PAUSE, false);
4571
4572
if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4573
exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4574
4575
if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4576
exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4577
4578
return exec_control;
4579
}
4580
4581
static inline int vmx_get_pid_table_order(struct kvm *kvm)
4582
{
4583
return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4584
}
4585
4586
static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4587
{
4588
struct page *pages;
4589
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4590
4591
if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4592
return 0;
4593
4594
if (kvm_vmx->pid_table)
4595
return 0;
4596
4597
pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4598
vmx_get_pid_table_order(kvm));
4599
if (!pages)
4600
return -ENOMEM;
4601
4602
kvm_vmx->pid_table = (void *)page_address(pages);
4603
return 0;
4604
}
4605
4606
int vmx_vcpu_precreate(struct kvm *kvm)
4607
{
4608
return vmx_alloc_ipiv_pid_table(kvm);
4609
}
4610
4611
#define VMX_XSS_EXIT_BITMAP 0
4612
4613
static void init_vmcs(struct vcpu_vmx *vmx)
4614
{
4615
struct kvm *kvm = vmx->vcpu.kvm;
4616
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4617
4618
if (nested)
4619
nested_vmx_set_vmcs_shadowing_bitmap();
4620
4621
if (cpu_has_vmx_msr_bitmap())
4622
vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4623
4624
vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4625
4626
/* Control */
4627
pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4628
4629
exec_controls_set(vmx, vmx_exec_control(vmx));
4630
4631
if (cpu_has_secondary_exec_ctrls()) {
4632
secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4633
if (vmx->ve_info)
4634
vmcs_write64(VE_INFORMATION_ADDRESS,
4635
__pa(vmx->ve_info));
4636
}
4637
4638
if (cpu_has_tertiary_exec_ctrls())
4639
tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4640
4641
if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4642
vmcs_write64(EOI_EXIT_BITMAP0, 0);
4643
vmcs_write64(EOI_EXIT_BITMAP1, 0);
4644
vmcs_write64(EOI_EXIT_BITMAP2, 0);
4645
vmcs_write64(EOI_EXIT_BITMAP3, 0);
4646
4647
vmcs_write16(GUEST_INTR_STATUS, 0);
4648
4649
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4650
vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->vt.pi_desc)));
4651
}
4652
4653
if (vmx_can_use_ipiv(&vmx->vcpu)) {
4654
vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4655
vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4656
}
4657
4658
if (!kvm_pause_in_guest(kvm)) {
4659
vmcs_write32(PLE_GAP, ple_gap);
4660
vmx->ple_window = ple_window;
4661
vmx->ple_window_dirty = true;
4662
}
4663
4664
if (kvm_notify_vmexit_enabled(kvm))
4665
vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4666
4667
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4668
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4669
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4670
4671
vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4672
vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4673
vmx_set_constant_host_state(vmx);
4674
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4675
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4676
4677
if (cpu_has_vmx_vmfunc())
4678
vmcs_write64(VM_FUNCTION_CONTROL, 0);
4679
4680
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4681
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4682
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4683
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4684
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4685
4686
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4687
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4688
4689
vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4690
4691
/* 22.2.1, 20.8.1 */
4692
vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4693
4694
vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4695
vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4696
4697
set_cr4_guest_host_mask(vmx);
4698
4699
if (vmx->vpid != 0)
4700
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4701
4702
if (cpu_has_vmx_xsaves())
4703
vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4704
4705
if (enable_pml) {
4706
vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4707
vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4708
}
4709
4710
vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4711
4712
if (vmx_pt_mode_is_host_guest()) {
4713
memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4714
/* Bit[6~0] are forced to 1, writes are ignored. */
4715
vmx->pt_desc.guest.output_mask = 0x7F;
4716
vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4717
}
4718
4719
vmcs_write32(GUEST_SYSENTER_CS, 0);
4720
vmcs_writel(GUEST_SYSENTER_ESP, 0);
4721
vmcs_writel(GUEST_SYSENTER_EIP, 0);
4722
4723
vmx_guest_debugctl_write(&vmx->vcpu, 0);
4724
4725
if (cpu_has_vmx_tpr_shadow()) {
4726
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4727
if (cpu_need_tpr_shadow(&vmx->vcpu))
4728
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4729
__pa(vmx->vcpu.arch.apic->regs));
4730
vmcs_write32(TPR_THRESHOLD, 0);
4731
}
4732
4733
vmx_setup_uret_msrs(vmx);
4734
}
4735
4736
static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4737
{
4738
struct vcpu_vmx *vmx = to_vmx(vcpu);
4739
4740
init_vmcs(vmx);
4741
4742
if (nested &&
4743
kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4744
memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4745
4746
vcpu_setup_sgx_lepubkeyhash(vcpu);
4747
4748
vmx->nested.posted_intr_nv = -1;
4749
vmx->nested.vmxon_ptr = INVALID_GPA;
4750
vmx->nested.current_vmptr = INVALID_GPA;
4751
4752
#ifdef CONFIG_KVM_HYPERV
4753
vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4754
#endif
4755
4756
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4757
vcpu->arch.microcode_version = 0x100000000ULL;
4758
vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4759
4760
/*
4761
* Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4762
* or POSTED_INTR_WAKEUP_VECTOR.
4763
*/
4764
vmx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
4765
__pi_set_sn(&vmx->vt.pi_desc);
4766
}
4767
4768
void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4769
{
4770
struct vcpu_vmx *vmx = to_vmx(vcpu);
4771
4772
if (!init_event)
4773
__vmx_vcpu_reset(vcpu);
4774
4775
vmx->rmode.vm86_active = 0;
4776
vmx->spec_ctrl = 0;
4777
4778
vmx->msr_ia32_umwait_control = 0;
4779
4780
vmx->hv_deadline_tsc = -1;
4781
kvm_set_cr8(vcpu, 0);
4782
4783
seg_setup(VCPU_SREG_CS);
4784
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4785
vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4786
4787
seg_setup(VCPU_SREG_DS);
4788
seg_setup(VCPU_SREG_ES);
4789
seg_setup(VCPU_SREG_FS);
4790
seg_setup(VCPU_SREG_GS);
4791
seg_setup(VCPU_SREG_SS);
4792
4793
vmcs_write16(GUEST_TR_SELECTOR, 0);
4794
vmcs_writel(GUEST_TR_BASE, 0);
4795
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4796
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4797
4798
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4799
vmcs_writel(GUEST_LDTR_BASE, 0);
4800
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4801
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4802
4803
vmcs_writel(GUEST_GDTR_BASE, 0);
4804
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4805
4806
vmcs_writel(GUEST_IDTR_BASE, 0);
4807
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4808
4809
vmx_segment_cache_clear(vmx);
4810
kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4811
4812
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4813
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4814
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4815
if (kvm_mpx_supported())
4816
vmcs_write64(GUEST_BNDCFGS, 0);
4817
4818
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4819
4820
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4821
4822
vpid_sync_context(vmx->vpid);
4823
4824
vmx_update_fb_clear_dis(vcpu, vmx);
4825
}
4826
4827
void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4828
{
4829
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4830
}
4831
4832
void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4833
{
4834
if (!enable_vnmi ||
4835
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4836
vmx_enable_irq_window(vcpu);
4837
return;
4838
}
4839
4840
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4841
}
4842
4843
void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4844
{
4845
struct vcpu_vmx *vmx = to_vmx(vcpu);
4846
uint32_t intr;
4847
int irq = vcpu->arch.interrupt.nr;
4848
4849
trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4850
4851
++vcpu->stat.irq_injections;
4852
if (vmx->rmode.vm86_active) {
4853
int inc_eip = 0;
4854
if (vcpu->arch.interrupt.soft)
4855
inc_eip = vcpu->arch.event_exit_inst_len;
4856
kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4857
return;
4858
}
4859
intr = irq | INTR_INFO_VALID_MASK;
4860
if (vcpu->arch.interrupt.soft) {
4861
intr |= INTR_TYPE_SOFT_INTR;
4862
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4863
vmx->vcpu.arch.event_exit_inst_len);
4864
} else
4865
intr |= INTR_TYPE_EXT_INTR;
4866
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4867
4868
vmx_clear_hlt(vcpu);
4869
}
4870
4871
void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4872
{
4873
struct vcpu_vmx *vmx = to_vmx(vcpu);
4874
4875
if (!enable_vnmi) {
4876
/*
4877
* Tracking the NMI-blocked state in software is built upon
4878
* finding the next open IRQ window. This, in turn, depends on
4879
* well-behaving guests: They have to keep IRQs disabled at
4880
* least as long as the NMI handler runs. Otherwise we may
4881
* cause NMI nesting, maybe breaking the guest. But as this is
4882
* highly unlikely, we can live with the residual risk.
4883
*/
4884
vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4885
vmx->loaded_vmcs->vnmi_blocked_time = 0;
4886
}
4887
4888
++vcpu->stat.nmi_injections;
4889
vmx->loaded_vmcs->nmi_known_unmasked = false;
4890
4891
if (vmx->rmode.vm86_active) {
4892
kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4893
return;
4894
}
4895
4896
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4897
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4898
4899
vmx_clear_hlt(vcpu);
4900
}
4901
4902
bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4903
{
4904
struct vcpu_vmx *vmx = to_vmx(vcpu);
4905
bool masked;
4906
4907
if (!enable_vnmi)
4908
return vmx->loaded_vmcs->soft_vnmi_blocked;
4909
if (vmx->loaded_vmcs->nmi_known_unmasked)
4910
return false;
4911
masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4912
vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4913
return masked;
4914
}
4915
4916
void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4917
{
4918
struct vcpu_vmx *vmx = to_vmx(vcpu);
4919
4920
if (!enable_vnmi) {
4921
if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4922
vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4923
vmx->loaded_vmcs->vnmi_blocked_time = 0;
4924
}
4925
} else {
4926
vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4927
if (masked)
4928
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4929
GUEST_INTR_STATE_NMI);
4930
else
4931
vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4932
GUEST_INTR_STATE_NMI);
4933
}
4934
}
4935
4936
bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4937
{
4938
if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4939
return false;
4940
4941
if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4942
return true;
4943
4944
return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4945
(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4946
GUEST_INTR_STATE_NMI));
4947
}
4948
4949
int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4950
{
4951
if (to_vmx(vcpu)->nested.nested_run_pending)
4952
return -EBUSY;
4953
4954
/* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4955
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4956
return -EBUSY;
4957
4958
return !vmx_nmi_blocked(vcpu);
4959
}
4960
4961
bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4962
{
4963
return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4964
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4965
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4966
}
4967
4968
bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4969
{
4970
if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4971
return false;
4972
4973
return __vmx_interrupt_blocked(vcpu);
4974
}
4975
4976
int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4977
{
4978
if (to_vmx(vcpu)->nested.nested_run_pending)
4979
return -EBUSY;
4980
4981
/*
4982
* An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4983
* e.g. if the IRQ arrived asynchronously after checking nested events.
4984
*/
4985
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4986
return -EBUSY;
4987
4988
return !vmx_interrupt_blocked(vcpu);
4989
}
4990
4991
int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4992
{
4993
void __user *ret;
4994
4995
if (enable_unrestricted_guest)
4996
return 0;
4997
4998
mutex_lock(&kvm->slots_lock);
4999
ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5000
PAGE_SIZE * 3);
5001
mutex_unlock(&kvm->slots_lock);
5002
5003
if (IS_ERR(ret))
5004
return PTR_ERR(ret);
5005
5006
to_kvm_vmx(kvm)->tss_addr = addr;
5007
5008
return init_rmode_tss(kvm, ret);
5009
}
5010
5011
int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5012
{
5013
to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5014
return 0;
5015
}
5016
5017
static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5018
{
5019
switch (vec) {
5020
case BP_VECTOR:
5021
/*
5022
* Update instruction length as we may reinject the exception
5023
* from user space while in guest debugging mode.
5024
*/
5025
to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5026
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5027
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5028
return false;
5029
fallthrough;
5030
case DB_VECTOR:
5031
return !(vcpu->guest_debug &
5032
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5033
case DE_VECTOR:
5034
case OF_VECTOR:
5035
case BR_VECTOR:
5036
case UD_VECTOR:
5037
case DF_VECTOR:
5038
case SS_VECTOR:
5039
case GP_VECTOR:
5040
case MF_VECTOR:
5041
return true;
5042
}
5043
return false;
5044
}
5045
5046
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5047
int vec, u32 err_code)
5048
{
5049
/*
5050
* Instruction with address size override prefix opcode 0x67
5051
* Cause the #SS fault with 0 error code in VM86 mode.
5052
*/
5053
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5054
if (kvm_emulate_instruction(vcpu, 0)) {
5055
if (vcpu->arch.halt_request) {
5056
vcpu->arch.halt_request = 0;
5057
return kvm_emulate_halt_noskip(vcpu);
5058
}
5059
return 1;
5060
}
5061
return 0;
5062
}
5063
5064
/*
5065
* Forward all other exceptions that are valid in real mode.
5066
* FIXME: Breaks guest debugging in real mode, needs to be fixed with
5067
* the required debugging infrastructure rework.
5068
*/
5069
kvm_queue_exception(vcpu, vec);
5070
return 1;
5071
}
5072
5073
static int handle_machine_check(struct kvm_vcpu *vcpu)
5074
{
5075
/* handled by vmx_vcpu_run() */
5076
return 1;
5077
}
5078
5079
/*
5080
* If the host has split lock detection disabled, then #AC is
5081
* unconditionally injected into the guest, which is the pre split lock
5082
* detection behaviour.
5083
*
5084
* If the host has split lock detection enabled then #AC is
5085
* only injected into the guest when:
5086
* - Guest CPL == 3 (user mode)
5087
* - Guest has #AC detection enabled in CR0
5088
* - Guest EFLAGS has AC bit set
5089
*/
5090
bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5091
{
5092
if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5093
return true;
5094
5095
return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5096
(kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5097
}
5098
5099
static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5100
{
5101
return vcpu->arch.guest_fpu.fpstate->xfd &&
5102
!kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5103
}
5104
5105
static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5106
{
5107
struct vcpu_vmx *vmx = to_vmx(vcpu);
5108
struct kvm_run *kvm_run = vcpu->run;
5109
u32 intr_info, ex_no, error_code;
5110
unsigned long cr2, dr6;
5111
u32 vect_info;
5112
5113
vect_info = vmx->idt_vectoring_info;
5114
intr_info = vmx_get_intr_info(vcpu);
5115
5116
/*
5117
* Machine checks are handled by handle_exception_irqoff(), or by
5118
* vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5119
* vmx_vcpu_enter_exit().
5120
*/
5121
if (is_machine_check(intr_info) || is_nmi(intr_info))
5122
return 1;
5123
5124
/*
5125
* Queue the exception here instead of in handle_nm_fault_irqoff().
5126
* This ensures the nested_vmx check is not skipped so vmexit can
5127
* be reflected to L1 (when it intercepts #NM) before reaching this
5128
* point.
5129
*/
5130
if (is_nm_fault(intr_info)) {
5131
kvm_queue_exception_p(vcpu, NM_VECTOR,
5132
is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5133
return 1;
5134
}
5135
5136
if (is_invalid_opcode(intr_info))
5137
return handle_ud(vcpu);
5138
5139
if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5140
struct vmx_ve_information *ve_info = vmx->ve_info;
5141
5142
WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5143
"Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5144
dump_vmcs(vcpu);
5145
kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5146
return 1;
5147
}
5148
5149
error_code = 0;
5150
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5151
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5152
5153
if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5154
WARN_ON_ONCE(!enable_vmware_backdoor);
5155
5156
/*
5157
* VMware backdoor emulation on #GP interception only handles
5158
* IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5159
* error code on #GP.
5160
*/
5161
if (error_code) {
5162
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5163
return 1;
5164
}
5165
return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5166
}
5167
5168
/*
5169
* The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5170
* MMIO, it is better to report an internal error.
5171
* See the comments in vmx_handle_exit.
5172
*/
5173
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5174
!(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5175
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5176
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5177
vcpu->run->internal.ndata = 4;
5178
vcpu->run->internal.data[0] = vect_info;
5179
vcpu->run->internal.data[1] = intr_info;
5180
vcpu->run->internal.data[2] = error_code;
5181
vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5182
return 0;
5183
}
5184
5185
if (is_page_fault(intr_info)) {
5186
cr2 = vmx_get_exit_qual(vcpu);
5187
if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5188
/*
5189
* EPT will cause page fault only if we need to
5190
* detect illegal GPAs.
5191
*/
5192
WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5193
kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5194
return 1;
5195
} else
5196
return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5197
}
5198
5199
ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5200
5201
if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5202
return handle_rmode_exception(vcpu, ex_no, error_code);
5203
5204
switch (ex_no) {
5205
case DB_VECTOR:
5206
dr6 = vmx_get_exit_qual(vcpu);
5207
if (!(vcpu->guest_debug &
5208
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5209
/*
5210
* If the #DB was due to ICEBP, a.k.a. INT1, skip the
5211
* instruction. ICEBP generates a trap-like #DB, but
5212
* despite its interception control being tied to #DB,
5213
* is an instruction intercept, i.e. the VM-Exit occurs
5214
* on the ICEBP itself. Use the inner "skip" helper to
5215
* avoid single-step #DB and MTF updates, as ICEBP is
5216
* higher priority. Note, skipping ICEBP still clears
5217
* STI and MOVSS blocking.
5218
*
5219
* For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5220
* if single-step is enabled in RFLAGS and STI or MOVSS
5221
* blocking is active, as the CPU doesn't set the bit
5222
* on VM-Exit due to #DB interception. VM-Entry has a
5223
* consistency check that a single-step #DB is pending
5224
* in this scenario as the previous instruction cannot
5225
* have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5226
* don't modify RFLAGS), therefore the one instruction
5227
* delay when activating single-step breakpoints must
5228
* have already expired. Note, the CPU sets/clears BS
5229
* as appropriate for all other VM-Exits types.
5230
*/
5231
if (is_icebp(intr_info))
5232
WARN_ON(!skip_emulated_instruction(vcpu));
5233
else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5234
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5235
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5236
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5237
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5238
5239
kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5240
return 1;
5241
}
5242
kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5243
kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5244
fallthrough;
5245
case BP_VECTOR:
5246
/*
5247
* Update instruction length as we may reinject #BP from
5248
* user space while in guest debugging mode. Reading it for
5249
* #DB as well causes no harm, it is not used in that case.
5250
*/
5251
vmx->vcpu.arch.event_exit_inst_len =
5252
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5253
kvm_run->exit_reason = KVM_EXIT_DEBUG;
5254
kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5255
kvm_run->debug.arch.exception = ex_no;
5256
break;
5257
case AC_VECTOR:
5258
if (vmx_guest_inject_ac(vcpu)) {
5259
kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5260
return 1;
5261
}
5262
5263
/*
5264
* Handle split lock. Depending on detection mode this will
5265
* either warn and disable split lock detection for this
5266
* task or force SIGBUS on it.
5267
*/
5268
if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5269
return 1;
5270
fallthrough;
5271
default:
5272
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5273
kvm_run->ex.exception = ex_no;
5274
kvm_run->ex.error_code = error_code;
5275
break;
5276
}
5277
return 0;
5278
}
5279
5280
static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5281
{
5282
++vcpu->stat.irq_exits;
5283
return 1;
5284
}
5285
5286
static int handle_triple_fault(struct kvm_vcpu *vcpu)
5287
{
5288
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5289
vcpu->mmio_needed = 0;
5290
return 0;
5291
}
5292
5293
static int handle_io(struct kvm_vcpu *vcpu)
5294
{
5295
unsigned long exit_qualification;
5296
int size, in, string;
5297
unsigned port;
5298
5299
exit_qualification = vmx_get_exit_qual(vcpu);
5300
string = (exit_qualification & 16) != 0;
5301
5302
++vcpu->stat.io_exits;
5303
5304
if (string)
5305
return kvm_emulate_instruction(vcpu, 0);
5306
5307
port = exit_qualification >> 16;
5308
size = (exit_qualification & 7) + 1;
5309
in = (exit_qualification & 8) != 0;
5310
5311
return kvm_fast_pio(vcpu, size, port, in);
5312
}
5313
5314
void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5315
{
5316
/*
5317
* Patch in the VMCALL instruction:
5318
*/
5319
hypercall[0] = 0x0f;
5320
hypercall[1] = 0x01;
5321
hypercall[2] = 0xc1;
5322
}
5323
5324
/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5325
static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5326
{
5327
if (is_guest_mode(vcpu)) {
5328
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5329
unsigned long orig_val = val;
5330
5331
/*
5332
* We get here when L2 changed cr0 in a way that did not change
5333
* any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5334
* but did change L0 shadowed bits. So we first calculate the
5335
* effective cr0 value that L1 would like to write into the
5336
* hardware. It consists of the L2-owned bits from the new
5337
* value combined with the L1-owned bits from L1's guest_cr0.
5338
*/
5339
val = (val & ~vmcs12->cr0_guest_host_mask) |
5340
(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5341
5342
if (kvm_set_cr0(vcpu, val))
5343
return 1;
5344
vmcs_writel(CR0_READ_SHADOW, orig_val);
5345
return 0;
5346
} else {
5347
return kvm_set_cr0(vcpu, val);
5348
}
5349
}
5350
5351
static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5352
{
5353
if (is_guest_mode(vcpu)) {
5354
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5355
unsigned long orig_val = val;
5356
5357
/* analogously to handle_set_cr0 */
5358
val = (val & ~vmcs12->cr4_guest_host_mask) |
5359
(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5360
if (kvm_set_cr4(vcpu, val))
5361
return 1;
5362
vmcs_writel(CR4_READ_SHADOW, orig_val);
5363
return 0;
5364
} else
5365
return kvm_set_cr4(vcpu, val);
5366
}
5367
5368
static int handle_desc(struct kvm_vcpu *vcpu)
5369
{
5370
/*
5371
* UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5372
* and other code needs to be updated if UMIP can be guest owned.
5373
*/
5374
BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5375
5376
WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5377
return kvm_emulate_instruction(vcpu, 0);
5378
}
5379
5380
static int handle_cr(struct kvm_vcpu *vcpu)
5381
{
5382
unsigned long exit_qualification, val;
5383
int cr;
5384
int reg;
5385
int err;
5386
int ret;
5387
5388
exit_qualification = vmx_get_exit_qual(vcpu);
5389
cr = exit_qualification & 15;
5390
reg = (exit_qualification >> 8) & 15;
5391
switch ((exit_qualification >> 4) & 3) {
5392
case 0: /* mov to cr */
5393
val = kvm_register_read(vcpu, reg);
5394
trace_kvm_cr_write(cr, val);
5395
switch (cr) {
5396
case 0:
5397
err = handle_set_cr0(vcpu, val);
5398
return kvm_complete_insn_gp(vcpu, err);
5399
case 3:
5400
WARN_ON_ONCE(enable_unrestricted_guest);
5401
5402
err = kvm_set_cr3(vcpu, val);
5403
return kvm_complete_insn_gp(vcpu, err);
5404
case 4:
5405
err = handle_set_cr4(vcpu, val);
5406
return kvm_complete_insn_gp(vcpu, err);
5407
case 8: {
5408
u8 cr8_prev = kvm_get_cr8(vcpu);
5409
u8 cr8 = (u8)val;
5410
err = kvm_set_cr8(vcpu, cr8);
5411
ret = kvm_complete_insn_gp(vcpu, err);
5412
if (lapic_in_kernel(vcpu))
5413
return ret;
5414
if (cr8_prev <= cr8)
5415
return ret;
5416
/*
5417
* TODO: we might be squashing a
5418
* KVM_GUESTDBG_SINGLESTEP-triggered
5419
* KVM_EXIT_DEBUG here.
5420
*/
5421
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5422
return 0;
5423
}
5424
}
5425
break;
5426
case 2: /* clts */
5427
KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5428
return -EIO;
5429
case 1: /*mov from cr*/
5430
switch (cr) {
5431
case 3:
5432
WARN_ON_ONCE(enable_unrestricted_guest);
5433
5434
val = kvm_read_cr3(vcpu);
5435
kvm_register_write(vcpu, reg, val);
5436
trace_kvm_cr_read(cr, val);
5437
return kvm_skip_emulated_instruction(vcpu);
5438
case 8:
5439
val = kvm_get_cr8(vcpu);
5440
kvm_register_write(vcpu, reg, val);
5441
trace_kvm_cr_read(cr, val);
5442
return kvm_skip_emulated_instruction(vcpu);
5443
}
5444
break;
5445
case 3: /* lmsw */
5446
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5447
trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5448
kvm_lmsw(vcpu, val);
5449
5450
return kvm_skip_emulated_instruction(vcpu);
5451
default:
5452
break;
5453
}
5454
vcpu->run->exit_reason = 0;
5455
vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5456
(int)(exit_qualification >> 4) & 3, cr);
5457
return 0;
5458
}
5459
5460
static int handle_dr(struct kvm_vcpu *vcpu)
5461
{
5462
unsigned long exit_qualification;
5463
int dr, dr7, reg;
5464
int err = 1;
5465
5466
exit_qualification = vmx_get_exit_qual(vcpu);
5467
dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5468
5469
/* First, if DR does not exist, trigger UD */
5470
if (!kvm_require_dr(vcpu, dr))
5471
return 1;
5472
5473
if (vmx_get_cpl(vcpu) > 0)
5474
goto out;
5475
5476
dr7 = vmcs_readl(GUEST_DR7);
5477
if (dr7 & DR7_GD) {
5478
/*
5479
* As the vm-exit takes precedence over the debug trap, we
5480
* need to emulate the latter, either for the host or the
5481
* guest debugging itself.
5482
*/
5483
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5484
vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5485
vcpu->run->debug.arch.dr7 = dr7;
5486
vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5487
vcpu->run->debug.arch.exception = DB_VECTOR;
5488
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5489
return 0;
5490
} else {
5491
kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5492
return 1;
5493
}
5494
}
5495
5496
if (vcpu->guest_debug == 0) {
5497
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5498
5499
/*
5500
* No more DR vmexits; force a reload of the debug registers
5501
* and reenter on this instruction. The next vmexit will
5502
* retrieve the full state of the debug registers.
5503
*/
5504
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5505
return 1;
5506
}
5507
5508
reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5509
if (exit_qualification & TYPE_MOV_FROM_DR) {
5510
kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5511
err = 0;
5512
} else {
5513
err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5514
}
5515
5516
out:
5517
return kvm_complete_insn_gp(vcpu, err);
5518
}
5519
5520
void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5521
{
5522
get_debugreg(vcpu->arch.db[0], 0);
5523
get_debugreg(vcpu->arch.db[1], 1);
5524
get_debugreg(vcpu->arch.db[2], 2);
5525
get_debugreg(vcpu->arch.db[3], 3);
5526
get_debugreg(vcpu->arch.dr6, 6);
5527
vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5528
5529
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5530
exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5531
5532
/*
5533
* exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5534
* a stale dr6 from the guest.
5535
*/
5536
set_debugreg(DR6_RESERVED, 6);
5537
}
5538
5539
void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5540
{
5541
vmcs_writel(GUEST_DR7, val);
5542
}
5543
5544
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5545
{
5546
kvm_apic_update_ppr(vcpu);
5547
return 1;
5548
}
5549
5550
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5551
{
5552
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5553
5554
kvm_make_request(KVM_REQ_EVENT, vcpu);
5555
5556
++vcpu->stat.irq_window_exits;
5557
return 1;
5558
}
5559
5560
static int handle_invlpg(struct kvm_vcpu *vcpu)
5561
{
5562
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5563
5564
kvm_mmu_invlpg(vcpu, exit_qualification);
5565
return kvm_skip_emulated_instruction(vcpu);
5566
}
5567
5568
static int handle_apic_access(struct kvm_vcpu *vcpu)
5569
{
5570
if (likely(fasteoi)) {
5571
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5572
int access_type, offset;
5573
5574
access_type = exit_qualification & APIC_ACCESS_TYPE;
5575
offset = exit_qualification & APIC_ACCESS_OFFSET;
5576
/*
5577
* Sane guest uses MOV to write EOI, with written value
5578
* not cared. So make a short-circuit here by avoiding
5579
* heavy instruction emulation.
5580
*/
5581
if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5582
(offset == APIC_EOI)) {
5583
kvm_lapic_set_eoi(vcpu);
5584
return kvm_skip_emulated_instruction(vcpu);
5585
}
5586
}
5587
return kvm_emulate_instruction(vcpu, 0);
5588
}
5589
5590
static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5591
{
5592
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5593
int vector = exit_qualification & 0xff;
5594
5595
/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5596
kvm_apic_set_eoi_accelerated(vcpu, vector);
5597
return 1;
5598
}
5599
5600
static int handle_apic_write(struct kvm_vcpu *vcpu)
5601
{
5602
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5603
5604
/*
5605
* APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5606
* hardware has done any necessary aliasing, offset adjustments, etc...
5607
* for the access. I.e. the correct value has already been written to
5608
* the vAPIC page for the correct 16-byte chunk. KVM needs only to
5609
* retrieve the register value and emulate the access.
5610
*/
5611
u32 offset = exit_qualification & 0xff0;
5612
5613
kvm_apic_write_nodecode(vcpu, offset);
5614
return 1;
5615
}
5616
5617
static int handle_task_switch(struct kvm_vcpu *vcpu)
5618
{
5619
struct vcpu_vmx *vmx = to_vmx(vcpu);
5620
unsigned long exit_qualification;
5621
bool has_error_code = false;
5622
u32 error_code = 0;
5623
u16 tss_selector;
5624
int reason, type, idt_v, idt_index;
5625
5626
idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5627
idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5628
type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5629
5630
exit_qualification = vmx_get_exit_qual(vcpu);
5631
5632
reason = (u32)exit_qualification >> 30;
5633
if (reason == TASK_SWITCH_GATE && idt_v) {
5634
switch (type) {
5635
case INTR_TYPE_NMI_INTR:
5636
vcpu->arch.nmi_injected = false;
5637
vmx_set_nmi_mask(vcpu, true);
5638
break;
5639
case INTR_TYPE_EXT_INTR:
5640
case INTR_TYPE_SOFT_INTR:
5641
kvm_clear_interrupt_queue(vcpu);
5642
break;
5643
case INTR_TYPE_HARD_EXCEPTION:
5644
if (vmx->idt_vectoring_info &
5645
VECTORING_INFO_DELIVER_CODE_MASK) {
5646
has_error_code = true;
5647
error_code =
5648
vmcs_read32(IDT_VECTORING_ERROR_CODE);
5649
}
5650
fallthrough;
5651
case INTR_TYPE_SOFT_EXCEPTION:
5652
kvm_clear_exception_queue(vcpu);
5653
break;
5654
default:
5655
break;
5656
}
5657
}
5658
tss_selector = exit_qualification;
5659
5660
if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5661
type != INTR_TYPE_EXT_INTR &&
5662
type != INTR_TYPE_NMI_INTR))
5663
WARN_ON(!skip_emulated_instruction(vcpu));
5664
5665
/*
5666
* TODO: What about debug traps on tss switch?
5667
* Are we supposed to inject them and update dr6?
5668
*/
5669
return kvm_task_switch(vcpu, tss_selector,
5670
type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5671
reason, has_error_code, error_code);
5672
}
5673
5674
static int handle_ept_violation(struct kvm_vcpu *vcpu)
5675
{
5676
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5677
gpa_t gpa;
5678
5679
/*
5680
* EPT violation happened while executing iret from NMI,
5681
* "blocked by NMI" bit has to be set before next VM entry.
5682
* There are errata that may cause this bit to not be set:
5683
* AAK134, BY25.
5684
*/
5685
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5686
enable_vnmi &&
5687
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5688
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5689
5690
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5691
trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5692
5693
/*
5694
* Check that the GPA doesn't exceed physical memory limits, as that is
5695
* a guest page fault. We have to emulate the instruction here, because
5696
* if the illegal address is that of a paging structure, then
5697
* EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5698
* would also use advanced VM-exit information for EPT violations to
5699
* reconstruct the page fault error code.
5700
*/
5701
if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5702
return kvm_emulate_instruction(vcpu, 0);
5703
5704
return __vmx_handle_ept_violation(vcpu, gpa, exit_qualification);
5705
}
5706
5707
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5708
{
5709
gpa_t gpa;
5710
5711
if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5712
return 1;
5713
5714
/*
5715
* A nested guest cannot optimize MMIO vmexits, because we have an
5716
* nGPA here instead of the required GPA.
5717
*/
5718
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5719
if (!is_guest_mode(vcpu) &&
5720
!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5721
trace_kvm_fast_mmio(gpa);
5722
return kvm_skip_emulated_instruction(vcpu);
5723
}
5724
5725
return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5726
}
5727
5728
static int handle_nmi_window(struct kvm_vcpu *vcpu)
5729
{
5730
if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5731
return -EIO;
5732
5733
exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5734
++vcpu->stat.nmi_window_exits;
5735
kvm_make_request(KVM_REQ_EVENT, vcpu);
5736
5737
return 1;
5738
}
5739
5740
/*
5741
* Returns true if emulation is required (due to the vCPU having invalid state
5742
* with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
5743
* current vCPU state.
5744
*/
5745
static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
5746
{
5747
struct vcpu_vmx *vmx = to_vmx(vcpu);
5748
5749
if (!vmx->vt.emulation_required)
5750
return false;
5751
5752
/*
5753
* It is architecturally impossible for emulation to be required when a
5754
* nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
5755
* guest state is invalid and unrestricted guest is disabled, i.e. KVM
5756
* should synthesize VM-Fail instead emulation L2 code. This path is
5757
* only reachable if userspace modifies L2 guest state after KVM has
5758
* performed the nested VM-Enter consistency checks.
5759
*/
5760
if (vmx->nested.nested_run_pending)
5761
return true;
5762
5763
/*
5764
* KVM only supports emulating exceptions if the vCPU is in Real Mode.
5765
* If emulation is required, KVM can't perform a successful VM-Enter to
5766
* inject the exception.
5767
*/
5768
return !vmx->rmode.vm86_active &&
5769
(kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5770
}
5771
5772
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5773
{
5774
struct vcpu_vmx *vmx = to_vmx(vcpu);
5775
bool intr_window_requested;
5776
unsigned count = 130;
5777
5778
intr_window_requested = exec_controls_get(vmx) &
5779
CPU_BASED_INTR_WINDOW_EXITING;
5780
5781
while (vmx->vt.emulation_required && count-- != 0) {
5782
if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5783
return handle_interrupt_window(&vmx->vcpu);
5784
5785
if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5786
return 1;
5787
5788
if (!kvm_emulate_instruction(vcpu, 0))
5789
return 0;
5790
5791
if (vmx_unhandleable_emulation_required(vcpu)) {
5792
kvm_prepare_emulation_failure_exit(vcpu);
5793
return 0;
5794
}
5795
5796
if (vcpu->arch.halt_request) {
5797
vcpu->arch.halt_request = 0;
5798
return kvm_emulate_halt_noskip(vcpu);
5799
}
5800
5801
/*
5802
* Note, return 1 and not 0, vcpu_run() will invoke
5803
* xfer_to_guest_mode() which will create a proper return
5804
* code.
5805
*/
5806
if (__xfer_to_guest_mode_work_pending())
5807
return 1;
5808
}
5809
5810
return 1;
5811
}
5812
5813
int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5814
{
5815
if (vmx_unhandleable_emulation_required(vcpu)) {
5816
kvm_prepare_emulation_failure_exit(vcpu);
5817
return 0;
5818
}
5819
5820
return 1;
5821
}
5822
5823
/*
5824
* Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5825
* exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5826
*/
5827
static int handle_pause(struct kvm_vcpu *vcpu)
5828
{
5829
if (!kvm_pause_in_guest(vcpu->kvm))
5830
grow_ple_window(vcpu);
5831
5832
/*
5833
* Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5834
* VM-execution control is ignored if CPL > 0. OTOH, KVM
5835
* never set PAUSE_EXITING and just set PLE if supported,
5836
* so the vcpu must be CPL=0 if it gets a PAUSE exit.
5837
*/
5838
kvm_vcpu_on_spin(vcpu, true);
5839
return kvm_skip_emulated_instruction(vcpu);
5840
}
5841
5842
static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5843
{
5844
return 1;
5845
}
5846
5847
static int handle_invpcid(struct kvm_vcpu *vcpu)
5848
{
5849
u32 vmx_instruction_info;
5850
unsigned long type;
5851
gva_t gva;
5852
struct {
5853
u64 pcid;
5854
u64 gla;
5855
} operand;
5856
int gpr_index;
5857
5858
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
5859
kvm_queue_exception(vcpu, UD_VECTOR);
5860
return 1;
5861
}
5862
5863
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5864
gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5865
type = kvm_register_read(vcpu, gpr_index);
5866
5867
/* According to the Intel instruction reference, the memory operand
5868
* is read even if it isn't needed (e.g., for type==all)
5869
*/
5870
if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5871
vmx_instruction_info, false,
5872
sizeof(operand), &gva))
5873
return 1;
5874
5875
return kvm_handle_invpcid(vcpu, type, gva);
5876
}
5877
5878
static int handle_pml_full(struct kvm_vcpu *vcpu)
5879
{
5880
unsigned long exit_qualification;
5881
5882
trace_kvm_pml_full(vcpu->vcpu_id);
5883
5884
exit_qualification = vmx_get_exit_qual(vcpu);
5885
5886
/*
5887
* PML buffer FULL happened while executing iret from NMI,
5888
* "blocked by NMI" bit has to be set before next VM entry.
5889
*/
5890
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5891
enable_vnmi &&
5892
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5893
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5894
GUEST_INTR_STATE_NMI);
5895
5896
/*
5897
* PML buffer already flushed at beginning of VMEXIT. Nothing to do
5898
* here.., and there's no userspace involvement needed for PML.
5899
*/
5900
return 1;
5901
}
5902
5903
static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5904
bool force_immediate_exit)
5905
{
5906
struct vcpu_vmx *vmx = to_vmx(vcpu);
5907
5908
/*
5909
* In the *extremely* unlikely scenario that this is a spurious VM-Exit
5910
* due to the timer expiring while it was "soft" disabled, just eat the
5911
* exit and re-enter the guest.
5912
*/
5913
if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5914
return EXIT_FASTPATH_REENTER_GUEST;
5915
5916
/*
5917
* If the timer expired because KVM used it to force an immediate exit,
5918
* then mission accomplished.
5919
*/
5920
if (force_immediate_exit)
5921
return EXIT_FASTPATH_EXIT_HANDLED;
5922
5923
/*
5924
* If L2 is active, go down the slow path as emulating the guest timer
5925
* expiration likely requires synthesizing a nested VM-Exit.
5926
*/
5927
if (is_guest_mode(vcpu))
5928
return EXIT_FASTPATH_NONE;
5929
5930
kvm_lapic_expired_hv_timer(vcpu);
5931
return EXIT_FASTPATH_REENTER_GUEST;
5932
}
5933
5934
static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5935
{
5936
/*
5937
* This non-fastpath handler is reached if and only if the preemption
5938
* timer was being used to emulate a guest timer while L2 is active.
5939
* All other scenarios are supposed to be handled in the fastpath.
5940
*/
5941
WARN_ON_ONCE(!is_guest_mode(vcpu));
5942
kvm_lapic_expired_hv_timer(vcpu);
5943
return 1;
5944
}
5945
5946
/*
5947
* When nested=0, all VMX instruction VM Exits filter here. The handlers
5948
* are overwritten by nested_vmx_hardware_setup() when nested=1.
5949
*/
5950
static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5951
{
5952
kvm_queue_exception(vcpu, UD_VECTOR);
5953
return 1;
5954
}
5955
5956
#ifndef CONFIG_X86_SGX_KVM
5957
static int handle_encls(struct kvm_vcpu *vcpu)
5958
{
5959
/*
5960
* SGX virtualization is disabled. There is no software enable bit for
5961
* SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5962
* the guest from executing ENCLS (when SGX is supported by hardware).
5963
*/
5964
kvm_queue_exception(vcpu, UD_VECTOR);
5965
return 1;
5966
}
5967
#endif /* CONFIG_X86_SGX_KVM */
5968
5969
static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5970
{
5971
/*
5972
* Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5973
* VM-Exits. Unconditionally set the flag here and leave the handling to
5974
* vmx_handle_exit().
5975
*/
5976
to_vt(vcpu)->exit_reason.bus_lock_detected = true;
5977
return 1;
5978
}
5979
5980
static int handle_notify(struct kvm_vcpu *vcpu)
5981
{
5982
unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5983
bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
5984
5985
++vcpu->stat.notify_window_exits;
5986
5987
/*
5988
* Notify VM exit happened while executing iret from NMI,
5989
* "blocked by NMI" bit has to be set before next VM entry.
5990
*/
5991
if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
5992
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5993
GUEST_INTR_STATE_NMI);
5994
5995
if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
5996
context_invalid) {
5997
vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
5998
vcpu->run->notify.flags = context_invalid ?
5999
KVM_NOTIFY_CONTEXT_INVALID : 0;
6000
return 0;
6001
}
6002
6003
return 1;
6004
}
6005
6006
/*
6007
* The exit handlers return 1 if the exit was handled fully and guest execution
6008
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
6009
* to be done to userspace and return 0.
6010
*/
6011
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6012
[EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6013
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6014
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6015
[EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6016
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
6017
[EXIT_REASON_CR_ACCESS] = handle_cr,
6018
[EXIT_REASON_DR_ACCESS] = handle_dr,
6019
[EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6020
[EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6021
[EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6022
[EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6023
[EXIT_REASON_HLT] = kvm_emulate_halt,
6024
[EXIT_REASON_INVD] = kvm_emulate_invd,
6025
[EXIT_REASON_INVLPG] = handle_invlpg,
6026
[EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6027
[EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6028
[EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6029
[EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6030
[EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6031
[EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6032
[EXIT_REASON_VMREAD] = handle_vmx_instruction,
6033
[EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6034
[EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6035
[EXIT_REASON_VMOFF] = handle_vmx_instruction,
6036
[EXIT_REASON_VMON] = handle_vmx_instruction,
6037
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6038
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6039
[EXIT_REASON_APIC_WRITE] = handle_apic_write,
6040
[EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6041
[EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6042
[EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6043
[EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6044
[EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6045
[EXIT_REASON_GDTR_IDTR] = handle_desc,
6046
[EXIT_REASON_LDTR_TR] = handle_desc,
6047
[EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6048
[EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6049
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6050
[EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6051
[EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6052
[EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6053
[EXIT_REASON_INVEPT] = handle_vmx_instruction,
6054
[EXIT_REASON_INVVPID] = handle_vmx_instruction,
6055
[EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6056
[EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6057
[EXIT_REASON_PML_FULL] = handle_pml_full,
6058
[EXIT_REASON_INVPCID] = handle_invpcid,
6059
[EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6060
[EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6061
[EXIT_REASON_ENCLS] = handle_encls,
6062
[EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6063
[EXIT_REASON_NOTIFY] = handle_notify,
6064
};
6065
6066
static const int kvm_vmx_max_exit_handlers =
6067
ARRAY_SIZE(kvm_vmx_exit_handlers);
6068
6069
void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6070
u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6071
{
6072
struct vcpu_vmx *vmx = to_vmx(vcpu);
6073
6074
*reason = vmx->vt.exit_reason.full;
6075
*info1 = vmx_get_exit_qual(vcpu);
6076
if (!(vmx->vt.exit_reason.failed_vmentry)) {
6077
*info2 = vmx->idt_vectoring_info;
6078
*intr_info = vmx_get_intr_info(vcpu);
6079
if (is_exception_with_error_code(*intr_info))
6080
*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6081
else
6082
*error_code = 0;
6083
} else {
6084
*info2 = 0;
6085
*intr_info = 0;
6086
*error_code = 0;
6087
}
6088
}
6089
6090
void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6091
{
6092
*intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6093
if (is_exception_with_error_code(*intr_info))
6094
*error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6095
else
6096
*error_code = 0;
6097
}
6098
6099
static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6100
{
6101
if (vmx->pml_pg) {
6102
__free_page(vmx->pml_pg);
6103
vmx->pml_pg = NULL;
6104
}
6105
}
6106
6107
static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6108
{
6109
struct vcpu_vmx *vmx = to_vmx(vcpu);
6110
u16 pml_idx, pml_tail_index;
6111
u64 *pml_buf;
6112
int i;
6113
6114
pml_idx = vmcs_read16(GUEST_PML_INDEX);
6115
6116
/* Do nothing if PML buffer is empty */
6117
if (pml_idx == PML_HEAD_INDEX)
6118
return;
6119
/*
6120
* PML index always points to the next available PML buffer entity
6121
* unless PML log has just overflowed.
6122
*/
6123
pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6124
6125
/*
6126
* PML log is written backwards: the CPU first writes the entry 511
6127
* then the entry 510, and so on.
6128
*
6129
* Read the entries in the same order they were written, to ensure that
6130
* the dirty ring is filled in the same order the CPU wrote them.
6131
*/
6132
pml_buf = page_address(vmx->pml_pg);
6133
6134
for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6135
u64 gpa;
6136
6137
gpa = pml_buf[i];
6138
WARN_ON(gpa & (PAGE_SIZE - 1));
6139
kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6140
}
6141
6142
/* reset PML index */
6143
vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6144
}
6145
6146
static void vmx_dump_sel(char *name, uint32_t sel)
6147
{
6148
pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6149
name, vmcs_read16(sel),
6150
vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6151
vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6152
vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6153
}
6154
6155
static void vmx_dump_dtsel(char *name, uint32_t limit)
6156
{
6157
pr_err("%s limit=0x%08x, base=0x%016lx\n",
6158
name, vmcs_read32(limit),
6159
vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6160
}
6161
6162
static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6163
{
6164
unsigned int i;
6165
struct vmx_msr_entry *e;
6166
6167
pr_err("MSR %s:\n", name);
6168
for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6169
pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6170
}
6171
6172
void dump_vmcs(struct kvm_vcpu *vcpu)
6173
{
6174
struct vcpu_vmx *vmx = to_vmx(vcpu);
6175
u32 vmentry_ctl, vmexit_ctl;
6176
u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6177
u64 tertiary_exec_control;
6178
unsigned long cr4;
6179
int efer_slot;
6180
6181
if (!dump_invalid_vmcs) {
6182
pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6183
return;
6184
}
6185
6186
vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6187
vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6188
cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6189
pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6190
cr4 = vmcs_readl(GUEST_CR4);
6191
6192
if (cpu_has_secondary_exec_ctrls())
6193
secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6194
else
6195
secondary_exec_control = 0;
6196
6197
if (cpu_has_tertiary_exec_ctrls())
6198
tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6199
else
6200
tertiary_exec_control = 0;
6201
6202
pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6203
vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6204
pr_err("*** Guest State ***\n");
6205
pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6206
vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6207
vmcs_readl(CR0_GUEST_HOST_MASK));
6208
pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6209
cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6210
pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6211
if (cpu_has_vmx_ept()) {
6212
pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6213
vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6214
pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6215
vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6216
}
6217
pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6218
vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6219
pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6220
vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6221
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6222
vmcs_readl(GUEST_SYSENTER_ESP),
6223
vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6224
vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6225
vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6226
vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6227
vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6228
vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6229
vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6230
vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6231
vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6232
vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6233
vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6234
efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6235
if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6236
pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6237
else if (efer_slot >= 0)
6238
pr_err("EFER= 0x%016llx (autoload)\n",
6239
vmx->msr_autoload.guest.val[efer_slot].value);
6240
else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6241
pr_err("EFER= 0x%016llx (effective)\n",
6242
vcpu->arch.efer | (EFER_LMA | EFER_LME));
6243
else
6244
pr_err("EFER= 0x%016llx (effective)\n",
6245
vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6246
if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6247
pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6248
pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6249
vmcs_read64(GUEST_IA32_DEBUGCTL),
6250
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6251
if (cpu_has_load_perf_global_ctrl() &&
6252
vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6253
pr_err("PerfGlobCtl = 0x%016llx\n",
6254
vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6255
if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6256
pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6257
pr_err("Interruptibility = %08x ActivityState = %08x\n",
6258
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6259
vmcs_read32(GUEST_ACTIVITY_STATE));
6260
if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6261
pr_err("InterruptStatus = %04x\n",
6262
vmcs_read16(GUEST_INTR_STATUS));
6263
if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6264
vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6265
if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6266
vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6267
6268
pr_err("*** Host State ***\n");
6269
pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6270
vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6271
pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6272
vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6273
vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6274
vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6275
vmcs_read16(HOST_TR_SELECTOR));
6276
pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6277
vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6278
vmcs_readl(HOST_TR_BASE));
6279
pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6280
vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6281
pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6282
vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6283
vmcs_readl(HOST_CR4));
6284
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6285
vmcs_readl(HOST_IA32_SYSENTER_ESP),
6286
vmcs_read32(HOST_IA32_SYSENTER_CS),
6287
vmcs_readl(HOST_IA32_SYSENTER_EIP));
6288
if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6289
pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6290
if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6291
pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6292
if (cpu_has_load_perf_global_ctrl() &&
6293
vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6294
pr_err("PerfGlobCtl = 0x%016llx\n",
6295
vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6296
if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6297
vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6298
6299
pr_err("*** Control State ***\n");
6300
pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6301
cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6302
pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6303
pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6304
pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6305
vmcs_read32(EXCEPTION_BITMAP),
6306
vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6307
vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6308
pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6309
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6310
vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6311
vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6312
pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6313
vmcs_read32(VM_EXIT_INTR_INFO),
6314
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6315
vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6316
pr_err(" reason=%08x qualification=%016lx\n",
6317
vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6318
pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6319
vmcs_read32(IDT_VECTORING_INFO_FIELD),
6320
vmcs_read32(IDT_VECTORING_ERROR_CODE));
6321
pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6322
if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6323
pr_err("TSC Multiplier = 0x%016llx\n",
6324
vmcs_read64(TSC_MULTIPLIER));
6325
if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6326
if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6327
u16 status = vmcs_read16(GUEST_INTR_STATUS);
6328
pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6329
}
6330
pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6331
if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6332
pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6333
pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6334
}
6335
if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6336
pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6337
if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6338
pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6339
if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6340
pr_err("PLE Gap=%08x Window=%08x\n",
6341
vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6342
if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6343
pr_err("Virtual processor ID = 0x%04x\n",
6344
vmcs_read16(VIRTUAL_PROCESSOR_ID));
6345
if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6346
struct vmx_ve_information *ve_info = vmx->ve_info;
6347
u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6348
6349
/*
6350
* If KVM is dumping the VMCS, then something has gone wrong
6351
* already. Derefencing an address from the VMCS, which could
6352
* very well be corrupted, is a terrible idea. The virtual
6353
* address is known so use it.
6354
*/
6355
pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6356
ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6357
pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6358
ve_info->exit_reason, ve_info->delivery,
6359
ve_info->exit_qualification,
6360
ve_info->guest_linear_address,
6361
ve_info->guest_physical_address, ve_info->eptp_index);
6362
}
6363
}
6364
6365
/*
6366
* The guest has exited. See if we can fix it or if we need userspace
6367
* assistance.
6368
*/
6369
static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6370
{
6371
struct vcpu_vmx *vmx = to_vmx(vcpu);
6372
union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
6373
u32 vectoring_info = vmx->idt_vectoring_info;
6374
u16 exit_handler_index;
6375
6376
/*
6377
* Flush logged GPAs PML buffer, this will make dirty_bitmap more
6378
* updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6379
* querying dirty_bitmap, we only need to kick all vcpus out of guest
6380
* mode as if vcpus is in root mode, the PML buffer must has been
6381
* flushed already. Note, PML is never enabled in hardware while
6382
* running L2.
6383
*/
6384
if (enable_pml && !is_guest_mode(vcpu))
6385
vmx_flush_pml_buffer(vcpu);
6386
6387
/*
6388
* KVM should never reach this point with a pending nested VM-Enter.
6389
* More specifically, short-circuiting VM-Entry to emulate L2 due to
6390
* invalid guest state should never happen as that means KVM knowingly
6391
* allowed a nested VM-Enter with an invalid vmcs12. More below.
6392
*/
6393
if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6394
return -EIO;
6395
6396
if (is_guest_mode(vcpu)) {
6397
/*
6398
* PML is never enabled when running L2, bail immediately if a
6399
* PML full exit occurs as something is horribly wrong.
6400
*/
6401
if (exit_reason.basic == EXIT_REASON_PML_FULL)
6402
goto unexpected_vmexit;
6403
6404
/*
6405
* The host physical addresses of some pages of guest memory
6406
* are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6407
* Page). The CPU may write to these pages via their host
6408
* physical address while L2 is running, bypassing any
6409
* address-translation-based dirty tracking (e.g. EPT write
6410
* protection).
6411
*
6412
* Mark them dirty on every exit from L2 to prevent them from
6413
* getting out of sync with dirty tracking.
6414
*/
6415
nested_mark_vmcs12_pages_dirty(vcpu);
6416
6417
/*
6418
* Synthesize a triple fault if L2 state is invalid. In normal
6419
* operation, nested VM-Enter rejects any attempt to enter L2
6420
* with invalid state. However, those checks are skipped if
6421
* state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6422
* L2 state is invalid, it means either L1 modified SMRAM state
6423
* or userspace provided bad state. Synthesize TRIPLE_FAULT as
6424
* doing so is architecturally allowed in the RSM case, and is
6425
* the least awful solution for the userspace case without
6426
* risking false positives.
6427
*/
6428
if (vmx->vt.emulation_required) {
6429
nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6430
return 1;
6431
}
6432
6433
if (nested_vmx_reflect_vmexit(vcpu))
6434
return 1;
6435
}
6436
6437
/* If guest state is invalid, start emulating. L2 is handled above. */
6438
if (vmx->vt.emulation_required)
6439
return handle_invalid_guest_state(vcpu);
6440
6441
if (exit_reason.failed_vmentry) {
6442
dump_vmcs(vcpu);
6443
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6444
vcpu->run->fail_entry.hardware_entry_failure_reason
6445
= exit_reason.full;
6446
vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6447
return 0;
6448
}
6449
6450
if (unlikely(vmx->fail)) {
6451
dump_vmcs(vcpu);
6452
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6453
vcpu->run->fail_entry.hardware_entry_failure_reason
6454
= vmcs_read32(VM_INSTRUCTION_ERROR);
6455
vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6456
return 0;
6457
}
6458
6459
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6460
(exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6461
exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6462
exit_reason.basic != EXIT_REASON_PML_FULL &&
6463
exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6464
exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6465
exit_reason.basic != EXIT_REASON_NOTIFY &&
6466
exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6467
kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6468
return 0;
6469
}
6470
6471
if (unlikely(!enable_vnmi &&
6472
vmx->loaded_vmcs->soft_vnmi_blocked)) {
6473
if (!vmx_interrupt_blocked(vcpu)) {
6474
vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6475
} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6476
vcpu->arch.nmi_pending) {
6477
/*
6478
* This CPU don't support us in finding the end of an
6479
* NMI-blocked window if the guest runs with IRQs
6480
* disabled. So we pull the trigger after 1 s of
6481
* futile waiting, but inform the user about this.
6482
*/
6483
printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6484
"state on VCPU %d after 1 s timeout\n",
6485
__func__, vcpu->vcpu_id);
6486
vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6487
}
6488
}
6489
6490
if (exit_fastpath != EXIT_FASTPATH_NONE)
6491
return 1;
6492
6493
if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6494
goto unexpected_vmexit;
6495
#ifdef CONFIG_MITIGATION_RETPOLINE
6496
if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6497
return kvm_emulate_wrmsr(vcpu);
6498
else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6499
return handle_preemption_timer(vcpu);
6500
else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6501
return handle_interrupt_window(vcpu);
6502
else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6503
return handle_external_interrupt(vcpu);
6504
else if (exit_reason.basic == EXIT_REASON_HLT)
6505
return kvm_emulate_halt(vcpu);
6506
else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6507
return handle_ept_misconfig(vcpu);
6508
#endif
6509
6510
exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6511
kvm_vmx_max_exit_handlers);
6512
if (!kvm_vmx_exit_handlers[exit_handler_index])
6513
goto unexpected_vmexit;
6514
6515
return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6516
6517
unexpected_vmexit:
6518
vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6519
exit_reason.full);
6520
dump_vmcs(vcpu);
6521
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6522
vcpu->run->internal.suberror =
6523
KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6524
vcpu->run->internal.ndata = 2;
6525
vcpu->run->internal.data[0] = exit_reason.full;
6526
vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6527
return 0;
6528
}
6529
6530
int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6531
{
6532
int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6533
6534
/*
6535
* Exit to user space when bus lock detected to inform that there is
6536
* a bus lock in guest.
6537
*/
6538
if (vmx_get_exit_reason(vcpu).bus_lock_detected) {
6539
if (ret > 0)
6540
vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6541
6542
vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6543
return 0;
6544
}
6545
return ret;
6546
}
6547
6548
/*
6549
* Software based L1D cache flush which is used when microcode providing
6550
* the cache control MSR is not loaded.
6551
*
6552
* The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6553
* flush it is required to read in 64 KiB because the replacement algorithm
6554
* is not exactly LRU. This could be sized at runtime via topology
6555
* information but as all relevant affected CPUs have 32KiB L1D cache size
6556
* there is no point in doing so.
6557
*/
6558
static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6559
{
6560
int size = PAGE_SIZE << L1D_CACHE_ORDER;
6561
6562
/*
6563
* This code is only executed when the flush mode is 'cond' or
6564
* 'always'
6565
*/
6566
if (static_branch_likely(&vmx_l1d_flush_cond)) {
6567
bool flush_l1d;
6568
6569
/*
6570
* Clear the per-vcpu flush bit, it gets set again if the vCPU
6571
* is reloaded, i.e. if the vCPU is scheduled out or if KVM
6572
* exits to userspace, or if KVM reaches one of the unsafe
6573
* VMEXIT handlers, e.g. if KVM calls into the emulator.
6574
*/
6575
flush_l1d = vcpu->arch.l1tf_flush_l1d;
6576
vcpu->arch.l1tf_flush_l1d = false;
6577
6578
/*
6579
* Clear the per-cpu flush bit, it gets set again from
6580
* the interrupt handlers.
6581
*/
6582
flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6583
kvm_clear_cpu_l1tf_flush_l1d();
6584
6585
if (!flush_l1d)
6586
return;
6587
}
6588
6589
vcpu->stat.l1d_flush++;
6590
6591
if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6592
native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6593
return;
6594
}
6595
6596
asm volatile(
6597
/* First ensure the pages are in the TLB */
6598
"xorl %%eax, %%eax\n"
6599
".Lpopulate_tlb:\n\t"
6600
"movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6601
"addl $4096, %%eax\n\t"
6602
"cmpl %%eax, %[size]\n\t"
6603
"jne .Lpopulate_tlb\n\t"
6604
"xorl %%eax, %%eax\n\t"
6605
"cpuid\n\t"
6606
/* Now fill the cache */
6607
"xorl %%eax, %%eax\n"
6608
".Lfill_cache:\n"
6609
"movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6610
"addl $64, %%eax\n\t"
6611
"cmpl %%eax, %[size]\n\t"
6612
"jne .Lfill_cache\n\t"
6613
"lfence\n"
6614
:: [flush_pages] "r" (vmx_l1d_flush_pages),
6615
[size] "r" (size)
6616
: "eax", "ebx", "ecx", "edx");
6617
}
6618
6619
void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6620
{
6621
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6622
int tpr_threshold;
6623
6624
if (is_guest_mode(vcpu) &&
6625
nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6626
return;
6627
6628
tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6629
if (is_guest_mode(vcpu))
6630
to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6631
else
6632
vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6633
}
6634
6635
void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6636
{
6637
struct vcpu_vmx *vmx = to_vmx(vcpu);
6638
u32 sec_exec_control;
6639
6640
if (!lapic_in_kernel(vcpu))
6641
return;
6642
6643
if (!flexpriority_enabled &&
6644
!cpu_has_vmx_virtualize_x2apic_mode())
6645
return;
6646
6647
/* Postpone execution until vmcs01 is the current VMCS. */
6648
if (is_guest_mode(vcpu)) {
6649
vmx->nested.change_vmcs01_virtual_apic_mode = true;
6650
return;
6651
}
6652
6653
sec_exec_control = secondary_exec_controls_get(vmx);
6654
sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6655
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6656
6657
switch (kvm_get_apic_mode(vcpu)) {
6658
case LAPIC_MODE_INVALID:
6659
WARN_ONCE(true, "Invalid local APIC state");
6660
break;
6661
case LAPIC_MODE_DISABLED:
6662
break;
6663
case LAPIC_MODE_XAPIC:
6664
if (flexpriority_enabled) {
6665
sec_exec_control |=
6666
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6667
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6668
6669
/*
6670
* Flush the TLB, reloading the APIC access page will
6671
* only do so if its physical address has changed, but
6672
* the guest may have inserted a non-APIC mapping into
6673
* the TLB while the APIC access page was disabled.
6674
*/
6675
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6676
}
6677
break;
6678
case LAPIC_MODE_X2APIC:
6679
if (cpu_has_vmx_virtualize_x2apic_mode())
6680
sec_exec_control |=
6681
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6682
break;
6683
}
6684
secondary_exec_controls_set(vmx, sec_exec_control);
6685
6686
vmx_update_msr_bitmap_x2apic(vcpu);
6687
}
6688
6689
void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6690
{
6691
const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6692
struct kvm *kvm = vcpu->kvm;
6693
struct kvm_memslots *slots = kvm_memslots(kvm);
6694
struct kvm_memory_slot *slot;
6695
struct page *refcounted_page;
6696
unsigned long mmu_seq;
6697
kvm_pfn_t pfn;
6698
bool writable;
6699
6700
/* Defer reload until vmcs01 is the current VMCS. */
6701
if (is_guest_mode(vcpu)) {
6702
to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6703
return;
6704
}
6705
6706
if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6707
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6708
return;
6709
6710
/*
6711
* Explicitly grab the memslot using KVM's internal slot ID to ensure
6712
* KVM doesn't unintentionally grab a userspace memslot. It _should_
6713
* be impossible for userspace to create a memslot for the APIC when
6714
* APICv is enabled, but paranoia won't hurt in this case.
6715
*/
6716
slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6717
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6718
return;
6719
6720
/*
6721
* Ensure that the mmu_notifier sequence count is read before KVM
6722
* retrieves the pfn from the primary MMU. Note, the memslot is
6723
* protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6724
* in kvm_mmu_invalidate_end().
6725
*/
6726
mmu_seq = kvm->mmu_invalidate_seq;
6727
smp_rmb();
6728
6729
/*
6730
* No need to retry if the memslot does not exist or is invalid. KVM
6731
* controls the APIC-access page memslot, and only deletes the memslot
6732
* if APICv is permanently inhibited, i.e. the memslot won't reappear.
6733
*/
6734
pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6735
if (is_error_noslot_pfn(pfn))
6736
return;
6737
6738
read_lock(&vcpu->kvm->mmu_lock);
6739
if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6740
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6741
else
6742
vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6743
6744
/*
6745
* Do not pin the APIC access page in memory so that it can be freely
6746
* migrated, the MMU notifier will call us again if it is migrated or
6747
* swapped out. KVM backs the memslot with anonymous memory, the pfn
6748
* should always point at a refcounted page (if the pfn is valid).
6749
*/
6750
if (!WARN_ON_ONCE(!refcounted_page))
6751
kvm_release_page_clean(refcounted_page);
6752
6753
/*
6754
* No need for a manual TLB flush at this point, KVM has already done a
6755
* flush if there were SPTEs pointing at the previous page.
6756
*/
6757
read_unlock(&vcpu->kvm->mmu_lock);
6758
}
6759
6760
void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6761
{
6762
u16 status;
6763
u8 old;
6764
6765
/*
6766
* If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6767
* is only relevant for if and only if Virtual Interrupt Delivery is
6768
* enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6769
* vAPIC, not L1's vAPIC. KVM must update vmcs01 on the next nested
6770
* VM-Exit, otherwise L1 with run with a stale SVI.
6771
*/
6772
if (is_guest_mode(vcpu)) {
6773
/*
6774
* KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6775
* is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6776
* Note, userspace can stuff state while L2 is active; assert
6777
* that VID is disabled if and only if the vCPU is in KVM_RUN
6778
* to avoid false positives if userspace is setting APIC state.
6779
*/
6780
WARN_ON_ONCE(vcpu->wants_to_run &&
6781
nested_cpu_has_vid(get_vmcs12(vcpu)));
6782
to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6783
return;
6784
}
6785
6786
if (max_isr == -1)
6787
max_isr = 0;
6788
6789
status = vmcs_read16(GUEST_INTR_STATUS);
6790
old = status >> 8;
6791
if (max_isr != old) {
6792
status &= 0xff;
6793
status |= max_isr << 8;
6794
vmcs_write16(GUEST_INTR_STATUS, status);
6795
}
6796
}
6797
6798
static void vmx_set_rvi(int vector)
6799
{
6800
u16 status;
6801
u8 old;
6802
6803
if (vector == -1)
6804
vector = 0;
6805
6806
status = vmcs_read16(GUEST_INTR_STATUS);
6807
old = (u8)status & 0xff;
6808
if ((u8)vector != old) {
6809
status &= ~0xff;
6810
status |= (u8)vector;
6811
vmcs_write16(GUEST_INTR_STATUS, status);
6812
}
6813
}
6814
6815
int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6816
{
6817
struct vcpu_vt *vt = to_vt(vcpu);
6818
int max_irr;
6819
bool got_posted_interrupt;
6820
6821
if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6822
return -EIO;
6823
6824
if (pi_test_on(&vt->pi_desc)) {
6825
pi_clear_on(&vt->pi_desc);
6826
/*
6827
* IOMMU can write to PID.ON, so the barrier matters even on UP.
6828
* But on x86 this is just a compiler barrier anyway.
6829
*/
6830
smp_mb__after_atomic();
6831
got_posted_interrupt =
6832
kvm_apic_update_irr(vcpu, vt->pi_desc.pir, &max_irr);
6833
} else {
6834
max_irr = kvm_lapic_find_highest_irr(vcpu);
6835
got_posted_interrupt = false;
6836
}
6837
6838
/*
6839
* Newly recognized interrupts are injected via either virtual interrupt
6840
* delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6841
* disabled in two cases:
6842
*
6843
* 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6844
* wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6845
* VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6846
* into L2, but KVM doesn't use virtual interrupt delivery to inject
6847
* interrupts into L2, and so KVM_REQ_EVENT is again needed.
6848
*
6849
* 2) If APICv is disabled for this vCPU, assigned devices may still
6850
* attempt to post interrupts. The posted interrupt vector will cause
6851
* a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6852
*/
6853
if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6854
vmx_set_rvi(max_irr);
6855
else if (got_posted_interrupt)
6856
kvm_make_request(KVM_REQ_EVENT, vcpu);
6857
6858
return max_irr;
6859
}
6860
6861
void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6862
{
6863
if (!kvm_vcpu_apicv_active(vcpu))
6864
return;
6865
6866
vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6867
vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6868
vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6869
vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6870
}
6871
6872
void vmx_do_interrupt_irqoff(unsigned long entry);
6873
void vmx_do_nmi_irqoff(void);
6874
6875
static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6876
{
6877
/*
6878
* Save xfd_err to guest_fpu before interrupt is enabled, so the
6879
* MSR value is not clobbered by the host activity before the guest
6880
* has chance to consume it.
6881
*
6882
* Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
6883
* interception may have been caused by L1 interception. Per the SDM,
6884
* XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
6885
*
6886
* Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
6887
* unlike CR2 and DR6, the value is not a payload that is attached to
6888
* the #NM exception.
6889
*/
6890
if (is_xfd_nm_fault(vcpu))
6891
rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6892
}
6893
6894
static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6895
{
6896
/* if exit due to PF check for async PF */
6897
if (is_page_fault(intr_info))
6898
vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6899
/* if exit due to NM, handle before interrupts are enabled */
6900
else if (is_nm_fault(intr_info))
6901
handle_nm_fault_irqoff(vcpu);
6902
/* Handle machine checks before interrupts are enabled */
6903
else if (is_machine_check(intr_info))
6904
kvm_machine_check();
6905
}
6906
6907
static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
6908
u32 intr_info)
6909
{
6910
unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6911
6912
if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6913
"unexpected VM-Exit interrupt info: 0x%x", intr_info))
6914
return;
6915
6916
kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6917
if (cpu_feature_enabled(X86_FEATURE_FRED))
6918
fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
6919
else
6920
vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
6921
kvm_after_interrupt(vcpu);
6922
6923
vcpu->arch.at_instruction_boundary = true;
6924
}
6925
6926
void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6927
{
6928
if (to_vt(vcpu)->emulation_required)
6929
return;
6930
6931
if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6932
handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
6933
else if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXCEPTION_NMI)
6934
handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
6935
}
6936
6937
/*
6938
* The kvm parameter can be NULL (module initialization, or invocation before
6939
* VM creation). Be sure to check the kvm parameter before using it.
6940
*/
6941
bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6942
{
6943
switch (index) {
6944
case MSR_IA32_SMBASE:
6945
if (!IS_ENABLED(CONFIG_KVM_SMM))
6946
return false;
6947
/*
6948
* We cannot do SMM unless we can run the guest in big
6949
* real mode.
6950
*/
6951
return enable_unrestricted_guest || emulate_invalid_guest_state;
6952
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
6953
return nested;
6954
case MSR_AMD64_VIRT_SPEC_CTRL:
6955
case MSR_AMD64_TSC_RATIO:
6956
/* This is AMD only. */
6957
return false;
6958
default:
6959
return true;
6960
}
6961
}
6962
6963
static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6964
{
6965
u32 exit_intr_info;
6966
bool unblock_nmi;
6967
u8 vector;
6968
bool idtv_info_valid;
6969
6970
idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6971
6972
if (enable_vnmi) {
6973
if (vmx->loaded_vmcs->nmi_known_unmasked)
6974
return;
6975
6976
exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6977
unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6978
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6979
/*
6980
* SDM 3: 27.7.1.2 (September 2008)
6981
* Re-set bit "block by NMI" before VM entry if vmexit caused by
6982
* a guest IRET fault.
6983
* SDM 3: 23.2.2 (September 2008)
6984
* Bit 12 is undefined in any of the following cases:
6985
* If the VM exit sets the valid bit in the IDT-vectoring
6986
* information field.
6987
* If the VM exit is due to a double fault.
6988
*/
6989
if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6990
vector != DF_VECTOR && !idtv_info_valid)
6991
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6992
GUEST_INTR_STATE_NMI);
6993
else
6994
vmx->loaded_vmcs->nmi_known_unmasked =
6995
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6996
& GUEST_INTR_STATE_NMI);
6997
} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6998
vmx->loaded_vmcs->vnmi_blocked_time +=
6999
ktime_to_ns(ktime_sub(ktime_get(),
7000
vmx->loaded_vmcs->entry_time));
7001
}
7002
7003
static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7004
u32 idt_vectoring_info,
7005
int instr_len_field,
7006
int error_code_field)
7007
{
7008
u8 vector;
7009
int type;
7010
bool idtv_info_valid;
7011
7012
idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7013
7014
vcpu->arch.nmi_injected = false;
7015
kvm_clear_exception_queue(vcpu);
7016
kvm_clear_interrupt_queue(vcpu);
7017
7018
if (!idtv_info_valid)
7019
return;
7020
7021
kvm_make_request(KVM_REQ_EVENT, vcpu);
7022
7023
vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7024
type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7025
7026
switch (type) {
7027
case INTR_TYPE_NMI_INTR:
7028
vcpu->arch.nmi_injected = true;
7029
/*
7030
* SDM 3: 27.7.1.2 (September 2008)
7031
* Clear bit "block by NMI" before VM entry if a NMI
7032
* delivery faulted.
7033
*/
7034
vmx_set_nmi_mask(vcpu, false);
7035
break;
7036
case INTR_TYPE_SOFT_EXCEPTION:
7037
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7038
fallthrough;
7039
case INTR_TYPE_HARD_EXCEPTION: {
7040
u32 error_code = 0;
7041
7042
if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7043
error_code = vmcs_read32(error_code_field);
7044
7045
kvm_requeue_exception(vcpu, vector,
7046
idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7047
error_code);
7048
break;
7049
}
7050
case INTR_TYPE_SOFT_INTR:
7051
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7052
fallthrough;
7053
case INTR_TYPE_EXT_INTR:
7054
kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7055
break;
7056
default:
7057
break;
7058
}
7059
}
7060
7061
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7062
{
7063
__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7064
VM_EXIT_INSTRUCTION_LEN,
7065
IDT_VECTORING_ERROR_CODE);
7066
}
7067
7068
void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7069
{
7070
__vmx_complete_interrupts(vcpu,
7071
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7072
VM_ENTRY_INSTRUCTION_LEN,
7073
VM_ENTRY_EXCEPTION_ERROR_CODE);
7074
7075
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7076
}
7077
7078
static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7079
{
7080
int i, nr_msrs;
7081
struct perf_guest_switch_msr *msrs;
7082
struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7083
7084
pmu->host_cross_mapped_mask = 0;
7085
if (pmu->pebs_enable & pmu->global_ctrl)
7086
intel_pmu_cross_mapped_check(pmu);
7087
7088
/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7089
msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7090
if (!msrs)
7091
return;
7092
7093
for (i = 0; i < nr_msrs; i++)
7094
if (msrs[i].host == msrs[i].guest)
7095
clear_atomic_switch_msr(vmx, msrs[i].msr);
7096
else
7097
add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7098
msrs[i].host, false);
7099
}
7100
7101
static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7102
{
7103
struct vcpu_vmx *vmx = to_vmx(vcpu);
7104
u64 tscl;
7105
u32 delta_tsc;
7106
7107
if (force_immediate_exit) {
7108
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7109
vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7110
} else if (vmx->hv_deadline_tsc != -1) {
7111
tscl = rdtsc();
7112
if (vmx->hv_deadline_tsc > tscl)
7113
/* set_hv_timer ensures the delta fits in 32-bits */
7114
delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7115
cpu_preemption_timer_multi);
7116
else
7117
delta_tsc = 0;
7118
7119
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7120
vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7121
} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7122
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7123
vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7124
}
7125
}
7126
7127
void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7128
{
7129
if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7130
vmx->loaded_vmcs->host_state.rsp = host_rsp;
7131
vmcs_writel(HOST_RSP, host_rsp);
7132
}
7133
}
7134
7135
void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7136
unsigned int flags)
7137
{
7138
u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7139
7140
if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7141
return;
7142
7143
if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7144
vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL);
7145
7146
/*
7147
* If the guest/host SPEC_CTRL values differ, restore the host value.
7148
*
7149
* For legacy IBRS, the IBRS bit always needs to be written after
7150
* transitioning from a less privileged predictor mode, regardless of
7151
* whether the guest/host values differ.
7152
*/
7153
if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7154
vmx->spec_ctrl != hostval)
7155
native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval);
7156
7157
barrier_nospec();
7158
}
7159
7160
static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7161
bool force_immediate_exit)
7162
{
7163
/*
7164
* If L2 is active, some VMX preemption timer exits can be handled in
7165
* the fastpath even, all other exits must use the slow path.
7166
*/
7167
if (is_guest_mode(vcpu) &&
7168
vmx_get_exit_reason(vcpu).basic != EXIT_REASON_PREEMPTION_TIMER)
7169
return EXIT_FASTPATH_NONE;
7170
7171
switch (vmx_get_exit_reason(vcpu).basic) {
7172
case EXIT_REASON_MSR_WRITE:
7173
return handle_fastpath_set_msr_irqoff(vcpu);
7174
case EXIT_REASON_PREEMPTION_TIMER:
7175
return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7176
case EXIT_REASON_HLT:
7177
return handle_fastpath_hlt(vcpu);
7178
default:
7179
return EXIT_FASTPATH_NONE;
7180
}
7181
}
7182
7183
noinstr void vmx_handle_nmi(struct kvm_vcpu *vcpu)
7184
{
7185
if ((u16)vmx_get_exit_reason(vcpu).basic != EXIT_REASON_EXCEPTION_NMI ||
7186
!is_nmi(vmx_get_intr_info(vcpu)))
7187
return;
7188
7189
kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7190
if (cpu_feature_enabled(X86_FEATURE_FRED))
7191
fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7192
else
7193
vmx_do_nmi_irqoff();
7194
kvm_after_interrupt(vcpu);
7195
}
7196
7197
static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7198
unsigned int flags)
7199
{
7200
struct vcpu_vmx *vmx = to_vmx(vcpu);
7201
7202
guest_state_enter_irqoff();
7203
7204
/*
7205
* L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7206
* mitigation for MDS is done late in VMentry and is still
7207
* executed in spite of L1D Flush. This is because an extra VERW
7208
* should not matter much after the big hammer L1D Flush.
7209
*
7210
* cpu_buf_vm_clear is used when system is not vulnerable to MDS/TAA,
7211
* and is affected by MMIO Stale Data. In such cases mitigation in only
7212
* needed against an MMIO capable guest.
7213
*/
7214
if (static_branch_unlikely(&vmx_l1d_should_flush))
7215
vmx_l1d_flush(vcpu);
7216
else if (static_branch_unlikely(&cpu_buf_vm_clear) &&
7217
(flags & VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO))
7218
x86_clear_cpu_buffers();
7219
7220
vmx_disable_fb_clear(vmx);
7221
7222
if (vcpu->arch.cr2 != native_read_cr2())
7223
native_write_cr2(vcpu->arch.cr2);
7224
7225
vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7226
flags);
7227
7228
vcpu->arch.cr2 = native_read_cr2();
7229
vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7230
7231
vmx->idt_vectoring_info = 0;
7232
7233
vmx_enable_fb_clear(vmx);
7234
7235
if (unlikely(vmx->fail)) {
7236
vmx->vt.exit_reason.full = 0xdead;
7237
goto out;
7238
}
7239
7240
vmx->vt.exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7241
if (likely(!vmx_get_exit_reason(vcpu).failed_vmentry))
7242
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7243
7244
vmx_handle_nmi(vcpu);
7245
7246
out:
7247
guest_state_exit_irqoff();
7248
}
7249
7250
fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
7251
{
7252
bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
7253
struct vcpu_vmx *vmx = to_vmx(vcpu);
7254
unsigned long cr3, cr4;
7255
7256
/* Record the guest's net vcpu time for enforced NMI injections. */
7257
if (unlikely(!enable_vnmi &&
7258
vmx->loaded_vmcs->soft_vnmi_blocked))
7259
vmx->loaded_vmcs->entry_time = ktime_get();
7260
7261
/*
7262
* Don't enter VMX if guest state is invalid, let the exit handler
7263
* start emulation until we arrive back to a valid state. Synthesize a
7264
* consistency check VM-Exit due to invalid guest state and bail.
7265
*/
7266
if (unlikely(vmx->vt.emulation_required)) {
7267
vmx->fail = 0;
7268
7269
vmx->vt.exit_reason.full = EXIT_REASON_INVALID_STATE;
7270
vmx->vt.exit_reason.failed_vmentry = 1;
7271
kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7272
vmx->vt.exit_qualification = ENTRY_FAIL_DEFAULT;
7273
kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7274
vmx->vt.exit_intr_info = 0;
7275
return EXIT_FASTPATH_NONE;
7276
}
7277
7278
trace_kvm_entry(vcpu, force_immediate_exit);
7279
7280
if (vmx->ple_window_dirty) {
7281
vmx->ple_window_dirty = false;
7282
vmcs_write32(PLE_WINDOW, vmx->ple_window);
7283
}
7284
7285
/*
7286
* We did this in prepare_switch_to_guest, because it needs to
7287
* be within srcu_read_lock.
7288
*/
7289
WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7290
7291
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7292
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7293
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7294
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7295
vcpu->arch.regs_dirty = 0;
7296
7297
if (run_flags & KVM_RUN_LOAD_GUEST_DR6)
7298
set_debugreg(vcpu->arch.dr6, 6);
7299
7300
if (run_flags & KVM_RUN_LOAD_DEBUGCTL)
7301
vmx_reload_guest_debugctl(vcpu);
7302
7303
/*
7304
* Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7305
* prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7306
* it switches back to the current->mm, which can occur in KVM context
7307
* when switching to a temporary mm to patch kernel code, e.g. if KVM
7308
* toggles a static key while handling a VM-Exit.
7309
*/
7310
cr3 = __get_current_cr3_fast();
7311
if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7312
vmcs_writel(HOST_CR3, cr3);
7313
vmx->loaded_vmcs->host_state.cr3 = cr3;
7314
}
7315
7316
cr4 = cr4_read_shadow();
7317
if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7318
vmcs_writel(HOST_CR4, cr4);
7319
vmx->loaded_vmcs->host_state.cr4 = cr4;
7320
}
7321
7322
/* When single-stepping over STI and MOV SS, we must clear the
7323
* corresponding interruptibility bits in the guest state. Otherwise
7324
* vmentry fails as it then expects bit 14 (BS) in pending debug
7325
* exceptions being set, but that's not correct for the guest debugging
7326
* case. */
7327
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7328
vmx_set_interrupt_shadow(vcpu, 0);
7329
7330
kvm_load_guest_xsave_state(vcpu);
7331
7332
pt_guest_enter(vmx);
7333
7334
atomic_switch_perf_msrs(vmx);
7335
if (intel_pmu_lbr_is_enabled(vcpu))
7336
vmx_passthrough_lbr_msrs(vcpu);
7337
7338
if (enable_preemption_timer)
7339
vmx_update_hv_timer(vcpu, force_immediate_exit);
7340
else if (force_immediate_exit)
7341
smp_send_reschedule(vcpu->cpu);
7342
7343
kvm_wait_lapic_expire(vcpu);
7344
7345
/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7346
vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7347
7348
/* All fields are clean at this point */
7349
if (kvm_is_using_evmcs()) {
7350
current_evmcs->hv_clean_fields |=
7351
HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7352
7353
current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7354
}
7355
7356
/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7357
if (vcpu->arch.host_debugctl)
7358
update_debugctlmsr(vcpu->arch.host_debugctl);
7359
7360
#ifndef CONFIG_X86_64
7361
/*
7362
* The sysexit path does not restore ds/es, so we must set them to
7363
* a reasonable value ourselves.
7364
*
7365
* We can't defer this to vmx_prepare_switch_to_host() since that
7366
* function may be executed in interrupt context, which saves and
7367
* restore segments around it, nullifying its effect.
7368
*/
7369
loadsegment(ds, __USER_DS);
7370
loadsegment(es, __USER_DS);
7371
#endif
7372
7373
pt_guest_exit(vmx);
7374
7375
kvm_load_host_xsave_state(vcpu);
7376
7377
if (is_guest_mode(vcpu)) {
7378
/*
7379
* Track VMLAUNCH/VMRESUME that have made past guest state
7380
* checking.
7381
*/
7382
if (vmx->nested.nested_run_pending &&
7383
!vmx_get_exit_reason(vcpu).failed_vmentry)
7384
++vcpu->stat.nested_run;
7385
7386
vmx->nested.nested_run_pending = 0;
7387
}
7388
7389
if (unlikely(vmx->fail))
7390
return EXIT_FASTPATH_NONE;
7391
7392
if (unlikely((u16)vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
7393
kvm_machine_check();
7394
7395
trace_kvm_exit(vcpu, KVM_ISA_VMX);
7396
7397
if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry))
7398
return EXIT_FASTPATH_NONE;
7399
7400
vmx->loaded_vmcs->launched = 1;
7401
7402
vmx_recover_nmi_blocking(vmx);
7403
vmx_complete_interrupts(vmx);
7404
7405
return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7406
}
7407
7408
void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7409
{
7410
struct vcpu_vmx *vmx = to_vmx(vcpu);
7411
7412
if (enable_pml)
7413
vmx_destroy_pml_buffer(vmx);
7414
free_vpid(vmx->vpid);
7415
nested_vmx_free_vcpu(vcpu);
7416
free_loaded_vmcs(vmx->loaded_vmcs);
7417
free_page((unsigned long)vmx->ve_info);
7418
}
7419
7420
int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7421
{
7422
struct vmx_uret_msr *tsx_ctrl;
7423
struct vcpu_vmx *vmx;
7424
int i, err;
7425
7426
BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7427
vmx = to_vmx(vcpu);
7428
7429
INIT_LIST_HEAD(&vmx->vt.pi_wakeup_list);
7430
7431
err = -ENOMEM;
7432
7433
vmx->vpid = allocate_vpid();
7434
7435
/*
7436
* If PML is turned on, failure on enabling PML just results in failure
7437
* of creating the vcpu, therefore we can simplify PML logic (by
7438
* avoiding dealing with cases, such as enabling PML partially on vcpus
7439
* for the guest), etc.
7440
*/
7441
if (enable_pml) {
7442
vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7443
if (!vmx->pml_pg)
7444
goto free_vpid;
7445
}
7446
7447
for (i = 0; i < kvm_nr_uret_msrs; ++i)
7448
vmx->guest_uret_msrs[i].mask = -1ull;
7449
if (boot_cpu_has(X86_FEATURE_RTM)) {
7450
/*
7451
* TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7452
* Keep the host value unchanged to avoid changing CPUID bits
7453
* under the host kernel's feet.
7454
*/
7455
tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7456
if (tsx_ctrl)
7457
tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7458
}
7459
7460
err = alloc_loaded_vmcs(&vmx->vmcs01);
7461
if (err < 0)
7462
goto free_pml;
7463
7464
/*
7465
* Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7466
* nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7467
* feature only for vmcs01, KVM currently isn't equipped to realize any
7468
* performance benefits from enabling it for vmcs02.
7469
*/
7470
if (kvm_is_using_evmcs() &&
7471
(ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7472
struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7473
7474
evmcs->hv_enlightenments_control.msr_bitmap = 1;
7475
}
7476
7477
vmx->loaded_vmcs = &vmx->vmcs01;
7478
7479
if (cpu_need_virtualize_apic_accesses(vcpu)) {
7480
err = kvm_alloc_apic_access_page(vcpu->kvm);
7481
if (err)
7482
goto free_vmcs;
7483
}
7484
7485
if (enable_ept && !enable_unrestricted_guest) {
7486
err = init_rmode_identity_map(vcpu->kvm);
7487
if (err)
7488
goto free_vmcs;
7489
}
7490
7491
err = -ENOMEM;
7492
if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7493
struct page *page;
7494
7495
BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7496
7497
/* ve_info must be page aligned. */
7498
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7499
if (!page)
7500
goto free_vmcs;
7501
7502
vmx->ve_info = page_to_virt(page);
7503
}
7504
7505
if (vmx_can_use_ipiv(vcpu))
7506
WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7507
__pa(&vmx->vt.pi_desc) | PID_TABLE_ENTRY_VALID);
7508
7509
return 0;
7510
7511
free_vmcs:
7512
free_loaded_vmcs(vmx->loaded_vmcs);
7513
free_pml:
7514
vmx_destroy_pml_buffer(vmx);
7515
free_vpid:
7516
free_vpid(vmx->vpid);
7517
return err;
7518
}
7519
7520
#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7521
#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7522
7523
int vmx_vm_init(struct kvm *kvm)
7524
{
7525
if (!ple_gap)
7526
kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
7527
7528
if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7529
switch (l1tf_mitigation) {
7530
case L1TF_MITIGATION_OFF:
7531
case L1TF_MITIGATION_FLUSH_NOWARN:
7532
/* 'I explicitly don't care' is set */
7533
break;
7534
case L1TF_MITIGATION_AUTO:
7535
case L1TF_MITIGATION_FLUSH:
7536
case L1TF_MITIGATION_FLUSH_NOSMT:
7537
case L1TF_MITIGATION_FULL:
7538
/*
7539
* Warn upon starting the first VM in a potentially
7540
* insecure environment.
7541
*/
7542
if (sched_smt_active())
7543
pr_warn_once(L1TF_MSG_SMT);
7544
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7545
pr_warn_once(L1TF_MSG_L1D);
7546
break;
7547
case L1TF_MITIGATION_FULL_FORCE:
7548
/* Flush is enforced */
7549
break;
7550
}
7551
}
7552
7553
if (enable_pml)
7554
kvm->arch.cpu_dirty_log_size = PML_LOG_NR_ENTRIES;
7555
return 0;
7556
}
7557
7558
static inline bool vmx_ignore_guest_pat(struct kvm *kvm)
7559
{
7560
/*
7561
* Non-coherent DMA devices need the guest to flush CPU properly.
7562
* In that case it is not possible to map all guest RAM as WB, so
7563
* always trust guest PAT.
7564
*/
7565
return !kvm_arch_has_noncoherent_dma(kvm) &&
7566
kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT);
7567
}
7568
7569
u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7570
{
7571
/*
7572
* Force UC for host MMIO regions, as allowing the guest to access MMIO
7573
* with cacheable accesses will result in Machine Checks.
7574
*/
7575
if (is_mmio)
7576
return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7577
7578
/* Force WB if ignoring guest PAT */
7579
if (vmx_ignore_guest_pat(vcpu->kvm))
7580
return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7581
7582
return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7583
}
7584
7585
static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7586
{
7587
/*
7588
* These bits in the secondary execution controls field
7589
* are dynamic, the others are mostly based on the hypervisor
7590
* architecture and the guest's CPUID. Do not touch the
7591
* dynamic bits.
7592
*/
7593
u32 mask =
7594
SECONDARY_EXEC_SHADOW_VMCS |
7595
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7596
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7597
SECONDARY_EXEC_DESC;
7598
7599
u32 cur_ctl = secondary_exec_controls_get(vmx);
7600
7601
secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7602
}
7603
7604
/*
7605
* Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7606
* (indicating "allowed-1") if they are supported in the guest's CPUID.
7607
*/
7608
static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7609
{
7610
struct vcpu_vmx *vmx = to_vmx(vcpu);
7611
struct kvm_cpuid_entry2 *entry;
7612
7613
vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7614
vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7615
7616
#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7617
if (entry && (entry->_reg & (_cpuid_mask))) \
7618
vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7619
} while (0)
7620
7621
entry = kvm_find_cpuid_entry(vcpu, 0x1);
7622
cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7623
cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7624
cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7625
cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7626
cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7627
cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7628
cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7629
cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7630
cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7631
cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7632
cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7633
cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7634
cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7635
cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7636
7637
entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7638
cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7639
cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7640
cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7641
cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7642
cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7643
cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7644
7645
entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7646
cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM));
7647
7648
#undef cr4_fixed1_update
7649
}
7650
7651
static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7652
{
7653
struct vcpu_vmx *vmx = to_vmx(vcpu);
7654
struct kvm_cpuid_entry2 *best = NULL;
7655
int i;
7656
7657
for (i = 0; i < PT_CPUID_LEAVES; i++) {
7658
best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7659
if (!best)
7660
return;
7661
vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7662
vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7663
vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7664
vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7665
}
7666
7667
/* Get the number of configurable Address Ranges for filtering */
7668
vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7669
PT_CAP_num_address_ranges);
7670
7671
/* Initialize and clear the no dependency bits */
7672
vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7673
RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7674
RTIT_CTL_BRANCH_EN);
7675
7676
/*
7677
* If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7678
* will inject an #GP
7679
*/
7680
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7681
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7682
7683
/*
7684
* If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7685
* PSBFreq can be set
7686
*/
7687
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7688
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7689
RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7690
7691
/*
7692
* If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7693
*/
7694
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7695
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7696
RTIT_CTL_MTC_RANGE);
7697
7698
/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7699
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7700
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7701
RTIT_CTL_PTW_EN);
7702
7703
/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7704
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7705
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7706
7707
/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7708
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7709
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7710
7711
/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7712
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7713
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7714
7715
/* unmask address range configure area */
7716
for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7717
vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7718
}
7719
7720
void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7721
{
7722
struct vcpu_vmx *vmx = to_vmx(vcpu);
7723
7724
/*
7725
* XSAVES is effectively enabled if and only if XSAVE is also exposed
7726
* to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7727
* set if and only if XSAVE is supported.
7728
*/
7729
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7730
guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7731
7732
vmx_setup_uret_msrs(vmx);
7733
7734
if (cpu_has_secondary_exec_ctrls())
7735
vmcs_set_secondary_exec_control(vmx,
7736
vmx_secondary_exec_control(vmx));
7737
7738
if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7739
vmx->msr_ia32_feature_control_valid_bits |=
7740
FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7741
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7742
else
7743
vmx->msr_ia32_feature_control_valid_bits &=
7744
~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7745
FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7746
7747
if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7748
nested_vmx_cr_fixed1_bits_update(vcpu);
7749
7750
if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7751
guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7752
update_intel_pt_cfg(vcpu);
7753
7754
if (boot_cpu_has(X86_FEATURE_RTM)) {
7755
struct vmx_uret_msr *msr;
7756
msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7757
if (msr) {
7758
bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7759
vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7760
}
7761
}
7762
7763
set_cr4_guest_host_mask(vmx);
7764
7765
vmx_write_encls_bitmap(vcpu, NULL);
7766
if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7767
vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7768
else
7769
vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7770
7771
if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7772
vmx->msr_ia32_feature_control_valid_bits |=
7773
FEAT_CTL_SGX_LC_ENABLED;
7774
else
7775
vmx->msr_ia32_feature_control_valid_bits &=
7776
~FEAT_CTL_SGX_LC_ENABLED;
7777
7778
/* Recalc MSR interception to account for feature changes. */
7779
vmx_recalc_msr_intercepts(vcpu);
7780
7781
/* Refresh #PF interception to account for MAXPHYADDR changes. */
7782
vmx_update_exception_bitmap(vcpu);
7783
}
7784
7785
static __init u64 vmx_get_perf_capabilities(void)
7786
{
7787
u64 perf_cap = PMU_CAP_FW_WRITES;
7788
u64 host_perf_cap = 0;
7789
7790
if (!enable_pmu)
7791
return 0;
7792
7793
if (boot_cpu_has(X86_FEATURE_PDCM))
7794
rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7795
7796
if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7797
x86_perf_get_lbr(&vmx_lbr_caps);
7798
7799
/*
7800
* KVM requires LBR callstack support, as the overhead due to
7801
* context switching LBRs without said support is too high.
7802
* See intel_pmu_create_guest_lbr_event() for more info.
7803
*/
7804
if (!vmx_lbr_caps.has_callstack)
7805
memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7806
else if (vmx_lbr_caps.nr)
7807
perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7808
}
7809
7810
if (vmx_pebs_supported()) {
7811
perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7812
7813
/*
7814
* Disallow adaptive PEBS as it is functionally broken, can be
7815
* used by the guest to read *host* LBRs, and can be used to
7816
* bypass userspace event filters. To correctly and safely
7817
* support adaptive PEBS, KVM needs to:
7818
*
7819
* 1. Account for the ADAPTIVE flag when (re)programming fixed
7820
* counters.
7821
*
7822
* 2. Gain support from perf (or take direct control of counter
7823
* programming) to support events without adaptive PEBS
7824
* enabled for the hardware counter.
7825
*
7826
* 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7827
* adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7828
*
7829
* 4. Document which PMU events are effectively exposed to the
7830
* guest via adaptive PEBS, and make adaptive PEBS mutually
7831
* exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7832
*/
7833
perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7834
}
7835
7836
return perf_cap;
7837
}
7838
7839
static __init void vmx_set_cpu_caps(void)
7840
{
7841
kvm_set_cpu_caps();
7842
7843
/* CPUID 0x1 */
7844
if (nested)
7845
kvm_cpu_cap_set(X86_FEATURE_VMX);
7846
7847
/* CPUID 0x7 */
7848
if (kvm_mpx_supported())
7849
kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7850
if (!cpu_has_vmx_invpcid())
7851
kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7852
if (vmx_pt_mode_is_host_guest())
7853
kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7854
if (vmx_pebs_supported()) {
7855
kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7856
kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7857
}
7858
7859
if (!enable_pmu)
7860
kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7861
kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7862
7863
if (!enable_sgx) {
7864
kvm_cpu_cap_clear(X86_FEATURE_SGX);
7865
kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7866
kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7867
kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7868
kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7869
}
7870
7871
if (vmx_umip_emulated())
7872
kvm_cpu_cap_set(X86_FEATURE_UMIP);
7873
7874
/* CPUID 0xD.1 */
7875
kvm_caps.supported_xss = 0;
7876
if (!cpu_has_vmx_xsaves())
7877
kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7878
7879
/* CPUID 0x80000001 and 0x7 (RDPID) */
7880
if (!cpu_has_vmx_rdtscp()) {
7881
kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7882
kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7883
}
7884
7885
if (cpu_has_vmx_waitpkg())
7886
kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7887
}
7888
7889
static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
7890
struct x86_instruction_info *info,
7891
unsigned long *exit_qualification)
7892
{
7893
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7894
unsigned short port;
7895
int size;
7896
bool imm;
7897
7898
/*
7899
* If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7900
* VM-exits depend on the 'unconditional IO exiting' VM-execution
7901
* control.
7902
*
7903
* Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7904
*/
7905
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7906
return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7907
7908
if (info->intercept == x86_intercept_in ||
7909
info->intercept == x86_intercept_ins) {
7910
port = info->src_val;
7911
size = info->dst_bytes;
7912
imm = info->src_type == OP_IMM;
7913
} else {
7914
port = info->dst_val;
7915
size = info->src_bytes;
7916
imm = info->dst_type == OP_IMM;
7917
}
7918
7919
7920
*exit_qualification = ((unsigned long)port << 16) | (size - 1);
7921
7922
if (info->intercept == x86_intercept_ins ||
7923
info->intercept == x86_intercept_outs)
7924
*exit_qualification |= BIT(4);
7925
7926
if (info->rep_prefix)
7927
*exit_qualification |= BIT(5);
7928
7929
if (imm)
7930
*exit_qualification |= BIT(6);
7931
7932
return nested_vmx_check_io_bitmaps(vcpu, port, size);
7933
}
7934
7935
int vmx_check_intercept(struct kvm_vcpu *vcpu,
7936
struct x86_instruction_info *info,
7937
enum x86_intercept_stage stage,
7938
struct x86_exception *exception)
7939
{
7940
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7941
unsigned long exit_qualification = 0;
7942
u32 vm_exit_reason;
7943
u64 exit_insn_len;
7944
7945
switch (info->intercept) {
7946
case x86_intercept_rdpid:
7947
/*
7948
* RDPID causes #UD if not enabled through secondary execution
7949
* controls (ENABLE_RDTSCP). Note, the implicit MSR access to
7950
* TSC_AUX is NOT subject to interception, i.e. checking only
7951
* the dedicated execution control is architecturally correct.
7952
*/
7953
if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7954
exception->vector = UD_VECTOR;
7955
exception->error_code_valid = false;
7956
return X86EMUL_PROPAGATE_FAULT;
7957
}
7958
return X86EMUL_CONTINUE;
7959
7960
case x86_intercept_in:
7961
case x86_intercept_ins:
7962
case x86_intercept_out:
7963
case x86_intercept_outs:
7964
if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
7965
return X86EMUL_CONTINUE;
7966
7967
vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
7968
break;
7969
7970
case x86_intercept_lgdt:
7971
case x86_intercept_lidt:
7972
case x86_intercept_lldt:
7973
case x86_intercept_ltr:
7974
case x86_intercept_sgdt:
7975
case x86_intercept_sidt:
7976
case x86_intercept_sldt:
7977
case x86_intercept_str:
7978
if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7979
return X86EMUL_CONTINUE;
7980
7981
if (info->intercept == x86_intercept_lldt ||
7982
info->intercept == x86_intercept_ltr ||
7983
info->intercept == x86_intercept_sldt ||
7984
info->intercept == x86_intercept_str)
7985
vm_exit_reason = EXIT_REASON_LDTR_TR;
7986
else
7987
vm_exit_reason = EXIT_REASON_GDTR_IDTR;
7988
/*
7989
* FIXME: Decode the ModR/M to generate the correct exit
7990
* qualification for memory operands.
7991
*/
7992
break;
7993
7994
case x86_intercept_hlt:
7995
if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
7996
return X86EMUL_CONTINUE;
7997
7998
vm_exit_reason = EXIT_REASON_HLT;
7999
break;
8000
8001
case x86_intercept_pause:
8002
/*
8003
* PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8004
* with vanilla NOPs in the emulator. Apply the interception
8005
* check only to actual PAUSE instructions. Don't check
8006
* PAUSE-loop-exiting, software can't expect a given PAUSE to
8007
* exit, i.e. KVM is within its rights to allow L2 to execute
8008
* the PAUSE.
8009
*/
8010
if ((info->rep_prefix != REPE_PREFIX) ||
8011
!nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8012
return X86EMUL_CONTINUE;
8013
8014
vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8015
break;
8016
8017
/* TODO: check more intercepts... */
8018
default:
8019
return X86EMUL_UNHANDLEABLE;
8020
}
8021
8022
exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8023
if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8024
return X86EMUL_UNHANDLEABLE;
8025
8026
__nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8027
exit_insn_len);
8028
return X86EMUL_INTERCEPTED;
8029
}
8030
8031
#ifdef CONFIG_X86_64
8032
/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8033
static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8034
u64 divisor, u64 *result)
8035
{
8036
u64 low = a << shift, high = a >> (64 - shift);
8037
8038
/* To avoid the overflow on divq */
8039
if (high >= divisor)
8040
return 1;
8041
8042
/* Low hold the result, high hold rem which is discarded */
8043
asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8044
"rm" (divisor), "0" (low), "1" (high));
8045
*result = low;
8046
8047
return 0;
8048
}
8049
8050
int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8051
bool *expired)
8052
{
8053
struct vcpu_vmx *vmx;
8054
u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8055
struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8056
8057
vmx = to_vmx(vcpu);
8058
tscl = rdtsc();
8059
guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8060
delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8061
lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8062
ktimer->timer_advance_ns);
8063
8064
if (delta_tsc > lapic_timer_advance_cycles)
8065
delta_tsc -= lapic_timer_advance_cycles;
8066
else
8067
delta_tsc = 0;
8068
8069
/* Convert to host delta tsc if tsc scaling is enabled */
8070
if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8071
delta_tsc && u64_shl_div_u64(delta_tsc,
8072
kvm_caps.tsc_scaling_ratio_frac_bits,
8073
vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8074
return -ERANGE;
8075
8076
/*
8077
* If the delta tsc can't fit in the 32 bit after the multi shift,
8078
* we can't use the preemption timer.
8079
* It's possible that it fits on later vmentries, but checking
8080
* on every vmentry is costly so we just use an hrtimer.
8081
*/
8082
if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8083
return -ERANGE;
8084
8085
vmx->hv_deadline_tsc = tscl + delta_tsc;
8086
*expired = !delta_tsc;
8087
return 0;
8088
}
8089
8090
void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8091
{
8092
to_vmx(vcpu)->hv_deadline_tsc = -1;
8093
}
8094
#endif
8095
8096
void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8097
{
8098
struct vcpu_vmx *vmx = to_vmx(vcpu);
8099
8100
if (WARN_ON_ONCE(!enable_pml))
8101
return;
8102
8103
if (is_guest_mode(vcpu)) {
8104
vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8105
return;
8106
}
8107
8108
/*
8109
* Note, nr_memslots_dirty_logging can be changed concurrent with this
8110
* code, but in that case another update request will be made and so
8111
* the guest will never run with a stale PML value.
8112
*/
8113
if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8114
secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8115
else
8116
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8117
}
8118
8119
void vmx_setup_mce(struct kvm_vcpu *vcpu)
8120
{
8121
if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8122
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8123
FEAT_CTL_LMCE_ENABLED;
8124
else
8125
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8126
~FEAT_CTL_LMCE_ENABLED;
8127
}
8128
8129
#ifdef CONFIG_KVM_SMM
8130
int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8131
{
8132
/* we need a nested vmexit to enter SMM, postpone if run is pending */
8133
if (to_vmx(vcpu)->nested.nested_run_pending)
8134
return -EBUSY;
8135
return !is_smm(vcpu);
8136
}
8137
8138
int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8139
{
8140
struct vcpu_vmx *vmx = to_vmx(vcpu);
8141
8142
/*
8143
* TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8144
* SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8145
* SMI and RSM only modify state that is saved and restored via SMRAM.
8146
* E.g. most MSRs are left untouched, but many are modified by VM-Exit
8147
* and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8148
*/
8149
vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8150
if (vmx->nested.smm.guest_mode)
8151
nested_vmx_vmexit(vcpu, -1, 0, 0);
8152
8153
vmx->nested.smm.vmxon = vmx->nested.vmxon;
8154
vmx->nested.vmxon = false;
8155
vmx_clear_hlt(vcpu);
8156
return 0;
8157
}
8158
8159
int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8160
{
8161
struct vcpu_vmx *vmx = to_vmx(vcpu);
8162
int ret;
8163
8164
if (vmx->nested.smm.vmxon) {
8165
vmx->nested.vmxon = true;
8166
vmx->nested.smm.vmxon = false;
8167
}
8168
8169
if (vmx->nested.smm.guest_mode) {
8170
ret = nested_vmx_enter_non_root_mode(vcpu, false);
8171
if (ret)
8172
return ret;
8173
8174
vmx->nested.nested_run_pending = 1;
8175
vmx->nested.smm.guest_mode = false;
8176
}
8177
return 0;
8178
}
8179
8180
void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8181
{
8182
/* RSM will cause a vmexit anyway. */
8183
}
8184
#endif
8185
8186
bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8187
{
8188
return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8189
}
8190
8191
void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8192
{
8193
if (is_guest_mode(vcpu)) {
8194
struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8195
8196
if (hrtimer_try_to_cancel(timer) == 1)
8197
hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8198
}
8199
}
8200
8201
void vmx_hardware_unsetup(void)
8202
{
8203
kvm_set_posted_intr_wakeup_handler(NULL);
8204
8205
if (nested)
8206
nested_vmx_hardware_unsetup();
8207
8208
free_kvm_area();
8209
}
8210
8211
void vmx_vm_destroy(struct kvm *kvm)
8212
{
8213
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8214
8215
free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8216
}
8217
8218
/*
8219
* Note, the SDM states that the linear address is masked *after* the modified
8220
* canonicality check, whereas KVM masks (untags) the address and then performs
8221
* a "normal" canonicality check. Functionally, the two methods are identical,
8222
* and when the masking occurs relative to the canonicality check isn't visible
8223
* to software, i.e. KVM's behavior doesn't violate the SDM.
8224
*/
8225
gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8226
{
8227
int lam_bit;
8228
unsigned long cr3_bits;
8229
8230
if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8231
return gva;
8232
8233
if (!is_64_bit_mode(vcpu))
8234
return gva;
8235
8236
/*
8237
* Bit 63 determines if the address should be treated as user address
8238
* or a supervisor address.
8239
*/
8240
if (!(gva & BIT_ULL(63))) {
8241
cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8242
if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8243
return gva;
8244
8245
/* LAM_U48 is ignored if LAM_U57 is set. */
8246
lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8247
} else {
8248
if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8249
return gva;
8250
8251
lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8252
}
8253
8254
/*
8255
* Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8256
* Bit 63 is retained from the raw virtual address so that untagging
8257
* doesn't change a user access to a supervisor access, and vice versa.
8258
*/
8259
return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8260
}
8261
8262
static unsigned int vmx_handle_intel_pt_intr(void)
8263
{
8264
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8265
8266
/* '0' on failure so that the !PT case can use a RET0 static call. */
8267
if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8268
return 0;
8269
8270
kvm_make_request(KVM_REQ_PMI, vcpu);
8271
__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8272
(unsigned long *)&vcpu->arch.pmu.global_status);
8273
return 1;
8274
}
8275
8276
static __init void vmx_setup_user_return_msrs(void)
8277
{
8278
8279
/*
8280
* Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8281
* will emulate SYSCALL in legacy mode if the vendor string in guest
8282
* CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8283
* support this emulation, MSR_STAR is included in the list for i386,
8284
* but is never loaded into hardware. MSR_CSTAR is also never loaded
8285
* into hardware and is here purely for emulation purposes.
8286
*/
8287
const u32 vmx_uret_msrs_list[] = {
8288
#ifdef CONFIG_X86_64
8289
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8290
#endif
8291
MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8292
MSR_IA32_TSX_CTRL,
8293
};
8294
int i;
8295
8296
BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8297
8298
for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8299
kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8300
}
8301
8302
static void __init vmx_setup_me_spte_mask(void)
8303
{
8304
u64 me_mask = 0;
8305
8306
/*
8307
* On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8308
* kvm_host.maxphyaddr. On MKTME and/or TDX capable systems,
8309
* boot_cpu_data.x86_phys_bits holds the actual physical address
8310
* w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8311
* MAXPHYADDR reported by CPUID. Those bits between are KeyID bits.
8312
*/
8313
if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8314
me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8315
kvm_host.maxphyaddr - 1);
8316
8317
/*
8318
* Unlike SME, host kernel doesn't support setting up any
8319
* MKTME KeyID on Intel platforms. No memory encryption
8320
* bits should be included into the SPTE.
8321
*/
8322
kvm_mmu_set_me_spte_mask(0, me_mask);
8323
}
8324
8325
__init int vmx_hardware_setup(void)
8326
{
8327
unsigned long host_bndcfgs;
8328
struct desc_ptr dt;
8329
int r;
8330
8331
store_idt(&dt);
8332
host_idt_base = dt.address;
8333
8334
vmx_setup_user_return_msrs();
8335
8336
if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8337
return -EIO;
8338
8339
if (boot_cpu_has(X86_FEATURE_NX))
8340
kvm_enable_efer_bits(EFER_NX);
8341
8342
if (boot_cpu_has(X86_FEATURE_MPX)) {
8343
rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs);
8344
WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8345
}
8346
8347
if (!cpu_has_vmx_mpx())
8348
kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8349
XFEATURE_MASK_BNDCSR);
8350
8351
if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8352
!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8353
enable_vpid = 0;
8354
8355
if (!cpu_has_vmx_ept() ||
8356
!cpu_has_vmx_ept_4levels() ||
8357
!cpu_has_vmx_ept_mt_wb() ||
8358
!cpu_has_vmx_invept_global())
8359
enable_ept = 0;
8360
8361
/* NX support is required for shadow paging. */
8362
if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8363
pr_err_ratelimited("NX (Execute Disable) not supported\n");
8364
return -EOPNOTSUPP;
8365
}
8366
8367
if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8368
enable_ept_ad_bits = 0;
8369
8370
if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8371
enable_unrestricted_guest = 0;
8372
8373
if (!cpu_has_vmx_flexpriority())
8374
flexpriority_enabled = 0;
8375
8376
if (!cpu_has_virtual_nmis())
8377
enable_vnmi = 0;
8378
8379
#ifdef CONFIG_X86_SGX_KVM
8380
if (!cpu_has_vmx_encls_vmexit())
8381
enable_sgx = false;
8382
#endif
8383
8384
/*
8385
* set_apic_access_page_addr() is used to reload apic access
8386
* page upon invalidation. No need to do anything if not
8387
* using the APIC_ACCESS_ADDR VMCS field.
8388
*/
8389
if (!flexpriority_enabled)
8390
vt_x86_ops.set_apic_access_page_addr = NULL;
8391
8392
if (!cpu_has_vmx_tpr_shadow())
8393
vt_x86_ops.update_cr8_intercept = NULL;
8394
8395
#if IS_ENABLED(CONFIG_HYPERV)
8396
if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8397
&& enable_ept) {
8398
vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8399
vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8400
}
8401
#endif
8402
8403
if (!cpu_has_vmx_ple()) {
8404
ple_gap = 0;
8405
ple_window = 0;
8406
ple_window_grow = 0;
8407
ple_window_max = 0;
8408
ple_window_shrink = 0;
8409
}
8410
8411
if (!cpu_has_vmx_apicv())
8412
enable_apicv = 0;
8413
if (!enable_apicv)
8414
vt_x86_ops.sync_pir_to_irr = NULL;
8415
8416
if (!enable_apicv || !cpu_has_vmx_ipiv())
8417
enable_ipiv = false;
8418
8419
if (cpu_has_vmx_tsc_scaling())
8420
kvm_caps.has_tsc_control = true;
8421
8422
kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8423
kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8424
kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8425
kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8426
8427
set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8428
8429
if (enable_ept)
8430
kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8431
cpu_has_vmx_ept_execute_only());
8432
else
8433
vt_x86_ops.get_mt_mask = NULL;
8434
8435
/*
8436
* Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8437
* bits to shadow_zero_check.
8438
*/
8439
vmx_setup_me_spte_mask();
8440
8441
kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8442
ept_caps_to_lpage_level(vmx_capability.ept));
8443
8444
/*
8445
* Only enable PML when hardware supports PML feature, and both EPT
8446
* and EPT A/D bit features are enabled -- PML depends on them to work.
8447
*/
8448
if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8449
enable_pml = 0;
8450
8451
if (!cpu_has_vmx_preemption_timer())
8452
enable_preemption_timer = false;
8453
8454
if (enable_preemption_timer) {
8455
u64 use_timer_freq = 5000ULL * 1000 * 1000;
8456
8457
cpu_preemption_timer_multi =
8458
vmx_misc_preemption_timer_rate(vmcs_config.misc);
8459
8460
if (tsc_khz)
8461
use_timer_freq = (u64)tsc_khz * 1000;
8462
use_timer_freq >>= cpu_preemption_timer_multi;
8463
8464
/*
8465
* KVM "disables" the preemption timer by setting it to its max
8466
* value. Don't use the timer if it might cause spurious exits
8467
* at a rate faster than 0.1 Hz (of uninterrupted guest time).
8468
*/
8469
if (use_timer_freq > 0xffffffffu / 10)
8470
enable_preemption_timer = false;
8471
}
8472
8473
if (!enable_preemption_timer) {
8474
vt_x86_ops.set_hv_timer = NULL;
8475
vt_x86_ops.cancel_hv_timer = NULL;
8476
}
8477
8478
kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8479
kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8480
8481
if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8482
return -EINVAL;
8483
if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8484
pt_mode = PT_MODE_SYSTEM;
8485
if (pt_mode == PT_MODE_HOST_GUEST)
8486
vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8487
else
8488
vt_init_ops.handle_intel_pt_intr = NULL;
8489
8490
setup_default_sgx_lepubkeyhash();
8491
8492
if (nested) {
8493
nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8494
8495
r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8496
if (r)
8497
return r;
8498
}
8499
8500
vmx_set_cpu_caps();
8501
8502
r = alloc_kvm_area();
8503
if (r && nested)
8504
nested_vmx_hardware_unsetup();
8505
8506
kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8507
8508
/*
8509
* On Intel CPUs that lack self-snoop feature, letting the guest control
8510
* memory types may result in unexpected behavior. So always ignore guest
8511
* PAT on those CPUs and map VM as writeback, not allowing userspace to
8512
* disable the quirk.
8513
*
8514
* On certain Intel CPUs (e.g. SPR, ICX), though self-snoop feature is
8515
* supported, UC is slow enough to cause issues with some older guests (e.g.
8516
* an old version of bochs driver uses ioremap() instead of ioremap_wc() to
8517
* map the video RAM, causing wayland desktop to fail to get started
8518
* correctly). To avoid breaking those older guests that rely on KVM to force
8519
* memory type to WB, provide KVM_X86_QUIRK_IGNORE_GUEST_PAT to preserve the
8520
* safer (for performance) default behavior.
8521
*
8522
* On top of this, non-coherent DMA devices need the guest to flush CPU
8523
* caches properly. This also requires honoring guest PAT, and is forced
8524
* independent of the quirk in vmx_ignore_guest_pat().
8525
*/
8526
if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
8527
kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8528
kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8529
return r;
8530
}
8531
8532
static void vmx_cleanup_l1d_flush(void)
8533
{
8534
if (vmx_l1d_flush_pages) {
8535
free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8536
vmx_l1d_flush_pages = NULL;
8537
}
8538
/* Restore state so sysfs ignores VMX */
8539
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8540
}
8541
8542
void vmx_exit(void)
8543
{
8544
allow_smaller_maxphyaddr = false;
8545
8546
vmx_cleanup_l1d_flush();
8547
8548
kvm_x86_vendor_exit();
8549
}
8550
8551
int __init vmx_init(void)
8552
{
8553
int r, cpu;
8554
8555
KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_vmx);
8556
8557
if (!kvm_is_vmx_supported())
8558
return -EOPNOTSUPP;
8559
8560
/*
8561
* Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8562
* to unwind if a later step fails.
8563
*/
8564
hv_init_evmcs();
8565
8566
r = kvm_x86_vendor_init(&vt_init_ops);
8567
if (r)
8568
return r;
8569
8570
/*
8571
* Must be called after common x86 init so enable_ept is properly set
8572
* up. Hand the parameter mitigation value in which was stored in
8573
* the pre module init parser. If no parameter was given, it will
8574
* contain 'auto' which will be turned into the default 'cond'
8575
* mitigation mode.
8576
*/
8577
r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8578
if (r)
8579
goto err_l1d_flush;
8580
8581
for_each_possible_cpu(cpu) {
8582
INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8583
8584
pi_init_cpu(cpu);
8585
}
8586
8587
vmx_check_vmcs12_offsets();
8588
8589
/*
8590
* Shadow paging doesn't have a (further) performance penalty
8591
* from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8592
* by default
8593
*/
8594
if (!enable_ept)
8595
allow_smaller_maxphyaddr = true;
8596
8597
return 0;
8598
8599
err_l1d_flush:
8600
kvm_x86_vendor_exit();
8601
return r;
8602
}
8603
8604