Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kvm/x86.c
50949 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Kernel-based Virtual Machine driver for Linux
4
*
5
* derived from drivers/kvm/kvm_main.c
6
*
7
* Copyright (C) 2006 Qumranet, Inc.
8
* Copyright (C) 2008 Qumranet, Inc.
9
* Copyright IBM Corporation, 2008
10
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
11
*
12
* Authors:
13
* Avi Kivity <[email protected]>
14
* Yaniv Kamay <[email protected]>
15
* Amit Shah <[email protected]>
16
* Ben-Ami Yassour <[email protected]>
17
*/
18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20
#include <linux/kvm_host.h>
21
#include "irq.h"
22
#include "ioapic.h"
23
#include "mmu.h"
24
#include "i8254.h"
25
#include "tss.h"
26
#include "kvm_cache_regs.h"
27
#include "kvm_emulate.h"
28
#include "mmu/page_track.h"
29
#include "x86.h"
30
#include "cpuid.h"
31
#include "pmu.h"
32
#include "hyperv.h"
33
#include "lapic.h"
34
#include "xen.h"
35
#include "smm.h"
36
37
#include <linux/clocksource.h>
38
#include <linux/interrupt.h>
39
#include <linux/kvm.h>
40
#include <linux/fs.h>
41
#include <linux/vmalloc.h>
42
#include <linux/export.h>
43
#include <linux/moduleparam.h>
44
#include <linux/mman.h>
45
#include <linux/highmem.h>
46
#include <linux/iommu.h>
47
#include <linux/cpufreq.h>
48
#include <linux/user-return-notifier.h>
49
#include <linux/srcu.h>
50
#include <linux/slab.h>
51
#include <linux/perf_event.h>
52
#include <linux/uaccess.h>
53
#include <linux/hash.h>
54
#include <linux/pci.h>
55
#include <linux/timekeeper_internal.h>
56
#include <linux/pvclock_gtod.h>
57
#include <linux/kvm_irqfd.h>
58
#include <linux/irqbypass.h>
59
#include <linux/sched/stat.h>
60
#include <linux/sched/isolation.h>
61
#include <linux/mem_encrypt.h>
62
#include <linux/suspend.h>
63
#include <linux/smp.h>
64
65
#include <trace/events/ipi.h>
66
#include <trace/events/kvm.h>
67
68
#include <asm/debugreg.h>
69
#include <asm/msr.h>
70
#include <asm/desc.h>
71
#include <asm/mce.h>
72
#include <asm/pkru.h>
73
#include <linux/kernel_stat.h>
74
#include <asm/fpu/api.h>
75
#include <asm/fpu/xcr.h>
76
#include <asm/fpu/xstate.h>
77
#include <asm/pvclock.h>
78
#include <asm/div64.h>
79
#include <asm/irq_remapping.h>
80
#include <asm/mshyperv.h>
81
#include <asm/hypervisor.h>
82
#include <asm/tlbflush.h>
83
#include <asm/intel_pt.h>
84
#include <asm/emulate_prefix.h>
85
#include <asm/sgx.h>
86
#include <clocksource/hyperv_timer.h>
87
88
#define CREATE_TRACE_POINTS
89
#include "trace.h"
90
91
#define MAX_IO_MSRS 256
92
93
/*
94
* Note, kvm_caps fields should *never* have default values, all fields must be
95
* recomputed from scratch during vendor module load, e.g. to account for a
96
* vendor module being reloaded with different module parameters.
97
*/
98
struct kvm_caps kvm_caps __read_mostly;
99
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_caps);
100
101
struct kvm_host_values kvm_host __read_mostly;
102
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_host);
103
104
#define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
105
106
#define emul_to_vcpu(ctxt) \
107
((struct kvm_vcpu *)(ctxt)->vcpu)
108
109
/* EFER defaults:
110
* - enable syscall per default because its emulated by KVM
111
* - enable LME and LMA per default on 64 bit KVM
112
*/
113
#ifdef CONFIG_X86_64
114
static
115
u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
116
#else
117
static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
118
#endif
119
120
#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
121
122
#define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
123
124
#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
125
KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
126
127
static void update_cr8_intercept(struct kvm_vcpu *vcpu);
128
static void process_nmi(struct kvm_vcpu *vcpu);
129
static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
130
static void store_regs(struct kvm_vcpu *vcpu);
131
static int sync_regs(struct kvm_vcpu *vcpu);
132
static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
133
134
static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
135
static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136
137
static DEFINE_MUTEX(vendor_module_lock);
138
static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
139
static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
140
141
struct kvm_x86_ops kvm_x86_ops __read_mostly;
142
143
#define KVM_X86_OP(func) \
144
DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
145
*(((struct kvm_x86_ops *)0)->func));
146
#define KVM_X86_OP_OPTIONAL KVM_X86_OP
147
#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
148
#include <asm/kvm-x86-ops.h>
149
EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
150
EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
151
152
static bool __read_mostly ignore_msrs = 0;
153
module_param(ignore_msrs, bool, 0644);
154
155
bool __read_mostly report_ignored_msrs = true;
156
module_param(report_ignored_msrs, bool, 0644);
157
EXPORT_SYMBOL_FOR_KVM_INTERNAL(report_ignored_msrs);
158
159
unsigned int min_timer_period_us = 200;
160
module_param(min_timer_period_us, uint, 0644);
161
162
/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
163
static u32 __read_mostly tsc_tolerance_ppm = 250;
164
module_param(tsc_tolerance_ppm, uint, 0644);
165
166
bool __read_mostly enable_vmware_backdoor = false;
167
module_param(enable_vmware_backdoor, bool, 0444);
168
EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_vmware_backdoor);
169
170
/*
171
* Flags to manipulate forced emulation behavior (any non-zero value will
172
* enable forced emulation).
173
*/
174
#define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
175
static int __read_mostly force_emulation_prefix;
176
module_param(force_emulation_prefix, int, 0644);
177
178
int __read_mostly pi_inject_timer = -1;
179
module_param(pi_inject_timer, bint, 0644);
180
181
/* Enable/disable PMU virtualization */
182
bool __read_mostly enable_pmu = true;
183
EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_pmu);
184
module_param(enable_pmu, bool, 0444);
185
186
bool __read_mostly eager_page_split = true;
187
module_param(eager_page_split, bool, 0644);
188
189
/* Enable/disable SMT_RSB bug mitigation */
190
static bool __read_mostly mitigate_smt_rsb;
191
module_param(mitigate_smt_rsb, bool, 0444);
192
193
/*
194
* Restoring the host value for MSRs that are only consumed when running in
195
* usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
196
* returns to userspace, i.e. the kernel can run with the guest's value.
197
*/
198
#define KVM_MAX_NR_USER_RETURN_MSRS 16
199
200
struct kvm_user_return_msrs {
201
struct user_return_notifier urn;
202
bool registered;
203
struct kvm_user_return_msr_values {
204
u64 host;
205
u64 curr;
206
} values[KVM_MAX_NR_USER_RETURN_MSRS];
207
};
208
209
u32 __read_mostly kvm_nr_uret_msrs;
210
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_nr_uret_msrs);
211
static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
212
static DEFINE_PER_CPU(struct kvm_user_return_msrs, user_return_msrs);
213
214
#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
215
| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
216
| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
217
| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
218
219
#define XFEATURE_MASK_CET_ALL (XFEATURE_MASK_CET_USER | XFEATURE_MASK_CET_KERNEL)
220
/*
221
* Note, KVM supports exposing PT to the guest, but does not support context
222
* switching PT via XSTATE (KVM's PT virtualization relies on perf; swapping
223
* PT via guest XSTATE would clobber perf state), i.e. KVM doesn't support
224
* IA32_XSS[bit 8] (guests can/must use RDMSR/WRMSR to save/restore PT MSRs).
225
*/
226
#define KVM_SUPPORTED_XSS (XFEATURE_MASK_CET_ALL)
227
228
bool __read_mostly allow_smaller_maxphyaddr = 0;
229
EXPORT_SYMBOL_FOR_KVM_INTERNAL(allow_smaller_maxphyaddr);
230
231
bool __read_mostly enable_apicv = true;
232
EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_apicv);
233
234
bool __read_mostly enable_ipiv = true;
235
EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_ipiv);
236
237
bool __read_mostly enable_device_posted_irqs = true;
238
EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_device_posted_irqs);
239
240
const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
241
KVM_GENERIC_VM_STATS(),
242
STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
243
STATS_DESC_COUNTER(VM, mmu_pte_write),
244
STATS_DESC_COUNTER(VM, mmu_pde_zapped),
245
STATS_DESC_COUNTER(VM, mmu_flooded),
246
STATS_DESC_COUNTER(VM, mmu_recycled),
247
STATS_DESC_COUNTER(VM, mmu_cache_miss),
248
STATS_DESC_ICOUNTER(VM, mmu_unsync),
249
STATS_DESC_ICOUNTER(VM, pages_4k),
250
STATS_DESC_ICOUNTER(VM, pages_2m),
251
STATS_DESC_ICOUNTER(VM, pages_1g),
252
STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
253
STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
254
STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
255
};
256
257
const struct kvm_stats_header kvm_vm_stats_header = {
258
.name_size = KVM_STATS_NAME_SIZE,
259
.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
260
.id_offset = sizeof(struct kvm_stats_header),
261
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
262
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
263
sizeof(kvm_vm_stats_desc),
264
};
265
266
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
267
KVM_GENERIC_VCPU_STATS(),
268
STATS_DESC_COUNTER(VCPU, pf_taken),
269
STATS_DESC_COUNTER(VCPU, pf_fixed),
270
STATS_DESC_COUNTER(VCPU, pf_emulate),
271
STATS_DESC_COUNTER(VCPU, pf_spurious),
272
STATS_DESC_COUNTER(VCPU, pf_fast),
273
STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
274
STATS_DESC_COUNTER(VCPU, pf_guest),
275
STATS_DESC_COUNTER(VCPU, tlb_flush),
276
STATS_DESC_COUNTER(VCPU, invlpg),
277
STATS_DESC_COUNTER(VCPU, exits),
278
STATS_DESC_COUNTER(VCPU, io_exits),
279
STATS_DESC_COUNTER(VCPU, mmio_exits),
280
STATS_DESC_COUNTER(VCPU, signal_exits),
281
STATS_DESC_COUNTER(VCPU, irq_window_exits),
282
STATS_DESC_COUNTER(VCPU, nmi_window_exits),
283
STATS_DESC_COUNTER(VCPU, l1d_flush),
284
STATS_DESC_COUNTER(VCPU, halt_exits),
285
STATS_DESC_COUNTER(VCPU, request_irq_exits),
286
STATS_DESC_COUNTER(VCPU, irq_exits),
287
STATS_DESC_COUNTER(VCPU, host_state_reload),
288
STATS_DESC_COUNTER(VCPU, fpu_reload),
289
STATS_DESC_COUNTER(VCPU, insn_emulation),
290
STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
291
STATS_DESC_COUNTER(VCPU, hypercalls),
292
STATS_DESC_COUNTER(VCPU, irq_injections),
293
STATS_DESC_COUNTER(VCPU, nmi_injections),
294
STATS_DESC_COUNTER(VCPU, req_event),
295
STATS_DESC_COUNTER(VCPU, nested_run),
296
STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
297
STATS_DESC_COUNTER(VCPU, directed_yield_successful),
298
STATS_DESC_COUNTER(VCPU, preemption_reported),
299
STATS_DESC_COUNTER(VCPU, preemption_other),
300
STATS_DESC_IBOOLEAN(VCPU, guest_mode),
301
STATS_DESC_COUNTER(VCPU, notify_window_exits),
302
};
303
304
const struct kvm_stats_header kvm_vcpu_stats_header = {
305
.name_size = KVM_STATS_NAME_SIZE,
306
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307
.id_offset = sizeof(struct kvm_stats_header),
308
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310
sizeof(kvm_vcpu_stats_desc),
311
};
312
313
static struct kmem_cache *x86_emulator_cache;
314
315
/*
316
* The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
317
* the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
318
* KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
319
* require host support, i.e. should be probed via RDMSR. emulated_msrs holds
320
* MSRs that KVM emulates without strictly requiring host support.
321
* msr_based_features holds MSRs that enumerate features, i.e. are effectively
322
* CPUID leafs. Note, msr_based_features isn't mutually exclusive with
323
* msrs_to_save and emulated_msrs.
324
*/
325
326
static const u32 msrs_to_save_base[] = {
327
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
328
MSR_STAR,
329
#ifdef CONFIG_X86_64
330
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
331
#endif
332
MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
333
MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
334
MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
335
MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
336
MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
337
MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
338
MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
339
MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
340
MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
341
MSR_IA32_UMWAIT_CONTROL,
342
343
MSR_IA32_XFD, MSR_IA32_XFD_ERR, MSR_IA32_XSS,
344
345
MSR_IA32_U_CET, MSR_IA32_S_CET,
346
MSR_IA32_PL0_SSP, MSR_IA32_PL1_SSP, MSR_IA32_PL2_SSP,
347
MSR_IA32_PL3_SSP, MSR_IA32_INT_SSP_TAB,
348
};
349
350
static const u32 msrs_to_save_pmu[] = {
351
MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
352
MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
353
MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
354
MSR_CORE_PERF_GLOBAL_CTRL,
355
MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
356
357
/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
358
MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
359
MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
360
MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
361
MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
362
MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
363
MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
364
MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
365
MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
366
367
MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
368
MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
369
370
/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
371
MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
372
MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
373
MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
374
MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
375
376
MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
377
MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
378
MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
379
MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET,
380
};
381
382
static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
383
ARRAY_SIZE(msrs_to_save_pmu)];
384
static unsigned num_msrs_to_save;
385
386
static const u32 emulated_msrs_all[] = {
387
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
388
MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
389
390
#ifdef CONFIG_KVM_HYPERV
391
HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
392
HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
393
HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
394
HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
395
HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
396
HV_X64_MSR_RESET,
397
HV_X64_MSR_VP_INDEX,
398
HV_X64_MSR_VP_RUNTIME,
399
HV_X64_MSR_SCONTROL,
400
HV_X64_MSR_STIMER0_CONFIG,
401
HV_X64_MSR_VP_ASSIST_PAGE,
402
HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
403
HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
404
HV_X64_MSR_SYNDBG_OPTIONS,
405
HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
406
HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
407
HV_X64_MSR_SYNDBG_PENDING_BUFFER,
408
#endif
409
410
MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
411
MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
412
413
MSR_IA32_TSC_ADJUST,
414
MSR_IA32_TSC_DEADLINE,
415
MSR_IA32_ARCH_CAPABILITIES,
416
MSR_IA32_PERF_CAPABILITIES,
417
MSR_IA32_MISC_ENABLE,
418
MSR_IA32_MCG_STATUS,
419
MSR_IA32_MCG_CTL,
420
MSR_IA32_MCG_EXT_CTL,
421
MSR_IA32_SMBASE,
422
MSR_SMI_COUNT,
423
MSR_PLATFORM_INFO,
424
MSR_MISC_FEATURES_ENABLES,
425
MSR_AMD64_VIRT_SPEC_CTRL,
426
MSR_AMD64_TSC_RATIO,
427
MSR_IA32_POWER_CTL,
428
MSR_IA32_UCODE_REV,
429
430
/*
431
* KVM always supports the "true" VMX control MSRs, even if the host
432
* does not. The VMX MSRs as a whole are considered "emulated" as KVM
433
* doesn't strictly require them to exist in the host (ignoring that
434
* KVM would refuse to load in the first place if the core set of MSRs
435
* aren't supported).
436
*/
437
MSR_IA32_VMX_BASIC,
438
MSR_IA32_VMX_TRUE_PINBASED_CTLS,
439
MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
440
MSR_IA32_VMX_TRUE_EXIT_CTLS,
441
MSR_IA32_VMX_TRUE_ENTRY_CTLS,
442
MSR_IA32_VMX_MISC,
443
MSR_IA32_VMX_CR0_FIXED0,
444
MSR_IA32_VMX_CR4_FIXED0,
445
MSR_IA32_VMX_VMCS_ENUM,
446
MSR_IA32_VMX_PROCBASED_CTLS2,
447
MSR_IA32_VMX_EPT_VPID_CAP,
448
MSR_IA32_VMX_VMFUNC,
449
450
MSR_K7_HWCR,
451
MSR_KVM_POLL_CONTROL,
452
};
453
454
static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
455
static unsigned num_emulated_msrs;
456
457
/*
458
* List of MSRs that control the existence of MSR-based features, i.e. MSRs
459
* that are effectively CPUID leafs. VMX MSRs are also included in the set of
460
* feature MSRs, but are handled separately to allow expedited lookups.
461
*/
462
static const u32 msr_based_features_all_except_vmx[] = {
463
MSR_AMD64_DE_CFG,
464
MSR_IA32_UCODE_REV,
465
MSR_IA32_ARCH_CAPABILITIES,
466
MSR_IA32_PERF_CAPABILITIES,
467
MSR_PLATFORM_INFO,
468
};
469
470
static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
471
(KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
472
static unsigned int num_msr_based_features;
473
474
/*
475
* All feature MSRs except uCode revID, which tracks the currently loaded uCode
476
* patch, are immutable once the vCPU model is defined.
477
*/
478
static bool kvm_is_immutable_feature_msr(u32 msr)
479
{
480
int i;
481
482
if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
483
return true;
484
485
for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
486
if (msr == msr_based_features_all_except_vmx[i])
487
return msr != MSR_IA32_UCODE_REV;
488
}
489
490
return false;
491
}
492
493
static bool kvm_is_advertised_msr(u32 msr_index)
494
{
495
unsigned int i;
496
497
for (i = 0; i < num_msrs_to_save; i++) {
498
if (msrs_to_save[i] == msr_index)
499
return true;
500
}
501
502
for (i = 0; i < num_emulated_msrs; i++) {
503
if (emulated_msrs[i] == msr_index)
504
return true;
505
}
506
507
return false;
508
}
509
510
typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
511
bool host_initiated);
512
513
static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
514
u64 *data, bool host_initiated,
515
enum kvm_msr_access rw,
516
msr_access_t msr_access_fn)
517
{
518
const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
519
int ret;
520
521
BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
522
523
/*
524
* Zero the data on read failures to avoid leaking stack data to the
525
* guest and/or userspace, e.g. if the failure is ignored below.
526
*/
527
ret = msr_access_fn(vcpu, msr, data, host_initiated);
528
if (ret && rw == MSR_TYPE_R)
529
*data = 0;
530
531
if (ret != KVM_MSR_RET_UNSUPPORTED)
532
return ret;
533
534
/*
535
* Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
536
* advertises to userspace, even if an MSR isn't fully supported.
537
* Simply check that @data is '0', which covers both the write '0' case
538
* and all reads (in which case @data is zeroed on failure; see above).
539
*/
540
if (host_initiated && !*data && kvm_is_advertised_msr(msr))
541
return 0;
542
543
if (!ignore_msrs) {
544
kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
545
op, msr, *data);
546
return ret;
547
}
548
549
if (report_ignored_msrs)
550
kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
551
552
return 0;
553
}
554
555
static struct kmem_cache *kvm_alloc_emulator_cache(void)
556
{
557
unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
558
unsigned int size = sizeof(struct x86_emulate_ctxt);
559
560
return kmem_cache_create_usercopy("x86_emulator", size,
561
__alignof__(struct x86_emulate_ctxt),
562
SLAB_ACCOUNT, useroffset,
563
size - useroffset, NULL);
564
}
565
566
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
567
568
static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
569
{
570
int i;
571
for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
572
vcpu->arch.apf.gfns[i] = ~0;
573
}
574
575
static void kvm_destroy_user_return_msrs(void)
576
{
577
int cpu;
578
579
for_each_possible_cpu(cpu)
580
WARN_ON_ONCE(per_cpu(user_return_msrs, cpu).registered);
581
582
kvm_nr_uret_msrs = 0;
583
}
584
585
static void kvm_on_user_return(struct user_return_notifier *urn)
586
{
587
unsigned slot;
588
struct kvm_user_return_msrs *msrs
589
= container_of(urn, struct kvm_user_return_msrs, urn);
590
struct kvm_user_return_msr_values *values;
591
592
msrs->registered = false;
593
user_return_notifier_unregister(urn);
594
595
for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
596
values = &msrs->values[slot];
597
if (values->host != values->curr) {
598
wrmsrq(kvm_uret_msrs_list[slot], values->host);
599
values->curr = values->host;
600
}
601
}
602
}
603
604
static int kvm_probe_user_return_msr(u32 msr)
605
{
606
u64 val;
607
int ret;
608
609
preempt_disable();
610
ret = rdmsrq_safe(msr, &val);
611
if (ret)
612
goto out;
613
ret = wrmsrq_safe(msr, val);
614
out:
615
preempt_enable();
616
return ret;
617
}
618
619
int kvm_add_user_return_msr(u32 msr)
620
{
621
BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
622
623
if (kvm_probe_user_return_msr(msr))
624
return -1;
625
626
kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
627
return kvm_nr_uret_msrs++;
628
}
629
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_add_user_return_msr);
630
631
int kvm_find_user_return_msr(u32 msr)
632
{
633
int i;
634
635
for (i = 0; i < kvm_nr_uret_msrs; ++i) {
636
if (kvm_uret_msrs_list[i] == msr)
637
return i;
638
}
639
return -1;
640
}
641
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_user_return_msr);
642
643
static void kvm_user_return_msr_cpu_online(void)
644
{
645
struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
646
u64 value;
647
int i;
648
649
for (i = 0; i < kvm_nr_uret_msrs; ++i) {
650
rdmsrq_safe(kvm_uret_msrs_list[i], &value);
651
msrs->values[i].host = value;
652
msrs->values[i].curr = value;
653
}
654
}
655
656
static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs)
657
{
658
if (!msrs->registered) {
659
msrs->urn.on_user_return = kvm_on_user_return;
660
user_return_notifier_register(&msrs->urn);
661
msrs->registered = true;
662
}
663
}
664
665
int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
666
{
667
struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
668
int err;
669
670
value = (value & mask) | (msrs->values[slot].host & ~mask);
671
if (value == msrs->values[slot].curr)
672
return 0;
673
err = wrmsrq_safe(kvm_uret_msrs_list[slot], value);
674
if (err)
675
return 1;
676
677
msrs->values[slot].curr = value;
678
kvm_user_return_register_notifier(msrs);
679
return 0;
680
}
681
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_user_return_msr);
682
683
u64 kvm_get_user_return_msr(unsigned int slot)
684
{
685
return this_cpu_ptr(&user_return_msrs)->values[slot].curr;
686
}
687
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_user_return_msr);
688
689
static void drop_user_return_notifiers(void)
690
{
691
struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
692
693
if (msrs->registered)
694
kvm_on_user_return(&msrs->urn);
695
}
696
697
/*
698
* Handle a fault on a hardware virtualization (VMX or SVM) instruction.
699
*
700
* Hardware virtualization extension instructions may fault if a reboot turns
701
* off virtualization while processes are running. Usually after catching the
702
* fault we just panic; during reboot instead the instruction is ignored.
703
*/
704
noinstr void kvm_spurious_fault(void)
705
{
706
/* Fault while not rebooting. We want the trace. */
707
BUG_ON(!kvm_rebooting);
708
}
709
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spurious_fault);
710
711
#define EXCPT_BENIGN 0
712
#define EXCPT_CONTRIBUTORY 1
713
#define EXCPT_PF 2
714
715
static int exception_class(int vector)
716
{
717
switch (vector) {
718
case PF_VECTOR:
719
return EXCPT_PF;
720
case DE_VECTOR:
721
case TS_VECTOR:
722
case NP_VECTOR:
723
case SS_VECTOR:
724
case GP_VECTOR:
725
return EXCPT_CONTRIBUTORY;
726
default:
727
break;
728
}
729
return EXCPT_BENIGN;
730
}
731
732
#define EXCPT_FAULT 0
733
#define EXCPT_TRAP 1
734
#define EXCPT_ABORT 2
735
#define EXCPT_INTERRUPT 3
736
#define EXCPT_DB 4
737
738
static int exception_type(int vector)
739
{
740
unsigned int mask;
741
742
if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
743
return EXCPT_INTERRUPT;
744
745
mask = 1 << vector;
746
747
/*
748
* #DBs can be trap-like or fault-like, the caller must check other CPU
749
* state, e.g. DR6, to determine whether a #DB is a trap or fault.
750
*/
751
if (mask & (1 << DB_VECTOR))
752
return EXCPT_DB;
753
754
if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
755
return EXCPT_TRAP;
756
757
if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
758
return EXCPT_ABORT;
759
760
/* Reserved exceptions will result in fault */
761
return EXCPT_FAULT;
762
}
763
764
void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
765
struct kvm_queued_exception *ex)
766
{
767
if (!ex->has_payload)
768
return;
769
770
switch (ex->vector) {
771
case DB_VECTOR:
772
/*
773
* "Certain debug exceptions may clear bit 0-3. The
774
* remaining contents of the DR6 register are never
775
* cleared by the processor".
776
*/
777
vcpu->arch.dr6 &= ~DR_TRAP_BITS;
778
/*
779
* In order to reflect the #DB exception payload in guest
780
* dr6, three components need to be considered: active low
781
* bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
782
* DR6_BS and DR6_BT)
783
* DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
784
* In the target guest dr6:
785
* FIXED_1 bits should always be set.
786
* Active low bits should be cleared if 1-setting in payload.
787
* Active high bits should be set if 1-setting in payload.
788
*
789
* Note, the payload is compatible with the pending debug
790
* exceptions/exit qualification under VMX, that active_low bits
791
* are active high in payload.
792
* So they need to be flipped for DR6.
793
*/
794
vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
795
vcpu->arch.dr6 |= ex->payload;
796
vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
797
798
/*
799
* The #DB payload is defined as compatible with the 'pending
800
* debug exceptions' field under VMX, not DR6. While bit 12 is
801
* defined in the 'pending debug exceptions' field (enabled
802
* breakpoint), it is reserved and must be zero in DR6.
803
*/
804
vcpu->arch.dr6 &= ~BIT(12);
805
break;
806
case PF_VECTOR:
807
vcpu->arch.cr2 = ex->payload;
808
break;
809
}
810
811
ex->has_payload = false;
812
ex->payload = 0;
813
}
814
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_deliver_exception_payload);
815
816
static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
817
bool has_error_code, u32 error_code,
818
bool has_payload, unsigned long payload)
819
{
820
struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
821
822
ex->vector = vector;
823
ex->injected = false;
824
ex->pending = true;
825
ex->has_error_code = has_error_code;
826
ex->error_code = error_code;
827
ex->has_payload = has_payload;
828
ex->payload = payload;
829
}
830
831
static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
832
bool has_error, u32 error_code,
833
bool has_payload, unsigned long payload)
834
{
835
u32 prev_nr;
836
int class1, class2;
837
838
kvm_make_request(KVM_REQ_EVENT, vcpu);
839
840
/*
841
* If the exception is destined for L2, morph it to a VM-Exit if L1
842
* wants to intercept the exception.
843
*/
844
if (is_guest_mode(vcpu) &&
845
kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
846
kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
847
has_payload, payload);
848
return;
849
}
850
851
if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
852
queue:
853
vcpu->arch.exception.pending = true;
854
vcpu->arch.exception.injected = false;
855
856
vcpu->arch.exception.has_error_code = has_error;
857
vcpu->arch.exception.vector = nr;
858
vcpu->arch.exception.error_code = error_code;
859
vcpu->arch.exception.has_payload = has_payload;
860
vcpu->arch.exception.payload = payload;
861
if (!is_guest_mode(vcpu))
862
kvm_deliver_exception_payload(vcpu,
863
&vcpu->arch.exception);
864
return;
865
}
866
867
/* to check exception */
868
prev_nr = vcpu->arch.exception.vector;
869
if (prev_nr == DF_VECTOR) {
870
/* triple fault -> shutdown */
871
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
872
return;
873
}
874
class1 = exception_class(prev_nr);
875
class2 = exception_class(nr);
876
if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
877
(class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
878
/*
879
* Synthesize #DF. Clear the previously injected or pending
880
* exception so as not to incorrectly trigger shutdown.
881
*/
882
vcpu->arch.exception.injected = false;
883
vcpu->arch.exception.pending = false;
884
885
kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
886
} else {
887
/* replace previous exception with a new one in a hope
888
that instruction re-execution will regenerate lost
889
exception */
890
goto queue;
891
}
892
}
893
894
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
895
{
896
kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
897
}
898
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception);
899
900
901
void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
902
unsigned long payload)
903
{
904
kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
905
}
906
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_p);
907
908
static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
909
u32 error_code, unsigned long payload)
910
{
911
kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
912
}
913
914
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
915
bool has_error_code, u32 error_code)
916
{
917
918
/*
919
* On VM-Entry, an exception can be pending if and only if event
920
* injection was blocked by nested_run_pending. In that case, however,
921
* vcpu_enter_guest() requests an immediate exit, and the guest
922
* shouldn't proceed far enough to need reinjection.
923
*/
924
WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
925
926
/*
927
* Do not check for interception when injecting an event for L2, as the
928
* exception was checked for intercept when it was original queued, and
929
* re-checking is incorrect if _L1_ injected the exception, in which
930
* case it's exempt from interception.
931
*/
932
kvm_make_request(KVM_REQ_EVENT, vcpu);
933
934
vcpu->arch.exception.injected = true;
935
vcpu->arch.exception.has_error_code = has_error_code;
936
vcpu->arch.exception.vector = nr;
937
vcpu->arch.exception.error_code = error_code;
938
vcpu->arch.exception.has_payload = false;
939
vcpu->arch.exception.payload = 0;
940
}
941
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_requeue_exception);
942
943
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
944
{
945
if (err)
946
kvm_inject_gp(vcpu, 0);
947
else
948
return kvm_skip_emulated_instruction(vcpu);
949
950
return 1;
951
}
952
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_complete_insn_gp);
953
954
static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
955
{
956
if (err) {
957
kvm_inject_gp(vcpu, 0);
958
return 1;
959
}
960
961
return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
962
EMULTYPE_COMPLETE_USER_EXIT);
963
}
964
965
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
966
{
967
++vcpu->stat.pf_guest;
968
969
/*
970
* Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
971
* whether or not L1 wants to intercept "regular" #PF.
972
*/
973
if (is_guest_mode(vcpu) && fault->async_page_fault)
974
kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
975
true, fault->error_code,
976
true, fault->address);
977
else
978
kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
979
fault->address);
980
}
981
982
void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
983
struct x86_exception *fault)
984
{
985
struct kvm_mmu *fault_mmu;
986
WARN_ON_ONCE(fault->vector != PF_VECTOR);
987
988
fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
989
vcpu->arch.walk_mmu;
990
991
/*
992
* Invalidate the TLB entry for the faulting address, if it exists,
993
* else the access will fault indefinitely (and to emulate hardware).
994
*/
995
if ((fault->error_code & PFERR_PRESENT_MASK) &&
996
!(fault->error_code & PFERR_RSVD_MASK))
997
kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
998
KVM_MMU_ROOT_CURRENT);
999
1000
fault_mmu->inject_page_fault(vcpu, fault);
1001
}
1002
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_emulated_page_fault);
1003
1004
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
1005
{
1006
atomic_inc(&vcpu->arch.nmi_queued);
1007
kvm_make_request(KVM_REQ_NMI, vcpu);
1008
}
1009
1010
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1011
{
1012
kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
1013
}
1014
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_e);
1015
1016
/*
1017
* Checks if cpl <= required_cpl; if true, return true. Otherwise queue
1018
* a #GP and return false.
1019
*/
1020
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1021
{
1022
if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1023
return true;
1024
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1025
return false;
1026
}
1027
1028
bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1029
{
1030
if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1031
return true;
1032
1033
kvm_queue_exception(vcpu, UD_VECTOR);
1034
return false;
1035
}
1036
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_require_dr);
1037
1038
static bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
1039
{
1040
u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
1041
1042
return (vcpu->arch.apf.msr_en_val & mask) == mask;
1043
}
1044
1045
static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1046
{
1047
return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1048
}
1049
1050
/*
1051
* Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1052
*/
1053
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1054
{
1055
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1056
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1057
gpa_t real_gpa;
1058
int i;
1059
int ret;
1060
u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1061
1062
/*
1063
* If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1064
* to an L1 GPA.
1065
*/
1066
real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1067
PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1068
if (real_gpa == INVALID_GPA)
1069
return 0;
1070
1071
/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1072
ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1073
cr3 & GENMASK(11, 5), sizeof(pdpte));
1074
if (ret < 0)
1075
return 0;
1076
1077
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1078
if ((pdpte[i] & PT_PRESENT_MASK) &&
1079
(pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1080
return 0;
1081
}
1082
}
1083
1084
/*
1085
* Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1086
* Shadow page roots need to be reconstructed instead.
1087
*/
1088
if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1089
kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1090
1091
memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1092
kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1093
kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1094
vcpu->arch.pdptrs_from_userspace = false;
1095
1096
return 1;
1097
}
1098
EXPORT_SYMBOL_FOR_KVM_INTERNAL(load_pdptrs);
1099
1100
static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1101
{
1102
#ifdef CONFIG_X86_64
1103
if (cr0 & 0xffffffff00000000UL)
1104
return false;
1105
#endif
1106
1107
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1108
return false;
1109
1110
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1111
return false;
1112
1113
return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1114
}
1115
1116
void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1117
{
1118
/*
1119
* CR0.WP is incorporated into the MMU role, but only for non-nested,
1120
* indirect shadow MMUs. If paging is disabled, no updates are needed
1121
* as there are no permission bits to emulate. If TDP is enabled, the
1122
* MMU's metadata needs to be updated, e.g. so that emulating guest
1123
* translations does the right thing, but there's no need to unload the
1124
* root as CR0.WP doesn't affect SPTEs.
1125
*/
1126
if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1127
if (!(cr0 & X86_CR0_PG))
1128
return;
1129
1130
if (tdp_enabled) {
1131
kvm_init_mmu(vcpu);
1132
return;
1133
}
1134
}
1135
1136
if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1137
/*
1138
* Clearing CR0.PG is defined to flush the TLB from the guest's
1139
* perspective.
1140
*/
1141
if (!(cr0 & X86_CR0_PG))
1142
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1143
/*
1144
* Check for async #PF completion events when enabling paging,
1145
* as the vCPU may have previously encountered async #PFs (it's
1146
* entirely legal for the guest to toggle paging on/off without
1147
* waiting for the async #PF queue to drain).
1148
*/
1149
else if (kvm_pv_async_pf_enabled(vcpu))
1150
kvm_make_request(KVM_REQ_APF_READY, vcpu);
1151
}
1152
1153
if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1154
kvm_mmu_reset_context(vcpu);
1155
}
1156
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr0);
1157
1158
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1159
{
1160
unsigned long old_cr0 = kvm_read_cr0(vcpu);
1161
1162
if (!kvm_is_valid_cr0(vcpu, cr0))
1163
return 1;
1164
1165
cr0 |= X86_CR0_ET;
1166
1167
/* Write to CR0 reserved bits are ignored, even on Intel. */
1168
cr0 &= ~CR0_RESERVED_BITS;
1169
1170
#ifdef CONFIG_X86_64
1171
if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1172
(cr0 & X86_CR0_PG)) {
1173
int cs_db, cs_l;
1174
1175
if (!is_pae(vcpu))
1176
return 1;
1177
kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1178
if (cs_l)
1179
return 1;
1180
}
1181
#endif
1182
if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1183
is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1184
!load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1185
return 1;
1186
1187
if (!(cr0 & X86_CR0_PG) &&
1188
(is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1189
return 1;
1190
1191
if (!(cr0 & X86_CR0_WP) && kvm_is_cr4_bit_set(vcpu, X86_CR4_CET))
1192
return 1;
1193
1194
kvm_x86_call(set_cr0)(vcpu, cr0);
1195
1196
kvm_post_set_cr0(vcpu, old_cr0, cr0);
1197
1198
return 0;
1199
}
1200
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr0);
1201
1202
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1203
{
1204
(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1205
}
1206
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lmsw);
1207
1208
static void kvm_load_xfeatures(struct kvm_vcpu *vcpu, bool load_guest)
1209
{
1210
if (vcpu->arch.guest_state_protected)
1211
return;
1212
1213
if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE))
1214
return;
1215
1216
if (vcpu->arch.xcr0 != kvm_host.xcr0)
1217
xsetbv(XCR_XFEATURE_ENABLED_MASK,
1218
load_guest ? vcpu->arch.xcr0 : kvm_host.xcr0);
1219
1220
if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1221
vcpu->arch.ia32_xss != kvm_host.xss)
1222
wrmsrq(MSR_IA32_XSS, load_guest ? vcpu->arch.ia32_xss : kvm_host.xss);
1223
}
1224
1225
static void kvm_load_guest_pkru(struct kvm_vcpu *vcpu)
1226
{
1227
if (vcpu->arch.guest_state_protected)
1228
return;
1229
1230
if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1231
vcpu->arch.pkru != vcpu->arch.host_pkru &&
1232
((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1233
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1234
wrpkru(vcpu->arch.pkru);
1235
}
1236
1237
static void kvm_load_host_pkru(struct kvm_vcpu *vcpu)
1238
{
1239
if (vcpu->arch.guest_state_protected)
1240
return;
1241
1242
if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1243
((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1244
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1245
vcpu->arch.pkru = rdpkru();
1246
if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1247
wrpkru(vcpu->arch.host_pkru);
1248
}
1249
}
1250
1251
#ifdef CONFIG_X86_64
1252
static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1253
{
1254
return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1255
}
1256
#endif
1257
1258
int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1259
{
1260
u64 xcr0 = xcr;
1261
u64 old_xcr0 = vcpu->arch.xcr0;
1262
u64 valid_bits;
1263
1264
/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1265
if (index != XCR_XFEATURE_ENABLED_MASK)
1266
return 1;
1267
if (!(xcr0 & XFEATURE_MASK_FP))
1268
return 1;
1269
if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1270
return 1;
1271
1272
/*
1273
* Do not allow the guest to set bits that we do not support
1274
* saving. However, xcr0 bit 0 is always set, even if the
1275
* emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1276
*/
1277
valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1278
if (xcr0 & ~valid_bits)
1279
return 1;
1280
1281
if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1282
(!(xcr0 & XFEATURE_MASK_BNDCSR)))
1283
return 1;
1284
1285
if (xcr0 & XFEATURE_MASK_AVX512) {
1286
if (!(xcr0 & XFEATURE_MASK_YMM))
1287
return 1;
1288
if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1289
return 1;
1290
}
1291
1292
if ((xcr0 & XFEATURE_MASK_XTILE) &&
1293
((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1294
return 1;
1295
1296
vcpu->arch.xcr0 = xcr0;
1297
1298
if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1299
vcpu->arch.cpuid_dynamic_bits_dirty = true;
1300
return 0;
1301
}
1302
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_set_xcr);
1303
1304
int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1305
{
1306
/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1307
if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1308
__kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1309
kvm_inject_gp(vcpu, 0);
1310
return 1;
1311
}
1312
1313
return kvm_skip_emulated_instruction(vcpu);
1314
}
1315
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_xsetbv);
1316
1317
static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1318
{
1319
return __kvm_is_valid_cr4(vcpu, cr4) &&
1320
kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1321
}
1322
1323
void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1324
{
1325
if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1326
kvm_mmu_reset_context(vcpu);
1327
1328
/*
1329
* If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1330
* according to the SDM; however, stale prev_roots could be reused
1331
* incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1332
* free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1333
* or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1334
* so fall through.
1335
*/
1336
if (!tdp_enabled &&
1337
(cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1338
kvm_mmu_unload(vcpu);
1339
1340
/*
1341
* The TLB has to be flushed for all PCIDs if any of the following
1342
* (architecturally required) changes happen:
1343
* - CR4.PCIDE is changed from 1 to 0
1344
* - CR4.PGE is toggled
1345
*
1346
* This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1347
*/
1348
if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1349
(!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1350
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1351
1352
/*
1353
* The TLB has to be flushed for the current PCID if any of the
1354
* following (architecturally required) changes happen:
1355
* - CR4.SMEP is changed from 0 to 1
1356
* - CR4.PAE is toggled
1357
*/
1358
else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1359
((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1360
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1361
1362
}
1363
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr4);
1364
1365
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1366
{
1367
unsigned long old_cr4 = kvm_read_cr4(vcpu);
1368
1369
if (!kvm_is_valid_cr4(vcpu, cr4))
1370
return 1;
1371
1372
if (is_long_mode(vcpu)) {
1373
if (!(cr4 & X86_CR4_PAE))
1374
return 1;
1375
if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1376
return 1;
1377
} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1378
&& ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1379
&& !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1380
return 1;
1381
1382
if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1383
/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1384
if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1385
return 1;
1386
}
1387
1388
if ((cr4 & X86_CR4_CET) && !kvm_is_cr0_bit_set(vcpu, X86_CR0_WP))
1389
return 1;
1390
1391
kvm_x86_call(set_cr4)(vcpu, cr4);
1392
1393
kvm_post_set_cr4(vcpu, old_cr4, cr4);
1394
1395
return 0;
1396
}
1397
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr4);
1398
1399
static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1400
{
1401
struct kvm_mmu *mmu = vcpu->arch.mmu;
1402
unsigned long roots_to_free = 0;
1403
int i;
1404
1405
/*
1406
* MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1407
* this is reachable when running EPT=1 and unrestricted_guest=0, and
1408
* also via the emulator. KVM's TDP page tables are not in the scope of
1409
* the invalidation, but the guest's TLB entries need to be flushed as
1410
* the CPU may have cached entries in its TLB for the target PCID.
1411
*/
1412
if (unlikely(tdp_enabled)) {
1413
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1414
return;
1415
}
1416
1417
/*
1418
* If neither the current CR3 nor any of the prev_roots use the given
1419
* PCID, then nothing needs to be done here because a resync will
1420
* happen anyway before switching to any other CR3.
1421
*/
1422
if (kvm_get_active_pcid(vcpu) == pcid) {
1423
kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1424
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1425
}
1426
1427
/*
1428
* If PCID is disabled, there is no need to free prev_roots even if the
1429
* PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1430
* with PCIDE=0.
1431
*/
1432
if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1433
return;
1434
1435
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1436
if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1437
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1438
1439
kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1440
}
1441
1442
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1443
{
1444
bool skip_tlb_flush = false;
1445
unsigned long pcid = 0;
1446
#ifdef CONFIG_X86_64
1447
if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1448
skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1449
cr3 &= ~X86_CR3_PCID_NOFLUSH;
1450
pcid = cr3 & X86_CR3_PCID_MASK;
1451
}
1452
#endif
1453
1454
/* PDPTRs are always reloaded for PAE paging. */
1455
if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1456
goto handle_tlb_flush;
1457
1458
/*
1459
* Do not condition the GPA check on long mode, this helper is used to
1460
* stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1461
* the current vCPU mode is accurate.
1462
*/
1463
if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1464
return 1;
1465
1466
if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1467
return 1;
1468
1469
if (cr3 != kvm_read_cr3(vcpu))
1470
kvm_mmu_new_pgd(vcpu, cr3);
1471
1472
vcpu->arch.cr3 = cr3;
1473
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1474
/* Do not call post_set_cr3, we do not get here for confidential guests. */
1475
1476
handle_tlb_flush:
1477
/*
1478
* A load of CR3 that flushes the TLB flushes only the current PCID,
1479
* even if PCID is disabled, in which case PCID=0 is flushed. It's a
1480
* moot point in the end because _disabling_ PCID will flush all PCIDs,
1481
* and it's impossible to use a non-zero PCID when PCID is disabled,
1482
* i.e. only PCID=0 can be relevant.
1483
*/
1484
if (!skip_tlb_flush)
1485
kvm_invalidate_pcid(vcpu, pcid);
1486
1487
return 0;
1488
}
1489
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr3);
1490
1491
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1492
{
1493
if (cr8 & CR8_RESERVED_BITS)
1494
return 1;
1495
if (lapic_in_kernel(vcpu))
1496
kvm_lapic_set_tpr(vcpu, cr8);
1497
else
1498
vcpu->arch.cr8 = cr8;
1499
return 0;
1500
}
1501
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr8);
1502
1503
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1504
{
1505
if (lapic_in_kernel(vcpu))
1506
return kvm_lapic_get_cr8(vcpu);
1507
else
1508
return vcpu->arch.cr8;
1509
}
1510
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_cr8);
1511
1512
static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1513
{
1514
int i;
1515
1516
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1517
for (i = 0; i < KVM_NR_DB_REGS; i++)
1518
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1519
}
1520
}
1521
1522
void kvm_update_dr7(struct kvm_vcpu *vcpu)
1523
{
1524
unsigned long dr7;
1525
1526
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1527
dr7 = vcpu->arch.guest_debug_dr7;
1528
else
1529
dr7 = vcpu->arch.dr7;
1530
kvm_x86_call(set_dr7)(vcpu, dr7);
1531
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1532
if (dr7 & DR7_BP_EN_MASK)
1533
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1534
}
1535
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_update_dr7);
1536
1537
static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1538
{
1539
u64 fixed = DR6_FIXED_1;
1540
1541
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1542
fixed |= DR6_RTM;
1543
1544
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1545
fixed |= DR6_BUS_LOCK;
1546
return fixed;
1547
}
1548
1549
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1550
{
1551
size_t size = ARRAY_SIZE(vcpu->arch.db);
1552
1553
switch (dr) {
1554
case 0 ... 3:
1555
vcpu->arch.db[array_index_nospec(dr, size)] = val;
1556
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1557
vcpu->arch.eff_db[dr] = val;
1558
break;
1559
case 4:
1560
case 6:
1561
if (!kvm_dr6_valid(val))
1562
return 1; /* #GP */
1563
vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1564
break;
1565
case 5:
1566
default: /* 7 */
1567
if (!kvm_dr7_valid(val))
1568
return 1; /* #GP */
1569
vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1570
kvm_update_dr7(vcpu);
1571
break;
1572
}
1573
1574
return 0;
1575
}
1576
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_dr);
1577
1578
unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1579
{
1580
size_t size = ARRAY_SIZE(vcpu->arch.db);
1581
1582
switch (dr) {
1583
case 0 ... 3:
1584
return vcpu->arch.db[array_index_nospec(dr, size)];
1585
case 4:
1586
case 6:
1587
return vcpu->arch.dr6;
1588
case 5:
1589
default: /* 7 */
1590
return vcpu->arch.dr7;
1591
}
1592
}
1593
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dr);
1594
1595
int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1596
{
1597
u32 pmc = kvm_rcx_read(vcpu);
1598
u64 data;
1599
1600
if (kvm_pmu_rdpmc(vcpu, pmc, &data)) {
1601
kvm_inject_gp(vcpu, 0);
1602
return 1;
1603
}
1604
1605
kvm_rax_write(vcpu, (u32)data);
1606
kvm_rdx_write(vcpu, data >> 32);
1607
return kvm_skip_emulated_instruction(vcpu);
1608
}
1609
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdpmc);
1610
1611
/*
1612
* Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1613
* does not yet virtualize. These include:
1614
* 10 - MISC_PACKAGE_CTRLS
1615
* 11 - ENERGY_FILTERING_CTL
1616
* 12 - DOITM
1617
* 18 - FB_CLEAR_CTRL
1618
* 21 - XAPIC_DISABLE_STATUS
1619
* 23 - OVERCLOCKING_STATUS
1620
*/
1621
1622
#define KVM_SUPPORTED_ARCH_CAP \
1623
(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1624
ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1625
ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1626
ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1627
ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1628
ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1629
1630
static u64 kvm_get_arch_capabilities(void)
1631
{
1632
u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1633
1634
/*
1635
* If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1636
* the nested hypervisor runs with NX huge pages. If it is not,
1637
* L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1638
* L1 guests, so it need not worry about its own (L2) guests.
1639
*/
1640
data |= ARCH_CAP_PSCHANGE_MC_NO;
1641
1642
/*
1643
* If we're doing cache flushes (either "always" or "cond")
1644
* we will do one whenever the guest does a vmlaunch/vmresume.
1645
* If an outer hypervisor is doing the cache flush for us
1646
* (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1647
* capability to the guest too, and if EPT is disabled we're not
1648
* vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1649
* require a nested hypervisor to do a flush of its own.
1650
*/
1651
if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1652
data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1653
1654
if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1655
data |= ARCH_CAP_RDCL_NO;
1656
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1657
data |= ARCH_CAP_SSB_NO;
1658
if (!boot_cpu_has_bug(X86_BUG_MDS))
1659
data |= ARCH_CAP_MDS_NO;
1660
if (!boot_cpu_has_bug(X86_BUG_RFDS))
1661
data |= ARCH_CAP_RFDS_NO;
1662
if (!boot_cpu_has_bug(X86_BUG_ITS))
1663
data |= ARCH_CAP_ITS_NO;
1664
1665
if (!boot_cpu_has(X86_FEATURE_RTM)) {
1666
/*
1667
* If RTM=0 because the kernel has disabled TSX, the host might
1668
* have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1669
* and therefore knows that there cannot be TAA) but keep
1670
* TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1671
* and we want to allow migrating those guests to tsx=off hosts.
1672
*/
1673
data &= ~ARCH_CAP_TAA_NO;
1674
} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1675
data |= ARCH_CAP_TAA_NO;
1676
} else {
1677
/*
1678
* Nothing to do here; we emulate TSX_CTRL if present on the
1679
* host so the guest can choose between disabling TSX or
1680
* using VERW to clear CPU buffers.
1681
*/
1682
}
1683
1684
if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1685
data |= ARCH_CAP_GDS_NO;
1686
1687
return data;
1688
}
1689
1690
static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1691
bool host_initiated)
1692
{
1693
WARN_ON_ONCE(!host_initiated);
1694
1695
switch (index) {
1696
case MSR_IA32_ARCH_CAPABILITIES:
1697
*data = kvm_get_arch_capabilities();
1698
break;
1699
case MSR_IA32_PERF_CAPABILITIES:
1700
*data = kvm_caps.supported_perf_cap;
1701
break;
1702
case MSR_PLATFORM_INFO:
1703
*data = MSR_PLATFORM_INFO_CPUID_FAULT;
1704
break;
1705
case MSR_IA32_UCODE_REV:
1706
rdmsrq_safe(index, data);
1707
break;
1708
default:
1709
return kvm_x86_call(get_feature_msr)(index, data);
1710
}
1711
return 0;
1712
}
1713
1714
static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1715
{
1716
return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1717
kvm_get_feature_msr);
1718
}
1719
1720
static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1721
{
1722
if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1723
return false;
1724
1725
if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1726
return false;
1727
1728
if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1729
return false;
1730
1731
if (efer & (EFER_LME | EFER_LMA) &&
1732
!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1733
return false;
1734
1735
if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1736
return false;
1737
1738
return true;
1739
1740
}
1741
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1742
{
1743
if (efer & efer_reserved_bits)
1744
return false;
1745
1746
return __kvm_valid_efer(vcpu, efer);
1747
}
1748
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_valid_efer);
1749
1750
static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1751
{
1752
u64 old_efer = vcpu->arch.efer;
1753
u64 efer = msr_info->data;
1754
int r;
1755
1756
if (efer & efer_reserved_bits)
1757
return 1;
1758
1759
if (!msr_info->host_initiated) {
1760
if (!__kvm_valid_efer(vcpu, efer))
1761
return 1;
1762
1763
if (is_paging(vcpu) &&
1764
(vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1765
return 1;
1766
}
1767
1768
efer &= ~EFER_LMA;
1769
efer |= vcpu->arch.efer & EFER_LMA;
1770
1771
r = kvm_x86_call(set_efer)(vcpu, efer);
1772
if (r) {
1773
WARN_ON(r > 0);
1774
return r;
1775
}
1776
1777
if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1778
kvm_mmu_reset_context(vcpu);
1779
1780
if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1781
(efer & EFER_SVME))
1782
kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1783
1784
return 0;
1785
}
1786
1787
void kvm_enable_efer_bits(u64 mask)
1788
{
1789
efer_reserved_bits &= ~mask;
1790
}
1791
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_efer_bits);
1792
1793
bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1794
{
1795
struct kvm_x86_msr_filter *msr_filter;
1796
struct msr_bitmap_range *ranges;
1797
struct kvm *kvm = vcpu->kvm;
1798
bool allowed;
1799
int idx;
1800
u32 i;
1801
1802
/* x2APIC MSRs do not support filtering. */
1803
if (index >= 0x800 && index <= 0x8ff)
1804
return true;
1805
1806
idx = srcu_read_lock(&kvm->srcu);
1807
1808
msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1809
if (!msr_filter) {
1810
allowed = true;
1811
goto out;
1812
}
1813
1814
allowed = msr_filter->default_allow;
1815
ranges = msr_filter->ranges;
1816
1817
for (i = 0; i < msr_filter->count; i++) {
1818
u32 start = ranges[i].base;
1819
u32 end = start + ranges[i].nmsrs;
1820
u32 flags = ranges[i].flags;
1821
unsigned long *bitmap = ranges[i].bitmap;
1822
1823
if ((index >= start) && (index < end) && (flags & type)) {
1824
allowed = test_bit(index - start, bitmap);
1825
break;
1826
}
1827
}
1828
1829
out:
1830
srcu_read_unlock(&kvm->srcu, idx);
1831
1832
return allowed;
1833
}
1834
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_msr_allowed);
1835
1836
/*
1837
* Write @data into the MSR specified by @index. Select MSR specific fault
1838
* checks are bypassed if @host_initiated is %true.
1839
* Returns 0 on success, non-0 otherwise.
1840
* Assumes vcpu_load() was already called.
1841
*/
1842
static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1843
bool host_initiated)
1844
{
1845
struct msr_data msr;
1846
1847
switch (index) {
1848
case MSR_FS_BASE:
1849
case MSR_GS_BASE:
1850
case MSR_KERNEL_GS_BASE:
1851
case MSR_CSTAR:
1852
case MSR_LSTAR:
1853
if (is_noncanonical_msr_address(data, vcpu))
1854
return 1;
1855
break;
1856
case MSR_IA32_SYSENTER_EIP:
1857
case MSR_IA32_SYSENTER_ESP:
1858
/*
1859
* IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1860
* non-canonical address is written on Intel but not on
1861
* AMD (which ignores the top 32-bits, because it does
1862
* not implement 64-bit SYSENTER).
1863
*
1864
* 64-bit code should hence be able to write a non-canonical
1865
* value on AMD. Making the address canonical ensures that
1866
* vmentry does not fail on Intel after writing a non-canonical
1867
* value, and that something deterministic happens if the guest
1868
* invokes 64-bit SYSENTER.
1869
*/
1870
data = __canonical_address(data, max_host_virt_addr_bits());
1871
break;
1872
case MSR_TSC_AUX:
1873
if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1874
return 1;
1875
1876
if (!host_initiated &&
1877
!guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1878
!guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1879
return 1;
1880
1881
/*
1882
* Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1883
* incomplete and conflicting architectural behavior. Current
1884
* AMD CPUs completely ignore bits 63:32, i.e. they aren't
1885
* reserved and always read as zeros. Enforce Intel's reserved
1886
* bits check if the guest CPU is Intel compatible, otherwise
1887
* clear the bits. This ensures cross-vendor migration will
1888
* provide consistent behavior for the guest.
1889
*/
1890
if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1891
return 1;
1892
1893
data = (u32)data;
1894
break;
1895
case MSR_IA32_U_CET:
1896
case MSR_IA32_S_CET:
1897
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1898
!guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1899
return KVM_MSR_RET_UNSUPPORTED;
1900
if (!kvm_is_valid_u_s_cet(vcpu, data))
1901
return 1;
1902
break;
1903
case MSR_KVM_INTERNAL_GUEST_SSP:
1904
if (!host_initiated)
1905
return 1;
1906
fallthrough;
1907
/*
1908
* Note that the MSR emulation here is flawed when a vCPU
1909
* doesn't support the Intel 64 architecture. The expected
1910
* architectural behavior in this case is that the upper 32
1911
* bits do not exist and should always read '0'. However,
1912
* because the actual hardware on which the virtual CPU is
1913
* running does support Intel 64, XRSTORS/XSAVES in the
1914
* guest could observe behavior that violates the
1915
* architecture. Intercepting XRSTORS/XSAVES for this
1916
* special case isn't deemed worthwhile.
1917
*/
1918
case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1919
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1920
return KVM_MSR_RET_UNSUPPORTED;
1921
/*
1922
* MSR_IA32_INT_SSP_TAB is not present on processors that do
1923
* not support Intel 64 architecture.
1924
*/
1925
if (index == MSR_IA32_INT_SSP_TAB && !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1926
return KVM_MSR_RET_UNSUPPORTED;
1927
if (is_noncanonical_msr_address(data, vcpu))
1928
return 1;
1929
/* All SSP MSRs except MSR_IA32_INT_SSP_TAB must be 4-byte aligned */
1930
if (index != MSR_IA32_INT_SSP_TAB && !IS_ALIGNED(data, 4))
1931
return 1;
1932
break;
1933
}
1934
1935
msr.data = data;
1936
msr.index = index;
1937
msr.host_initiated = host_initiated;
1938
1939
return kvm_x86_call(set_msr)(vcpu, &msr);
1940
}
1941
1942
static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1943
bool host_initiated)
1944
{
1945
return __kvm_set_msr(vcpu, index, *data, host_initiated);
1946
}
1947
1948
static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1949
u32 index, u64 data, bool host_initiated)
1950
{
1951
return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1952
_kvm_set_msr);
1953
}
1954
1955
/*
1956
* Read the MSR specified by @index into @data. Select MSR specific fault
1957
* checks are bypassed if @host_initiated is %true.
1958
* Returns 0 on success, non-0 otherwise.
1959
* Assumes vcpu_load() was already called.
1960
*/
1961
static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1962
bool host_initiated)
1963
{
1964
struct msr_data msr;
1965
int ret;
1966
1967
switch (index) {
1968
case MSR_TSC_AUX:
1969
if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1970
return 1;
1971
1972
if (!host_initiated &&
1973
!guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1974
!guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1975
return 1;
1976
break;
1977
case MSR_IA32_U_CET:
1978
case MSR_IA32_S_CET:
1979
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1980
!guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1981
return KVM_MSR_RET_UNSUPPORTED;
1982
break;
1983
case MSR_KVM_INTERNAL_GUEST_SSP:
1984
if (!host_initiated)
1985
return 1;
1986
fallthrough;
1987
case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1988
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1989
return KVM_MSR_RET_UNSUPPORTED;
1990
break;
1991
}
1992
1993
msr.index = index;
1994
msr.host_initiated = host_initiated;
1995
1996
ret = kvm_x86_call(get_msr)(vcpu, &msr);
1997
if (!ret)
1998
*data = msr.data;
1999
return ret;
2000
}
2001
2002
int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2003
{
2004
return __kvm_set_msr(vcpu, index, data, true);
2005
}
2006
2007
int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2008
{
2009
return __kvm_get_msr(vcpu, index, data, true);
2010
}
2011
2012
static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
2013
u32 index, u64 *data, bool host_initiated)
2014
{
2015
return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
2016
__kvm_get_msr);
2017
}
2018
2019
int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2020
{
2021
return kvm_get_msr_ignored_check(vcpu, index, data, false);
2022
}
2023
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_read);
2024
2025
int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2026
{
2027
return kvm_set_msr_ignored_check(vcpu, index, data, false);
2028
}
2029
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_write);
2030
2031
int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2032
{
2033
if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
2034
return KVM_MSR_RET_FILTERED;
2035
2036
return __kvm_emulate_msr_read(vcpu, index, data);
2037
}
2038
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_read);
2039
2040
int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2041
{
2042
if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
2043
return KVM_MSR_RET_FILTERED;
2044
2045
return __kvm_emulate_msr_write(vcpu, index, data);
2046
}
2047
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_write);
2048
2049
2050
static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
2051
{
2052
if (!vcpu->run->msr.error) {
2053
kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
2054
kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
2055
}
2056
}
2057
2058
static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2059
{
2060
return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2061
}
2062
2063
static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2064
{
2065
complete_userspace_rdmsr(vcpu);
2066
return complete_emulated_msr_access(vcpu);
2067
}
2068
2069
static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2070
{
2071
return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2072
}
2073
2074
static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2075
{
2076
complete_userspace_rdmsr(vcpu);
2077
return complete_fast_msr_access(vcpu);
2078
}
2079
2080
static int complete_fast_rdmsr_imm(struct kvm_vcpu *vcpu)
2081
{
2082
if (!vcpu->run->msr.error)
2083
kvm_register_write(vcpu, vcpu->arch.cui_rdmsr_imm_reg,
2084
vcpu->run->msr.data);
2085
2086
return complete_fast_msr_access(vcpu);
2087
}
2088
2089
static u64 kvm_msr_reason(int r)
2090
{
2091
switch (r) {
2092
case KVM_MSR_RET_UNSUPPORTED:
2093
return KVM_MSR_EXIT_REASON_UNKNOWN;
2094
case KVM_MSR_RET_FILTERED:
2095
return KVM_MSR_EXIT_REASON_FILTER;
2096
default:
2097
return KVM_MSR_EXIT_REASON_INVAL;
2098
}
2099
}
2100
2101
static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2102
u32 exit_reason, u64 data,
2103
int (*completion)(struct kvm_vcpu *vcpu),
2104
int r)
2105
{
2106
u64 msr_reason = kvm_msr_reason(r);
2107
2108
/* Check if the user wanted to know about this MSR fault */
2109
if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2110
return 0;
2111
2112
vcpu->run->exit_reason = exit_reason;
2113
vcpu->run->msr.error = 0;
2114
memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2115
vcpu->run->msr.reason = msr_reason;
2116
vcpu->run->msr.index = index;
2117
vcpu->run->msr.data = data;
2118
vcpu->arch.complete_userspace_io = completion;
2119
2120
return 1;
2121
}
2122
2123
static int __kvm_emulate_rdmsr(struct kvm_vcpu *vcpu, u32 msr, int reg,
2124
int (*complete_rdmsr)(struct kvm_vcpu *))
2125
{
2126
u64 data;
2127
int r;
2128
2129
r = kvm_emulate_msr_read(vcpu, msr, &data);
2130
2131
if (!r) {
2132
trace_kvm_msr_read(msr, data);
2133
2134
if (reg < 0) {
2135
kvm_rax_write(vcpu, data & -1u);
2136
kvm_rdx_write(vcpu, (data >> 32) & -1u);
2137
} else {
2138
kvm_register_write(vcpu, reg, data);
2139
}
2140
} else {
2141
/* MSR read failed? See if we should ask user space */
2142
if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_RDMSR, 0,
2143
complete_rdmsr, r))
2144
return 0;
2145
trace_kvm_msr_read_ex(msr);
2146
}
2147
2148
return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2149
}
2150
2151
int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2152
{
2153
return __kvm_emulate_rdmsr(vcpu, kvm_rcx_read(vcpu), -1,
2154
complete_fast_rdmsr);
2155
}
2156
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr);
2157
2158
int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2159
{
2160
vcpu->arch.cui_rdmsr_imm_reg = reg;
2161
2162
return __kvm_emulate_rdmsr(vcpu, msr, reg, complete_fast_rdmsr_imm);
2163
}
2164
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr_imm);
2165
2166
static int __kvm_emulate_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2167
{
2168
int r;
2169
2170
r = kvm_emulate_msr_write(vcpu, msr, data);
2171
if (!r) {
2172
trace_kvm_msr_write(msr, data);
2173
} else {
2174
/* MSR write failed? See if we should ask user space */
2175
if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_WRMSR, data,
2176
complete_fast_msr_access, r))
2177
return 0;
2178
/* Signal all other negative errors to userspace */
2179
if (r < 0)
2180
return r;
2181
trace_kvm_msr_write_ex(msr, data);
2182
}
2183
2184
return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2185
}
2186
2187
int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2188
{
2189
return __kvm_emulate_wrmsr(vcpu, kvm_rcx_read(vcpu),
2190
kvm_read_edx_eax(vcpu));
2191
}
2192
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr);
2193
2194
int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2195
{
2196
return __kvm_emulate_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2197
}
2198
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr_imm);
2199
2200
int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2201
{
2202
return kvm_skip_emulated_instruction(vcpu);
2203
}
2204
2205
int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2206
{
2207
/* Treat an INVD instruction as a NOP and just skip it. */
2208
return kvm_emulate_as_nop(vcpu);
2209
}
2210
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_invd);
2211
2212
fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu)
2213
{
2214
if (!kvm_emulate_invd(vcpu))
2215
return EXIT_FASTPATH_EXIT_USERSPACE;
2216
2217
return EXIT_FASTPATH_REENTER_GUEST;
2218
}
2219
EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_invd);
2220
2221
int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2222
{
2223
kvm_queue_exception(vcpu, UD_VECTOR);
2224
return 1;
2225
}
2226
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invalid_op);
2227
2228
2229
static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2230
{
2231
bool enabled;
2232
2233
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2234
goto emulate_as_nop;
2235
2236
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2237
enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2238
else
2239
enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2240
2241
if (!enabled)
2242
return kvm_handle_invalid_op(vcpu);
2243
2244
emulate_as_nop:
2245
pr_warn_once("%s instruction emulated as NOP!\n", insn);
2246
return kvm_emulate_as_nop(vcpu);
2247
}
2248
int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2249
{
2250
return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2251
}
2252
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_mwait);
2253
2254
int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2255
{
2256
return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2257
}
2258
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_monitor);
2259
2260
static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2261
{
2262
xfer_to_guest_mode_prepare();
2263
2264
return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2265
kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2266
}
2267
2268
static fastpath_t __handle_fastpath_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2269
{
2270
switch (msr) {
2271
case APIC_BASE_MSR + (APIC_ICR >> 4):
2272
if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic) ||
2273
kvm_x2apic_icr_write_fast(vcpu->arch.apic, data))
2274
return EXIT_FASTPATH_NONE;
2275
break;
2276
case MSR_IA32_TSC_DEADLINE:
2277
kvm_set_lapic_tscdeadline_msr(vcpu, data);
2278
break;
2279
default:
2280
return EXIT_FASTPATH_NONE;
2281
}
2282
2283
trace_kvm_msr_write(msr, data);
2284
2285
if (!kvm_skip_emulated_instruction(vcpu))
2286
return EXIT_FASTPATH_EXIT_USERSPACE;
2287
2288
return EXIT_FASTPATH_REENTER_GUEST;
2289
}
2290
2291
fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu)
2292
{
2293
return __handle_fastpath_wrmsr(vcpu, kvm_rcx_read(vcpu),
2294
kvm_read_edx_eax(vcpu));
2295
}
2296
EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr);
2297
2298
fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2299
{
2300
return __handle_fastpath_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2301
}
2302
EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr_imm);
2303
2304
/*
2305
* Adapt set_msr() to msr_io()'s calling convention
2306
*/
2307
static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2308
{
2309
return kvm_get_msr_ignored_check(vcpu, index, data, true);
2310
}
2311
2312
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2313
{
2314
u64 val;
2315
2316
/*
2317
* Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2318
* not support modifying the guest vCPU model on the fly, e.g. changing
2319
* the nVMX capabilities while L2 is running is nonsensical. Allow
2320
* writes of the same value, e.g. to allow userspace to blindly stuff
2321
* all MSRs when emulating RESET.
2322
*/
2323
if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2324
(do_get_msr(vcpu, index, &val) || *data != val))
2325
return -EINVAL;
2326
2327
return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2328
}
2329
2330
#ifdef CONFIG_X86_64
2331
struct pvclock_clock {
2332
int vclock_mode;
2333
u64 cycle_last;
2334
u64 mask;
2335
u32 mult;
2336
u32 shift;
2337
u64 base_cycles;
2338
u64 offset;
2339
};
2340
2341
struct pvclock_gtod_data {
2342
seqcount_t seq;
2343
2344
struct pvclock_clock clock; /* extract of a clocksource struct */
2345
struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2346
2347
ktime_t offs_boot;
2348
u64 wall_time_sec;
2349
};
2350
2351
static struct pvclock_gtod_data pvclock_gtod_data;
2352
2353
static void update_pvclock_gtod(struct timekeeper *tk)
2354
{
2355
struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2356
2357
write_seqcount_begin(&vdata->seq);
2358
2359
/* copy pvclock gtod data */
2360
vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2361
vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2362
vdata->clock.mask = tk->tkr_mono.mask;
2363
vdata->clock.mult = tk->tkr_mono.mult;
2364
vdata->clock.shift = tk->tkr_mono.shift;
2365
vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2366
vdata->clock.offset = tk->tkr_mono.base;
2367
2368
vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2369
vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2370
vdata->raw_clock.mask = tk->tkr_raw.mask;
2371
vdata->raw_clock.mult = tk->tkr_raw.mult;
2372
vdata->raw_clock.shift = tk->tkr_raw.shift;
2373
vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2374
vdata->raw_clock.offset = tk->tkr_raw.base;
2375
2376
vdata->wall_time_sec = tk->xtime_sec;
2377
2378
vdata->offs_boot = tk->offs_boot;
2379
2380
write_seqcount_end(&vdata->seq);
2381
}
2382
2383
static s64 get_kvmclock_base_ns(void)
2384
{
2385
/* Count up from boot time, but with the frequency of the raw clock. */
2386
return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2387
}
2388
#else
2389
static s64 get_kvmclock_base_ns(void)
2390
{
2391
/* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2392
return ktime_get_boottime_ns();
2393
}
2394
#endif
2395
2396
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2397
{
2398
int version;
2399
int r;
2400
struct pvclock_wall_clock wc;
2401
u32 wc_sec_hi;
2402
u64 wall_nsec;
2403
2404
if (!wall_clock)
2405
return;
2406
2407
r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2408
if (r)
2409
return;
2410
2411
if (version & 1)
2412
++version; /* first time write, random junk */
2413
2414
++version;
2415
2416
if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2417
return;
2418
2419
wall_nsec = kvm_get_wall_clock_epoch(kvm);
2420
2421
wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2422
wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2423
wc.version = version;
2424
2425
kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2426
2427
if (sec_hi_ofs) {
2428
wc_sec_hi = wall_nsec >> 32;
2429
kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2430
&wc_sec_hi, sizeof(wc_sec_hi));
2431
}
2432
2433
version++;
2434
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2435
}
2436
2437
static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2438
bool old_msr, bool host_initiated)
2439
{
2440
struct kvm_arch *ka = &vcpu->kvm->arch;
2441
2442
if (vcpu->vcpu_id == 0 && !host_initiated) {
2443
if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2444
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2445
2446
ka->boot_vcpu_runs_old_kvmclock = old_msr;
2447
}
2448
2449
vcpu->arch.time = system_time;
2450
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2451
2452
/* we verify if the enable bit is set... */
2453
if (system_time & 1)
2454
kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2455
sizeof(struct pvclock_vcpu_time_info));
2456
else
2457
kvm_gpc_deactivate(&vcpu->arch.pv_time);
2458
2459
return;
2460
}
2461
2462
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2463
{
2464
do_shl32_div32(dividend, divisor);
2465
return dividend;
2466
}
2467
2468
static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2469
s8 *pshift, u32 *pmultiplier)
2470
{
2471
uint64_t scaled64;
2472
int32_t shift = 0;
2473
uint64_t tps64;
2474
uint32_t tps32;
2475
2476
tps64 = base_hz;
2477
scaled64 = scaled_hz;
2478
while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2479
tps64 >>= 1;
2480
shift--;
2481
}
2482
2483
tps32 = (uint32_t)tps64;
2484
while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2485
if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2486
scaled64 >>= 1;
2487
else
2488
tps32 <<= 1;
2489
shift++;
2490
}
2491
2492
*pshift = shift;
2493
*pmultiplier = div_frac(scaled64, tps32);
2494
}
2495
2496
#ifdef CONFIG_X86_64
2497
static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2498
#endif
2499
2500
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2501
static unsigned long max_tsc_khz;
2502
2503
static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2504
{
2505
u64 v = (u64)khz * (1000000 + ppm);
2506
do_div(v, 1000000);
2507
return v;
2508
}
2509
2510
static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2511
2512
static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2513
{
2514
u64 ratio;
2515
2516
/* Guest TSC same frequency as host TSC? */
2517
if (!scale) {
2518
kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2519
return 0;
2520
}
2521
2522
/* TSC scaling supported? */
2523
if (!kvm_caps.has_tsc_control) {
2524
if (user_tsc_khz > tsc_khz) {
2525
vcpu->arch.tsc_catchup = 1;
2526
vcpu->arch.tsc_always_catchup = 1;
2527
return 0;
2528
} else {
2529
pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2530
return -1;
2531
}
2532
}
2533
2534
/* TSC scaling required - calculate ratio */
2535
ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2536
user_tsc_khz, tsc_khz);
2537
2538
if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2539
pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2540
user_tsc_khz);
2541
return -1;
2542
}
2543
2544
kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2545
return 0;
2546
}
2547
2548
static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2549
{
2550
u32 thresh_lo, thresh_hi;
2551
int use_scaling = 0;
2552
2553
/* tsc_khz can be zero if TSC calibration fails */
2554
if (user_tsc_khz == 0) {
2555
/* set tsc_scaling_ratio to a safe value */
2556
kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2557
return -1;
2558
}
2559
2560
/* Compute a scale to convert nanoseconds in TSC cycles */
2561
kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2562
&vcpu->arch.virtual_tsc_shift,
2563
&vcpu->arch.virtual_tsc_mult);
2564
vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2565
2566
/*
2567
* Compute the variation in TSC rate which is acceptable
2568
* within the range of tolerance and decide if the
2569
* rate being applied is within that bounds of the hardware
2570
* rate. If so, no scaling or compensation need be done.
2571
*/
2572
thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2573
thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2574
if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2575
pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2576
user_tsc_khz, thresh_lo, thresh_hi);
2577
use_scaling = 1;
2578
}
2579
return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2580
}
2581
2582
static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2583
{
2584
u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2585
vcpu->arch.virtual_tsc_mult,
2586
vcpu->arch.virtual_tsc_shift);
2587
tsc += vcpu->arch.this_tsc_write;
2588
return tsc;
2589
}
2590
2591
#ifdef CONFIG_X86_64
2592
static inline bool gtod_is_based_on_tsc(int mode)
2593
{
2594
return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2595
}
2596
#endif
2597
2598
static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2599
{
2600
#ifdef CONFIG_X86_64
2601
struct kvm_arch *ka = &vcpu->kvm->arch;
2602
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2603
2604
/*
2605
* To use the masterclock, the host clocksource must be based on TSC
2606
* and all vCPUs must have matching TSCs. Note, the count for matching
2607
* vCPUs doesn't include the reference vCPU, hence "+1".
2608
*/
2609
bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2610
atomic_read(&vcpu->kvm->online_vcpus)) &&
2611
gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2612
2613
/*
2614
* Request a masterclock update if the masterclock needs to be toggled
2615
* on/off, or when starting a new generation and the masterclock is
2616
* enabled (compute_guest_tsc() requires the masterclock snapshot to be
2617
* taken _after_ the new generation is created).
2618
*/
2619
if ((ka->use_master_clock && new_generation) ||
2620
(ka->use_master_clock != use_master_clock))
2621
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2622
2623
trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2624
atomic_read(&vcpu->kvm->online_vcpus),
2625
ka->use_master_clock, gtod->clock.vclock_mode);
2626
#endif
2627
}
2628
2629
/*
2630
* Multiply tsc by a fixed point number represented by ratio.
2631
*
2632
* The most significant 64-N bits (mult) of ratio represent the
2633
* integral part of the fixed point number; the remaining N bits
2634
* (frac) represent the fractional part, ie. ratio represents a fixed
2635
* point number (mult + frac * 2^(-N)).
2636
*
2637
* N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2638
*/
2639
static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2640
{
2641
return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2642
}
2643
2644
u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2645
{
2646
u64 _tsc = tsc;
2647
2648
if (ratio != kvm_caps.default_tsc_scaling_ratio)
2649
_tsc = __scale_tsc(ratio, tsc);
2650
2651
return _tsc;
2652
}
2653
2654
static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2655
{
2656
u64 tsc;
2657
2658
tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2659
2660
return target_tsc - tsc;
2661
}
2662
2663
u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2664
{
2665
return vcpu->arch.l1_tsc_offset +
2666
kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2667
}
2668
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_l1_tsc);
2669
2670
u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2671
{
2672
u64 nested_offset;
2673
2674
if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2675
nested_offset = l1_offset;
2676
else
2677
nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2678
kvm_caps.tsc_scaling_ratio_frac_bits);
2679
2680
nested_offset += l2_offset;
2681
return nested_offset;
2682
}
2683
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_offset);
2684
2685
u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2686
{
2687
if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2688
return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2689
kvm_caps.tsc_scaling_ratio_frac_bits);
2690
2691
return l1_multiplier;
2692
}
2693
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_multiplier);
2694
2695
static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2696
{
2697
if (vcpu->arch.guest_tsc_protected)
2698
return;
2699
2700
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2701
vcpu->arch.l1_tsc_offset,
2702
l1_offset);
2703
2704
vcpu->arch.l1_tsc_offset = l1_offset;
2705
2706
/*
2707
* If we are here because L1 chose not to trap WRMSR to TSC then
2708
* according to the spec this should set L1's TSC (as opposed to
2709
* setting L1's offset for L2).
2710
*/
2711
if (is_guest_mode(vcpu))
2712
vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2713
l1_offset,
2714
kvm_x86_call(get_l2_tsc_offset)(vcpu),
2715
kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2716
else
2717
vcpu->arch.tsc_offset = l1_offset;
2718
2719
kvm_x86_call(write_tsc_offset)(vcpu);
2720
}
2721
2722
static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2723
{
2724
vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2725
2726
/* Userspace is changing the multiplier while L2 is active */
2727
if (is_guest_mode(vcpu))
2728
vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2729
l1_multiplier,
2730
kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2731
else
2732
vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2733
2734
if (kvm_caps.has_tsc_control)
2735
kvm_x86_call(write_tsc_multiplier)(vcpu);
2736
}
2737
2738
static inline bool kvm_check_tsc_unstable(void)
2739
{
2740
#ifdef CONFIG_X86_64
2741
/*
2742
* TSC is marked unstable when we're running on Hyper-V,
2743
* 'TSC page' clocksource is good.
2744
*/
2745
if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2746
return false;
2747
#endif
2748
return check_tsc_unstable();
2749
}
2750
2751
/*
2752
* Infers attempts to synchronize the guest's tsc from host writes. Sets the
2753
* offset for the vcpu and tracks the TSC matching generation that the vcpu
2754
* participates in.
2755
*/
2756
static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2757
u64 ns, bool matched, bool user_set_tsc)
2758
{
2759
struct kvm *kvm = vcpu->kvm;
2760
2761
lockdep_assert_held(&kvm->arch.tsc_write_lock);
2762
2763
if (vcpu->arch.guest_tsc_protected)
2764
return;
2765
2766
if (user_set_tsc)
2767
vcpu->kvm->arch.user_set_tsc = true;
2768
2769
/*
2770
* We also track th most recent recorded KHZ, write and time to
2771
* allow the matching interval to be extended at each write.
2772
*/
2773
kvm->arch.last_tsc_nsec = ns;
2774
kvm->arch.last_tsc_write = tsc;
2775
kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2776
kvm->arch.last_tsc_offset = offset;
2777
2778
vcpu->arch.last_guest_tsc = tsc;
2779
2780
kvm_vcpu_write_tsc_offset(vcpu, offset);
2781
2782
if (!matched) {
2783
/*
2784
* We split periods of matched TSC writes into generations.
2785
* For each generation, we track the original measured
2786
* nanosecond time, offset, and write, so if TSCs are in
2787
* sync, we can match exact offset, and if not, we can match
2788
* exact software computation in compute_guest_tsc()
2789
*
2790
* These values are tracked in kvm->arch.cur_xxx variables.
2791
*/
2792
kvm->arch.cur_tsc_generation++;
2793
kvm->arch.cur_tsc_nsec = ns;
2794
kvm->arch.cur_tsc_write = tsc;
2795
kvm->arch.cur_tsc_offset = offset;
2796
kvm->arch.nr_vcpus_matched_tsc = 0;
2797
} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2798
kvm->arch.nr_vcpus_matched_tsc++;
2799
}
2800
2801
/* Keep track of which generation this VCPU has synchronized to */
2802
vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2803
vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2804
vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2805
2806
kvm_track_tsc_matching(vcpu, !matched);
2807
}
2808
2809
static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2810
{
2811
u64 data = user_value ? *user_value : 0;
2812
struct kvm *kvm = vcpu->kvm;
2813
u64 offset, ns, elapsed;
2814
unsigned long flags;
2815
bool matched = false;
2816
bool synchronizing = false;
2817
2818
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2819
offset = kvm_compute_l1_tsc_offset(vcpu, data);
2820
ns = get_kvmclock_base_ns();
2821
elapsed = ns - kvm->arch.last_tsc_nsec;
2822
2823
if (vcpu->arch.virtual_tsc_khz) {
2824
if (data == 0) {
2825
/*
2826
* Force synchronization when creating a vCPU, or when
2827
* userspace explicitly writes a zero value.
2828
*/
2829
synchronizing = true;
2830
} else if (kvm->arch.user_set_tsc) {
2831
u64 tsc_exp = kvm->arch.last_tsc_write +
2832
nsec_to_cycles(vcpu, elapsed);
2833
u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2834
/*
2835
* Here lies UAPI baggage: when a user-initiated TSC write has
2836
* a small delta (1 second) of virtual cycle time against the
2837
* previously set vCPU, we assume that they were intended to be
2838
* in sync and the delta was only due to the racy nature of the
2839
* legacy API.
2840
*
2841
* This trick falls down when restoring a guest which genuinely
2842
* has been running for less time than the 1 second of imprecision
2843
* which we allow for in the legacy API. In this case, the first
2844
* value written by userspace (on any vCPU) should not be subject
2845
* to this 'correction' to make it sync up with values that only
2846
* come from the kernel's default vCPU creation. Make the 1-second
2847
* slop hack only trigger if the user_set_tsc flag is already set.
2848
*/
2849
synchronizing = data < tsc_exp + tsc_hz &&
2850
data + tsc_hz > tsc_exp;
2851
}
2852
}
2853
2854
2855
/*
2856
* For a reliable TSC, we can match TSC offsets, and for an unstable
2857
* TSC, we add elapsed time in this computation. We could let the
2858
* compensation code attempt to catch up if we fall behind, but
2859
* it's better to try to match offsets from the beginning.
2860
*/
2861
if (synchronizing &&
2862
vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2863
if (!kvm_check_tsc_unstable()) {
2864
offset = kvm->arch.cur_tsc_offset;
2865
} else {
2866
u64 delta = nsec_to_cycles(vcpu, elapsed);
2867
data += delta;
2868
offset = kvm_compute_l1_tsc_offset(vcpu, data);
2869
}
2870
matched = true;
2871
}
2872
2873
__kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2874
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2875
}
2876
2877
static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2878
s64 adjustment)
2879
{
2880
u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2881
kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2882
}
2883
2884
static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2885
{
2886
if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2887
WARN_ON(adjustment < 0);
2888
adjustment = kvm_scale_tsc((u64) adjustment,
2889
vcpu->arch.l1_tsc_scaling_ratio);
2890
adjust_tsc_offset_guest(vcpu, adjustment);
2891
}
2892
2893
#ifdef CONFIG_X86_64
2894
2895
static u64 read_tsc(void)
2896
{
2897
u64 ret = (u64)rdtsc_ordered();
2898
u64 last = pvclock_gtod_data.clock.cycle_last;
2899
2900
if (likely(ret >= last))
2901
return ret;
2902
2903
/*
2904
* GCC likes to generate cmov here, but this branch is extremely
2905
* predictable (it's just a function of time and the likely is
2906
* very likely) and there's a data dependence, so force GCC
2907
* to generate a branch instead. I don't barrier() because
2908
* we don't actually need a barrier, and if this function
2909
* ever gets inlined it will generate worse code.
2910
*/
2911
asm volatile ("");
2912
return last;
2913
}
2914
2915
static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2916
int *mode)
2917
{
2918
u64 tsc_pg_val;
2919
long v;
2920
2921
switch (clock->vclock_mode) {
2922
case VDSO_CLOCKMODE_HVCLOCK:
2923
if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2924
tsc_timestamp, &tsc_pg_val)) {
2925
/* TSC page valid */
2926
*mode = VDSO_CLOCKMODE_HVCLOCK;
2927
v = (tsc_pg_val - clock->cycle_last) &
2928
clock->mask;
2929
} else {
2930
/* TSC page invalid */
2931
*mode = VDSO_CLOCKMODE_NONE;
2932
}
2933
break;
2934
case VDSO_CLOCKMODE_TSC:
2935
*mode = VDSO_CLOCKMODE_TSC;
2936
*tsc_timestamp = read_tsc();
2937
v = (*tsc_timestamp - clock->cycle_last) &
2938
clock->mask;
2939
break;
2940
default:
2941
*mode = VDSO_CLOCKMODE_NONE;
2942
}
2943
2944
if (*mode == VDSO_CLOCKMODE_NONE)
2945
*tsc_timestamp = v = 0;
2946
2947
return v * clock->mult;
2948
}
2949
2950
/*
2951
* As with get_kvmclock_base_ns(), this counts from boot time, at the
2952
* frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2953
*/
2954
static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2955
{
2956
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2957
unsigned long seq;
2958
int mode;
2959
u64 ns;
2960
2961
do {
2962
seq = read_seqcount_begin(&gtod->seq);
2963
ns = gtod->raw_clock.base_cycles;
2964
ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2965
ns >>= gtod->raw_clock.shift;
2966
ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2967
} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2968
*t = ns;
2969
2970
return mode;
2971
}
2972
2973
/*
2974
* This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2975
* no boot time offset.
2976
*/
2977
static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2978
{
2979
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2980
unsigned long seq;
2981
int mode;
2982
u64 ns;
2983
2984
do {
2985
seq = read_seqcount_begin(&gtod->seq);
2986
ns = gtod->clock.base_cycles;
2987
ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2988
ns >>= gtod->clock.shift;
2989
ns += ktime_to_ns(gtod->clock.offset);
2990
} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2991
*t = ns;
2992
2993
return mode;
2994
}
2995
2996
static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2997
{
2998
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2999
unsigned long seq;
3000
int mode;
3001
u64 ns;
3002
3003
do {
3004
seq = read_seqcount_begin(&gtod->seq);
3005
ts->tv_sec = gtod->wall_time_sec;
3006
ns = gtod->clock.base_cycles;
3007
ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
3008
ns >>= gtod->clock.shift;
3009
} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
3010
3011
ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
3012
ts->tv_nsec = ns;
3013
3014
return mode;
3015
}
3016
3017
/*
3018
* Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
3019
* reports the TSC value from which it do so. Returns true if host is
3020
* using TSC based clocksource.
3021
*/
3022
static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3023
{
3024
/* checked again under seqlock below */
3025
if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3026
return false;
3027
3028
return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
3029
tsc_timestamp));
3030
}
3031
3032
/*
3033
* Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
3034
* so. Returns true if host is using TSC based clocksource.
3035
*/
3036
bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3037
{
3038
/* checked again under seqlock below */
3039
if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3040
return false;
3041
3042
return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
3043
tsc_timestamp));
3044
}
3045
3046
/*
3047
* Calculates CLOCK_REALTIME and reports the TSC value from which it did
3048
* so. Returns true if host is using TSC based clocksource.
3049
*
3050
* DO NOT USE this for anything related to migration. You want CLOCK_TAI
3051
* for that.
3052
*/
3053
static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
3054
u64 *tsc_timestamp)
3055
{
3056
/* checked again under seqlock below */
3057
if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3058
return false;
3059
3060
return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
3061
}
3062
#endif
3063
3064
/*
3065
*
3066
* Assuming a stable TSC across physical CPUS, and a stable TSC
3067
* across virtual CPUs, the following condition is possible.
3068
* Each numbered line represents an event visible to both
3069
* CPUs at the next numbered event.
3070
*
3071
* "timespecX" represents host monotonic time. "tscX" represents
3072
* RDTSC value.
3073
*
3074
* VCPU0 on CPU0 | VCPU1 on CPU1
3075
*
3076
* 1. read timespec0,tsc0
3077
* 2. | timespec1 = timespec0 + N
3078
* | tsc1 = tsc0 + M
3079
* 3. transition to guest | transition to guest
3080
* 4. ret0 = timespec0 + (rdtsc - tsc0) |
3081
* 5. | ret1 = timespec1 + (rdtsc - tsc1)
3082
* | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
3083
*
3084
* Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
3085
*
3086
* - ret0 < ret1
3087
* - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
3088
* ...
3089
* - 0 < N - M => M < N
3090
*
3091
* That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3092
* always the case (the difference between two distinct xtime instances
3093
* might be smaller then the difference between corresponding TSC reads,
3094
* when updating guest vcpus pvclock areas).
3095
*
3096
* To avoid that problem, do not allow visibility of distinct
3097
* system_timestamp/tsc_timestamp values simultaneously: use a master
3098
* copy of host monotonic time values. Update that master copy
3099
* in lockstep.
3100
*
3101
* Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3102
*
3103
*/
3104
3105
static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3106
{
3107
#ifdef CONFIG_X86_64
3108
struct kvm_arch *ka = &kvm->arch;
3109
int vclock_mode;
3110
bool host_tsc_clocksource, vcpus_matched;
3111
3112
lockdep_assert_held(&kvm->arch.tsc_write_lock);
3113
vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3114
atomic_read(&kvm->online_vcpus));
3115
3116
/*
3117
* If the host uses TSC clock, then passthrough TSC as stable
3118
* to the guest.
3119
*/
3120
host_tsc_clocksource = kvm_get_time_and_clockread(
3121
&ka->master_kernel_ns,
3122
&ka->master_cycle_now);
3123
3124
ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3125
&& !ka->backwards_tsc_observed
3126
&& !ka->boot_vcpu_runs_old_kvmclock;
3127
3128
if (ka->use_master_clock)
3129
atomic_set(&kvm_guest_has_master_clock, 1);
3130
3131
vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3132
trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3133
vcpus_matched);
3134
#endif
3135
}
3136
3137
static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3138
{
3139
kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3140
}
3141
3142
static void __kvm_start_pvclock_update(struct kvm *kvm)
3143
{
3144
raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3145
write_seqcount_begin(&kvm->arch.pvclock_sc);
3146
}
3147
3148
static void kvm_start_pvclock_update(struct kvm *kvm)
3149
{
3150
kvm_make_mclock_inprogress_request(kvm);
3151
3152
/* no guest entries from this point */
3153
__kvm_start_pvclock_update(kvm);
3154
}
3155
3156
static void kvm_end_pvclock_update(struct kvm *kvm)
3157
{
3158
struct kvm_arch *ka = &kvm->arch;
3159
struct kvm_vcpu *vcpu;
3160
unsigned long i;
3161
3162
write_seqcount_end(&ka->pvclock_sc);
3163
raw_spin_unlock_irq(&ka->tsc_write_lock);
3164
kvm_for_each_vcpu(i, vcpu, kvm)
3165
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3166
3167
/* guest entries allowed */
3168
kvm_for_each_vcpu(i, vcpu, kvm)
3169
kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3170
}
3171
3172
static void kvm_update_masterclock(struct kvm *kvm)
3173
{
3174
kvm_hv_request_tsc_page_update(kvm);
3175
kvm_start_pvclock_update(kvm);
3176
pvclock_update_vm_gtod_copy(kvm);
3177
kvm_end_pvclock_update(kvm);
3178
}
3179
3180
/*
3181
* Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3182
* per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3183
* can change during boot even if the TSC is constant, as it's possible for KVM
3184
* to be loaded before TSC calibration completes. Ideally, KVM would get a
3185
* notification when calibration completes, but practically speaking calibration
3186
* will complete before userspace is alive enough to create VMs.
3187
*/
3188
static unsigned long get_cpu_tsc_khz(void)
3189
{
3190
if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3191
return tsc_khz;
3192
else
3193
return __this_cpu_read(cpu_tsc_khz);
3194
}
3195
3196
/* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3197
static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3198
{
3199
struct kvm_arch *ka = &kvm->arch;
3200
struct pvclock_vcpu_time_info hv_clock;
3201
3202
/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3203
get_cpu();
3204
3205
data->flags = 0;
3206
if (ka->use_master_clock &&
3207
(static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3208
#ifdef CONFIG_X86_64
3209
struct timespec64 ts;
3210
3211
if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3212
data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3213
data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3214
} else
3215
#endif
3216
data->host_tsc = rdtsc();
3217
3218
data->flags |= KVM_CLOCK_TSC_STABLE;
3219
hv_clock.tsc_timestamp = ka->master_cycle_now;
3220
hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3221
kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3222
&hv_clock.tsc_shift,
3223
&hv_clock.tsc_to_system_mul);
3224
data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3225
} else {
3226
data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3227
}
3228
3229
put_cpu();
3230
}
3231
3232
static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3233
{
3234
struct kvm_arch *ka = &kvm->arch;
3235
unsigned seq;
3236
3237
do {
3238
seq = read_seqcount_begin(&ka->pvclock_sc);
3239
__get_kvmclock(kvm, data);
3240
} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3241
}
3242
3243
u64 get_kvmclock_ns(struct kvm *kvm)
3244
{
3245
struct kvm_clock_data data;
3246
3247
get_kvmclock(kvm, &data);
3248
return data.clock;
3249
}
3250
3251
static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3252
struct kvm_vcpu *vcpu,
3253
struct gfn_to_pfn_cache *gpc,
3254
unsigned int offset)
3255
{
3256
struct pvclock_vcpu_time_info *guest_hv_clock;
3257
struct pvclock_vcpu_time_info hv_clock;
3258
unsigned long flags;
3259
3260
memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3261
3262
read_lock_irqsave(&gpc->lock, flags);
3263
while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3264
read_unlock_irqrestore(&gpc->lock, flags);
3265
3266
if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3267
return;
3268
3269
read_lock_irqsave(&gpc->lock, flags);
3270
}
3271
3272
guest_hv_clock = (void *)(gpc->khva + offset);
3273
3274
/*
3275
* This VCPU is paused, but it's legal for a guest to read another
3276
* VCPU's kvmclock, so we really have to follow the specification where
3277
* it says that version is odd if data is being modified, and even after
3278
* it is consistent.
3279
*/
3280
3281
guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3282
smp_wmb();
3283
3284
/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3285
hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3286
3287
memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3288
3289
smp_wmb();
3290
3291
guest_hv_clock->version = ++hv_clock.version;
3292
3293
kvm_gpc_mark_dirty_in_slot(gpc);
3294
read_unlock_irqrestore(&gpc->lock, flags);
3295
3296
trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3297
}
3298
3299
int kvm_guest_time_update(struct kvm_vcpu *v)
3300
{
3301
struct pvclock_vcpu_time_info hv_clock = {};
3302
unsigned long flags, tgt_tsc_khz;
3303
unsigned seq;
3304
struct kvm_vcpu_arch *vcpu = &v->arch;
3305
struct kvm_arch *ka = &v->kvm->arch;
3306
s64 kernel_ns;
3307
u64 tsc_timestamp, host_tsc;
3308
bool use_master_clock;
3309
3310
kernel_ns = 0;
3311
host_tsc = 0;
3312
3313
/*
3314
* If the host uses TSC clock, then passthrough TSC as stable
3315
* to the guest.
3316
*/
3317
do {
3318
seq = read_seqcount_begin(&ka->pvclock_sc);
3319
use_master_clock = ka->use_master_clock;
3320
if (use_master_clock) {
3321
host_tsc = ka->master_cycle_now;
3322
kernel_ns = ka->master_kernel_ns;
3323
}
3324
} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3325
3326
/* Keep irq disabled to prevent changes to the clock */
3327
local_irq_save(flags);
3328
tgt_tsc_khz = get_cpu_tsc_khz();
3329
if (unlikely(tgt_tsc_khz == 0)) {
3330
local_irq_restore(flags);
3331
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3332
return 1;
3333
}
3334
if (!use_master_clock) {
3335
host_tsc = rdtsc();
3336
kernel_ns = get_kvmclock_base_ns();
3337
}
3338
3339
tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3340
3341
/*
3342
* We may have to catch up the TSC to match elapsed wall clock
3343
* time for two reasons, even if kvmclock is used.
3344
* 1) CPU could have been running below the maximum TSC rate
3345
* 2) Broken TSC compensation resets the base at each VCPU
3346
* entry to avoid unknown leaps of TSC even when running
3347
* again on the same CPU. This may cause apparent elapsed
3348
* time to disappear, and the guest to stand still or run
3349
* very slowly.
3350
*/
3351
if (vcpu->tsc_catchup) {
3352
u64 tsc = compute_guest_tsc(v, kernel_ns);
3353
if (tsc > tsc_timestamp) {
3354
adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3355
tsc_timestamp = tsc;
3356
}
3357
}
3358
3359
local_irq_restore(flags);
3360
3361
/* With all the info we got, fill in the values */
3362
3363
if (kvm_caps.has_tsc_control) {
3364
tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3365
v->arch.l1_tsc_scaling_ratio);
3366
tgt_tsc_khz = tgt_tsc_khz ? : 1;
3367
}
3368
3369
if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3370
kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3371
&vcpu->pvclock_tsc_shift,
3372
&vcpu->pvclock_tsc_mul);
3373
vcpu->hw_tsc_khz = tgt_tsc_khz;
3374
}
3375
3376
hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3377
hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3378
hv_clock.tsc_timestamp = tsc_timestamp;
3379
hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3380
vcpu->last_guest_tsc = tsc_timestamp;
3381
3382
/* If the host uses TSC clocksource, then it is stable */
3383
hv_clock.flags = 0;
3384
if (use_master_clock)
3385
hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3386
3387
if (vcpu->pv_time.active) {
3388
/*
3389
* GUEST_STOPPED is only supported by kvmclock, and KVM's
3390
* historic behavior is to only process the request if kvmclock
3391
* is active/enabled.
3392
*/
3393
if (vcpu->pvclock_set_guest_stopped_request) {
3394
hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3395
vcpu->pvclock_set_guest_stopped_request = false;
3396
}
3397
kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3398
3399
hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3400
}
3401
3402
kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3403
3404
#ifdef CONFIG_KVM_XEN
3405
/*
3406
* For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3407
* explicitly told to use TSC as its clocksource Xen will not set this bit.
3408
* This default behaviour led to bugs in some guest kernels which cause
3409
* problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3410
*
3411
* Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3412
*/
3413
if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3414
hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3415
3416
if (vcpu->xen.vcpu_info_cache.active)
3417
kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3418
offsetof(struct compat_vcpu_info, time));
3419
if (vcpu->xen.vcpu_time_info_cache.active)
3420
kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3421
#endif
3422
return 0;
3423
}
3424
3425
/*
3426
* The pvclock_wall_clock ABI tells the guest the wall clock time at
3427
* which it started (i.e. its epoch, when its kvmclock was zero).
3428
*
3429
* In fact those clocks are subtly different; wall clock frequency is
3430
* adjusted by NTP and has leap seconds, while the kvmclock is a
3431
* simple function of the TSC without any such adjustment.
3432
*
3433
* Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3434
* that and kvmclock, but even that would be subject to change over
3435
* time.
3436
*
3437
* Attempt to calculate the epoch at a given moment using the *same*
3438
* TSC reading via kvm_get_walltime_and_clockread() to obtain both
3439
* wallclock and kvmclock times, and subtracting one from the other.
3440
*
3441
* Fall back to using their values at slightly different moments by
3442
* calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3443
*/
3444
uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3445
{
3446
#ifdef CONFIG_X86_64
3447
struct pvclock_vcpu_time_info hv_clock;
3448
struct kvm_arch *ka = &kvm->arch;
3449
unsigned long seq, local_tsc_khz;
3450
struct timespec64 ts;
3451
uint64_t host_tsc;
3452
3453
do {
3454
seq = read_seqcount_begin(&ka->pvclock_sc);
3455
3456
local_tsc_khz = 0;
3457
if (!ka->use_master_clock)
3458
break;
3459
3460
/*
3461
* The TSC read and the call to get_cpu_tsc_khz() must happen
3462
* on the same CPU.
3463
*/
3464
get_cpu();
3465
3466
local_tsc_khz = get_cpu_tsc_khz();
3467
3468
if (local_tsc_khz &&
3469
!kvm_get_walltime_and_clockread(&ts, &host_tsc))
3470
local_tsc_khz = 0; /* Fall back to old method */
3471
3472
put_cpu();
3473
3474
/*
3475
* These values must be snapshotted within the seqcount loop.
3476
* After that, it's just mathematics which can happen on any
3477
* CPU at any time.
3478
*/
3479
hv_clock.tsc_timestamp = ka->master_cycle_now;
3480
hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3481
3482
} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3483
3484
/*
3485
* If the conditions were right, and obtaining the wallclock+TSC was
3486
* successful, calculate the KVM clock at the corresponding time and
3487
* subtract one from the other to get the guest's epoch in nanoseconds
3488
* since 1970-01-01.
3489
*/
3490
if (local_tsc_khz) {
3491
kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3492
&hv_clock.tsc_shift,
3493
&hv_clock.tsc_to_system_mul);
3494
return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3495
__pvclock_read_cycles(&hv_clock, host_tsc);
3496
}
3497
#endif
3498
return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3499
}
3500
3501
/*
3502
* kvmclock updates which are isolated to a given vcpu, such as
3503
* vcpu->cpu migration, should not allow system_timestamp from
3504
* the rest of the vcpus to remain static.
3505
*
3506
* So in those cases, request a kvmclock update for all vcpus.
3507
* The worst case for a remote vcpu to update its kvmclock
3508
* is then bounded by maximum nohz sleep latency.
3509
*/
3510
static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3511
{
3512
unsigned long i;
3513
struct kvm_vcpu *vcpu;
3514
struct kvm *kvm = v->kvm;
3515
3516
kvm_for_each_vcpu(i, vcpu, kvm) {
3517
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3518
kvm_vcpu_kick(vcpu);
3519
}
3520
}
3521
3522
/* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3523
static bool is_mci_control_msr(u32 msr)
3524
{
3525
return (msr & 3) == 0;
3526
}
3527
static bool is_mci_status_msr(u32 msr)
3528
{
3529
return (msr & 3) == 1;
3530
}
3531
3532
/*
3533
* On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3534
*/
3535
static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3536
{
3537
/* McStatusWrEn enabled? */
3538
if (guest_cpuid_is_amd_compatible(vcpu))
3539
return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3540
3541
return false;
3542
}
3543
3544
static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3545
{
3546
u64 mcg_cap = vcpu->arch.mcg_cap;
3547
unsigned bank_num = mcg_cap & 0xff;
3548
u32 msr = msr_info->index;
3549
u64 data = msr_info->data;
3550
u32 offset, last_msr;
3551
3552
switch (msr) {
3553
case MSR_IA32_MCG_STATUS:
3554
vcpu->arch.mcg_status = data;
3555
break;
3556
case MSR_IA32_MCG_CTL:
3557
if (!(mcg_cap & MCG_CTL_P) &&
3558
(data || !msr_info->host_initiated))
3559
return 1;
3560
if (data != 0 && data != ~(u64)0)
3561
return 1;
3562
vcpu->arch.mcg_ctl = data;
3563
break;
3564
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3565
last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3566
if (msr > last_msr)
3567
return 1;
3568
3569
if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3570
return 1;
3571
/* An attempt to write a 1 to a reserved bit raises #GP */
3572
if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3573
return 1;
3574
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3575
last_msr + 1 - MSR_IA32_MC0_CTL2);
3576
vcpu->arch.mci_ctl2_banks[offset] = data;
3577
break;
3578
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3579
last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3580
if (msr > last_msr)
3581
return 1;
3582
3583
/*
3584
* Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3585
* values are architecturally undefined. But, some Linux
3586
* kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3587
* issue on AMD K8s, allow bit 10 to be clear when setting all
3588
* other bits in order to avoid an uncaught #GP in the guest.
3589
*
3590
* UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3591
* single-bit ECC data errors.
3592
*/
3593
if (is_mci_control_msr(msr) &&
3594
data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3595
return 1;
3596
3597
/*
3598
* All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3599
* AMD-based CPUs allow non-zero values, but if and only if
3600
* HWCR[McStatusWrEn] is set.
3601
*/
3602
if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3603
data != 0 && !can_set_mci_status(vcpu))
3604
return 1;
3605
3606
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3607
last_msr + 1 - MSR_IA32_MC0_CTL);
3608
vcpu->arch.mce_banks[offset] = data;
3609
break;
3610
default:
3611
return 1;
3612
}
3613
return 0;
3614
}
3615
3616
static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3617
{
3618
gpa_t gpa = data & ~0x3f;
3619
3620
/* Bits 4:5 are reserved, Should be zero */
3621
if (data & 0x30)
3622
return 1;
3623
3624
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3625
(data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3626
return 1;
3627
3628
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3629
(data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3630
return 1;
3631
3632
if (!lapic_in_kernel(vcpu))
3633
return data ? 1 : 0;
3634
3635
vcpu->arch.apf.msr_en_val = data;
3636
3637
if (!kvm_pv_async_pf_enabled(vcpu)) {
3638
kvm_clear_async_pf_completion_queue(vcpu);
3639
kvm_async_pf_hash_reset(vcpu);
3640
return 0;
3641
}
3642
3643
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3644
sizeof(u64)))
3645
return 1;
3646
3647
vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3648
vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3649
3650
kvm_async_pf_wakeup_all(vcpu);
3651
3652
return 0;
3653
}
3654
3655
static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3656
{
3657
/* Bits 8-63 are reserved */
3658
if (data >> 8)
3659
return 1;
3660
3661
if (!lapic_in_kernel(vcpu))
3662
return 1;
3663
3664
vcpu->arch.apf.msr_int_val = data;
3665
3666
vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3667
3668
return 0;
3669
}
3670
3671
static void kvmclock_reset(struct kvm_vcpu *vcpu)
3672
{
3673
kvm_gpc_deactivate(&vcpu->arch.pv_time);
3674
vcpu->arch.time = 0;
3675
}
3676
3677
static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3678
{
3679
++vcpu->stat.tlb_flush;
3680
kvm_x86_call(flush_tlb_all)(vcpu);
3681
3682
/* Flushing all ASIDs flushes the current ASID... */
3683
kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3684
}
3685
3686
static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3687
{
3688
++vcpu->stat.tlb_flush;
3689
3690
if (!tdp_enabled) {
3691
/*
3692
* A TLB flush on behalf of the guest is equivalent to
3693
* INVPCID(all), toggling CR4.PGE, etc., which requires
3694
* a forced sync of the shadow page tables. Ensure all the
3695
* roots are synced and the guest TLB in hardware is clean.
3696
*/
3697
kvm_mmu_sync_roots(vcpu);
3698
kvm_mmu_sync_prev_roots(vcpu);
3699
}
3700
3701
kvm_x86_call(flush_tlb_guest)(vcpu);
3702
3703
/*
3704
* Flushing all "guest" TLB is always a superset of Hyper-V's fine
3705
* grained flushing.
3706
*/
3707
kvm_hv_vcpu_purge_flush_tlb(vcpu);
3708
}
3709
3710
3711
static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3712
{
3713
++vcpu->stat.tlb_flush;
3714
kvm_x86_call(flush_tlb_current)(vcpu);
3715
}
3716
3717
/*
3718
* Service "local" TLB flush requests, which are specific to the current MMU
3719
* context. In addition to the generic event handling in vcpu_enter_guest(),
3720
* TLB flushes that are targeted at an MMU context also need to be serviced
3721
* prior before nested VM-Enter/VM-Exit.
3722
*/
3723
void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3724
{
3725
if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3726
kvm_vcpu_flush_tlb_current(vcpu);
3727
3728
if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3729
kvm_vcpu_flush_tlb_guest(vcpu);
3730
}
3731
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_service_local_tlb_flush_requests);
3732
3733
static void record_steal_time(struct kvm_vcpu *vcpu)
3734
{
3735
struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3736
struct kvm_steal_time __user *st;
3737
struct kvm_memslots *slots;
3738
gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3739
u64 steal;
3740
u32 version;
3741
3742
if (kvm_xen_msr_enabled(vcpu->kvm)) {
3743
kvm_xen_runstate_set_running(vcpu);
3744
return;
3745
}
3746
3747
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3748
return;
3749
3750
if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3751
return;
3752
3753
slots = kvm_memslots(vcpu->kvm);
3754
3755
if (unlikely(slots->generation != ghc->generation ||
3756
gpa != ghc->gpa ||
3757
kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3758
/* We rely on the fact that it fits in a single page. */
3759
BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3760
3761
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3762
kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3763
return;
3764
}
3765
3766
st = (struct kvm_steal_time __user *)ghc->hva;
3767
/*
3768
* Doing a TLB flush here, on the guest's behalf, can avoid
3769
* expensive IPIs.
3770
*/
3771
if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3772
u8 st_preempted = 0;
3773
int err = -EFAULT;
3774
3775
if (!user_access_begin(st, sizeof(*st)))
3776
return;
3777
3778
asm volatile("1: xchgb %0, %2\n"
3779
"xor %1, %1\n"
3780
"2:\n"
3781
_ASM_EXTABLE_UA(1b, 2b)
3782
: "+q" (st_preempted),
3783
"+&r" (err),
3784
"+m" (st->preempted));
3785
if (err)
3786
goto out;
3787
3788
user_access_end();
3789
3790
vcpu->arch.st.preempted = 0;
3791
3792
trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3793
st_preempted & KVM_VCPU_FLUSH_TLB);
3794
if (st_preempted & KVM_VCPU_FLUSH_TLB)
3795
kvm_vcpu_flush_tlb_guest(vcpu);
3796
3797
if (!user_access_begin(st, sizeof(*st)))
3798
goto dirty;
3799
} else {
3800
if (!user_access_begin(st, sizeof(*st)))
3801
return;
3802
3803
unsafe_put_user(0, &st->preempted, out);
3804
vcpu->arch.st.preempted = 0;
3805
}
3806
3807
unsafe_get_user(version, &st->version, out);
3808
if (version & 1)
3809
version += 1; /* first time write, random junk */
3810
3811
version += 1;
3812
unsafe_put_user(version, &st->version, out);
3813
3814
smp_wmb();
3815
3816
unsafe_get_user(steal, &st->steal, out);
3817
steal += current->sched_info.run_delay -
3818
vcpu->arch.st.last_steal;
3819
vcpu->arch.st.last_steal = current->sched_info.run_delay;
3820
unsafe_put_user(steal, &st->steal, out);
3821
3822
version += 1;
3823
unsafe_put_user(version, &st->version, out);
3824
3825
out:
3826
user_access_end();
3827
dirty:
3828
mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3829
}
3830
3831
/*
3832
* Returns true if the MSR in question is managed via XSTATE, i.e. is context
3833
* switched with the rest of guest FPU state.
3834
*
3835
* Note, S_CET is _not_ saved/restored via XSAVES/XRSTORS.
3836
*/
3837
static bool is_xstate_managed_msr(struct kvm_vcpu *vcpu, u32 msr)
3838
{
3839
if (!vcpu)
3840
return false;
3841
3842
switch (msr) {
3843
case MSR_IA32_U_CET:
3844
return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ||
3845
guest_cpu_cap_has(vcpu, X86_FEATURE_IBT);
3846
case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
3847
return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
3848
default:
3849
return false;
3850
}
3851
}
3852
3853
/*
3854
* Lock (and if necessary, re-load) the guest FPU, i.e. XSTATE, and access an
3855
* MSR that is managed via XSTATE. Note, the caller is responsible for doing
3856
* the initial FPU load, this helper only ensures that guest state is resident
3857
* in hardware (the kernel can load its FPU state in IRQ context).
3858
*
3859
* Note, loading guest values for U_CET and PL[0-3]_SSP while executing in the
3860
* kernel is safe, as U_CET is specific to userspace, and PL[0-3]_SSP are only
3861
* consumed when transitioning to lower privilege levels, i.e. are effectively
3862
* only consumed by userspace as well.
3863
*/
3864
static __always_inline void kvm_access_xstate_msr(struct kvm_vcpu *vcpu,
3865
struct msr_data *msr_info,
3866
int access)
3867
{
3868
BUILD_BUG_ON(access != MSR_TYPE_R && access != MSR_TYPE_W);
3869
3870
KVM_BUG_ON(!is_xstate_managed_msr(vcpu, msr_info->index), vcpu->kvm);
3871
KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm);
3872
3873
kvm_fpu_get();
3874
if (access == MSR_TYPE_R)
3875
rdmsrq(msr_info->index, msr_info->data);
3876
else
3877
wrmsrq(msr_info->index, msr_info->data);
3878
kvm_fpu_put();
3879
}
3880
3881
static void kvm_set_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3882
{
3883
kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_W);
3884
}
3885
3886
static void kvm_get_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3887
{
3888
kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_R);
3889
}
3890
3891
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3892
{
3893
u32 msr = msr_info->index;
3894
u64 data = msr_info->data;
3895
3896
/*
3897
* Do not allow host-initiated writes to trigger the Xen hypercall
3898
* page setup; it could incur locking paths which are not expected
3899
* if userspace sets the MSR in an unusual location.
3900
*/
3901
if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3902
!msr_info->host_initiated)
3903
return kvm_xen_write_hypercall_page(vcpu, data);
3904
3905
switch (msr) {
3906
case MSR_AMD64_NB_CFG:
3907
case MSR_IA32_UCODE_WRITE:
3908
case MSR_VM_HSAVE_PA:
3909
case MSR_AMD64_PATCH_LOADER:
3910
case MSR_AMD64_BU_CFG2:
3911
case MSR_AMD64_DC_CFG:
3912
case MSR_AMD64_TW_CFG:
3913
case MSR_F15H_EX_CFG:
3914
break;
3915
3916
case MSR_IA32_UCODE_REV:
3917
if (msr_info->host_initiated)
3918
vcpu->arch.microcode_version = data;
3919
break;
3920
case MSR_IA32_ARCH_CAPABILITIES:
3921
if (!msr_info->host_initiated ||
3922
!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3923
return KVM_MSR_RET_UNSUPPORTED;
3924
vcpu->arch.arch_capabilities = data;
3925
break;
3926
case MSR_IA32_PERF_CAPABILITIES:
3927
if (!msr_info->host_initiated ||
3928
!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3929
return KVM_MSR_RET_UNSUPPORTED;
3930
3931
if (data & ~kvm_caps.supported_perf_cap)
3932
return 1;
3933
3934
/*
3935
* Note, this is not just a performance optimization! KVM
3936
* disallows changing feature MSRs after the vCPU has run; PMU
3937
* refresh will bug the VM if called after the vCPU has run.
3938
*/
3939
if (vcpu->arch.perf_capabilities == data)
3940
break;
3941
3942
vcpu->arch.perf_capabilities = data;
3943
kvm_pmu_refresh(vcpu);
3944
break;
3945
case MSR_IA32_PRED_CMD: {
3946
u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3947
3948
if (!msr_info->host_initiated) {
3949
if ((!guest_has_pred_cmd_msr(vcpu)))
3950
return 1;
3951
3952
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3953
!guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3954
reserved_bits |= PRED_CMD_IBPB;
3955
3956
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3957
reserved_bits |= PRED_CMD_SBPB;
3958
}
3959
3960
if (!boot_cpu_has(X86_FEATURE_IBPB))
3961
reserved_bits |= PRED_CMD_IBPB;
3962
3963
if (!boot_cpu_has(X86_FEATURE_SBPB))
3964
reserved_bits |= PRED_CMD_SBPB;
3965
3966
if (data & reserved_bits)
3967
return 1;
3968
3969
if (!data)
3970
break;
3971
3972
wrmsrq(MSR_IA32_PRED_CMD, data);
3973
break;
3974
}
3975
case MSR_IA32_FLUSH_CMD:
3976
if (!msr_info->host_initiated &&
3977
!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3978
return 1;
3979
3980
if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3981
return 1;
3982
if (!data)
3983
break;
3984
3985
wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3986
break;
3987
case MSR_EFER:
3988
return set_efer(vcpu, msr_info);
3989
case MSR_K7_HWCR:
3990
data &= ~(u64)0x40; /* ignore flush filter disable */
3991
data &= ~(u64)0x100; /* ignore ignne emulation enable */
3992
data &= ~(u64)0x8; /* ignore TLB cache disable */
3993
3994
/*
3995
* Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3996
* through at least v6.6 whine if TscFreqSel is clear,
3997
* depending on F/M/S.
3998
*/
3999
if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
4000
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4001
return 1;
4002
}
4003
vcpu->arch.msr_hwcr = data;
4004
break;
4005
case MSR_FAM10H_MMIO_CONF_BASE:
4006
if (data != 0) {
4007
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4008
return 1;
4009
}
4010
break;
4011
case MSR_IA32_CR_PAT:
4012
if (!kvm_pat_valid(data))
4013
return 1;
4014
4015
vcpu->arch.pat = data;
4016
break;
4017
case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4018
case MSR_MTRRdefType:
4019
return kvm_mtrr_set_msr(vcpu, msr, data);
4020
case MSR_IA32_APICBASE:
4021
return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
4022
case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4023
return kvm_x2apic_msr_write(vcpu, msr, data);
4024
case MSR_IA32_TSC_DEADLINE:
4025
kvm_set_lapic_tscdeadline_msr(vcpu, data);
4026
break;
4027
case MSR_IA32_TSC_ADJUST:
4028
if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
4029
if (!msr_info->host_initiated) {
4030
s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
4031
adjust_tsc_offset_guest(vcpu, adj);
4032
/* Before back to guest, tsc_timestamp must be adjusted
4033
* as well, otherwise guest's percpu pvclock time could jump.
4034
*/
4035
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4036
}
4037
vcpu->arch.ia32_tsc_adjust_msr = data;
4038
}
4039
break;
4040
case MSR_IA32_MISC_ENABLE: {
4041
u64 old_val = vcpu->arch.ia32_misc_enable_msr;
4042
4043
if (!msr_info->host_initiated) {
4044
/* RO bits */
4045
if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
4046
return 1;
4047
4048
/* R bits, i.e. writes are ignored, but don't fault. */
4049
data = data & ~MSR_IA32_MISC_ENABLE_EMON;
4050
data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
4051
}
4052
4053
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
4054
((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
4055
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
4056
return 1;
4057
vcpu->arch.ia32_misc_enable_msr = data;
4058
vcpu->arch.cpuid_dynamic_bits_dirty = true;
4059
} else {
4060
vcpu->arch.ia32_misc_enable_msr = data;
4061
}
4062
break;
4063
}
4064
case MSR_IA32_SMBASE:
4065
if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4066
return 1;
4067
vcpu->arch.smbase = data;
4068
break;
4069
case MSR_IA32_POWER_CTL:
4070
vcpu->arch.msr_ia32_power_ctl = data;
4071
break;
4072
case MSR_IA32_TSC:
4073
if (msr_info->host_initiated) {
4074
kvm_synchronize_tsc(vcpu, &data);
4075
} else if (!vcpu->arch.guest_tsc_protected) {
4076
u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
4077
adjust_tsc_offset_guest(vcpu, adj);
4078
vcpu->arch.ia32_tsc_adjust_msr += adj;
4079
}
4080
break;
4081
case MSR_IA32_XSS:
4082
if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4083
return KVM_MSR_RET_UNSUPPORTED;
4084
4085
if (data & ~vcpu->arch.guest_supported_xss)
4086
return 1;
4087
if (vcpu->arch.ia32_xss == data)
4088
break;
4089
vcpu->arch.ia32_xss = data;
4090
vcpu->arch.cpuid_dynamic_bits_dirty = true;
4091
break;
4092
case MSR_SMI_COUNT:
4093
if (!msr_info->host_initiated)
4094
return 1;
4095
vcpu->arch.smi_count = data;
4096
break;
4097
case MSR_KVM_WALL_CLOCK_NEW:
4098
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4099
return 1;
4100
4101
vcpu->kvm->arch.wall_clock = data;
4102
kvm_write_wall_clock(vcpu->kvm, data, 0);
4103
break;
4104
case MSR_KVM_WALL_CLOCK:
4105
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4106
return 1;
4107
4108
vcpu->kvm->arch.wall_clock = data;
4109
kvm_write_wall_clock(vcpu->kvm, data, 0);
4110
break;
4111
case MSR_KVM_SYSTEM_TIME_NEW:
4112
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4113
return 1;
4114
4115
kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
4116
break;
4117
case MSR_KVM_SYSTEM_TIME:
4118
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4119
return 1;
4120
4121
kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
4122
break;
4123
case MSR_KVM_ASYNC_PF_EN:
4124
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4125
return 1;
4126
4127
if (kvm_pv_enable_async_pf(vcpu, data))
4128
return 1;
4129
break;
4130
case MSR_KVM_ASYNC_PF_INT:
4131
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4132
return 1;
4133
4134
if (kvm_pv_enable_async_pf_int(vcpu, data))
4135
return 1;
4136
break;
4137
case MSR_KVM_ASYNC_PF_ACK:
4138
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4139
return 1;
4140
if (data & 0x1) {
4141
/*
4142
* Pairs with the smp_mb__after_atomic() in
4143
* kvm_arch_async_page_present_queued().
4144
*/
4145
smp_store_mb(vcpu->arch.apf.pageready_pending, false);
4146
4147
kvm_check_async_pf_completion(vcpu);
4148
}
4149
break;
4150
case MSR_KVM_STEAL_TIME:
4151
if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4152
return 1;
4153
4154
if (unlikely(!sched_info_on()))
4155
return 1;
4156
4157
if (data & KVM_STEAL_RESERVED_MASK)
4158
return 1;
4159
4160
vcpu->arch.st.msr_val = data;
4161
4162
if (!(data & KVM_MSR_ENABLED))
4163
break;
4164
4165
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4166
4167
break;
4168
case MSR_KVM_PV_EOI_EN:
4169
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4170
return 1;
4171
4172
if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4173
return 1;
4174
break;
4175
4176
case MSR_KVM_POLL_CONTROL:
4177
if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4178
return 1;
4179
4180
/* only enable bit supported */
4181
if (data & (-1ULL << 1))
4182
return 1;
4183
4184
vcpu->arch.msr_kvm_poll_control = data;
4185
break;
4186
4187
case MSR_IA32_MCG_CTL:
4188
case MSR_IA32_MCG_STATUS:
4189
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4190
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4191
return set_msr_mce(vcpu, msr_info);
4192
4193
case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4194
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4195
case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4196
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4197
if (kvm_pmu_is_valid_msr(vcpu, msr))
4198
return kvm_pmu_set_msr(vcpu, msr_info);
4199
4200
if (data)
4201
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4202
break;
4203
case MSR_K7_CLK_CTL:
4204
/*
4205
* Ignore all writes to this no longer documented MSR.
4206
* Writes are only relevant for old K7 processors,
4207
* all pre-dating SVM, but a recommended workaround from
4208
* AMD for these chips. It is possible to specify the
4209
* affected processor models on the command line, hence
4210
* the need to ignore the workaround.
4211
*/
4212
break;
4213
#ifdef CONFIG_KVM_HYPERV
4214
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4215
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4216
case HV_X64_MSR_SYNDBG_OPTIONS:
4217
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4218
case HV_X64_MSR_CRASH_CTL:
4219
case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4220
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4221
case HV_X64_MSR_TSC_EMULATION_CONTROL:
4222
case HV_X64_MSR_TSC_EMULATION_STATUS:
4223
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4224
return kvm_hv_set_msr_common(vcpu, msr, data,
4225
msr_info->host_initiated);
4226
#endif
4227
case MSR_IA32_BBL_CR_CTL3:
4228
/* Drop writes to this legacy MSR -- see rdmsr
4229
* counterpart for further detail.
4230
*/
4231
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4232
break;
4233
case MSR_AMD64_OSVW_ID_LENGTH:
4234
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4235
return 1;
4236
vcpu->arch.osvw.length = data;
4237
break;
4238
case MSR_AMD64_OSVW_STATUS:
4239
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4240
return 1;
4241
vcpu->arch.osvw.status = data;
4242
break;
4243
case MSR_PLATFORM_INFO:
4244
if (!msr_info->host_initiated)
4245
return 1;
4246
vcpu->arch.msr_platform_info = data;
4247
break;
4248
case MSR_MISC_FEATURES_ENABLES:
4249
if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4250
(data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4251
!supports_cpuid_fault(vcpu)))
4252
return 1;
4253
vcpu->arch.msr_misc_features_enables = data;
4254
break;
4255
#ifdef CONFIG_X86_64
4256
case MSR_IA32_XFD:
4257
if (!msr_info->host_initiated &&
4258
!guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4259
return 1;
4260
4261
if (data & ~kvm_guest_supported_xfd(vcpu))
4262
return 1;
4263
4264
fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4265
break;
4266
case MSR_IA32_XFD_ERR:
4267
if (!msr_info->host_initiated &&
4268
!guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4269
return 1;
4270
4271
if (data & ~kvm_guest_supported_xfd(vcpu))
4272
return 1;
4273
4274
vcpu->arch.guest_fpu.xfd_err = data;
4275
break;
4276
#endif
4277
case MSR_IA32_U_CET:
4278
case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4279
kvm_set_xstate_msr(vcpu, msr_info);
4280
break;
4281
default:
4282
if (kvm_pmu_is_valid_msr(vcpu, msr))
4283
return kvm_pmu_set_msr(vcpu, msr_info);
4284
4285
return KVM_MSR_RET_UNSUPPORTED;
4286
}
4287
return 0;
4288
}
4289
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_msr_common);
4290
4291
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4292
{
4293
u64 data;
4294
u64 mcg_cap = vcpu->arch.mcg_cap;
4295
unsigned bank_num = mcg_cap & 0xff;
4296
u32 offset, last_msr;
4297
4298
switch (msr) {
4299
case MSR_IA32_P5_MC_ADDR:
4300
case MSR_IA32_P5_MC_TYPE:
4301
data = 0;
4302
break;
4303
case MSR_IA32_MCG_CAP:
4304
data = vcpu->arch.mcg_cap;
4305
break;
4306
case MSR_IA32_MCG_CTL:
4307
if (!(mcg_cap & MCG_CTL_P) && !host)
4308
return 1;
4309
data = vcpu->arch.mcg_ctl;
4310
break;
4311
case MSR_IA32_MCG_STATUS:
4312
data = vcpu->arch.mcg_status;
4313
break;
4314
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4315
last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4316
if (msr > last_msr)
4317
return 1;
4318
4319
if (!(mcg_cap & MCG_CMCI_P) && !host)
4320
return 1;
4321
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4322
last_msr + 1 - MSR_IA32_MC0_CTL2);
4323
data = vcpu->arch.mci_ctl2_banks[offset];
4324
break;
4325
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4326
last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4327
if (msr > last_msr)
4328
return 1;
4329
4330
offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4331
last_msr + 1 - MSR_IA32_MC0_CTL);
4332
data = vcpu->arch.mce_banks[offset];
4333
break;
4334
default:
4335
return 1;
4336
}
4337
*pdata = data;
4338
return 0;
4339
}
4340
4341
int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4342
{
4343
switch (msr_info->index) {
4344
case MSR_IA32_PLATFORM_ID:
4345
case MSR_IA32_EBL_CR_POWERON:
4346
case MSR_IA32_LASTBRANCHFROMIP:
4347
case MSR_IA32_LASTBRANCHTOIP:
4348
case MSR_IA32_LASTINTFROMIP:
4349
case MSR_IA32_LASTINTTOIP:
4350
case MSR_AMD64_SYSCFG:
4351
case MSR_K8_TSEG_ADDR:
4352
case MSR_K8_TSEG_MASK:
4353
case MSR_VM_HSAVE_PA:
4354
case MSR_K8_INT_PENDING_MSG:
4355
case MSR_AMD64_NB_CFG:
4356
case MSR_FAM10H_MMIO_CONF_BASE:
4357
case MSR_AMD64_BU_CFG2:
4358
case MSR_IA32_PERF_CTL:
4359
case MSR_AMD64_DC_CFG:
4360
case MSR_AMD64_TW_CFG:
4361
case MSR_F15H_EX_CFG:
4362
/*
4363
* Intel Sandy Bridge CPUs must support the RAPL (running average power
4364
* limit) MSRs. Just return 0, as we do not want to expose the host
4365
* data here. Do not conditionalize this on CPUID, as KVM does not do
4366
* so for existing CPU-specific MSRs.
4367
*/
4368
case MSR_RAPL_POWER_UNIT:
4369
case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4370
case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4371
case MSR_PKG_ENERGY_STATUS: /* Total package */
4372
case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4373
msr_info->data = 0;
4374
break;
4375
case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4376
case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4377
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4378
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4379
if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4380
return kvm_pmu_get_msr(vcpu, msr_info);
4381
msr_info->data = 0;
4382
break;
4383
case MSR_IA32_UCODE_REV:
4384
msr_info->data = vcpu->arch.microcode_version;
4385
break;
4386
case MSR_IA32_ARCH_CAPABILITIES:
4387
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4388
return KVM_MSR_RET_UNSUPPORTED;
4389
msr_info->data = vcpu->arch.arch_capabilities;
4390
break;
4391
case MSR_IA32_PERF_CAPABILITIES:
4392
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4393
return KVM_MSR_RET_UNSUPPORTED;
4394
msr_info->data = vcpu->arch.perf_capabilities;
4395
break;
4396
case MSR_IA32_POWER_CTL:
4397
msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4398
break;
4399
case MSR_IA32_TSC: {
4400
/*
4401
* Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4402
* even when not intercepted. AMD manual doesn't explicitly
4403
* state this but appears to behave the same.
4404
*
4405
* On userspace reads and writes, however, we unconditionally
4406
* return L1's TSC value to ensure backwards-compatible
4407
* behavior for migration.
4408
*/
4409
u64 offset, ratio;
4410
4411
if (msr_info->host_initiated) {
4412
offset = vcpu->arch.l1_tsc_offset;
4413
ratio = vcpu->arch.l1_tsc_scaling_ratio;
4414
} else {
4415
offset = vcpu->arch.tsc_offset;
4416
ratio = vcpu->arch.tsc_scaling_ratio;
4417
}
4418
4419
msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4420
break;
4421
}
4422
case MSR_IA32_CR_PAT:
4423
msr_info->data = vcpu->arch.pat;
4424
break;
4425
case MSR_MTRRcap:
4426
case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4427
case MSR_MTRRdefType:
4428
return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4429
case 0xcd: /* fsb frequency */
4430
msr_info->data = 3;
4431
break;
4432
/*
4433
* MSR_EBC_FREQUENCY_ID
4434
* Conservative value valid for even the basic CPU models.
4435
* Models 0,1: 000 in bits 23:21 indicating a bus speed of
4436
* 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4437
* and 266MHz for model 3, or 4. Set Core Clock
4438
* Frequency to System Bus Frequency Ratio to 1 (bits
4439
* 31:24) even though these are only valid for CPU
4440
* models > 2, however guests may end up dividing or
4441
* multiplying by zero otherwise.
4442
*/
4443
case MSR_EBC_FREQUENCY_ID:
4444
msr_info->data = 1 << 24;
4445
break;
4446
case MSR_IA32_APICBASE:
4447
msr_info->data = vcpu->arch.apic_base;
4448
break;
4449
case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4450
return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4451
case MSR_IA32_TSC_DEADLINE:
4452
msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4453
break;
4454
case MSR_IA32_TSC_ADJUST:
4455
msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4456
break;
4457
case MSR_IA32_MISC_ENABLE:
4458
msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4459
break;
4460
case MSR_IA32_SMBASE:
4461
if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4462
return 1;
4463
msr_info->data = vcpu->arch.smbase;
4464
break;
4465
case MSR_SMI_COUNT:
4466
msr_info->data = vcpu->arch.smi_count;
4467
break;
4468
case MSR_IA32_PERF_STATUS:
4469
/* TSC increment by tick */
4470
msr_info->data = 1000ULL;
4471
/* CPU multiplier */
4472
msr_info->data |= (((uint64_t)4ULL) << 40);
4473
break;
4474
case MSR_EFER:
4475
msr_info->data = vcpu->arch.efer;
4476
break;
4477
case MSR_KVM_WALL_CLOCK:
4478
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4479
return 1;
4480
4481
msr_info->data = vcpu->kvm->arch.wall_clock;
4482
break;
4483
case MSR_KVM_WALL_CLOCK_NEW:
4484
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4485
return 1;
4486
4487
msr_info->data = vcpu->kvm->arch.wall_clock;
4488
break;
4489
case MSR_KVM_SYSTEM_TIME:
4490
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4491
return 1;
4492
4493
msr_info->data = vcpu->arch.time;
4494
break;
4495
case MSR_KVM_SYSTEM_TIME_NEW:
4496
if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4497
return 1;
4498
4499
msr_info->data = vcpu->arch.time;
4500
break;
4501
case MSR_KVM_ASYNC_PF_EN:
4502
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4503
return 1;
4504
4505
msr_info->data = vcpu->arch.apf.msr_en_val;
4506
break;
4507
case MSR_KVM_ASYNC_PF_INT:
4508
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4509
return 1;
4510
4511
msr_info->data = vcpu->arch.apf.msr_int_val;
4512
break;
4513
case MSR_KVM_ASYNC_PF_ACK:
4514
if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4515
return 1;
4516
4517
msr_info->data = 0;
4518
break;
4519
case MSR_KVM_STEAL_TIME:
4520
if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4521
return 1;
4522
4523
msr_info->data = vcpu->arch.st.msr_val;
4524
break;
4525
case MSR_KVM_PV_EOI_EN:
4526
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4527
return 1;
4528
4529
msr_info->data = vcpu->arch.pv_eoi.msr_val;
4530
break;
4531
case MSR_KVM_POLL_CONTROL:
4532
if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4533
return 1;
4534
4535
msr_info->data = vcpu->arch.msr_kvm_poll_control;
4536
break;
4537
case MSR_IA32_P5_MC_ADDR:
4538
case MSR_IA32_P5_MC_TYPE:
4539
case MSR_IA32_MCG_CAP:
4540
case MSR_IA32_MCG_CTL:
4541
case MSR_IA32_MCG_STATUS:
4542
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4543
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4544
return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4545
msr_info->host_initiated);
4546
case MSR_IA32_XSS:
4547
if (!msr_info->host_initiated &&
4548
!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4549
return 1;
4550
msr_info->data = vcpu->arch.ia32_xss;
4551
break;
4552
case MSR_K7_CLK_CTL:
4553
/*
4554
* Provide expected ramp-up count for K7. All other
4555
* are set to zero, indicating minimum divisors for
4556
* every field.
4557
*
4558
* This prevents guest kernels on AMD host with CPU
4559
* type 6, model 8 and higher from exploding due to
4560
* the rdmsr failing.
4561
*/
4562
msr_info->data = 0x20000000;
4563
break;
4564
#ifdef CONFIG_KVM_HYPERV
4565
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4566
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4567
case HV_X64_MSR_SYNDBG_OPTIONS:
4568
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4569
case HV_X64_MSR_CRASH_CTL:
4570
case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4571
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4572
case HV_X64_MSR_TSC_EMULATION_CONTROL:
4573
case HV_X64_MSR_TSC_EMULATION_STATUS:
4574
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4575
return kvm_hv_get_msr_common(vcpu,
4576
msr_info->index, &msr_info->data,
4577
msr_info->host_initiated);
4578
#endif
4579
case MSR_IA32_BBL_CR_CTL3:
4580
/* This legacy MSR exists but isn't fully documented in current
4581
* silicon. It is however accessed by winxp in very narrow
4582
* scenarios where it sets bit #19, itself documented as
4583
* a "reserved" bit. Best effort attempt to source coherent
4584
* read data here should the balance of the register be
4585
* interpreted by the guest:
4586
*
4587
* L2 cache control register 3: 64GB range, 256KB size,
4588
* enabled, latency 0x1, configured
4589
*/
4590
msr_info->data = 0xbe702111;
4591
break;
4592
case MSR_AMD64_OSVW_ID_LENGTH:
4593
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4594
return 1;
4595
msr_info->data = vcpu->arch.osvw.length;
4596
break;
4597
case MSR_AMD64_OSVW_STATUS:
4598
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4599
return 1;
4600
msr_info->data = vcpu->arch.osvw.status;
4601
break;
4602
case MSR_PLATFORM_INFO:
4603
if (!msr_info->host_initiated &&
4604
!vcpu->kvm->arch.guest_can_read_msr_platform_info)
4605
return 1;
4606
msr_info->data = vcpu->arch.msr_platform_info;
4607
break;
4608
case MSR_MISC_FEATURES_ENABLES:
4609
msr_info->data = vcpu->arch.msr_misc_features_enables;
4610
break;
4611
case MSR_K7_HWCR:
4612
msr_info->data = vcpu->arch.msr_hwcr;
4613
break;
4614
#ifdef CONFIG_X86_64
4615
case MSR_IA32_XFD:
4616
if (!msr_info->host_initiated &&
4617
!guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4618
return 1;
4619
4620
msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4621
break;
4622
case MSR_IA32_XFD_ERR:
4623
if (!msr_info->host_initiated &&
4624
!guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4625
return 1;
4626
4627
msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4628
break;
4629
#endif
4630
case MSR_IA32_U_CET:
4631
case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4632
kvm_get_xstate_msr(vcpu, msr_info);
4633
break;
4634
default:
4635
if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4636
return kvm_pmu_get_msr(vcpu, msr_info);
4637
4638
return KVM_MSR_RET_UNSUPPORTED;
4639
}
4640
return 0;
4641
}
4642
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_msr_common);
4643
4644
/*
4645
* Read or write a bunch of msrs. All parameters are kernel addresses.
4646
*
4647
* @return number of msrs set successfully.
4648
*/
4649
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4650
struct kvm_msr_entry *entries,
4651
int (*do_msr)(struct kvm_vcpu *vcpu,
4652
unsigned index, u64 *data))
4653
{
4654
bool fpu_loaded = false;
4655
int i;
4656
4657
for (i = 0; i < msrs->nmsrs; ++i) {
4658
/*
4659
* If userspace is accessing one or more XSTATE-managed MSRs,
4660
* temporarily load the guest's FPU state so that the guest's
4661
* MSR value(s) is resident in hardware and thus can be accessed
4662
* via RDMSR/WRMSR.
4663
*/
4664
if (!fpu_loaded && is_xstate_managed_msr(vcpu, entries[i].index)) {
4665
kvm_load_guest_fpu(vcpu);
4666
fpu_loaded = true;
4667
}
4668
if (do_msr(vcpu, entries[i].index, &entries[i].data))
4669
break;
4670
}
4671
if (fpu_loaded)
4672
kvm_put_guest_fpu(vcpu);
4673
4674
return i;
4675
}
4676
4677
/*
4678
* Read or write a bunch of msrs. Parameters are user addresses.
4679
*
4680
* @return number of msrs set successfully.
4681
*/
4682
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4683
int (*do_msr)(struct kvm_vcpu *vcpu,
4684
unsigned index, u64 *data),
4685
int writeback)
4686
{
4687
struct kvm_msrs msrs;
4688
struct kvm_msr_entry *entries;
4689
unsigned size;
4690
int r;
4691
4692
r = -EFAULT;
4693
if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4694
goto out;
4695
4696
r = -E2BIG;
4697
if (msrs.nmsrs >= MAX_IO_MSRS)
4698
goto out;
4699
4700
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4701
entries = memdup_user(user_msrs->entries, size);
4702
if (IS_ERR(entries)) {
4703
r = PTR_ERR(entries);
4704
goto out;
4705
}
4706
4707
r = __msr_io(vcpu, &msrs, entries, do_msr);
4708
4709
if (writeback && copy_to_user(user_msrs->entries, entries, size))
4710
r = -EFAULT;
4711
4712
kfree(entries);
4713
out:
4714
return r;
4715
}
4716
4717
static inline bool kvm_can_mwait_in_guest(void)
4718
{
4719
return boot_cpu_has(X86_FEATURE_MWAIT) &&
4720
!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4721
boot_cpu_has(X86_FEATURE_ARAT);
4722
}
4723
4724
static u64 kvm_get_allowed_disable_exits(void)
4725
{
4726
u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4727
4728
if (boot_cpu_has(X86_FEATURE_APERFMPERF))
4729
r |= KVM_X86_DISABLE_EXITS_APERFMPERF;
4730
4731
if (!mitigate_smt_rsb) {
4732
r |= KVM_X86_DISABLE_EXITS_HLT |
4733
KVM_X86_DISABLE_EXITS_CSTATE;
4734
4735
if (kvm_can_mwait_in_guest())
4736
r |= KVM_X86_DISABLE_EXITS_MWAIT;
4737
}
4738
return r;
4739
}
4740
4741
#ifdef CONFIG_KVM_HYPERV
4742
static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4743
struct kvm_cpuid2 __user *cpuid_arg)
4744
{
4745
struct kvm_cpuid2 cpuid;
4746
int r;
4747
4748
r = -EFAULT;
4749
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4750
return r;
4751
4752
r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4753
if (r)
4754
return r;
4755
4756
r = -EFAULT;
4757
if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4758
return r;
4759
4760
return 0;
4761
}
4762
#endif
4763
4764
static bool kvm_is_vm_type_supported(unsigned long type)
4765
{
4766
return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4767
}
4768
4769
static inline u64 kvm_sync_valid_fields(struct kvm *kvm)
4770
{
4771
return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4772
}
4773
4774
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4775
{
4776
int r = 0;
4777
4778
switch (ext) {
4779
case KVM_CAP_IRQCHIP:
4780
case KVM_CAP_HLT:
4781
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4782
case KVM_CAP_SET_TSS_ADDR:
4783
case KVM_CAP_EXT_CPUID:
4784
case KVM_CAP_EXT_EMUL_CPUID:
4785
case KVM_CAP_CLOCKSOURCE:
4786
#ifdef CONFIG_KVM_IOAPIC
4787
case KVM_CAP_PIT:
4788
case KVM_CAP_PIT2:
4789
case KVM_CAP_PIT_STATE2:
4790
case KVM_CAP_REINJECT_CONTROL:
4791
#endif
4792
case KVM_CAP_NOP_IO_DELAY:
4793
case KVM_CAP_MP_STATE:
4794
case KVM_CAP_SYNC_MMU:
4795
case KVM_CAP_USER_NMI:
4796
case KVM_CAP_IRQ_INJECT_STATUS:
4797
case KVM_CAP_IOEVENTFD:
4798
case KVM_CAP_IOEVENTFD_NO_LENGTH:
4799
4800
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4801
case KVM_CAP_VCPU_EVENTS:
4802
#ifdef CONFIG_KVM_HYPERV
4803
case KVM_CAP_HYPERV:
4804
case KVM_CAP_HYPERV_VAPIC:
4805
case KVM_CAP_HYPERV_SPIN:
4806
case KVM_CAP_HYPERV_TIME:
4807
case KVM_CAP_HYPERV_SYNIC:
4808
case KVM_CAP_HYPERV_SYNIC2:
4809
case KVM_CAP_HYPERV_VP_INDEX:
4810
case KVM_CAP_HYPERV_EVENTFD:
4811
case KVM_CAP_HYPERV_TLBFLUSH:
4812
case KVM_CAP_HYPERV_SEND_IPI:
4813
case KVM_CAP_HYPERV_CPUID:
4814
case KVM_CAP_HYPERV_ENFORCE_CPUID:
4815
case KVM_CAP_SYS_HYPERV_CPUID:
4816
#endif
4817
case KVM_CAP_PCI_SEGMENT:
4818
case KVM_CAP_DEBUGREGS:
4819
case KVM_CAP_X86_ROBUST_SINGLESTEP:
4820
case KVM_CAP_XSAVE:
4821
case KVM_CAP_ASYNC_PF:
4822
case KVM_CAP_ASYNC_PF_INT:
4823
case KVM_CAP_GET_TSC_KHZ:
4824
case KVM_CAP_KVMCLOCK_CTRL:
4825
case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4826
case KVM_CAP_TSC_DEADLINE_TIMER:
4827
case KVM_CAP_DISABLE_QUIRKS:
4828
case KVM_CAP_SET_BOOT_CPU_ID:
4829
case KVM_CAP_SPLIT_IRQCHIP:
4830
case KVM_CAP_IMMEDIATE_EXIT:
4831
case KVM_CAP_PMU_EVENT_FILTER:
4832
case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4833
case KVM_CAP_GET_MSR_FEATURES:
4834
case KVM_CAP_MSR_PLATFORM_INFO:
4835
case KVM_CAP_EXCEPTION_PAYLOAD:
4836
case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4837
case KVM_CAP_SET_GUEST_DEBUG:
4838
case KVM_CAP_LAST_CPU:
4839
case KVM_CAP_X86_USER_SPACE_MSR:
4840
case KVM_CAP_X86_MSR_FILTER:
4841
case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4842
#ifdef CONFIG_X86_SGX_KVM
4843
case KVM_CAP_SGX_ATTRIBUTE:
4844
#endif
4845
case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4846
case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4847
case KVM_CAP_SREGS2:
4848
case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4849
case KVM_CAP_VCPU_ATTRIBUTES:
4850
case KVM_CAP_SYS_ATTRIBUTES:
4851
case KVM_CAP_VAPIC:
4852
case KVM_CAP_ENABLE_CAP:
4853
case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4854
case KVM_CAP_IRQFD_RESAMPLE:
4855
case KVM_CAP_MEMORY_FAULT_INFO:
4856
case KVM_CAP_X86_GUEST_MODE:
4857
case KVM_CAP_ONE_REG:
4858
r = 1;
4859
break;
4860
case KVM_CAP_PRE_FAULT_MEMORY:
4861
r = tdp_enabled;
4862
break;
4863
case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4864
r = APIC_BUS_CYCLE_NS_DEFAULT;
4865
break;
4866
case KVM_CAP_EXIT_HYPERCALL:
4867
r = KVM_EXIT_HYPERCALL_VALID_MASK;
4868
break;
4869
case KVM_CAP_SET_GUEST_DEBUG2:
4870
return KVM_GUESTDBG_VALID_MASK;
4871
#ifdef CONFIG_KVM_XEN
4872
case KVM_CAP_XEN_HVM:
4873
r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4874
KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4875
KVM_XEN_HVM_CONFIG_SHARED_INFO |
4876
KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4877
KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4878
KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4879
KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4880
if (sched_info_on())
4881
r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4882
KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4883
break;
4884
#endif
4885
case KVM_CAP_SYNC_REGS:
4886
r = kvm_sync_valid_fields(kvm);
4887
break;
4888
case KVM_CAP_ADJUST_CLOCK:
4889
r = KVM_CLOCK_VALID_FLAGS;
4890
break;
4891
case KVM_CAP_X86_DISABLE_EXITS:
4892
r = kvm_get_allowed_disable_exits();
4893
break;
4894
case KVM_CAP_X86_SMM:
4895
if (!IS_ENABLED(CONFIG_KVM_SMM))
4896
break;
4897
4898
/* SMBASE is usually relocated above 1M on modern chipsets,
4899
* and SMM handlers might indeed rely on 4G segment limits,
4900
* so do not report SMM to be available if real mode is
4901
* emulated via vm86 mode. Still, do not go to great lengths
4902
* to avoid userspace's usage of the feature, because it is a
4903
* fringe case that is not enabled except via specific settings
4904
* of the module parameters.
4905
*/
4906
r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4907
break;
4908
case KVM_CAP_NR_VCPUS:
4909
r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4910
break;
4911
case KVM_CAP_MAX_VCPUS:
4912
r = KVM_MAX_VCPUS;
4913
if (kvm)
4914
r = kvm->max_vcpus;
4915
break;
4916
case KVM_CAP_MAX_VCPU_ID:
4917
r = KVM_MAX_VCPU_IDS;
4918
break;
4919
case KVM_CAP_PV_MMU: /* obsolete */
4920
r = 0;
4921
break;
4922
case KVM_CAP_MCE:
4923
r = KVM_MAX_MCE_BANKS;
4924
break;
4925
case KVM_CAP_XCRS:
4926
r = boot_cpu_has(X86_FEATURE_XSAVE);
4927
break;
4928
case KVM_CAP_TSC_CONTROL:
4929
case KVM_CAP_VM_TSC_CONTROL:
4930
r = kvm_caps.has_tsc_control;
4931
break;
4932
case KVM_CAP_X2APIC_API:
4933
r = KVM_X2APIC_API_VALID_FLAGS;
4934
break;
4935
case KVM_CAP_NESTED_STATE:
4936
r = kvm_x86_ops.nested_ops->get_state ?
4937
kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4938
break;
4939
#ifdef CONFIG_KVM_HYPERV
4940
case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4941
r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4942
break;
4943
case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4944
r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4945
break;
4946
#endif
4947
case KVM_CAP_SMALLER_MAXPHYADDR:
4948
r = (int) allow_smaller_maxphyaddr;
4949
break;
4950
case KVM_CAP_STEAL_TIME:
4951
r = sched_info_on();
4952
break;
4953
case KVM_CAP_X86_BUS_LOCK_EXIT:
4954
if (kvm_caps.has_bus_lock_exit)
4955
r = KVM_BUS_LOCK_DETECTION_OFF |
4956
KVM_BUS_LOCK_DETECTION_EXIT;
4957
else
4958
r = 0;
4959
break;
4960
case KVM_CAP_XSAVE2: {
4961
r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4962
if (r < sizeof(struct kvm_xsave))
4963
r = sizeof(struct kvm_xsave);
4964
break;
4965
}
4966
case KVM_CAP_PMU_CAPABILITY:
4967
r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4968
break;
4969
case KVM_CAP_DISABLE_QUIRKS2:
4970
r = kvm_caps.supported_quirks;
4971
break;
4972
case KVM_CAP_X86_NOTIFY_VMEXIT:
4973
r = kvm_caps.has_notify_vmexit;
4974
break;
4975
case KVM_CAP_VM_TYPES:
4976
r = kvm_caps.supported_vm_types;
4977
break;
4978
case KVM_CAP_READONLY_MEM:
4979
r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4980
break;
4981
default:
4982
break;
4983
}
4984
return r;
4985
}
4986
4987
static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4988
{
4989
if (attr->group) {
4990
if (kvm_x86_ops.dev_get_attr)
4991
return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4992
return -ENXIO;
4993
}
4994
4995
switch (attr->attr) {
4996
case KVM_X86_XCOMP_GUEST_SUPP:
4997
*val = kvm_caps.supported_xcr0;
4998
return 0;
4999
default:
5000
return -ENXIO;
5001
}
5002
}
5003
5004
static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
5005
{
5006
u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5007
int r;
5008
u64 val;
5009
5010
r = __kvm_x86_dev_get_attr(attr, &val);
5011
if (r < 0)
5012
return r;
5013
5014
if (put_user(val, uaddr))
5015
return -EFAULT;
5016
5017
return 0;
5018
}
5019
5020
static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
5021
{
5022
u64 val;
5023
5024
return __kvm_x86_dev_get_attr(attr, &val);
5025
}
5026
5027
long kvm_arch_dev_ioctl(struct file *filp,
5028
unsigned int ioctl, unsigned long arg)
5029
{
5030
void __user *argp = (void __user *)arg;
5031
long r;
5032
5033
switch (ioctl) {
5034
case KVM_GET_MSR_INDEX_LIST: {
5035
struct kvm_msr_list __user *user_msr_list = argp;
5036
struct kvm_msr_list msr_list;
5037
unsigned n;
5038
5039
r = -EFAULT;
5040
if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5041
goto out;
5042
n = msr_list.nmsrs;
5043
msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
5044
if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5045
goto out;
5046
r = -E2BIG;
5047
if (n < msr_list.nmsrs)
5048
goto out;
5049
r = -EFAULT;
5050
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
5051
num_msrs_to_save * sizeof(u32)))
5052
goto out;
5053
if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
5054
&emulated_msrs,
5055
num_emulated_msrs * sizeof(u32)))
5056
goto out;
5057
r = 0;
5058
break;
5059
}
5060
case KVM_GET_SUPPORTED_CPUID:
5061
case KVM_GET_EMULATED_CPUID: {
5062
struct kvm_cpuid2 __user *cpuid_arg = argp;
5063
struct kvm_cpuid2 cpuid;
5064
5065
r = -EFAULT;
5066
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5067
goto out;
5068
5069
r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
5070
ioctl);
5071
if (r)
5072
goto out;
5073
5074
r = -EFAULT;
5075
if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5076
goto out;
5077
r = 0;
5078
break;
5079
}
5080
case KVM_X86_GET_MCE_CAP_SUPPORTED:
5081
r = -EFAULT;
5082
if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
5083
sizeof(kvm_caps.supported_mce_cap)))
5084
goto out;
5085
r = 0;
5086
break;
5087
case KVM_GET_MSR_FEATURE_INDEX_LIST: {
5088
struct kvm_msr_list __user *user_msr_list = argp;
5089
struct kvm_msr_list msr_list;
5090
unsigned int n;
5091
5092
r = -EFAULT;
5093
if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5094
goto out;
5095
n = msr_list.nmsrs;
5096
msr_list.nmsrs = num_msr_based_features;
5097
if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5098
goto out;
5099
r = -E2BIG;
5100
if (n < msr_list.nmsrs)
5101
goto out;
5102
r = -EFAULT;
5103
if (copy_to_user(user_msr_list->indices, &msr_based_features,
5104
num_msr_based_features * sizeof(u32)))
5105
goto out;
5106
r = 0;
5107
break;
5108
}
5109
case KVM_GET_MSRS:
5110
r = msr_io(NULL, argp, do_get_feature_msr, 1);
5111
break;
5112
#ifdef CONFIG_KVM_HYPERV
5113
case KVM_GET_SUPPORTED_HV_CPUID:
5114
r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
5115
break;
5116
#endif
5117
case KVM_GET_DEVICE_ATTR: {
5118
struct kvm_device_attr attr;
5119
r = -EFAULT;
5120
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5121
break;
5122
r = kvm_x86_dev_get_attr(&attr);
5123
break;
5124
}
5125
case KVM_HAS_DEVICE_ATTR: {
5126
struct kvm_device_attr attr;
5127
r = -EFAULT;
5128
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5129
break;
5130
r = kvm_x86_dev_has_attr(&attr);
5131
break;
5132
}
5133
default:
5134
r = -EINVAL;
5135
break;
5136
}
5137
out:
5138
return r;
5139
}
5140
5141
static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
5142
{
5143
return kvm_arch_has_noncoherent_dma(vcpu->kvm);
5144
}
5145
5146
static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
5147
5148
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5149
{
5150
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
5151
5152
kvm_request_l1tf_flush_l1d();
5153
5154
if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
5155
pmu->need_cleanup = true;
5156
kvm_make_request(KVM_REQ_PMU, vcpu);
5157
}
5158
5159
/* Address WBINVD may be executed by guest */
5160
if (need_emulate_wbinvd(vcpu)) {
5161
if (kvm_x86_call(has_wbinvd_exit)())
5162
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5163
else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5164
wbinvd_on_cpu(vcpu->cpu);
5165
}
5166
5167
kvm_x86_call(vcpu_load)(vcpu, cpu);
5168
5169
if (vcpu != per_cpu(last_vcpu, cpu)) {
5170
/*
5171
* Flush the branch predictor when switching vCPUs on the same
5172
* physical CPU, as each vCPU needs its own branch prediction
5173
* domain. No IBPB is needed when switching between L1 and L2
5174
* on the same vCPU unless IBRS is advertised to the vCPU; that
5175
* is handled on the nested VM-Exit path.
5176
*/
5177
if (static_branch_likely(&switch_vcpu_ibpb))
5178
indirect_branch_prediction_barrier();
5179
per_cpu(last_vcpu, cpu) = vcpu;
5180
}
5181
5182
/* Save host pkru register if supported */
5183
vcpu->arch.host_pkru = read_pkru();
5184
5185
/* Apply any externally detected TSC adjustments (due to suspend) */
5186
if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5187
adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5188
vcpu->arch.tsc_offset_adjustment = 0;
5189
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5190
}
5191
5192
if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5193
s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5194
rdtsc() - vcpu->arch.last_host_tsc;
5195
if (tsc_delta < 0)
5196
mark_tsc_unstable("KVM discovered backwards TSC");
5197
5198
if (kvm_check_tsc_unstable()) {
5199
u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5200
vcpu->arch.last_guest_tsc);
5201
kvm_vcpu_write_tsc_offset(vcpu, offset);
5202
if (!vcpu->arch.guest_tsc_protected)
5203
vcpu->arch.tsc_catchup = 1;
5204
}
5205
5206
if (kvm_lapic_hv_timer_in_use(vcpu))
5207
kvm_lapic_restart_hv_timer(vcpu);
5208
5209
/*
5210
* On a host with synchronized TSC, there is no need to update
5211
* kvmclock on vcpu->cpu migration
5212
*/
5213
if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5214
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5215
if (vcpu->cpu != cpu)
5216
kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5217
vcpu->cpu = cpu;
5218
}
5219
5220
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5221
}
5222
5223
static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5224
{
5225
struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5226
struct kvm_steal_time __user *st;
5227
struct kvm_memslots *slots;
5228
static const u8 preempted = KVM_VCPU_PREEMPTED;
5229
gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5230
5231
/*
5232
* The vCPU can be marked preempted if and only if the VM-Exit was on
5233
* an instruction boundary and will not trigger guest emulation of any
5234
* kind (see vcpu_run). Vendor specific code controls (conservatively)
5235
* when this is true, for example allowing the vCPU to be marked
5236
* preempted if and only if the VM-Exit was due to a host interrupt.
5237
*/
5238
if (!vcpu->arch.at_instruction_boundary) {
5239
vcpu->stat.preemption_other++;
5240
return;
5241
}
5242
5243
vcpu->stat.preemption_reported++;
5244
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5245
return;
5246
5247
if (vcpu->arch.st.preempted)
5248
return;
5249
5250
/* This happens on process exit */
5251
if (unlikely(current->mm != vcpu->kvm->mm))
5252
return;
5253
5254
slots = kvm_memslots(vcpu->kvm);
5255
5256
if (unlikely(slots->generation != ghc->generation ||
5257
gpa != ghc->gpa ||
5258
kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5259
return;
5260
5261
st = (struct kvm_steal_time __user *)ghc->hva;
5262
BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5263
5264
if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5265
vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5266
5267
mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5268
}
5269
5270
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5271
{
5272
int idx;
5273
5274
if (vcpu->preempted) {
5275
/*
5276
* Assume protected guests are in-kernel. Inefficient yielding
5277
* due to false positives is preferable to never yielding due
5278
* to false negatives.
5279
*/
5280
vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5281
!kvm_x86_call(get_cpl_no_cache)(vcpu);
5282
5283
/*
5284
* Take the srcu lock as memslots will be accessed to check the gfn
5285
* cache generation against the memslots generation.
5286
*/
5287
idx = srcu_read_lock(&vcpu->kvm->srcu);
5288
if (kvm_xen_msr_enabled(vcpu->kvm))
5289
kvm_xen_runstate_set_preempted(vcpu);
5290
else
5291
kvm_steal_time_set_preempted(vcpu);
5292
srcu_read_unlock(&vcpu->kvm->srcu, idx);
5293
}
5294
5295
kvm_x86_call(vcpu_put)(vcpu);
5296
vcpu->arch.last_host_tsc = rdtsc();
5297
}
5298
5299
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5300
struct kvm_lapic_state *s)
5301
{
5302
if (vcpu->arch.apic->guest_apic_protected)
5303
return -EINVAL;
5304
5305
kvm_x86_call(sync_pir_to_irr)(vcpu);
5306
5307
return kvm_apic_get_state(vcpu, s);
5308
}
5309
5310
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5311
struct kvm_lapic_state *s)
5312
{
5313
int r;
5314
5315
if (vcpu->arch.apic->guest_apic_protected)
5316
return -EINVAL;
5317
5318
r = kvm_apic_set_state(vcpu, s);
5319
if (r)
5320
return r;
5321
update_cr8_intercept(vcpu);
5322
5323
return 0;
5324
}
5325
5326
static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5327
{
5328
/*
5329
* We can accept userspace's request for interrupt injection
5330
* as long as we have a place to store the interrupt number.
5331
* The actual injection will happen when the CPU is able to
5332
* deliver the interrupt.
5333
*/
5334
if (kvm_cpu_has_extint(vcpu))
5335
return false;
5336
5337
/* Acknowledging ExtINT does not happen if LINT0 is masked. */
5338
return (!lapic_in_kernel(vcpu) ||
5339
kvm_apic_accept_pic_intr(vcpu));
5340
}
5341
5342
static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5343
{
5344
/*
5345
* Do not cause an interrupt window exit if an exception
5346
* is pending or an event needs reinjection; userspace
5347
* might want to inject the interrupt manually using KVM_SET_REGS
5348
* or KVM_SET_SREGS. For that to work, we must be at an
5349
* instruction boundary and with no events half-injected.
5350
*/
5351
return (kvm_arch_interrupt_allowed(vcpu) &&
5352
kvm_cpu_accept_dm_intr(vcpu) &&
5353
!kvm_event_needs_reinjection(vcpu) &&
5354
!kvm_is_exception_pending(vcpu));
5355
}
5356
5357
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5358
struct kvm_interrupt *irq)
5359
{
5360
if (irq->irq >= KVM_NR_INTERRUPTS)
5361
return -EINVAL;
5362
5363
if (!irqchip_in_kernel(vcpu->kvm)) {
5364
kvm_queue_interrupt(vcpu, irq->irq, false);
5365
kvm_make_request(KVM_REQ_EVENT, vcpu);
5366
return 0;
5367
}
5368
5369
/*
5370
* With in-kernel LAPIC, we only use this to inject EXTINT, so
5371
* fail for in-kernel 8259.
5372
*/
5373
if (pic_in_kernel(vcpu->kvm))
5374
return -ENXIO;
5375
5376
if (vcpu->arch.pending_external_vector != -1)
5377
return -EEXIST;
5378
5379
vcpu->arch.pending_external_vector = irq->irq;
5380
kvm_make_request(KVM_REQ_EVENT, vcpu);
5381
return 0;
5382
}
5383
5384
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5385
{
5386
kvm_inject_nmi(vcpu);
5387
5388
return 0;
5389
}
5390
5391
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5392
struct kvm_tpr_access_ctl *tac)
5393
{
5394
if (tac->flags)
5395
return -EINVAL;
5396
vcpu->arch.tpr_access_reporting = !!tac->enabled;
5397
return 0;
5398
}
5399
5400
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5401
u64 mcg_cap)
5402
{
5403
int r;
5404
unsigned bank_num = mcg_cap & 0xff, bank;
5405
5406
r = -EINVAL;
5407
if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5408
goto out;
5409
if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5410
goto out;
5411
r = 0;
5412
vcpu->arch.mcg_cap = mcg_cap;
5413
/* Init IA32_MCG_CTL to all 1s */
5414
if (mcg_cap & MCG_CTL_P)
5415
vcpu->arch.mcg_ctl = ~(u64)0;
5416
/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5417
for (bank = 0; bank < bank_num; bank++) {
5418
vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5419
if (mcg_cap & MCG_CMCI_P)
5420
vcpu->arch.mci_ctl2_banks[bank] = 0;
5421
}
5422
5423
kvm_apic_after_set_mcg_cap(vcpu);
5424
5425
kvm_x86_call(setup_mce)(vcpu);
5426
out:
5427
return r;
5428
}
5429
5430
/*
5431
* Validate this is an UCNA (uncorrectable no action) error by checking the
5432
* MCG_STATUS and MCi_STATUS registers:
5433
* - none of the bits for Machine Check Exceptions are set
5434
* - both the VAL (valid) and UC (uncorrectable) bits are set
5435
* MCI_STATUS_PCC - Processor Context Corrupted
5436
* MCI_STATUS_S - Signaled as a Machine Check Exception
5437
* MCI_STATUS_AR - Software recoverable Action Required
5438
*/
5439
static bool is_ucna(struct kvm_x86_mce *mce)
5440
{
5441
return !mce->mcg_status &&
5442
!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5443
(mce->status & MCI_STATUS_VAL) &&
5444
(mce->status & MCI_STATUS_UC);
5445
}
5446
5447
static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5448
{
5449
u64 mcg_cap = vcpu->arch.mcg_cap;
5450
5451
banks[1] = mce->status;
5452
banks[2] = mce->addr;
5453
banks[3] = mce->misc;
5454
vcpu->arch.mcg_status = mce->mcg_status;
5455
5456
if (!(mcg_cap & MCG_CMCI_P) ||
5457
!(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5458
return 0;
5459
5460
if (lapic_in_kernel(vcpu))
5461
kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5462
5463
return 0;
5464
}
5465
5466
static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5467
struct kvm_x86_mce *mce)
5468
{
5469
u64 mcg_cap = vcpu->arch.mcg_cap;
5470
unsigned bank_num = mcg_cap & 0xff;
5471
u64 *banks = vcpu->arch.mce_banks;
5472
5473
if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5474
return -EINVAL;
5475
5476
banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5477
5478
if (is_ucna(mce))
5479
return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5480
5481
/*
5482
* if IA32_MCG_CTL is not all 1s, the uncorrected error
5483
* reporting is disabled
5484
*/
5485
if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5486
vcpu->arch.mcg_ctl != ~(u64)0)
5487
return 0;
5488
/*
5489
* if IA32_MCi_CTL is not all 1s, the uncorrected error
5490
* reporting is disabled for the bank
5491
*/
5492
if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5493
return 0;
5494
if (mce->status & MCI_STATUS_UC) {
5495
if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5496
!kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5497
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5498
return 0;
5499
}
5500
if (banks[1] & MCI_STATUS_VAL)
5501
mce->status |= MCI_STATUS_OVER;
5502
banks[2] = mce->addr;
5503
banks[3] = mce->misc;
5504
vcpu->arch.mcg_status = mce->mcg_status;
5505
banks[1] = mce->status;
5506
kvm_queue_exception(vcpu, MC_VECTOR);
5507
} else if (!(banks[1] & MCI_STATUS_VAL)
5508
|| !(banks[1] & MCI_STATUS_UC)) {
5509
if (banks[1] & MCI_STATUS_VAL)
5510
mce->status |= MCI_STATUS_OVER;
5511
banks[2] = mce->addr;
5512
banks[3] = mce->misc;
5513
banks[1] = mce->status;
5514
} else
5515
banks[1] |= MCI_STATUS_OVER;
5516
return 0;
5517
}
5518
5519
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5520
struct kvm_vcpu_events *events)
5521
{
5522
struct kvm_queued_exception *ex;
5523
5524
process_nmi(vcpu);
5525
5526
#ifdef CONFIG_KVM_SMM
5527
if (kvm_check_request(KVM_REQ_SMI, vcpu))
5528
process_smi(vcpu);
5529
#endif
5530
5531
/*
5532
* KVM's ABI only allows for one exception to be migrated. Luckily,
5533
* the only time there can be two queued exceptions is if there's a
5534
* non-exiting _injected_ exception, and a pending exiting exception.
5535
* In that case, ignore the VM-Exiting exception as it's an extension
5536
* of the injected exception.
5537
*/
5538
if (vcpu->arch.exception_vmexit.pending &&
5539
!vcpu->arch.exception.pending &&
5540
!vcpu->arch.exception.injected)
5541
ex = &vcpu->arch.exception_vmexit;
5542
else
5543
ex = &vcpu->arch.exception;
5544
5545
/*
5546
* In guest mode, payload delivery should be deferred if the exception
5547
* will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5548
* intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5549
* KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5550
* propagate the payload and so it cannot be safely deferred. Deliver
5551
* the payload if the capability hasn't been requested.
5552
*/
5553
if (!vcpu->kvm->arch.exception_payload_enabled &&
5554
ex->pending && ex->has_payload)
5555
kvm_deliver_exception_payload(vcpu, ex);
5556
5557
memset(events, 0, sizeof(*events));
5558
5559
/*
5560
* The API doesn't provide the instruction length for software
5561
* exceptions, so don't report them. As long as the guest RIP
5562
* isn't advanced, we should expect to encounter the exception
5563
* again.
5564
*/
5565
if (!kvm_exception_is_soft(ex->vector)) {
5566
events->exception.injected = ex->injected;
5567
events->exception.pending = ex->pending;
5568
/*
5569
* For ABI compatibility, deliberately conflate
5570
* pending and injected exceptions when
5571
* KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5572
*/
5573
if (!vcpu->kvm->arch.exception_payload_enabled)
5574
events->exception.injected |= ex->pending;
5575
}
5576
events->exception.nr = ex->vector;
5577
events->exception.has_error_code = ex->has_error_code;
5578
events->exception.error_code = ex->error_code;
5579
events->exception_has_payload = ex->has_payload;
5580
events->exception_payload = ex->payload;
5581
5582
events->interrupt.injected =
5583
vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5584
events->interrupt.nr = vcpu->arch.interrupt.nr;
5585
events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5586
5587
events->nmi.injected = vcpu->arch.nmi_injected;
5588
events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5589
events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5590
5591
/* events->sipi_vector is never valid when reporting to user space */
5592
5593
#ifdef CONFIG_KVM_SMM
5594
events->smi.smm = is_smm(vcpu);
5595
events->smi.pending = vcpu->arch.smi_pending;
5596
events->smi.smm_inside_nmi =
5597
!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5598
#endif
5599
events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5600
5601
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5602
| KVM_VCPUEVENT_VALID_SHADOW
5603
| KVM_VCPUEVENT_VALID_SMM);
5604
if (vcpu->kvm->arch.exception_payload_enabled)
5605
events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5606
if (vcpu->kvm->arch.triple_fault_event) {
5607
events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5608
events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5609
}
5610
}
5611
5612
static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5613
struct kvm_vcpu_events *events)
5614
{
5615
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5616
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
5617
| KVM_VCPUEVENT_VALID_SHADOW
5618
| KVM_VCPUEVENT_VALID_SMM
5619
| KVM_VCPUEVENT_VALID_PAYLOAD
5620
| KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5621
return -EINVAL;
5622
5623
if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5624
if (!vcpu->kvm->arch.exception_payload_enabled)
5625
return -EINVAL;
5626
if (events->exception.pending)
5627
events->exception.injected = 0;
5628
else
5629
events->exception_has_payload = 0;
5630
} else {
5631
events->exception.pending = 0;
5632
events->exception_has_payload = 0;
5633
}
5634
5635
if ((events->exception.injected || events->exception.pending) &&
5636
(events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5637
return -EINVAL;
5638
5639
process_nmi(vcpu);
5640
5641
/*
5642
* Flag that userspace is stuffing an exception, the next KVM_RUN will
5643
* morph the exception to a VM-Exit if appropriate. Do this only for
5644
* pending exceptions, already-injected exceptions are not subject to
5645
* intercpetion. Note, userspace that conflates pending and injected
5646
* is hosed, and will incorrectly convert an injected exception into a
5647
* pending exception, which in turn may cause a spurious VM-Exit.
5648
*/
5649
vcpu->arch.exception_from_userspace = events->exception.pending;
5650
5651
vcpu->arch.exception_vmexit.pending = false;
5652
5653
vcpu->arch.exception.injected = events->exception.injected;
5654
vcpu->arch.exception.pending = events->exception.pending;
5655
vcpu->arch.exception.vector = events->exception.nr;
5656
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5657
vcpu->arch.exception.error_code = events->exception.error_code;
5658
vcpu->arch.exception.has_payload = events->exception_has_payload;
5659
vcpu->arch.exception.payload = events->exception_payload;
5660
5661
vcpu->arch.interrupt.injected = events->interrupt.injected;
5662
vcpu->arch.interrupt.nr = events->interrupt.nr;
5663
vcpu->arch.interrupt.soft = events->interrupt.soft;
5664
if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5665
kvm_x86_call(set_interrupt_shadow)(vcpu,
5666
events->interrupt.shadow);
5667
5668
vcpu->arch.nmi_injected = events->nmi.injected;
5669
if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5670
vcpu->arch.nmi_pending = 0;
5671
atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5672
if (events->nmi.pending)
5673
kvm_make_request(KVM_REQ_NMI, vcpu);
5674
}
5675
kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5676
5677
if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5678
lapic_in_kernel(vcpu))
5679
vcpu->arch.apic->sipi_vector = events->sipi_vector;
5680
5681
if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5682
#ifdef CONFIG_KVM_SMM
5683
if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5684
kvm_leave_nested(vcpu);
5685
kvm_smm_changed(vcpu, events->smi.smm);
5686
}
5687
5688
vcpu->arch.smi_pending = events->smi.pending;
5689
5690
if (events->smi.smm) {
5691
if (events->smi.smm_inside_nmi)
5692
vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5693
else
5694
vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5695
}
5696
5697
#else
5698
if (events->smi.smm || events->smi.pending ||
5699
events->smi.smm_inside_nmi)
5700
return -EINVAL;
5701
#endif
5702
5703
if (lapic_in_kernel(vcpu)) {
5704
if (events->smi.latched_init)
5705
set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5706
else
5707
clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5708
}
5709
}
5710
5711
if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5712
if (!vcpu->kvm->arch.triple_fault_event)
5713
return -EINVAL;
5714
if (events->triple_fault.pending)
5715
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5716
else
5717
kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5718
}
5719
5720
kvm_make_request(KVM_REQ_EVENT, vcpu);
5721
5722
return 0;
5723
}
5724
5725
static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5726
struct kvm_debugregs *dbgregs)
5727
{
5728
unsigned int i;
5729
5730
if (vcpu->kvm->arch.has_protected_state &&
5731
vcpu->arch.guest_state_protected)
5732
return -EINVAL;
5733
5734
memset(dbgregs, 0, sizeof(*dbgregs));
5735
5736
BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5737
for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5738
dbgregs->db[i] = vcpu->arch.db[i];
5739
5740
dbgregs->dr6 = vcpu->arch.dr6;
5741
dbgregs->dr7 = vcpu->arch.dr7;
5742
return 0;
5743
}
5744
5745
static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5746
struct kvm_debugregs *dbgregs)
5747
{
5748
unsigned int i;
5749
5750
if (vcpu->kvm->arch.has_protected_state &&
5751
vcpu->arch.guest_state_protected)
5752
return -EINVAL;
5753
5754
if (dbgregs->flags)
5755
return -EINVAL;
5756
5757
if (!kvm_dr6_valid(dbgregs->dr6))
5758
return -EINVAL;
5759
if (!kvm_dr7_valid(dbgregs->dr7))
5760
return -EINVAL;
5761
5762
for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5763
vcpu->arch.db[i] = dbgregs->db[i];
5764
5765
kvm_update_dr0123(vcpu);
5766
vcpu->arch.dr6 = dbgregs->dr6;
5767
vcpu->arch.dr7 = dbgregs->dr7;
5768
kvm_update_dr7(vcpu);
5769
5770
return 0;
5771
}
5772
5773
5774
static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5775
u8 *state, unsigned int size)
5776
{
5777
/*
5778
* Only copy state for features that are enabled for the guest. The
5779
* state itself isn't problematic, but setting bits in the header for
5780
* features that are supported in *this* host but not exposed to the
5781
* guest can result in KVM_SET_XSAVE failing when live migrating to a
5782
* compatible host without the features that are NOT exposed to the
5783
* guest.
5784
*
5785
* FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5786
* XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5787
* supported by the host.
5788
*/
5789
u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5790
XFEATURE_MASK_FPSSE;
5791
5792
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5793
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5794
5795
fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5796
supported_xcr0, vcpu->arch.pkru);
5797
return 0;
5798
}
5799
5800
static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5801
struct kvm_xsave *guest_xsave)
5802
{
5803
return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5804
sizeof(guest_xsave->region));
5805
}
5806
5807
static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5808
struct kvm_xsave *guest_xsave)
5809
{
5810
union fpregs_state *xstate = (union fpregs_state *)guest_xsave->region;
5811
5812
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5813
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5814
5815
/*
5816
* For backwards compatibility, do not expect disabled features to be in
5817
* their initial state. XSTATE_BV[i] must still be cleared whenever
5818
* XFD[i]=1, or XRSTOR would cause a #NM.
5819
*/
5820
xstate->xsave.header.xfeatures &= ~vcpu->arch.guest_fpu.fpstate->xfd;
5821
5822
return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5823
guest_xsave->region,
5824
kvm_caps.supported_xcr0,
5825
&vcpu->arch.pkru);
5826
}
5827
5828
static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5829
struct kvm_xcrs *guest_xcrs)
5830
{
5831
if (vcpu->kvm->arch.has_protected_state &&
5832
vcpu->arch.guest_state_protected)
5833
return -EINVAL;
5834
5835
if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5836
guest_xcrs->nr_xcrs = 0;
5837
return 0;
5838
}
5839
5840
guest_xcrs->nr_xcrs = 1;
5841
guest_xcrs->flags = 0;
5842
guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5843
guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5844
return 0;
5845
}
5846
5847
static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5848
struct kvm_xcrs *guest_xcrs)
5849
{
5850
int i, r = 0;
5851
5852
if (vcpu->kvm->arch.has_protected_state &&
5853
vcpu->arch.guest_state_protected)
5854
return -EINVAL;
5855
5856
if (!boot_cpu_has(X86_FEATURE_XSAVE))
5857
return -EINVAL;
5858
5859
if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5860
return -EINVAL;
5861
5862
for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5863
/* Only support XCR0 currently */
5864
if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5865
r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5866
guest_xcrs->xcrs[i].value);
5867
break;
5868
}
5869
if (r)
5870
r = -EINVAL;
5871
return r;
5872
}
5873
5874
/*
5875
* kvm_set_guest_paused() indicates to the guest kernel that it has been
5876
* stopped by the hypervisor. This function will be called from the host only.
5877
* EINVAL is returned when the host attempts to set the flag for a guest that
5878
* does not support pv clocks.
5879
*/
5880
static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5881
{
5882
if (!vcpu->arch.pv_time.active)
5883
return -EINVAL;
5884
vcpu->arch.pvclock_set_guest_stopped_request = true;
5885
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5886
return 0;
5887
}
5888
5889
static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5890
struct kvm_device_attr *attr)
5891
{
5892
int r;
5893
5894
switch (attr->attr) {
5895
case KVM_VCPU_TSC_OFFSET:
5896
r = 0;
5897
break;
5898
default:
5899
r = -ENXIO;
5900
}
5901
5902
return r;
5903
}
5904
5905
static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5906
struct kvm_device_attr *attr)
5907
{
5908
u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5909
int r;
5910
5911
switch (attr->attr) {
5912
case KVM_VCPU_TSC_OFFSET:
5913
r = -EFAULT;
5914
if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5915
break;
5916
r = 0;
5917
break;
5918
default:
5919
r = -ENXIO;
5920
}
5921
5922
return r;
5923
}
5924
5925
static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5926
struct kvm_device_attr *attr)
5927
{
5928
u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5929
struct kvm *kvm = vcpu->kvm;
5930
int r;
5931
5932
switch (attr->attr) {
5933
case KVM_VCPU_TSC_OFFSET: {
5934
u64 offset, tsc, ns;
5935
unsigned long flags;
5936
bool matched;
5937
5938
r = -EFAULT;
5939
if (get_user(offset, uaddr))
5940
break;
5941
5942
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5943
5944
matched = (vcpu->arch.virtual_tsc_khz &&
5945
kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5946
kvm->arch.last_tsc_offset == offset);
5947
5948
tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5949
ns = get_kvmclock_base_ns();
5950
5951
__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5952
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5953
5954
r = 0;
5955
break;
5956
}
5957
default:
5958
r = -ENXIO;
5959
}
5960
5961
return r;
5962
}
5963
5964
static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5965
unsigned int ioctl,
5966
void __user *argp)
5967
{
5968
struct kvm_device_attr attr;
5969
int r;
5970
5971
if (copy_from_user(&attr, argp, sizeof(attr)))
5972
return -EFAULT;
5973
5974
if (attr.group != KVM_VCPU_TSC_CTRL)
5975
return -ENXIO;
5976
5977
switch (ioctl) {
5978
case KVM_HAS_DEVICE_ATTR:
5979
r = kvm_arch_tsc_has_attr(vcpu, &attr);
5980
break;
5981
case KVM_GET_DEVICE_ATTR:
5982
r = kvm_arch_tsc_get_attr(vcpu, &attr);
5983
break;
5984
case KVM_SET_DEVICE_ATTR:
5985
r = kvm_arch_tsc_set_attr(vcpu, &attr);
5986
break;
5987
}
5988
5989
return r;
5990
}
5991
5992
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5993
struct kvm_enable_cap *cap)
5994
{
5995
if (cap->flags)
5996
return -EINVAL;
5997
5998
switch (cap->cap) {
5999
#ifdef CONFIG_KVM_HYPERV
6000
case KVM_CAP_HYPERV_SYNIC2:
6001
if (cap->args[0])
6002
return -EINVAL;
6003
fallthrough;
6004
6005
case KVM_CAP_HYPERV_SYNIC:
6006
if (!irqchip_in_kernel(vcpu->kvm))
6007
return -EINVAL;
6008
return kvm_hv_activate_synic(vcpu, cap->cap ==
6009
KVM_CAP_HYPERV_SYNIC2);
6010
case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
6011
{
6012
int r;
6013
uint16_t vmcs_version;
6014
void __user *user_ptr;
6015
6016
if (!kvm_x86_ops.nested_ops->enable_evmcs)
6017
return -ENOTTY;
6018
r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
6019
if (!r) {
6020
user_ptr = (void __user *)(uintptr_t)cap->args[0];
6021
if (copy_to_user(user_ptr, &vmcs_version,
6022
sizeof(vmcs_version)))
6023
r = -EFAULT;
6024
}
6025
return r;
6026
}
6027
case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
6028
if (!kvm_x86_ops.enable_l2_tlb_flush)
6029
return -ENOTTY;
6030
6031
return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
6032
6033
case KVM_CAP_HYPERV_ENFORCE_CPUID:
6034
return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
6035
#endif
6036
6037
case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
6038
vcpu->arch.pv_cpuid.enforce = cap->args[0];
6039
return 0;
6040
default:
6041
return -EINVAL;
6042
}
6043
}
6044
6045
struct kvm_x86_reg_id {
6046
__u32 index;
6047
__u8 type;
6048
__u8 rsvd1;
6049
__u8 rsvd2:4;
6050
__u8 size:4;
6051
__u8 x86;
6052
};
6053
6054
static int kvm_translate_kvm_reg(struct kvm_vcpu *vcpu,
6055
struct kvm_x86_reg_id *reg)
6056
{
6057
switch (reg->index) {
6058
case KVM_REG_GUEST_SSP:
6059
/*
6060
* FIXME: If host-initiated accesses are ever exempted from
6061
* ignore_msrs (in kvm_do_msr_access()), drop this manual check
6062
* and rely on KVM's standard checks to reject accesses to regs
6063
* that don't exist.
6064
*/
6065
if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
6066
return -EINVAL;
6067
6068
reg->type = KVM_X86_REG_TYPE_MSR;
6069
reg->index = MSR_KVM_INTERNAL_GUEST_SSP;
6070
break;
6071
default:
6072
return -EINVAL;
6073
}
6074
return 0;
6075
}
6076
6077
static int kvm_get_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6078
{
6079
u64 val;
6080
6081
if (do_get_msr(vcpu, msr, &val))
6082
return -EINVAL;
6083
6084
if (put_user(val, user_val))
6085
return -EFAULT;
6086
6087
return 0;
6088
}
6089
6090
static int kvm_set_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6091
{
6092
u64 val;
6093
6094
if (get_user(val, user_val))
6095
return -EFAULT;
6096
6097
if (do_set_msr(vcpu, msr, &val))
6098
return -EINVAL;
6099
6100
return 0;
6101
}
6102
6103
static int kvm_get_set_one_reg(struct kvm_vcpu *vcpu, unsigned int ioctl,
6104
void __user *argp)
6105
{
6106
struct kvm_one_reg one_reg;
6107
struct kvm_x86_reg_id *reg;
6108
u64 __user *user_val;
6109
bool load_fpu;
6110
int r;
6111
6112
if (copy_from_user(&one_reg, argp, sizeof(one_reg)))
6113
return -EFAULT;
6114
6115
if ((one_reg.id & KVM_REG_ARCH_MASK) != KVM_REG_X86)
6116
return -EINVAL;
6117
6118
reg = (struct kvm_x86_reg_id *)&one_reg.id;
6119
if (reg->rsvd1 || reg->rsvd2)
6120
return -EINVAL;
6121
6122
if (reg->type == KVM_X86_REG_TYPE_KVM) {
6123
r = kvm_translate_kvm_reg(vcpu, reg);
6124
if (r)
6125
return r;
6126
}
6127
6128
if (reg->type != KVM_X86_REG_TYPE_MSR)
6129
return -EINVAL;
6130
6131
if ((one_reg.id & KVM_REG_SIZE_MASK) != KVM_REG_SIZE_U64)
6132
return -EINVAL;
6133
6134
guard(srcu)(&vcpu->kvm->srcu);
6135
6136
load_fpu = is_xstate_managed_msr(vcpu, reg->index);
6137
if (load_fpu)
6138
kvm_load_guest_fpu(vcpu);
6139
6140
user_val = u64_to_user_ptr(one_reg.addr);
6141
if (ioctl == KVM_GET_ONE_REG)
6142
r = kvm_get_one_msr(vcpu, reg->index, user_val);
6143
else
6144
r = kvm_set_one_msr(vcpu, reg->index, user_val);
6145
6146
if (load_fpu)
6147
kvm_put_guest_fpu(vcpu);
6148
return r;
6149
}
6150
6151
static int kvm_get_reg_list(struct kvm_vcpu *vcpu,
6152
struct kvm_reg_list __user *user_list)
6153
{
6154
u64 nr_regs = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ? 1 : 0;
6155
u64 user_nr_regs;
6156
6157
if (get_user(user_nr_regs, &user_list->n))
6158
return -EFAULT;
6159
6160
if (put_user(nr_regs, &user_list->n))
6161
return -EFAULT;
6162
6163
if (user_nr_regs < nr_regs)
6164
return -E2BIG;
6165
6166
if (nr_regs &&
6167
put_user(KVM_X86_REG_KVM(KVM_REG_GUEST_SSP), &user_list->reg[0]))
6168
return -EFAULT;
6169
6170
return 0;
6171
}
6172
6173
long kvm_arch_vcpu_ioctl(struct file *filp,
6174
unsigned int ioctl, unsigned long arg)
6175
{
6176
struct kvm_vcpu *vcpu = filp->private_data;
6177
void __user *argp = (void __user *)arg;
6178
int r;
6179
union {
6180
struct kvm_sregs2 *sregs2;
6181
struct kvm_lapic_state *lapic;
6182
struct kvm_xsave *xsave;
6183
struct kvm_xcrs *xcrs;
6184
void *buffer;
6185
} u;
6186
6187
vcpu_load(vcpu);
6188
6189
u.buffer = NULL;
6190
switch (ioctl) {
6191
case KVM_GET_LAPIC: {
6192
r = -EINVAL;
6193
if (!lapic_in_kernel(vcpu))
6194
goto out;
6195
u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
6196
6197
r = -ENOMEM;
6198
if (!u.lapic)
6199
goto out;
6200
r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
6201
if (r)
6202
goto out;
6203
r = -EFAULT;
6204
if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
6205
goto out;
6206
r = 0;
6207
break;
6208
}
6209
case KVM_SET_LAPIC: {
6210
r = -EINVAL;
6211
if (!lapic_in_kernel(vcpu))
6212
goto out;
6213
u.lapic = memdup_user(argp, sizeof(*u.lapic));
6214
if (IS_ERR(u.lapic)) {
6215
r = PTR_ERR(u.lapic);
6216
goto out_nofree;
6217
}
6218
6219
r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
6220
break;
6221
}
6222
case KVM_INTERRUPT: {
6223
struct kvm_interrupt irq;
6224
6225
r = -EFAULT;
6226
if (copy_from_user(&irq, argp, sizeof(irq)))
6227
goto out;
6228
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
6229
break;
6230
}
6231
case KVM_NMI: {
6232
r = kvm_vcpu_ioctl_nmi(vcpu);
6233
break;
6234
}
6235
case KVM_SMI: {
6236
r = kvm_inject_smi(vcpu);
6237
break;
6238
}
6239
case KVM_SET_CPUID: {
6240
struct kvm_cpuid __user *cpuid_arg = argp;
6241
struct kvm_cpuid cpuid;
6242
6243
r = -EFAULT;
6244
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6245
goto out;
6246
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
6247
break;
6248
}
6249
case KVM_SET_CPUID2: {
6250
struct kvm_cpuid2 __user *cpuid_arg = argp;
6251
struct kvm_cpuid2 cpuid;
6252
6253
r = -EFAULT;
6254
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6255
goto out;
6256
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
6257
cpuid_arg->entries);
6258
break;
6259
}
6260
case KVM_GET_CPUID2: {
6261
struct kvm_cpuid2 __user *cpuid_arg = argp;
6262
struct kvm_cpuid2 cpuid;
6263
6264
r = -EFAULT;
6265
if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6266
goto out;
6267
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
6268
cpuid_arg->entries);
6269
if (r)
6270
goto out;
6271
r = -EFAULT;
6272
if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
6273
goto out;
6274
r = 0;
6275
break;
6276
}
6277
case KVM_GET_MSRS: {
6278
int idx = srcu_read_lock(&vcpu->kvm->srcu);
6279
r = msr_io(vcpu, argp, do_get_msr, 1);
6280
srcu_read_unlock(&vcpu->kvm->srcu, idx);
6281
break;
6282
}
6283
case KVM_SET_MSRS: {
6284
int idx = srcu_read_lock(&vcpu->kvm->srcu);
6285
r = msr_io(vcpu, argp, do_set_msr, 0);
6286
srcu_read_unlock(&vcpu->kvm->srcu, idx);
6287
break;
6288
}
6289
case KVM_GET_ONE_REG:
6290
case KVM_SET_ONE_REG:
6291
r = kvm_get_set_one_reg(vcpu, ioctl, argp);
6292
break;
6293
case KVM_GET_REG_LIST:
6294
r = kvm_get_reg_list(vcpu, argp);
6295
break;
6296
case KVM_TPR_ACCESS_REPORTING: {
6297
struct kvm_tpr_access_ctl tac;
6298
6299
r = -EFAULT;
6300
if (copy_from_user(&tac, argp, sizeof(tac)))
6301
goto out;
6302
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
6303
if (r)
6304
goto out;
6305
r = -EFAULT;
6306
if (copy_to_user(argp, &tac, sizeof(tac)))
6307
goto out;
6308
r = 0;
6309
break;
6310
};
6311
case KVM_SET_VAPIC_ADDR: {
6312
struct kvm_vapic_addr va;
6313
int idx;
6314
6315
r = -EINVAL;
6316
if (!lapic_in_kernel(vcpu))
6317
goto out;
6318
r = -EFAULT;
6319
if (copy_from_user(&va, argp, sizeof(va)))
6320
goto out;
6321
idx = srcu_read_lock(&vcpu->kvm->srcu);
6322
r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6323
srcu_read_unlock(&vcpu->kvm->srcu, idx);
6324
break;
6325
}
6326
case KVM_X86_SETUP_MCE: {
6327
u64 mcg_cap;
6328
6329
r = -EFAULT;
6330
if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6331
goto out;
6332
r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6333
break;
6334
}
6335
case KVM_X86_SET_MCE: {
6336
struct kvm_x86_mce mce;
6337
6338
r = -EFAULT;
6339
if (copy_from_user(&mce, argp, sizeof(mce)))
6340
goto out;
6341
r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6342
break;
6343
}
6344
case KVM_GET_VCPU_EVENTS: {
6345
struct kvm_vcpu_events events;
6346
6347
kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6348
6349
r = -EFAULT;
6350
if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6351
break;
6352
r = 0;
6353
break;
6354
}
6355
case KVM_SET_VCPU_EVENTS: {
6356
struct kvm_vcpu_events events;
6357
6358
r = -EFAULT;
6359
if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6360
break;
6361
6362
kvm_vcpu_srcu_read_lock(vcpu);
6363
r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6364
kvm_vcpu_srcu_read_unlock(vcpu);
6365
break;
6366
}
6367
case KVM_GET_DEBUGREGS: {
6368
struct kvm_debugregs dbgregs;
6369
6370
r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6371
if (r < 0)
6372
break;
6373
6374
r = -EFAULT;
6375
if (copy_to_user(argp, &dbgregs,
6376
sizeof(struct kvm_debugregs)))
6377
break;
6378
r = 0;
6379
break;
6380
}
6381
case KVM_SET_DEBUGREGS: {
6382
struct kvm_debugregs dbgregs;
6383
6384
r = -EFAULT;
6385
if (copy_from_user(&dbgregs, argp,
6386
sizeof(struct kvm_debugregs)))
6387
break;
6388
6389
r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6390
break;
6391
}
6392
case KVM_GET_XSAVE: {
6393
r = -EINVAL;
6394
if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6395
break;
6396
6397
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6398
r = -ENOMEM;
6399
if (!u.xsave)
6400
break;
6401
6402
r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6403
if (r < 0)
6404
break;
6405
6406
r = -EFAULT;
6407
if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6408
break;
6409
r = 0;
6410
break;
6411
}
6412
case KVM_SET_XSAVE: {
6413
int size = vcpu->arch.guest_fpu.uabi_size;
6414
6415
u.xsave = memdup_user(argp, size);
6416
if (IS_ERR(u.xsave)) {
6417
r = PTR_ERR(u.xsave);
6418
goto out_nofree;
6419
}
6420
6421
r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6422
break;
6423
}
6424
6425
case KVM_GET_XSAVE2: {
6426
int size = vcpu->arch.guest_fpu.uabi_size;
6427
6428
u.xsave = kzalloc(size, GFP_KERNEL);
6429
r = -ENOMEM;
6430
if (!u.xsave)
6431
break;
6432
6433
r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6434
if (r < 0)
6435
break;
6436
6437
r = -EFAULT;
6438
if (copy_to_user(argp, u.xsave, size))
6439
break;
6440
6441
r = 0;
6442
break;
6443
}
6444
6445
case KVM_GET_XCRS: {
6446
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6447
r = -ENOMEM;
6448
if (!u.xcrs)
6449
break;
6450
6451
r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6452
if (r < 0)
6453
break;
6454
6455
r = -EFAULT;
6456
if (copy_to_user(argp, u.xcrs,
6457
sizeof(struct kvm_xcrs)))
6458
break;
6459
r = 0;
6460
break;
6461
}
6462
case KVM_SET_XCRS: {
6463
u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6464
if (IS_ERR(u.xcrs)) {
6465
r = PTR_ERR(u.xcrs);
6466
goto out_nofree;
6467
}
6468
6469
r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6470
break;
6471
}
6472
case KVM_SET_TSC_KHZ: {
6473
u32 user_tsc_khz;
6474
6475
r = -EINVAL;
6476
6477
if (vcpu->arch.guest_tsc_protected)
6478
goto out;
6479
6480
user_tsc_khz = (u32)arg;
6481
6482
if (kvm_caps.has_tsc_control &&
6483
user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6484
goto out;
6485
6486
if (user_tsc_khz == 0)
6487
user_tsc_khz = tsc_khz;
6488
6489
if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6490
r = 0;
6491
6492
goto out;
6493
}
6494
case KVM_GET_TSC_KHZ: {
6495
r = vcpu->arch.virtual_tsc_khz;
6496
goto out;
6497
}
6498
case KVM_KVMCLOCK_CTRL: {
6499
r = kvm_set_guest_paused(vcpu);
6500
goto out;
6501
}
6502
case KVM_ENABLE_CAP: {
6503
struct kvm_enable_cap cap;
6504
6505
r = -EFAULT;
6506
if (copy_from_user(&cap, argp, sizeof(cap)))
6507
goto out;
6508
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6509
break;
6510
}
6511
case KVM_GET_NESTED_STATE: {
6512
struct kvm_nested_state __user *user_kvm_nested_state = argp;
6513
u32 user_data_size;
6514
6515
r = -EINVAL;
6516
if (!kvm_x86_ops.nested_ops->get_state)
6517
break;
6518
6519
BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6520
r = -EFAULT;
6521
if (get_user(user_data_size, &user_kvm_nested_state->size))
6522
break;
6523
6524
r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6525
user_data_size);
6526
if (r < 0)
6527
break;
6528
6529
if (r > user_data_size) {
6530
if (put_user(r, &user_kvm_nested_state->size))
6531
r = -EFAULT;
6532
else
6533
r = -E2BIG;
6534
break;
6535
}
6536
6537
r = 0;
6538
break;
6539
}
6540
case KVM_SET_NESTED_STATE: {
6541
struct kvm_nested_state __user *user_kvm_nested_state = argp;
6542
struct kvm_nested_state kvm_state;
6543
int idx;
6544
6545
r = -EINVAL;
6546
if (!kvm_x86_ops.nested_ops->set_state)
6547
break;
6548
6549
r = -EFAULT;
6550
if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6551
break;
6552
6553
r = -EINVAL;
6554
if (kvm_state.size < sizeof(kvm_state))
6555
break;
6556
6557
if (kvm_state.flags &
6558
~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6559
| KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6560
| KVM_STATE_NESTED_GIF_SET))
6561
break;
6562
6563
/* nested_run_pending implies guest_mode. */
6564
if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6565
&& !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6566
break;
6567
6568
idx = srcu_read_lock(&vcpu->kvm->srcu);
6569
r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6570
srcu_read_unlock(&vcpu->kvm->srcu, idx);
6571
break;
6572
}
6573
#ifdef CONFIG_KVM_HYPERV
6574
case KVM_GET_SUPPORTED_HV_CPUID:
6575
r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6576
break;
6577
#endif
6578
#ifdef CONFIG_KVM_XEN
6579
case KVM_XEN_VCPU_GET_ATTR: {
6580
struct kvm_xen_vcpu_attr xva;
6581
6582
r = -EFAULT;
6583
if (copy_from_user(&xva, argp, sizeof(xva)))
6584
goto out;
6585
r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6586
if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6587
r = -EFAULT;
6588
break;
6589
}
6590
case KVM_XEN_VCPU_SET_ATTR: {
6591
struct kvm_xen_vcpu_attr xva;
6592
6593
r = -EFAULT;
6594
if (copy_from_user(&xva, argp, sizeof(xva)))
6595
goto out;
6596
r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6597
break;
6598
}
6599
#endif
6600
case KVM_GET_SREGS2: {
6601
r = -EINVAL;
6602
if (vcpu->kvm->arch.has_protected_state &&
6603
vcpu->arch.guest_state_protected)
6604
goto out;
6605
6606
u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6607
r = -ENOMEM;
6608
if (!u.sregs2)
6609
goto out;
6610
__get_sregs2(vcpu, u.sregs2);
6611
r = -EFAULT;
6612
if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6613
goto out;
6614
r = 0;
6615
break;
6616
}
6617
case KVM_SET_SREGS2: {
6618
r = -EINVAL;
6619
if (vcpu->kvm->arch.has_protected_state &&
6620
vcpu->arch.guest_state_protected)
6621
goto out;
6622
6623
u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6624
if (IS_ERR(u.sregs2)) {
6625
r = PTR_ERR(u.sregs2);
6626
u.sregs2 = NULL;
6627
goto out;
6628
}
6629
r = __set_sregs2(vcpu, u.sregs2);
6630
break;
6631
}
6632
case KVM_HAS_DEVICE_ATTR:
6633
case KVM_GET_DEVICE_ATTR:
6634
case KVM_SET_DEVICE_ATTR:
6635
r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6636
break;
6637
case KVM_MEMORY_ENCRYPT_OP:
6638
r = -ENOTTY;
6639
if (!kvm_x86_ops.vcpu_mem_enc_ioctl)
6640
goto out;
6641
r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp);
6642
break;
6643
default:
6644
r = -EINVAL;
6645
}
6646
out:
6647
kfree(u.buffer);
6648
out_nofree:
6649
vcpu_put(vcpu);
6650
return r;
6651
}
6652
6653
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6654
{
6655
return VM_FAULT_SIGBUS;
6656
}
6657
6658
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6659
{
6660
int ret;
6661
6662
if (addr > (unsigned int)(-3 * PAGE_SIZE))
6663
return -EINVAL;
6664
ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6665
return ret;
6666
}
6667
6668
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6669
u64 ident_addr)
6670
{
6671
return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6672
}
6673
6674
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6675
unsigned long kvm_nr_mmu_pages)
6676
{
6677
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6678
return -EINVAL;
6679
6680
mutex_lock(&kvm->slots_lock);
6681
6682
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6683
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6684
6685
mutex_unlock(&kvm->slots_lock);
6686
return 0;
6687
}
6688
6689
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6690
{
6691
6692
/*
6693
* Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6694
* before reporting dirty_bitmap to userspace. KVM flushes the buffers
6695
* on all VM-Exits, thus we only need to kick running vCPUs to force a
6696
* VM-Exit.
6697
*/
6698
struct kvm_vcpu *vcpu;
6699
unsigned long i;
6700
6701
if (!kvm->arch.cpu_dirty_log_size)
6702
return;
6703
6704
kvm_for_each_vcpu(i, vcpu, kvm)
6705
kvm_vcpu_kick(vcpu);
6706
}
6707
6708
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6709
struct kvm_enable_cap *cap)
6710
{
6711
int r;
6712
6713
if (cap->flags)
6714
return -EINVAL;
6715
6716
switch (cap->cap) {
6717
case KVM_CAP_DISABLE_QUIRKS2:
6718
r = -EINVAL;
6719
if (cap->args[0] & ~kvm_caps.supported_quirks)
6720
break;
6721
fallthrough;
6722
case KVM_CAP_DISABLE_QUIRKS:
6723
kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks;
6724
r = 0;
6725
break;
6726
case KVM_CAP_SPLIT_IRQCHIP: {
6727
mutex_lock(&kvm->lock);
6728
r = -EINVAL;
6729
if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6730
goto split_irqchip_unlock;
6731
r = -EEXIST;
6732
if (irqchip_in_kernel(kvm))
6733
goto split_irqchip_unlock;
6734
if (kvm->created_vcpus)
6735
goto split_irqchip_unlock;
6736
/* Pairs with irqchip_in_kernel. */
6737
smp_wmb();
6738
kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6739
kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6740
kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6741
r = 0;
6742
split_irqchip_unlock:
6743
mutex_unlock(&kvm->lock);
6744
break;
6745
}
6746
case KVM_CAP_X2APIC_API:
6747
r = -EINVAL;
6748
if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6749
break;
6750
6751
if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6752
kvm->arch.x2apic_format = true;
6753
if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6754
kvm->arch.x2apic_broadcast_quirk_disabled = true;
6755
6756
r = 0;
6757
break;
6758
case KVM_CAP_X86_DISABLE_EXITS:
6759
r = -EINVAL;
6760
if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6761
break;
6762
6763
mutex_lock(&kvm->lock);
6764
if (kvm->created_vcpus)
6765
goto disable_exits_unlock;
6766
6767
#define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6768
"KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6769
6770
if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6771
cpu_smt_possible() &&
6772
(cap->args[0] & ~(KVM_X86_DISABLE_EXITS_PAUSE |
6773
KVM_X86_DISABLE_EXITS_APERFMPERF)))
6774
pr_warn_once(SMT_RSB_MSG);
6775
6776
kvm_disable_exits(kvm, cap->args[0]);
6777
r = 0;
6778
disable_exits_unlock:
6779
mutex_unlock(&kvm->lock);
6780
break;
6781
case KVM_CAP_MSR_PLATFORM_INFO:
6782
kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6783
r = 0;
6784
break;
6785
case KVM_CAP_EXCEPTION_PAYLOAD:
6786
kvm->arch.exception_payload_enabled = cap->args[0];
6787
r = 0;
6788
break;
6789
case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6790
kvm->arch.triple_fault_event = cap->args[0];
6791
r = 0;
6792
break;
6793
case KVM_CAP_X86_USER_SPACE_MSR:
6794
r = -EINVAL;
6795
if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6796
break;
6797
kvm->arch.user_space_msr_mask = cap->args[0];
6798
r = 0;
6799
break;
6800
case KVM_CAP_X86_BUS_LOCK_EXIT:
6801
r = -EINVAL;
6802
if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6803
break;
6804
6805
if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6806
(cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6807
break;
6808
6809
if (kvm_caps.has_bus_lock_exit &&
6810
cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6811
kvm->arch.bus_lock_detection_enabled = true;
6812
r = 0;
6813
break;
6814
#ifdef CONFIG_X86_SGX_KVM
6815
case KVM_CAP_SGX_ATTRIBUTE: {
6816
unsigned long allowed_attributes = 0;
6817
6818
r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6819
if (r)
6820
break;
6821
6822
/* KVM only supports the PROVISIONKEY privileged attribute. */
6823
if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6824
!(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6825
kvm->arch.sgx_provisioning_allowed = true;
6826
else
6827
r = -EINVAL;
6828
break;
6829
}
6830
#endif
6831
case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6832
r = -EINVAL;
6833
if (!kvm_x86_ops.vm_copy_enc_context_from)
6834
break;
6835
6836
r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6837
break;
6838
case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6839
r = -EINVAL;
6840
if (!kvm_x86_ops.vm_move_enc_context_from)
6841
break;
6842
6843
r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6844
break;
6845
case KVM_CAP_EXIT_HYPERCALL:
6846
if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6847
r = -EINVAL;
6848
break;
6849
}
6850
kvm->arch.hypercall_exit_enabled = cap->args[0];
6851
r = 0;
6852
break;
6853
case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6854
r = -EINVAL;
6855
if (cap->args[0] & ~1)
6856
break;
6857
kvm->arch.exit_on_emulation_error = cap->args[0];
6858
r = 0;
6859
break;
6860
case KVM_CAP_PMU_CAPABILITY:
6861
r = -EINVAL;
6862
if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6863
break;
6864
6865
mutex_lock(&kvm->lock);
6866
if (!kvm->created_vcpus) {
6867
kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6868
r = 0;
6869
}
6870
mutex_unlock(&kvm->lock);
6871
break;
6872
case KVM_CAP_MAX_VCPU_ID:
6873
r = -EINVAL;
6874
if (cap->args[0] > KVM_MAX_VCPU_IDS)
6875
break;
6876
6877
mutex_lock(&kvm->lock);
6878
if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6879
;
6880
} else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6881
r = 0;
6882
} else if (!kvm->arch.max_vcpu_ids) {
6883
kvm->arch.max_vcpu_ids = cap->args[0];
6884
r = 0;
6885
}
6886
mutex_unlock(&kvm->lock);
6887
break;
6888
case KVM_CAP_X86_NOTIFY_VMEXIT:
6889
r = -EINVAL;
6890
if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6891
break;
6892
if (!kvm_caps.has_notify_vmexit)
6893
break;
6894
if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6895
break;
6896
mutex_lock(&kvm->lock);
6897
if (!kvm->created_vcpus) {
6898
kvm->arch.notify_window = cap->args[0] >> 32;
6899
kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6900
r = 0;
6901
}
6902
mutex_unlock(&kvm->lock);
6903
break;
6904
case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6905
r = -EINVAL;
6906
6907
/*
6908
* Since the risk of disabling NX hugepages is a guest crashing
6909
* the system, ensure the userspace process has permission to
6910
* reboot the system.
6911
*
6912
* Note that unlike the reboot() syscall, the process must have
6913
* this capability in the root namespace because exposing
6914
* /dev/kvm into a container does not limit the scope of the
6915
* iTLB multihit bug to that container. In other words,
6916
* this must use capable(), not ns_capable().
6917
*/
6918
if (!capable(CAP_SYS_BOOT)) {
6919
r = -EPERM;
6920
break;
6921
}
6922
6923
if (cap->args[0])
6924
break;
6925
6926
mutex_lock(&kvm->lock);
6927
if (!kvm->created_vcpus) {
6928
kvm->arch.disable_nx_huge_pages = true;
6929
r = 0;
6930
}
6931
mutex_unlock(&kvm->lock);
6932
break;
6933
case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6934
u64 bus_cycle_ns = cap->args[0];
6935
u64 unused;
6936
6937
/*
6938
* Guard against overflow in tmict_to_ns(). 128 is the highest
6939
* divide value that can be programmed in APIC_TDCR.
6940
*/
6941
r = -EINVAL;
6942
if (!bus_cycle_ns ||
6943
check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6944
break;
6945
6946
r = 0;
6947
mutex_lock(&kvm->lock);
6948
if (!irqchip_in_kernel(kvm))
6949
r = -ENXIO;
6950
else if (kvm->created_vcpus)
6951
r = -EINVAL;
6952
else
6953
kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6954
mutex_unlock(&kvm->lock);
6955
break;
6956
}
6957
default:
6958
r = -EINVAL;
6959
break;
6960
}
6961
return r;
6962
}
6963
6964
static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6965
{
6966
struct kvm_x86_msr_filter *msr_filter;
6967
6968
msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6969
if (!msr_filter)
6970
return NULL;
6971
6972
msr_filter->default_allow = default_allow;
6973
return msr_filter;
6974
}
6975
6976
static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6977
{
6978
u32 i;
6979
6980
if (!msr_filter)
6981
return;
6982
6983
for (i = 0; i < msr_filter->count; i++)
6984
kfree(msr_filter->ranges[i].bitmap);
6985
6986
kfree(msr_filter);
6987
}
6988
6989
static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6990
struct kvm_msr_filter_range *user_range)
6991
{
6992
unsigned long *bitmap;
6993
size_t bitmap_size;
6994
6995
if (!user_range->nmsrs)
6996
return 0;
6997
6998
if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6999
return -EINVAL;
7000
7001
if (!user_range->flags)
7002
return -EINVAL;
7003
7004
bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
7005
if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
7006
return -EINVAL;
7007
7008
bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
7009
if (IS_ERR(bitmap))
7010
return PTR_ERR(bitmap);
7011
7012
msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
7013
.flags = user_range->flags,
7014
.base = user_range->base,
7015
.nmsrs = user_range->nmsrs,
7016
.bitmap = bitmap,
7017
};
7018
7019
msr_filter->count++;
7020
return 0;
7021
}
7022
7023
static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
7024
struct kvm_msr_filter *filter)
7025
{
7026
struct kvm_x86_msr_filter *new_filter, *old_filter;
7027
bool default_allow;
7028
bool empty = true;
7029
int r;
7030
u32 i;
7031
7032
if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
7033
return -EINVAL;
7034
7035
for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
7036
empty &= !filter->ranges[i].nmsrs;
7037
7038
default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
7039
if (empty && !default_allow)
7040
return -EINVAL;
7041
7042
new_filter = kvm_alloc_msr_filter(default_allow);
7043
if (!new_filter)
7044
return -ENOMEM;
7045
7046
for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
7047
r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
7048
if (r) {
7049
kvm_free_msr_filter(new_filter);
7050
return r;
7051
}
7052
}
7053
7054
mutex_lock(&kvm->lock);
7055
old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
7056
mutex_is_locked(&kvm->lock));
7057
mutex_unlock(&kvm->lock);
7058
synchronize_srcu(&kvm->srcu);
7059
7060
kvm_free_msr_filter(old_filter);
7061
7062
/*
7063
* Recalc MSR intercepts as userspace may want to intercept accesses to
7064
* MSRs that KVM would otherwise pass through to the guest.
7065
*/
7066
kvm_make_all_cpus_request(kvm, KVM_REQ_RECALC_INTERCEPTS);
7067
7068
return 0;
7069
}
7070
7071
#ifdef CONFIG_KVM_COMPAT
7072
/* for KVM_X86_SET_MSR_FILTER */
7073
struct kvm_msr_filter_range_compat {
7074
__u32 flags;
7075
__u32 nmsrs;
7076
__u32 base;
7077
__u32 bitmap;
7078
};
7079
7080
struct kvm_msr_filter_compat {
7081
__u32 flags;
7082
struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
7083
};
7084
7085
#define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
7086
7087
long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
7088
unsigned long arg)
7089
{
7090
void __user *argp = (void __user *)arg;
7091
struct kvm *kvm = filp->private_data;
7092
long r = -ENOTTY;
7093
7094
switch (ioctl) {
7095
case KVM_X86_SET_MSR_FILTER_COMPAT: {
7096
struct kvm_msr_filter __user *user_msr_filter = argp;
7097
struct kvm_msr_filter_compat filter_compat;
7098
struct kvm_msr_filter filter;
7099
int i;
7100
7101
if (copy_from_user(&filter_compat, user_msr_filter,
7102
sizeof(filter_compat)))
7103
return -EFAULT;
7104
7105
filter.flags = filter_compat.flags;
7106
for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
7107
struct kvm_msr_filter_range_compat *cr;
7108
7109
cr = &filter_compat.ranges[i];
7110
filter.ranges[i] = (struct kvm_msr_filter_range) {
7111
.flags = cr->flags,
7112
.nmsrs = cr->nmsrs,
7113
.base = cr->base,
7114
.bitmap = (__u8 *)(ulong)cr->bitmap,
7115
};
7116
}
7117
7118
r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7119
break;
7120
}
7121
}
7122
7123
return r;
7124
}
7125
#endif
7126
7127
#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
7128
static int kvm_arch_suspend_notifier(struct kvm *kvm)
7129
{
7130
struct kvm_vcpu *vcpu;
7131
unsigned long i;
7132
7133
/*
7134
* Ignore the return, marking the guest paused only "fails" if the vCPU
7135
* isn't using kvmclock; continuing on is correct and desirable.
7136
*/
7137
kvm_for_each_vcpu(i, vcpu, kvm)
7138
(void)kvm_set_guest_paused(vcpu);
7139
7140
return NOTIFY_DONE;
7141
}
7142
7143
int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
7144
{
7145
switch (state) {
7146
case PM_HIBERNATION_PREPARE:
7147
case PM_SUSPEND_PREPARE:
7148
return kvm_arch_suspend_notifier(kvm);
7149
}
7150
7151
return NOTIFY_DONE;
7152
}
7153
#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
7154
7155
static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
7156
{
7157
struct kvm_clock_data data = { 0 };
7158
7159
get_kvmclock(kvm, &data);
7160
if (copy_to_user(argp, &data, sizeof(data)))
7161
return -EFAULT;
7162
7163
return 0;
7164
}
7165
7166
static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
7167
{
7168
struct kvm_arch *ka = &kvm->arch;
7169
struct kvm_clock_data data;
7170
u64 now_raw_ns;
7171
7172
if (copy_from_user(&data, argp, sizeof(data)))
7173
return -EFAULT;
7174
7175
/*
7176
* Only KVM_CLOCK_REALTIME is used, but allow passing the
7177
* result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
7178
*/
7179
if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
7180
return -EINVAL;
7181
7182
kvm_hv_request_tsc_page_update(kvm);
7183
kvm_start_pvclock_update(kvm);
7184
pvclock_update_vm_gtod_copy(kvm);
7185
7186
/*
7187
* This pairs with kvm_guest_time_update(): when masterclock is
7188
* in use, we use master_kernel_ns + kvmclock_offset to set
7189
* unsigned 'system_time' so if we use get_kvmclock_ns() (which
7190
* is slightly ahead) here we risk going negative on unsigned
7191
* 'system_time' when 'data.clock' is very small.
7192
*/
7193
if (data.flags & KVM_CLOCK_REALTIME) {
7194
u64 now_real_ns = ktime_get_real_ns();
7195
7196
/*
7197
* Avoid stepping the kvmclock backwards.
7198
*/
7199
if (now_real_ns > data.realtime)
7200
data.clock += now_real_ns - data.realtime;
7201
}
7202
7203
if (ka->use_master_clock)
7204
now_raw_ns = ka->master_kernel_ns;
7205
else
7206
now_raw_ns = get_kvmclock_base_ns();
7207
ka->kvmclock_offset = data.clock - now_raw_ns;
7208
kvm_end_pvclock_update(kvm);
7209
return 0;
7210
}
7211
7212
long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, unsigned int ioctl,
7213
unsigned long arg)
7214
{
7215
struct kvm_vcpu *vcpu = filp->private_data;
7216
void __user *argp = (void __user *)arg;
7217
7218
if (ioctl == KVM_MEMORY_ENCRYPT_OP &&
7219
kvm_x86_ops.vcpu_mem_enc_unlocked_ioctl)
7220
return kvm_x86_call(vcpu_mem_enc_unlocked_ioctl)(vcpu, argp);
7221
7222
return -ENOIOCTLCMD;
7223
}
7224
7225
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7226
{
7227
struct kvm *kvm = filp->private_data;
7228
void __user *argp = (void __user *)arg;
7229
int r = -ENOTTY;
7230
7231
#ifdef CONFIG_KVM_IOAPIC
7232
/*
7233
* This union makes it completely explicit to gcc-3.x
7234
* that these three variables' stack usage should be
7235
* combined, not added together.
7236
*/
7237
union {
7238
struct kvm_pit_state ps;
7239
struct kvm_pit_state2 ps2;
7240
struct kvm_pit_config pit_config;
7241
} u;
7242
#endif
7243
7244
switch (ioctl) {
7245
case KVM_SET_TSS_ADDR:
7246
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7247
break;
7248
case KVM_SET_IDENTITY_MAP_ADDR: {
7249
u64 ident_addr;
7250
7251
mutex_lock(&kvm->lock);
7252
r = -EINVAL;
7253
if (kvm->created_vcpus)
7254
goto set_identity_unlock;
7255
r = -EFAULT;
7256
if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7257
goto set_identity_unlock;
7258
r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7259
set_identity_unlock:
7260
mutex_unlock(&kvm->lock);
7261
break;
7262
}
7263
case KVM_SET_NR_MMU_PAGES:
7264
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7265
break;
7266
#ifdef CONFIG_KVM_IOAPIC
7267
case KVM_CREATE_IRQCHIP: {
7268
mutex_lock(&kvm->lock);
7269
7270
r = -EEXIST;
7271
if (irqchip_in_kernel(kvm))
7272
goto create_irqchip_unlock;
7273
7274
/*
7275
* Disallow an in-kernel I/O APIC if the VM has protected EOIs,
7276
* i.e. if KVM can't intercept EOIs and thus can't properly
7277
* emulate level-triggered interrupts.
7278
*/
7279
r = -ENOTTY;
7280
if (kvm->arch.has_protected_eoi)
7281
goto create_irqchip_unlock;
7282
7283
r = -EINVAL;
7284
if (kvm->created_vcpus)
7285
goto create_irqchip_unlock;
7286
7287
r = kvm_pic_init(kvm);
7288
if (r)
7289
goto create_irqchip_unlock;
7290
7291
r = kvm_ioapic_init(kvm);
7292
if (r) {
7293
kvm_pic_destroy(kvm);
7294
goto create_irqchip_unlock;
7295
}
7296
7297
r = kvm_setup_default_ioapic_and_pic_routing(kvm);
7298
if (r) {
7299
kvm_ioapic_destroy(kvm);
7300
kvm_pic_destroy(kvm);
7301
goto create_irqchip_unlock;
7302
}
7303
/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7304
smp_wmb();
7305
kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7306
kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7307
create_irqchip_unlock:
7308
mutex_unlock(&kvm->lock);
7309
break;
7310
}
7311
case KVM_CREATE_PIT:
7312
u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7313
goto create_pit;
7314
case KVM_CREATE_PIT2:
7315
r = -EFAULT;
7316
if (copy_from_user(&u.pit_config, argp,
7317
sizeof(struct kvm_pit_config)))
7318
goto out;
7319
create_pit:
7320
mutex_lock(&kvm->lock);
7321
r = -EEXIST;
7322
if (kvm->arch.vpit)
7323
goto create_pit_unlock;
7324
r = -ENOENT;
7325
if (!pic_in_kernel(kvm))
7326
goto create_pit_unlock;
7327
r = -ENOMEM;
7328
kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7329
if (kvm->arch.vpit)
7330
r = 0;
7331
create_pit_unlock:
7332
mutex_unlock(&kvm->lock);
7333
break;
7334
case KVM_GET_IRQCHIP: {
7335
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7336
struct kvm_irqchip *chip;
7337
7338
chip = memdup_user(argp, sizeof(*chip));
7339
if (IS_ERR(chip)) {
7340
r = PTR_ERR(chip);
7341
goto out;
7342
}
7343
7344
r = -ENXIO;
7345
if (!irqchip_full(kvm))
7346
goto get_irqchip_out;
7347
r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7348
if (r)
7349
goto get_irqchip_out;
7350
r = -EFAULT;
7351
if (copy_to_user(argp, chip, sizeof(*chip)))
7352
goto get_irqchip_out;
7353
r = 0;
7354
get_irqchip_out:
7355
kfree(chip);
7356
break;
7357
}
7358
case KVM_SET_IRQCHIP: {
7359
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7360
struct kvm_irqchip *chip;
7361
7362
chip = memdup_user(argp, sizeof(*chip));
7363
if (IS_ERR(chip)) {
7364
r = PTR_ERR(chip);
7365
goto out;
7366
}
7367
7368
r = -ENXIO;
7369
if (!irqchip_full(kvm))
7370
goto set_irqchip_out;
7371
r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7372
set_irqchip_out:
7373
kfree(chip);
7374
break;
7375
}
7376
case KVM_GET_PIT: {
7377
r = -EFAULT;
7378
if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7379
goto out;
7380
r = -ENXIO;
7381
if (!kvm->arch.vpit)
7382
goto out;
7383
r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7384
if (r)
7385
goto out;
7386
r = -EFAULT;
7387
if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7388
goto out;
7389
r = 0;
7390
break;
7391
}
7392
case KVM_SET_PIT: {
7393
r = -EFAULT;
7394
if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7395
goto out;
7396
mutex_lock(&kvm->lock);
7397
r = -ENXIO;
7398
if (!kvm->arch.vpit)
7399
goto set_pit_out;
7400
r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7401
set_pit_out:
7402
mutex_unlock(&kvm->lock);
7403
break;
7404
}
7405
case KVM_GET_PIT2: {
7406
r = -ENXIO;
7407
if (!kvm->arch.vpit)
7408
goto out;
7409
r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7410
if (r)
7411
goto out;
7412
r = -EFAULT;
7413
if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7414
goto out;
7415
r = 0;
7416
break;
7417
}
7418
case KVM_SET_PIT2: {
7419
r = -EFAULT;
7420
if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7421
goto out;
7422
mutex_lock(&kvm->lock);
7423
r = -ENXIO;
7424
if (!kvm->arch.vpit)
7425
goto set_pit2_out;
7426
r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7427
set_pit2_out:
7428
mutex_unlock(&kvm->lock);
7429
break;
7430
}
7431
case KVM_REINJECT_CONTROL: {
7432
struct kvm_reinject_control control;
7433
r = -EFAULT;
7434
if (copy_from_user(&control, argp, sizeof(control)))
7435
goto out;
7436
r = -ENXIO;
7437
if (!kvm->arch.vpit)
7438
goto out;
7439
r = kvm_vm_ioctl_reinject(kvm, &control);
7440
break;
7441
}
7442
#endif
7443
case KVM_SET_BOOT_CPU_ID:
7444
r = 0;
7445
mutex_lock(&kvm->lock);
7446
if (kvm->created_vcpus)
7447
r = -EBUSY;
7448
else if (arg > KVM_MAX_VCPU_IDS ||
7449
(kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7450
r = -EINVAL;
7451
else
7452
kvm->arch.bsp_vcpu_id = arg;
7453
mutex_unlock(&kvm->lock);
7454
break;
7455
#ifdef CONFIG_KVM_XEN
7456
case KVM_XEN_HVM_CONFIG: {
7457
struct kvm_xen_hvm_config xhc;
7458
r = -EFAULT;
7459
if (copy_from_user(&xhc, argp, sizeof(xhc)))
7460
goto out;
7461
r = kvm_xen_hvm_config(kvm, &xhc);
7462
break;
7463
}
7464
case KVM_XEN_HVM_GET_ATTR: {
7465
struct kvm_xen_hvm_attr xha;
7466
7467
r = -EFAULT;
7468
if (copy_from_user(&xha, argp, sizeof(xha)))
7469
goto out;
7470
r = kvm_xen_hvm_get_attr(kvm, &xha);
7471
if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7472
r = -EFAULT;
7473
break;
7474
}
7475
case KVM_XEN_HVM_SET_ATTR: {
7476
struct kvm_xen_hvm_attr xha;
7477
7478
r = -EFAULT;
7479
if (copy_from_user(&xha, argp, sizeof(xha)))
7480
goto out;
7481
r = kvm_xen_hvm_set_attr(kvm, &xha);
7482
break;
7483
}
7484
case KVM_XEN_HVM_EVTCHN_SEND: {
7485
struct kvm_irq_routing_xen_evtchn uxe;
7486
7487
r = -EFAULT;
7488
if (copy_from_user(&uxe, argp, sizeof(uxe)))
7489
goto out;
7490
r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7491
break;
7492
}
7493
#endif
7494
case KVM_SET_CLOCK:
7495
r = kvm_vm_ioctl_set_clock(kvm, argp);
7496
break;
7497
case KVM_GET_CLOCK:
7498
r = kvm_vm_ioctl_get_clock(kvm, argp);
7499
break;
7500
case KVM_SET_TSC_KHZ: {
7501
u32 user_tsc_khz;
7502
7503
r = -EINVAL;
7504
user_tsc_khz = (u32)arg;
7505
7506
if (kvm_caps.has_tsc_control &&
7507
user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7508
goto out;
7509
7510
if (user_tsc_khz == 0)
7511
user_tsc_khz = tsc_khz;
7512
7513
mutex_lock(&kvm->lock);
7514
if (!kvm->created_vcpus) {
7515
WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7516
r = 0;
7517
}
7518
mutex_unlock(&kvm->lock);
7519
goto out;
7520
}
7521
case KVM_GET_TSC_KHZ: {
7522
r = READ_ONCE(kvm->arch.default_tsc_khz);
7523
goto out;
7524
}
7525
case KVM_MEMORY_ENCRYPT_OP:
7526
r = -ENOTTY;
7527
if (!kvm_x86_ops.mem_enc_ioctl)
7528
goto out;
7529
7530
r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7531
break;
7532
case KVM_MEMORY_ENCRYPT_REG_REGION: {
7533
struct kvm_enc_region region;
7534
7535
r = -EFAULT;
7536
if (copy_from_user(&region, argp, sizeof(region)))
7537
goto out;
7538
7539
r = -ENOTTY;
7540
if (!kvm_x86_ops.mem_enc_register_region)
7541
goto out;
7542
7543
r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7544
break;
7545
}
7546
case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7547
struct kvm_enc_region region;
7548
7549
r = -EFAULT;
7550
if (copy_from_user(&region, argp, sizeof(region)))
7551
goto out;
7552
7553
r = -ENOTTY;
7554
if (!kvm_x86_ops.mem_enc_unregister_region)
7555
goto out;
7556
7557
r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7558
break;
7559
}
7560
#ifdef CONFIG_KVM_HYPERV
7561
case KVM_HYPERV_EVENTFD: {
7562
struct kvm_hyperv_eventfd hvevfd;
7563
7564
r = -EFAULT;
7565
if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7566
goto out;
7567
r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7568
break;
7569
}
7570
#endif
7571
case KVM_SET_PMU_EVENT_FILTER:
7572
r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7573
break;
7574
case KVM_X86_SET_MSR_FILTER: {
7575
struct kvm_msr_filter __user *user_msr_filter = argp;
7576
struct kvm_msr_filter filter;
7577
7578
if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7579
return -EFAULT;
7580
7581
r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7582
break;
7583
}
7584
default:
7585
r = -ENOTTY;
7586
}
7587
out:
7588
return r;
7589
}
7590
7591
static void kvm_probe_feature_msr(u32 msr_index)
7592
{
7593
u64 data;
7594
7595
if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7596
return;
7597
7598
msr_based_features[num_msr_based_features++] = msr_index;
7599
}
7600
7601
static void kvm_probe_msr_to_save(u32 msr_index)
7602
{
7603
u32 dummy[2];
7604
7605
if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7606
return;
7607
7608
/*
7609
* Even MSRs that are valid in the host may not be exposed to guests in
7610
* some cases.
7611
*/
7612
switch (msr_index) {
7613
case MSR_IA32_BNDCFGS:
7614
if (!kvm_mpx_supported())
7615
return;
7616
break;
7617
case MSR_TSC_AUX:
7618
if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7619
!kvm_cpu_cap_has(X86_FEATURE_RDPID))
7620
return;
7621
break;
7622
case MSR_IA32_UMWAIT_CONTROL:
7623
if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7624
return;
7625
break;
7626
case MSR_IA32_RTIT_CTL:
7627
case MSR_IA32_RTIT_STATUS:
7628
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7629
return;
7630
break;
7631
case MSR_IA32_RTIT_CR3_MATCH:
7632
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7633
!intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7634
return;
7635
break;
7636
case MSR_IA32_RTIT_OUTPUT_BASE:
7637
case MSR_IA32_RTIT_OUTPUT_MASK:
7638
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7639
(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7640
!intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7641
return;
7642
break;
7643
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7644
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7645
(msr_index - MSR_IA32_RTIT_ADDR0_A >=
7646
intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7647
return;
7648
break;
7649
case MSR_ARCH_PERFMON_PERFCTR0 ...
7650
MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7651
if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7652
kvm_pmu_cap.num_counters_gp)
7653
return;
7654
break;
7655
case MSR_ARCH_PERFMON_EVENTSEL0 ...
7656
MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7657
if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7658
kvm_pmu_cap.num_counters_gp)
7659
return;
7660
break;
7661
case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7662
MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7663
if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7664
kvm_pmu_cap.num_counters_fixed)
7665
return;
7666
break;
7667
case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7668
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7669
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7670
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET:
7671
if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7672
return;
7673
break;
7674
case MSR_IA32_XFD:
7675
case MSR_IA32_XFD_ERR:
7676
if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7677
return;
7678
break;
7679
case MSR_IA32_TSX_CTRL:
7680
if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7681
return;
7682
break;
7683
case MSR_IA32_XSS:
7684
if (!kvm_caps.supported_xss)
7685
return;
7686
break;
7687
case MSR_IA32_U_CET:
7688
case MSR_IA32_S_CET:
7689
if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7690
!kvm_cpu_cap_has(X86_FEATURE_IBT))
7691
return;
7692
break;
7693
case MSR_IA32_INT_SSP_TAB:
7694
if (!kvm_cpu_cap_has(X86_FEATURE_LM))
7695
return;
7696
fallthrough;
7697
case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
7698
if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK))
7699
return;
7700
break;
7701
default:
7702
break;
7703
}
7704
7705
msrs_to_save[num_msrs_to_save++] = msr_index;
7706
}
7707
7708
static void kvm_init_msr_lists(void)
7709
{
7710
unsigned i;
7711
7712
BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7713
"Please update the fixed PMCs in msrs_to_save_pmu[]");
7714
7715
num_msrs_to_save = 0;
7716
num_emulated_msrs = 0;
7717
num_msr_based_features = 0;
7718
7719
for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7720
kvm_probe_msr_to_save(msrs_to_save_base[i]);
7721
7722
if (enable_pmu) {
7723
for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7724
kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7725
}
7726
7727
for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7728
if (!kvm_x86_call(has_emulated_msr)(NULL,
7729
emulated_msrs_all[i]))
7730
continue;
7731
7732
emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7733
}
7734
7735
for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7736
kvm_probe_feature_msr(i);
7737
7738
for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7739
kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7740
}
7741
7742
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7743
const void *v)
7744
{
7745
int handled = 0;
7746
int n;
7747
7748
do {
7749
n = min(len, 8);
7750
if (!(lapic_in_kernel(vcpu) &&
7751
!kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7752
&& kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7753
break;
7754
handled += n;
7755
addr += n;
7756
len -= n;
7757
v += n;
7758
} while (len);
7759
7760
return handled;
7761
}
7762
7763
static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7764
{
7765
int handled = 0;
7766
int n;
7767
7768
do {
7769
n = min(len, 8);
7770
if (!(lapic_in_kernel(vcpu) &&
7771
!kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7772
addr, n, v))
7773
&& kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7774
break;
7775
trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7776
handled += n;
7777
addr += n;
7778
len -= n;
7779
v += n;
7780
} while (len);
7781
7782
return handled;
7783
}
7784
7785
void kvm_set_segment(struct kvm_vcpu *vcpu,
7786
struct kvm_segment *var, int seg)
7787
{
7788
kvm_x86_call(set_segment)(vcpu, var, seg);
7789
}
7790
7791
void kvm_get_segment(struct kvm_vcpu *vcpu,
7792
struct kvm_segment *var, int seg)
7793
{
7794
kvm_x86_call(get_segment)(vcpu, var, seg);
7795
}
7796
7797
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7798
struct x86_exception *exception)
7799
{
7800
struct kvm_mmu *mmu = vcpu->arch.mmu;
7801
gpa_t t_gpa;
7802
7803
BUG_ON(!mmu_is_nested(vcpu));
7804
7805
/* NPT walks are always user-walks */
7806
access |= PFERR_USER_MASK;
7807
t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7808
7809
return t_gpa;
7810
}
7811
7812
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7813
struct x86_exception *exception)
7814
{
7815
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7816
7817
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7818
return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7819
}
7820
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_read);
7821
7822
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7823
struct x86_exception *exception)
7824
{
7825
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7826
7827
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7828
access |= PFERR_WRITE_MASK;
7829
return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7830
}
7831
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_write);
7832
7833
/* uses this to access any guest's mapped memory without checking CPL */
7834
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7835
struct x86_exception *exception)
7836
{
7837
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7838
7839
return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7840
}
7841
7842
static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7843
struct kvm_vcpu *vcpu, u64 access,
7844
struct x86_exception *exception)
7845
{
7846
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7847
void *data = val;
7848
int r = X86EMUL_CONTINUE;
7849
7850
while (bytes) {
7851
gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7852
unsigned offset = addr & (PAGE_SIZE-1);
7853
unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7854
int ret;
7855
7856
if (gpa == INVALID_GPA)
7857
return X86EMUL_PROPAGATE_FAULT;
7858
ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7859
offset, toread);
7860
if (ret < 0) {
7861
r = X86EMUL_IO_NEEDED;
7862
goto out;
7863
}
7864
7865
bytes -= toread;
7866
data += toread;
7867
addr += toread;
7868
}
7869
out:
7870
return r;
7871
}
7872
7873
/* used for instruction fetching */
7874
static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7875
gva_t addr, void *val, unsigned int bytes,
7876
struct x86_exception *exception)
7877
{
7878
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7879
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7880
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7881
unsigned offset;
7882
int ret;
7883
7884
/* Inline kvm_read_guest_virt_helper for speed. */
7885
gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7886
exception);
7887
if (unlikely(gpa == INVALID_GPA))
7888
return X86EMUL_PROPAGATE_FAULT;
7889
7890
offset = addr & (PAGE_SIZE-1);
7891
if (WARN_ON(offset + bytes > PAGE_SIZE))
7892
bytes = (unsigned)PAGE_SIZE - offset;
7893
ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7894
offset, bytes);
7895
if (unlikely(ret < 0))
7896
return X86EMUL_IO_NEEDED;
7897
7898
return X86EMUL_CONTINUE;
7899
}
7900
7901
int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7902
gva_t addr, void *val, unsigned int bytes,
7903
struct x86_exception *exception)
7904
{
7905
u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7906
7907
/*
7908
* FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7909
* is returned, but our callers are not ready for that and they blindly
7910
* call kvm_inject_page_fault. Ensure that they at least do not leak
7911
* uninitialized kernel stack memory into cr2 and error code.
7912
*/
7913
memset(exception, 0, sizeof(*exception));
7914
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7915
exception);
7916
}
7917
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_virt);
7918
7919
static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7920
gva_t addr, void *val, unsigned int bytes,
7921
struct x86_exception *exception, bool system)
7922
{
7923
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7924
u64 access = 0;
7925
7926
if (system)
7927
access |= PFERR_IMPLICIT_ACCESS;
7928
else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7929
access |= PFERR_USER_MASK;
7930
7931
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7932
}
7933
7934
static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7935
struct kvm_vcpu *vcpu, u64 access,
7936
struct x86_exception *exception)
7937
{
7938
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7939
void *data = val;
7940
int r = X86EMUL_CONTINUE;
7941
7942
while (bytes) {
7943
gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7944
unsigned offset = addr & (PAGE_SIZE-1);
7945
unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7946
int ret;
7947
7948
if (gpa == INVALID_GPA)
7949
return X86EMUL_PROPAGATE_FAULT;
7950
ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7951
if (ret < 0) {
7952
r = X86EMUL_IO_NEEDED;
7953
goto out;
7954
}
7955
7956
bytes -= towrite;
7957
data += towrite;
7958
addr += towrite;
7959
}
7960
out:
7961
return r;
7962
}
7963
7964
static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7965
unsigned int bytes, struct x86_exception *exception,
7966
bool system)
7967
{
7968
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7969
u64 access = PFERR_WRITE_MASK;
7970
7971
if (system)
7972
access |= PFERR_IMPLICIT_ACCESS;
7973
else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7974
access |= PFERR_USER_MASK;
7975
7976
return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7977
access, exception);
7978
}
7979
7980
int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7981
unsigned int bytes, struct x86_exception *exception)
7982
{
7983
/* kvm_write_guest_virt_system can pull in tons of pages. */
7984
kvm_request_l1tf_flush_l1d();
7985
7986
return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7987
PFERR_WRITE_MASK, exception);
7988
}
7989
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_virt_system);
7990
7991
static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7992
void *insn, int insn_len)
7993
{
7994
return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7995
insn, insn_len);
7996
}
7997
7998
int handle_ud(struct kvm_vcpu *vcpu)
7999
{
8000
static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
8001
int fep_flags = READ_ONCE(force_emulation_prefix);
8002
int emul_type = EMULTYPE_TRAP_UD;
8003
char sig[5]; /* ud2; .ascii "kvm" */
8004
struct x86_exception e;
8005
int r;
8006
8007
r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
8008
if (r != X86EMUL_CONTINUE)
8009
return 1;
8010
8011
if (fep_flags &&
8012
kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
8013
sig, sizeof(sig), &e) == 0 &&
8014
memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
8015
if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
8016
kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
8017
kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
8018
emul_type = EMULTYPE_TRAP_UD_FORCED;
8019
}
8020
8021
return kvm_emulate_instruction(vcpu, emul_type);
8022
}
8023
EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_ud);
8024
8025
static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8026
gpa_t gpa, bool write)
8027
{
8028
/* For APIC access vmexit */
8029
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8030
return 1;
8031
8032
if (vcpu_match_mmio_gpa(vcpu, gpa)) {
8033
trace_vcpu_match_mmio(gva, gpa, write, true);
8034
return 1;
8035
}
8036
8037
return 0;
8038
}
8039
8040
static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8041
gpa_t *gpa, struct x86_exception *exception,
8042
bool write)
8043
{
8044
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8045
u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
8046
| (write ? PFERR_WRITE_MASK : 0);
8047
8048
/*
8049
* currently PKRU is only applied to ept enabled guest so
8050
* there is no pkey in EPT page table for L1 guest or EPT
8051
* shadow page table for L2 guest.
8052
*/
8053
if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
8054
!permission_fault(vcpu, vcpu->arch.walk_mmu,
8055
vcpu->arch.mmio_access, 0, access))) {
8056
*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
8057
(gva & (PAGE_SIZE - 1));
8058
trace_vcpu_match_mmio(gva, *gpa, write, false);
8059
return 1;
8060
}
8061
8062
*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
8063
8064
if (*gpa == INVALID_GPA)
8065
return -1;
8066
8067
return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
8068
}
8069
8070
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
8071
const void *val, int bytes)
8072
{
8073
int ret;
8074
8075
ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
8076
if (ret < 0)
8077
return 0;
8078
kvm_page_track_write(vcpu, gpa, val, bytes);
8079
return 1;
8080
}
8081
8082
struct read_write_emulator_ops {
8083
int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
8084
int bytes);
8085
int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
8086
void *val, int bytes);
8087
int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8088
int bytes, void *val);
8089
int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8090
void *val, int bytes);
8091
bool write;
8092
};
8093
8094
static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
8095
{
8096
if (vcpu->mmio_read_completed) {
8097
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
8098
vcpu->mmio_fragments[0].gpa, val);
8099
vcpu->mmio_read_completed = 0;
8100
return 1;
8101
}
8102
8103
return 0;
8104
}
8105
8106
static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8107
void *val, int bytes)
8108
{
8109
return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
8110
}
8111
8112
static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8113
void *val, int bytes)
8114
{
8115
return emulator_write_phys(vcpu, gpa, val, bytes);
8116
}
8117
8118
static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
8119
{
8120
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
8121
return vcpu_mmio_write(vcpu, gpa, bytes, val);
8122
}
8123
8124
static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8125
void *val, int bytes)
8126
{
8127
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
8128
return X86EMUL_IO_NEEDED;
8129
}
8130
8131
static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8132
void *val, int bytes)
8133
{
8134
struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
8135
8136
memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
8137
return X86EMUL_CONTINUE;
8138
}
8139
8140
static const struct read_write_emulator_ops read_emultor = {
8141
.read_write_prepare = read_prepare,
8142
.read_write_emulate = read_emulate,
8143
.read_write_mmio = vcpu_mmio_read,
8144
.read_write_exit_mmio = read_exit_mmio,
8145
};
8146
8147
static const struct read_write_emulator_ops write_emultor = {
8148
.read_write_emulate = write_emulate,
8149
.read_write_mmio = write_mmio,
8150
.read_write_exit_mmio = write_exit_mmio,
8151
.write = true,
8152
};
8153
8154
static int emulator_read_write_onepage(unsigned long addr, void *val,
8155
unsigned int bytes,
8156
struct x86_exception *exception,
8157
struct kvm_vcpu *vcpu,
8158
const struct read_write_emulator_ops *ops)
8159
{
8160
gpa_t gpa;
8161
int handled, ret;
8162
bool write = ops->write;
8163
struct kvm_mmio_fragment *frag;
8164
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8165
8166
/*
8167
* If the exit was due to a NPF we may already have a GPA.
8168
* If the GPA is present, use it to avoid the GVA to GPA table walk.
8169
* Note, this cannot be used on string operations since string
8170
* operation using rep will only have the initial GPA from the NPF
8171
* occurred.
8172
*/
8173
if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
8174
(addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
8175
gpa = ctxt->gpa_val;
8176
ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
8177
} else {
8178
ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
8179
if (ret < 0)
8180
return X86EMUL_PROPAGATE_FAULT;
8181
}
8182
8183
if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
8184
return X86EMUL_CONTINUE;
8185
8186
/*
8187
* Is this MMIO handled locally?
8188
*/
8189
handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
8190
if (handled == bytes)
8191
return X86EMUL_CONTINUE;
8192
8193
gpa += handled;
8194
bytes -= handled;
8195
val += handled;
8196
8197
WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
8198
frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
8199
frag->gpa = gpa;
8200
frag->data = val;
8201
frag->len = bytes;
8202
return X86EMUL_CONTINUE;
8203
}
8204
8205
static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
8206
unsigned long addr,
8207
void *val, unsigned int bytes,
8208
struct x86_exception *exception,
8209
const struct read_write_emulator_ops *ops)
8210
{
8211
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8212
gpa_t gpa;
8213
int rc;
8214
8215
if (ops->read_write_prepare &&
8216
ops->read_write_prepare(vcpu, val, bytes))
8217
return X86EMUL_CONTINUE;
8218
8219
vcpu->mmio_nr_fragments = 0;
8220
8221
/* Crossing a page boundary? */
8222
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
8223
int now;
8224
8225
now = -addr & ~PAGE_MASK;
8226
rc = emulator_read_write_onepage(addr, val, now, exception,
8227
vcpu, ops);
8228
8229
if (rc != X86EMUL_CONTINUE)
8230
return rc;
8231
addr += now;
8232
if (ctxt->mode != X86EMUL_MODE_PROT64)
8233
addr = (u32)addr;
8234
val += now;
8235
bytes -= now;
8236
}
8237
8238
rc = emulator_read_write_onepage(addr, val, bytes, exception,
8239
vcpu, ops);
8240
if (rc != X86EMUL_CONTINUE)
8241
return rc;
8242
8243
if (!vcpu->mmio_nr_fragments)
8244
return X86EMUL_CONTINUE;
8245
8246
gpa = vcpu->mmio_fragments[0].gpa;
8247
8248
vcpu->mmio_needed = 1;
8249
vcpu->mmio_cur_fragment = 0;
8250
8251
vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8252
vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8253
vcpu->run->exit_reason = KVM_EXIT_MMIO;
8254
vcpu->run->mmio.phys_addr = gpa;
8255
8256
return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8257
}
8258
8259
static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8260
unsigned long addr,
8261
void *val,
8262
unsigned int bytes,
8263
struct x86_exception *exception)
8264
{
8265
return emulator_read_write(ctxt, addr, val, bytes,
8266
exception, &read_emultor);
8267
}
8268
8269
static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8270
unsigned long addr,
8271
const void *val,
8272
unsigned int bytes,
8273
struct x86_exception *exception)
8274
{
8275
return emulator_read_write(ctxt, addr, (void *)val, bytes,
8276
exception, &write_emultor);
8277
}
8278
8279
#define emulator_try_cmpxchg_user(t, ptr, old, new) \
8280
(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8281
8282
static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8283
unsigned long addr,
8284
const void *old,
8285
const void *new,
8286
unsigned int bytes,
8287
struct x86_exception *exception)
8288
{
8289
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8290
u64 page_line_mask;
8291
unsigned long hva;
8292
gpa_t gpa;
8293
int r;
8294
8295
/* guests cmpxchg8b have to be emulated atomically */
8296
if (bytes > 8 || (bytes & (bytes - 1)))
8297
goto emul_write;
8298
8299
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8300
8301
if (gpa == INVALID_GPA ||
8302
(gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8303
goto emul_write;
8304
8305
/*
8306
* Emulate the atomic as a straight write to avoid #AC if SLD is
8307
* enabled in the host and the access splits a cache line.
8308
*/
8309
if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8310
page_line_mask = ~(cache_line_size() - 1);
8311
else
8312
page_line_mask = PAGE_MASK;
8313
8314
if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8315
goto emul_write;
8316
8317
hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8318
if (kvm_is_error_hva(hva))
8319
goto emul_write;
8320
8321
hva += offset_in_page(gpa);
8322
8323
switch (bytes) {
8324
case 1:
8325
r = emulator_try_cmpxchg_user(u8, hva, old, new);
8326
break;
8327
case 2:
8328
r = emulator_try_cmpxchg_user(u16, hva, old, new);
8329
break;
8330
case 4:
8331
r = emulator_try_cmpxchg_user(u32, hva, old, new);
8332
break;
8333
case 8:
8334
r = emulator_try_cmpxchg_user(u64, hva, old, new);
8335
break;
8336
default:
8337
BUG();
8338
}
8339
8340
if (r < 0)
8341
return X86EMUL_UNHANDLEABLE;
8342
8343
/*
8344
* Mark the page dirty _before_ checking whether or not the CMPXCHG was
8345
* successful, as the old value is written back on failure. Note, for
8346
* live migration, this is unnecessarily conservative as CMPXCHG writes
8347
* back the original value and the access is atomic, but KVM's ABI is
8348
* that all writes are dirty logged, regardless of the value written.
8349
*/
8350
kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8351
8352
if (r)
8353
return X86EMUL_CMPXCHG_FAILED;
8354
8355
kvm_page_track_write(vcpu, gpa, new, bytes);
8356
8357
return X86EMUL_CONTINUE;
8358
8359
emul_write:
8360
pr_warn_once("emulating exchange as write\n");
8361
8362
return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8363
}
8364
8365
static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8366
unsigned short port, void *data,
8367
unsigned int count, bool in)
8368
{
8369
unsigned i;
8370
int r;
8371
8372
WARN_ON_ONCE(vcpu->arch.pio.count);
8373
for (i = 0; i < count; i++) {
8374
if (in)
8375
r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8376
else
8377
r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8378
8379
if (r) {
8380
if (i == 0)
8381
goto userspace_io;
8382
8383
/*
8384
* Userspace must have unregistered the device while PIO
8385
* was running. Drop writes / read as 0.
8386
*/
8387
if (in)
8388
memset(data, 0, size * (count - i));
8389
break;
8390
}
8391
8392
data += size;
8393
}
8394
return 1;
8395
8396
userspace_io:
8397
vcpu->arch.pio.port = port;
8398
vcpu->arch.pio.in = in;
8399
vcpu->arch.pio.count = count;
8400
vcpu->arch.pio.size = size;
8401
8402
if (in)
8403
memset(vcpu->arch.pio_data, 0, size * count);
8404
else
8405
memcpy(vcpu->arch.pio_data, data, size * count);
8406
8407
vcpu->run->exit_reason = KVM_EXIT_IO;
8408
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8409
vcpu->run->io.size = size;
8410
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8411
vcpu->run->io.count = count;
8412
vcpu->run->io.port = port;
8413
return 0;
8414
}
8415
8416
static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8417
unsigned short port, void *val, unsigned int count)
8418
{
8419
int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8420
if (r)
8421
trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8422
8423
return r;
8424
}
8425
8426
static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8427
{
8428
int size = vcpu->arch.pio.size;
8429
unsigned int count = vcpu->arch.pio.count;
8430
memcpy(val, vcpu->arch.pio_data, size * count);
8431
trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8432
vcpu->arch.pio.count = 0;
8433
}
8434
8435
static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8436
int size, unsigned short port, void *val,
8437
unsigned int count)
8438
{
8439
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8440
if (vcpu->arch.pio.count) {
8441
/*
8442
* Complete a previous iteration that required userspace I/O.
8443
* Note, @count isn't guaranteed to match pio.count as userspace
8444
* can modify ECX before rerunning the vCPU. Ignore any such
8445
* shenanigans as KVM doesn't support modifying the rep count,
8446
* and the emulator ensures @count doesn't overflow the buffer.
8447
*/
8448
complete_emulator_pio_in(vcpu, val);
8449
return 1;
8450
}
8451
8452
return emulator_pio_in(vcpu, size, port, val, count);
8453
}
8454
8455
static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8456
unsigned short port, const void *val,
8457
unsigned int count)
8458
{
8459
trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8460
return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8461
}
8462
8463
static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8464
int size, unsigned short port,
8465
const void *val, unsigned int count)
8466
{
8467
return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8468
}
8469
8470
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8471
{
8472
return kvm_x86_call(get_segment_base)(vcpu, seg);
8473
}
8474
8475
static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8476
{
8477
kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8478
}
8479
8480
static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8481
{
8482
if (!need_emulate_wbinvd(vcpu))
8483
return X86EMUL_CONTINUE;
8484
8485
if (kvm_x86_call(has_wbinvd_exit)()) {
8486
int cpu = get_cpu();
8487
8488
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8489
wbinvd_on_cpus_mask(vcpu->arch.wbinvd_dirty_mask);
8490
put_cpu();
8491
cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8492
} else
8493
wbinvd();
8494
return X86EMUL_CONTINUE;
8495
}
8496
8497
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8498
{
8499
kvm_emulate_wbinvd_noskip(vcpu);
8500
return kvm_skip_emulated_instruction(vcpu);
8501
}
8502
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wbinvd);
8503
8504
8505
8506
static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8507
{
8508
kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8509
}
8510
8511
static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8512
{
8513
return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8514
}
8515
8516
static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8517
unsigned long value)
8518
{
8519
8520
return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8521
}
8522
8523
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8524
{
8525
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8526
}
8527
8528
static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8529
{
8530
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8531
unsigned long value;
8532
8533
switch (cr) {
8534
case 0:
8535
value = kvm_read_cr0(vcpu);
8536
break;
8537
case 2:
8538
value = vcpu->arch.cr2;
8539
break;
8540
case 3:
8541
value = kvm_read_cr3(vcpu);
8542
break;
8543
case 4:
8544
value = kvm_read_cr4(vcpu);
8545
break;
8546
case 8:
8547
value = kvm_get_cr8(vcpu);
8548
break;
8549
default:
8550
kvm_err("%s: unexpected cr %u\n", __func__, cr);
8551
return 0;
8552
}
8553
8554
return value;
8555
}
8556
8557
static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8558
{
8559
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8560
int res = 0;
8561
8562
switch (cr) {
8563
case 0:
8564
res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8565
break;
8566
case 2:
8567
vcpu->arch.cr2 = val;
8568
break;
8569
case 3:
8570
res = kvm_set_cr3(vcpu, val);
8571
break;
8572
case 4:
8573
res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8574
break;
8575
case 8:
8576
res = kvm_set_cr8(vcpu, val);
8577
break;
8578
default:
8579
kvm_err("%s: unexpected cr %u\n", __func__, cr);
8580
res = -1;
8581
}
8582
8583
return res;
8584
}
8585
8586
static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8587
{
8588
return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8589
}
8590
8591
static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8592
{
8593
kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8594
}
8595
8596
static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8597
{
8598
kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8599
}
8600
8601
static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8602
{
8603
kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8604
}
8605
8606
static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8607
{
8608
kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8609
}
8610
8611
static unsigned long emulator_get_cached_segment_base(
8612
struct x86_emulate_ctxt *ctxt, int seg)
8613
{
8614
return get_segment_base(emul_to_vcpu(ctxt), seg);
8615
}
8616
8617
static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8618
struct desc_struct *desc, u32 *base3,
8619
int seg)
8620
{
8621
struct kvm_segment var;
8622
8623
kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8624
*selector = var.selector;
8625
8626
if (var.unusable) {
8627
memset(desc, 0, sizeof(*desc));
8628
if (base3)
8629
*base3 = 0;
8630
return false;
8631
}
8632
8633
if (var.g)
8634
var.limit >>= 12;
8635
set_desc_limit(desc, var.limit);
8636
set_desc_base(desc, (unsigned long)var.base);
8637
#ifdef CONFIG_X86_64
8638
if (base3)
8639
*base3 = var.base >> 32;
8640
#endif
8641
desc->type = var.type;
8642
desc->s = var.s;
8643
desc->dpl = var.dpl;
8644
desc->p = var.present;
8645
desc->avl = var.avl;
8646
desc->l = var.l;
8647
desc->d = var.db;
8648
desc->g = var.g;
8649
8650
return true;
8651
}
8652
8653
static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8654
struct desc_struct *desc, u32 base3,
8655
int seg)
8656
{
8657
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8658
struct kvm_segment var;
8659
8660
var.selector = selector;
8661
var.base = get_desc_base(desc);
8662
#ifdef CONFIG_X86_64
8663
var.base |= ((u64)base3) << 32;
8664
#endif
8665
var.limit = get_desc_limit(desc);
8666
if (desc->g)
8667
var.limit = (var.limit << 12) | 0xfff;
8668
var.type = desc->type;
8669
var.dpl = desc->dpl;
8670
var.db = desc->d;
8671
var.s = desc->s;
8672
var.l = desc->l;
8673
var.g = desc->g;
8674
var.avl = desc->avl;
8675
var.present = desc->p;
8676
var.unusable = !var.present;
8677
var.padding = 0;
8678
8679
kvm_set_segment(vcpu, &var, seg);
8680
return;
8681
}
8682
8683
static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8684
u32 msr_index, u64 *pdata)
8685
{
8686
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8687
int r;
8688
8689
r = kvm_emulate_msr_read(vcpu, msr_index, pdata);
8690
if (r < 0)
8691
return X86EMUL_UNHANDLEABLE;
8692
8693
if (r) {
8694
if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8695
complete_emulated_rdmsr, r))
8696
return X86EMUL_IO_NEEDED;
8697
8698
trace_kvm_msr_read_ex(msr_index);
8699
return X86EMUL_PROPAGATE_FAULT;
8700
}
8701
8702
trace_kvm_msr_read(msr_index, *pdata);
8703
return X86EMUL_CONTINUE;
8704
}
8705
8706
static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8707
u32 msr_index, u64 data)
8708
{
8709
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8710
int r;
8711
8712
r = kvm_emulate_msr_write(vcpu, msr_index, data);
8713
if (r < 0)
8714
return X86EMUL_UNHANDLEABLE;
8715
8716
if (r) {
8717
if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8718
complete_emulated_msr_access, r))
8719
return X86EMUL_IO_NEEDED;
8720
8721
trace_kvm_msr_write_ex(msr_index, data);
8722
return X86EMUL_PROPAGATE_FAULT;
8723
}
8724
8725
trace_kvm_msr_write(msr_index, data);
8726
return X86EMUL_CONTINUE;
8727
}
8728
8729
static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8730
u32 msr_index, u64 *pdata)
8731
{
8732
/*
8733
* Treat emulator accesses to the current shadow stack pointer as host-
8734
* initiated, as they aren't true MSR accesses (SSP is a "just a reg"),
8735
* and this API is used only for implicit accesses, i.e. not RDMSR, and
8736
* so the index is fully KVM-controlled.
8737
*/
8738
if (unlikely(msr_index == MSR_KVM_INTERNAL_GUEST_SSP))
8739
return kvm_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8740
8741
return __kvm_emulate_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8742
}
8743
8744
static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8745
{
8746
return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8747
}
8748
8749
static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8750
u32 pmc, u64 *pdata)
8751
{
8752
return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8753
}
8754
8755
static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8756
{
8757
emul_to_vcpu(ctxt)->arch.halt_request = 1;
8758
}
8759
8760
static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8761
struct x86_instruction_info *info,
8762
enum x86_intercept_stage stage)
8763
{
8764
return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8765
&ctxt->exception);
8766
}
8767
8768
static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8769
u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8770
bool exact_only)
8771
{
8772
return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8773
}
8774
8775
static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8776
{
8777
return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8778
}
8779
8780
static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8781
{
8782
return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8783
}
8784
8785
static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8786
{
8787
return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8788
}
8789
8790
static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8791
{
8792
return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8793
}
8794
8795
static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8796
{
8797
return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8798
}
8799
8800
static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8801
{
8802
kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8803
}
8804
8805
static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8806
{
8807
kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8808
}
8809
8810
static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8811
{
8812
return is_smm(emul_to_vcpu(ctxt));
8813
}
8814
8815
#ifndef CONFIG_KVM_SMM
8816
static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8817
{
8818
WARN_ON_ONCE(1);
8819
return X86EMUL_UNHANDLEABLE;
8820
}
8821
#endif
8822
8823
static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8824
{
8825
kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8826
}
8827
8828
static int emulator_get_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 *xcr)
8829
{
8830
if (index != XCR_XFEATURE_ENABLED_MASK)
8831
return 1;
8832
*xcr = emul_to_vcpu(ctxt)->arch.xcr0;
8833
return 0;
8834
}
8835
8836
static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8837
{
8838
return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8839
}
8840
8841
static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8842
{
8843
struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8844
8845
if (!kvm->vm_bugged)
8846
kvm_vm_bugged(kvm);
8847
}
8848
8849
static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8850
gva_t addr, unsigned int flags)
8851
{
8852
if (!kvm_x86_ops.get_untagged_addr)
8853
return addr;
8854
8855
return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8856
addr, flags);
8857
}
8858
8859
static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8860
gva_t addr, unsigned int flags)
8861
{
8862
return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8863
}
8864
8865
static const struct x86_emulate_ops emulate_ops = {
8866
.vm_bugged = emulator_vm_bugged,
8867
.read_gpr = emulator_read_gpr,
8868
.write_gpr = emulator_write_gpr,
8869
.read_std = emulator_read_std,
8870
.write_std = emulator_write_std,
8871
.fetch = kvm_fetch_guest_virt,
8872
.read_emulated = emulator_read_emulated,
8873
.write_emulated = emulator_write_emulated,
8874
.cmpxchg_emulated = emulator_cmpxchg_emulated,
8875
.invlpg = emulator_invlpg,
8876
.pio_in_emulated = emulator_pio_in_emulated,
8877
.pio_out_emulated = emulator_pio_out_emulated,
8878
.get_segment = emulator_get_segment,
8879
.set_segment = emulator_set_segment,
8880
.get_cached_segment_base = emulator_get_cached_segment_base,
8881
.get_gdt = emulator_get_gdt,
8882
.get_idt = emulator_get_idt,
8883
.set_gdt = emulator_set_gdt,
8884
.set_idt = emulator_set_idt,
8885
.get_cr = emulator_get_cr,
8886
.set_cr = emulator_set_cr,
8887
.cpl = emulator_get_cpl,
8888
.get_dr = emulator_get_dr,
8889
.set_dr = emulator_set_dr,
8890
.set_msr_with_filter = emulator_set_msr_with_filter,
8891
.get_msr_with_filter = emulator_get_msr_with_filter,
8892
.get_msr = emulator_get_msr,
8893
.check_rdpmc_early = emulator_check_rdpmc_early,
8894
.read_pmc = emulator_read_pmc,
8895
.halt = emulator_halt,
8896
.wbinvd = emulator_wbinvd,
8897
.fix_hypercall = emulator_fix_hypercall,
8898
.intercept = emulator_intercept,
8899
.get_cpuid = emulator_get_cpuid,
8900
.guest_has_movbe = emulator_guest_has_movbe,
8901
.guest_has_fxsr = emulator_guest_has_fxsr,
8902
.guest_has_rdpid = emulator_guest_has_rdpid,
8903
.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8904
.set_nmi_mask = emulator_set_nmi_mask,
8905
.is_smm = emulator_is_smm,
8906
.leave_smm = emulator_leave_smm,
8907
.triple_fault = emulator_triple_fault,
8908
.get_xcr = emulator_get_xcr,
8909
.set_xcr = emulator_set_xcr,
8910
.get_untagged_addr = emulator_get_untagged_addr,
8911
.is_canonical_addr = emulator_is_canonical_addr,
8912
};
8913
8914
static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8915
{
8916
u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8917
/*
8918
* an sti; sti; sequence only disable interrupts for the first
8919
* instruction. So, if the last instruction, be it emulated or
8920
* not, left the system with the INT_STI flag enabled, it
8921
* means that the last instruction is an sti. We should not
8922
* leave the flag on in this case. The same goes for mov ss
8923
*/
8924
if (int_shadow & mask)
8925
mask = 0;
8926
if (unlikely(int_shadow || mask)) {
8927
kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8928
if (!mask)
8929
kvm_make_request(KVM_REQ_EVENT, vcpu);
8930
}
8931
}
8932
8933
static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8934
{
8935
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8936
8937
if (ctxt->exception.vector == PF_VECTOR)
8938
kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8939
else if (ctxt->exception.error_code_valid)
8940
kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8941
ctxt->exception.error_code);
8942
else
8943
kvm_queue_exception(vcpu, ctxt->exception.vector);
8944
}
8945
8946
static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8947
{
8948
struct x86_emulate_ctxt *ctxt;
8949
8950
ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8951
if (!ctxt) {
8952
pr_err("failed to allocate vcpu's emulator\n");
8953
return NULL;
8954
}
8955
8956
ctxt->vcpu = vcpu;
8957
ctxt->ops = &emulate_ops;
8958
vcpu->arch.emulate_ctxt = ctxt;
8959
8960
return ctxt;
8961
}
8962
8963
static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8964
{
8965
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8966
int cs_db, cs_l;
8967
8968
kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8969
8970
ctxt->gpa_available = false;
8971
ctxt->eflags = kvm_get_rflags(vcpu);
8972
ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8973
8974
ctxt->eip = kvm_rip_read(vcpu);
8975
ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8976
(ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8977
(cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8978
cs_db ? X86EMUL_MODE_PROT32 :
8979
X86EMUL_MODE_PROT16;
8980
ctxt->interruptibility = 0;
8981
ctxt->have_exception = false;
8982
ctxt->exception.vector = -1;
8983
ctxt->perm_ok = false;
8984
8985
init_decode_cache(ctxt);
8986
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8987
}
8988
8989
void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8990
{
8991
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8992
int ret;
8993
8994
init_emulate_ctxt(vcpu);
8995
8996
ctxt->op_bytes = 2;
8997
ctxt->ad_bytes = 2;
8998
ctxt->_eip = ctxt->eip + inc_eip;
8999
ret = emulate_int_real(ctxt, irq);
9000
9001
if (ret != X86EMUL_CONTINUE) {
9002
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
9003
} else {
9004
ctxt->eip = ctxt->_eip;
9005
kvm_rip_write(vcpu, ctxt->eip);
9006
kvm_set_rflags(vcpu, ctxt->eflags);
9007
}
9008
}
9009
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_realmode_interrupt);
9010
9011
static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9012
u8 ndata, u8 *insn_bytes, u8 insn_size)
9013
{
9014
struct kvm_run *run = vcpu->run;
9015
u64 info[5];
9016
u8 info_start;
9017
9018
/*
9019
* Zero the whole array used to retrieve the exit info, as casting to
9020
* u32 for select entries will leave some chunks uninitialized.
9021
*/
9022
memset(&info, 0, sizeof(info));
9023
9024
kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
9025
(u32 *)&info[3], (u32 *)&info[4]);
9026
9027
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9028
run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
9029
9030
/*
9031
* There's currently space for 13 entries, but 5 are used for the exit
9032
* reason and info. Restrict to 4 to reduce the maintenance burden
9033
* when expanding kvm_run.emulation_failure in the future.
9034
*/
9035
if (WARN_ON_ONCE(ndata > 4))
9036
ndata = 4;
9037
9038
/* Always include the flags as a 'data' entry. */
9039
info_start = 1;
9040
run->emulation_failure.flags = 0;
9041
9042
if (insn_size) {
9043
BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
9044
sizeof(run->emulation_failure.insn_bytes) != 16));
9045
info_start += 2;
9046
run->emulation_failure.flags |=
9047
KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
9048
run->emulation_failure.insn_size = insn_size;
9049
memset(run->emulation_failure.insn_bytes, 0x90,
9050
sizeof(run->emulation_failure.insn_bytes));
9051
memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
9052
}
9053
9054
memcpy(&run->internal.data[info_start], info, sizeof(info));
9055
memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
9056
ndata * sizeof(data[0]));
9057
9058
run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
9059
}
9060
9061
static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
9062
{
9063
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9064
9065
prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
9066
ctxt->fetch.end - ctxt->fetch.data);
9067
}
9068
9069
void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9070
u8 ndata)
9071
{
9072
prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
9073
}
9074
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_prepare_emulation_failure_exit);
9075
9076
void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
9077
{
9078
__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
9079
}
9080
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_emulation_failure_exit);
9081
9082
void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
9083
{
9084
u32 reason, intr_info, error_code;
9085
struct kvm_run *run = vcpu->run;
9086
u64 info1, info2;
9087
int ndata = 0;
9088
9089
kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
9090
&intr_info, &error_code);
9091
9092
run->internal.data[ndata++] = info2;
9093
run->internal.data[ndata++] = reason;
9094
run->internal.data[ndata++] = info1;
9095
run->internal.data[ndata++] = gpa;
9096
run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
9097
9098
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9099
run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
9100
run->internal.ndata = ndata;
9101
}
9102
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_event_vectoring_exit);
9103
9104
void kvm_prepare_unexpected_reason_exit(struct kvm_vcpu *vcpu, u64 exit_reason)
9105
{
9106
vcpu_unimpl(vcpu, "unexpected exit reason 0x%llx\n", exit_reason);
9107
9108
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9109
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
9110
vcpu->run->internal.ndata = 2;
9111
vcpu->run->internal.data[0] = exit_reason;
9112
vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
9113
}
9114
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_unexpected_reason_exit);
9115
9116
static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
9117
{
9118
struct kvm *kvm = vcpu->kvm;
9119
9120
++vcpu->stat.insn_emulation_fail;
9121
trace_kvm_emulate_insn_failed(vcpu);
9122
9123
if (emulation_type & EMULTYPE_VMWARE_GP) {
9124
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9125
return 1;
9126
}
9127
9128
if (kvm->arch.exit_on_emulation_error ||
9129
(emulation_type & EMULTYPE_SKIP)) {
9130
prepare_emulation_ctxt_failure_exit(vcpu);
9131
return 0;
9132
}
9133
9134
kvm_queue_exception(vcpu, UD_VECTOR);
9135
9136
if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
9137
prepare_emulation_ctxt_failure_exit(vcpu);
9138
return 0;
9139
}
9140
9141
return 1;
9142
}
9143
9144
static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
9145
gpa_t cr2_or_gpa,
9146
int emulation_type)
9147
{
9148
if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
9149
return false;
9150
9151
/*
9152
* If the failed instruction faulted on an access to page tables that
9153
* are used to translate any part of the instruction, KVM can't resolve
9154
* the issue by unprotecting the gfn, as zapping the shadow page will
9155
* result in the instruction taking a !PRESENT page fault and thus put
9156
* the vCPU into an infinite loop of page faults. E.g. KVM will create
9157
* a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
9158
* then zap the SPTE to unprotect the gfn, and then do it all over
9159
* again. Report the error to userspace.
9160
*/
9161
if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
9162
return false;
9163
9164
/*
9165
* If emulation may have been triggered by a write to a shadowed page
9166
* table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
9167
* guest to let the CPU re-execute the instruction in the hope that the
9168
* CPU can cleanly execute the instruction that KVM failed to emulate.
9169
*/
9170
__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
9171
9172
/*
9173
* Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
9174
* all SPTEs were already zapped by a different task. The alternative
9175
* is to report the error to userspace and likely terminate the guest,
9176
* and the last_retry_{eip,addr} checks will prevent retrying the page
9177
* fault indefinitely, i.e. there's nothing to lose by retrying.
9178
*/
9179
return true;
9180
}
9181
9182
static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
9183
static int complete_emulated_pio(struct kvm_vcpu *vcpu);
9184
9185
static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
9186
unsigned long *db)
9187
{
9188
u32 dr6 = 0;
9189
int i;
9190
u32 enable, rwlen;
9191
9192
enable = dr7;
9193
rwlen = dr7 >> 16;
9194
for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
9195
if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
9196
dr6 |= (1 << i);
9197
return dr6;
9198
}
9199
9200
static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
9201
{
9202
struct kvm_run *kvm_run = vcpu->run;
9203
9204
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
9205
kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
9206
kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
9207
kvm_run->debug.arch.exception = DB_VECTOR;
9208
kvm_run->exit_reason = KVM_EXIT_DEBUG;
9209
return 0;
9210
}
9211
kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
9212
return 1;
9213
}
9214
9215
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
9216
{
9217
unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9218
int r;
9219
9220
r = kvm_x86_call(skip_emulated_instruction)(vcpu);
9221
if (unlikely(!r))
9222
return 0;
9223
9224
kvm_pmu_instruction_retired(vcpu);
9225
9226
/*
9227
* rflags is the old, "raw" value of the flags. The new value has
9228
* not been saved yet.
9229
*
9230
* This is correct even for TF set by the guest, because "the
9231
* processor will not generate this exception after the instruction
9232
* that sets the TF flag".
9233
*/
9234
if (unlikely(rflags & X86_EFLAGS_TF))
9235
r = kvm_vcpu_do_singlestep(vcpu);
9236
return r;
9237
}
9238
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_skip_emulated_instruction);
9239
9240
static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9241
{
9242
if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9243
return true;
9244
9245
/*
9246
* Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
9247
* active, but AMD compatible CPUs do not.
9248
*/
9249
if (!guest_cpuid_is_intel_compatible(vcpu))
9250
return false;
9251
9252
return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
9253
}
9254
9255
static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9256
int emulation_type, int *r)
9257
{
9258
WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9259
9260
/*
9261
* Do not check for code breakpoints if hardware has already done the
9262
* checks, as inferred from the emulation type. On NO_DECODE and SKIP,
9263
* the instruction has passed all exception checks, and all intercepted
9264
* exceptions that trigger emulation have lower priority than code
9265
* breakpoints, i.e. the fact that the intercepted exception occurred
9266
* means any code breakpoints have already been serviced.
9267
*
9268
* Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9269
* hardware has checked the RIP of the magic prefix, but not the RIP of
9270
* the instruction being emulated. The intent of forced emulation is
9271
* to behave as if KVM intercepted the instruction without an exception
9272
* and without a prefix.
9273
*/
9274
if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9275
EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9276
return false;
9277
9278
if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9279
(vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9280
struct kvm_run *kvm_run = vcpu->run;
9281
unsigned long eip = kvm_get_linear_rip(vcpu);
9282
u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9283
vcpu->arch.guest_debug_dr7,
9284
vcpu->arch.eff_db);
9285
9286
if (dr6 != 0) {
9287
kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9288
kvm_run->debug.arch.pc = eip;
9289
kvm_run->debug.arch.exception = DB_VECTOR;
9290
kvm_run->exit_reason = KVM_EXIT_DEBUG;
9291
*r = 0;
9292
return true;
9293
}
9294
}
9295
9296
if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9297
!kvm_is_code_breakpoint_inhibited(vcpu)) {
9298
unsigned long eip = kvm_get_linear_rip(vcpu);
9299
u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9300
vcpu->arch.dr7,
9301
vcpu->arch.db);
9302
9303
if (dr6 != 0) {
9304
kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9305
*r = 1;
9306
return true;
9307
}
9308
}
9309
9310
return false;
9311
}
9312
9313
static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9314
{
9315
switch (ctxt->opcode_len) {
9316
case 1:
9317
switch (ctxt->b) {
9318
case 0xe4: /* IN */
9319
case 0xe5:
9320
case 0xec:
9321
case 0xed:
9322
case 0xe6: /* OUT */
9323
case 0xe7:
9324
case 0xee:
9325
case 0xef:
9326
case 0x6c: /* INS */
9327
case 0x6d:
9328
case 0x6e: /* OUTS */
9329
case 0x6f:
9330
return true;
9331
}
9332
break;
9333
case 2:
9334
switch (ctxt->b) {
9335
case 0x33: /* RDPMC */
9336
return true;
9337
}
9338
break;
9339
}
9340
9341
return false;
9342
}
9343
9344
static bool is_soft_int_instruction(struct x86_emulate_ctxt *ctxt,
9345
int emulation_type)
9346
{
9347
u8 vector = EMULTYPE_GET_SOFT_INT_VECTOR(emulation_type);
9348
9349
switch (ctxt->b) {
9350
case 0xcc:
9351
return vector == BP_VECTOR;
9352
case 0xcd:
9353
return vector == ctxt->src.val;
9354
case 0xce:
9355
return vector == OF_VECTOR;
9356
default:
9357
return false;
9358
}
9359
}
9360
9361
/*
9362
* Decode an instruction for emulation. The caller is responsible for handling
9363
* code breakpoints. Note, manually detecting code breakpoints is unnecessary
9364
* (and wrong) when emulating on an intercepted fault-like exception[*], as
9365
* code breakpoints have higher priority and thus have already been done by
9366
* hardware.
9367
*
9368
* [*] Except #MC, which is higher priority, but KVM should never emulate in
9369
* response to a machine check.
9370
*/
9371
int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9372
void *insn, int insn_len)
9373
{
9374
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9375
int r;
9376
9377
init_emulate_ctxt(vcpu);
9378
9379
r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9380
9381
trace_kvm_emulate_insn_start(vcpu);
9382
++vcpu->stat.insn_emulation;
9383
9384
return r;
9385
}
9386
EXPORT_SYMBOL_FOR_KVM_INTERNAL(x86_decode_emulated_instruction);
9387
9388
int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9389
int emulation_type, void *insn, int insn_len)
9390
{
9391
int r;
9392
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9393
bool writeback = true;
9394
9395
if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9396
(WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9397
WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9398
emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9399
9400
r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9401
if (r != X86EMUL_CONTINUE) {
9402
if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9403
return 1;
9404
9405
if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9406
emulation_type))
9407
return 1;
9408
9409
if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9410
kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9411
return 0;
9412
}
9413
9414
WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9415
return handle_emulation_failure(vcpu, emulation_type);
9416
}
9417
9418
kvm_request_l1tf_flush_l1d();
9419
9420
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9421
kvm_clear_exception_queue(vcpu);
9422
9423
/*
9424
* Return immediately if RIP hits a code breakpoint, such #DBs
9425
* are fault-like and are higher priority than any faults on
9426
* the code fetch itself.
9427
*/
9428
if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9429
return r;
9430
9431
r = x86_decode_emulated_instruction(vcpu, emulation_type,
9432
insn, insn_len);
9433
if (r != EMULATION_OK) {
9434
if ((emulation_type & EMULTYPE_TRAP_UD) ||
9435
(emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9436
kvm_queue_exception(vcpu, UD_VECTOR);
9437
return 1;
9438
}
9439
if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9440
emulation_type))
9441
return 1;
9442
9443
if (ctxt->have_exception &&
9444
!(emulation_type & EMULTYPE_SKIP)) {
9445
/*
9446
* #UD should result in just EMULATION_FAILED, and trap-like
9447
* exception should not be encountered during decode.
9448
*/
9449
WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9450
exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9451
inject_emulated_exception(vcpu);
9452
return 1;
9453
}
9454
return handle_emulation_failure(vcpu, emulation_type);
9455
}
9456
}
9457
9458
if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9459
!is_vmware_backdoor_opcode(ctxt)) {
9460
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9461
return 1;
9462
}
9463
9464
/*
9465
* EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9466
* use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9467
* The caller is responsible for updating interruptibility state and
9468
* injecting single-step #DBs.
9469
*/
9470
if (emulation_type & EMULTYPE_SKIP) {
9471
if (emulation_type & EMULTYPE_SKIP_SOFT_INT &&
9472
!is_soft_int_instruction(ctxt, emulation_type))
9473
return 0;
9474
9475
if (ctxt->mode != X86EMUL_MODE_PROT64)
9476
ctxt->eip = (u32)ctxt->_eip;
9477
else
9478
ctxt->eip = ctxt->_eip;
9479
9480
if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9481
r = 1;
9482
goto writeback;
9483
}
9484
9485
kvm_rip_write(vcpu, ctxt->eip);
9486
if (ctxt->eflags & X86_EFLAGS_RF)
9487
kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9488
return 1;
9489
}
9490
9491
/*
9492
* If emulation was caused by a write-protection #PF on a non-page_table
9493
* writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9494
* and retry the instruction, as the vCPU is likely no longer using the
9495
* gfn as a page table.
9496
*/
9497
if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9498
!x86_page_table_writing_insn(ctxt) &&
9499
kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9500
return 1;
9501
9502
/* this is needed for vmware backdoor interface to work since it
9503
changes registers values during IO operation */
9504
if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9505
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9506
emulator_invalidate_register_cache(ctxt);
9507
}
9508
9509
restart:
9510
if (emulation_type & EMULTYPE_PF) {
9511
/* Save the faulting GPA (cr2) in the address field */
9512
ctxt->exception.address = cr2_or_gpa;
9513
9514
/* With shadow page tables, cr2 contains a GVA or nGPA. */
9515
if (vcpu->arch.mmu->root_role.direct) {
9516
ctxt->gpa_available = true;
9517
ctxt->gpa_val = cr2_or_gpa;
9518
}
9519
} else {
9520
/* Sanitize the address out of an abundance of paranoia. */
9521
ctxt->exception.address = 0;
9522
}
9523
9524
/*
9525
* Check L1's instruction intercepts when emulating instructions for
9526
* L2, unless KVM is re-emulating a previously decoded instruction,
9527
* e.g. to complete userspace I/O, in which case KVM has already
9528
* checked the intercepts.
9529
*/
9530
r = x86_emulate_insn(ctxt, is_guest_mode(vcpu) &&
9531
!(emulation_type & EMULTYPE_NO_DECODE));
9532
9533
if (r == EMULATION_INTERCEPTED)
9534
return 1;
9535
9536
if (r == EMULATION_FAILED) {
9537
if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9538
emulation_type))
9539
return 1;
9540
9541
return handle_emulation_failure(vcpu, emulation_type);
9542
}
9543
9544
if (ctxt->have_exception) {
9545
WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9546
vcpu->mmio_needed = false;
9547
r = 1;
9548
inject_emulated_exception(vcpu);
9549
} else if (vcpu->arch.pio.count) {
9550
if (!vcpu->arch.pio.in) {
9551
/* FIXME: return into emulator if single-stepping. */
9552
vcpu->arch.pio.count = 0;
9553
} else {
9554
writeback = false;
9555
vcpu->arch.complete_userspace_io = complete_emulated_pio;
9556
}
9557
r = 0;
9558
} else if (vcpu->mmio_needed) {
9559
++vcpu->stat.mmio_exits;
9560
9561
if (!vcpu->mmio_is_write)
9562
writeback = false;
9563
r = 0;
9564
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9565
} else if (vcpu->arch.complete_userspace_io) {
9566
writeback = false;
9567
r = 0;
9568
} else if (r == EMULATION_RESTART)
9569
goto restart;
9570
else
9571
r = 1;
9572
9573
writeback:
9574
if (writeback) {
9575
unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9576
toggle_interruptibility(vcpu, ctxt->interruptibility);
9577
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9578
9579
/*
9580
* Note, EXCPT_DB is assumed to be fault-like as the emulator
9581
* only supports code breakpoints and general detect #DB, both
9582
* of which are fault-like.
9583
*/
9584
if (!ctxt->have_exception ||
9585
exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9586
kvm_pmu_instruction_retired(vcpu);
9587
if (ctxt->is_branch)
9588
kvm_pmu_branch_retired(vcpu);
9589
kvm_rip_write(vcpu, ctxt->eip);
9590
if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9591
r = kvm_vcpu_do_singlestep(vcpu);
9592
kvm_x86_call(update_emulated_instruction)(vcpu);
9593
__kvm_set_rflags(vcpu, ctxt->eflags);
9594
}
9595
9596
/*
9597
* For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9598
* do nothing, and it will be requested again as soon as
9599
* the shadow expires. But we still need to check here,
9600
* because POPF has no interrupt shadow.
9601
*/
9602
if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9603
kvm_make_request(KVM_REQ_EVENT, vcpu);
9604
} else
9605
vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9606
9607
return r;
9608
}
9609
9610
int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9611
{
9612
return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9613
}
9614
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction);
9615
9616
int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9617
void *insn, int insn_len)
9618
{
9619
return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9620
}
9621
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction_from_buffer);
9622
9623
static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9624
{
9625
vcpu->arch.pio.count = 0;
9626
return 1;
9627
}
9628
9629
static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9630
{
9631
vcpu->arch.pio.count = 0;
9632
9633
if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)))
9634
return 1;
9635
9636
return kvm_skip_emulated_instruction(vcpu);
9637
}
9638
9639
static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9640
unsigned short port)
9641
{
9642
unsigned long val = kvm_rax_read(vcpu);
9643
int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9644
9645
if (ret)
9646
return ret;
9647
9648
/*
9649
* Workaround userspace that relies on old KVM behavior of %rip being
9650
* incremented prior to exiting to userspace to handle "OUT 0x7e".
9651
*/
9652
if (port == 0x7e &&
9653
kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9654
vcpu->arch.complete_userspace_io =
9655
complete_fast_pio_out_port_0x7e;
9656
kvm_skip_emulated_instruction(vcpu);
9657
} else {
9658
vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9659
vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9660
}
9661
return 0;
9662
}
9663
9664
static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9665
{
9666
unsigned long val;
9667
9668
/* We should only ever be called with arch.pio.count equal to 1 */
9669
BUG_ON(vcpu->arch.pio.count != 1);
9670
9671
if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) {
9672
vcpu->arch.pio.count = 0;
9673
return 1;
9674
}
9675
9676
/* For size less than 4 we merge, else we zero extend */
9677
val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9678
9679
complete_emulator_pio_in(vcpu, &val);
9680
kvm_rax_write(vcpu, val);
9681
9682
return kvm_skip_emulated_instruction(vcpu);
9683
}
9684
9685
static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9686
unsigned short port)
9687
{
9688
unsigned long val;
9689
int ret;
9690
9691
/* For size less than 4 we merge, else we zero extend */
9692
val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9693
9694
ret = emulator_pio_in(vcpu, size, port, &val, 1);
9695
if (ret) {
9696
kvm_rax_write(vcpu, val);
9697
return ret;
9698
}
9699
9700
vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9701
vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9702
9703
return 0;
9704
}
9705
9706
int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9707
{
9708
int ret;
9709
9710
if (in)
9711
ret = kvm_fast_pio_in(vcpu, size, port);
9712
else
9713
ret = kvm_fast_pio_out(vcpu, size, port);
9714
return ret && kvm_skip_emulated_instruction(vcpu);
9715
}
9716
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fast_pio);
9717
9718
static int kvmclock_cpu_down_prep(unsigned int cpu)
9719
{
9720
__this_cpu_write(cpu_tsc_khz, 0);
9721
return 0;
9722
}
9723
9724
static void tsc_khz_changed(void *data)
9725
{
9726
struct cpufreq_freqs *freq = data;
9727
unsigned long khz;
9728
9729
WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9730
9731
if (data)
9732
khz = freq->new;
9733
else
9734
khz = cpufreq_quick_get(raw_smp_processor_id());
9735
if (!khz)
9736
khz = tsc_khz;
9737
__this_cpu_write(cpu_tsc_khz, khz);
9738
}
9739
9740
#ifdef CONFIG_X86_64
9741
static void kvm_hyperv_tsc_notifier(void)
9742
{
9743
struct kvm *kvm;
9744
int cpu;
9745
9746
mutex_lock(&kvm_lock);
9747
list_for_each_entry(kvm, &vm_list, vm_list)
9748
kvm_make_mclock_inprogress_request(kvm);
9749
9750
/* no guest entries from this point */
9751
hyperv_stop_tsc_emulation();
9752
9753
/* TSC frequency always matches when on Hyper-V */
9754
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9755
for_each_present_cpu(cpu)
9756
per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9757
}
9758
kvm_caps.max_guest_tsc_khz = tsc_khz;
9759
9760
list_for_each_entry(kvm, &vm_list, vm_list) {
9761
__kvm_start_pvclock_update(kvm);
9762
pvclock_update_vm_gtod_copy(kvm);
9763
kvm_end_pvclock_update(kvm);
9764
}
9765
9766
mutex_unlock(&kvm_lock);
9767
}
9768
#endif
9769
9770
static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9771
{
9772
struct kvm *kvm;
9773
struct kvm_vcpu *vcpu;
9774
int send_ipi = 0;
9775
unsigned long i;
9776
9777
/*
9778
* We allow guests to temporarily run on slowing clocks,
9779
* provided we notify them after, or to run on accelerating
9780
* clocks, provided we notify them before. Thus time never
9781
* goes backwards.
9782
*
9783
* However, we have a problem. We can't atomically update
9784
* the frequency of a given CPU from this function; it is
9785
* merely a notifier, which can be called from any CPU.
9786
* Changing the TSC frequency at arbitrary points in time
9787
* requires a recomputation of local variables related to
9788
* the TSC for each VCPU. We must flag these local variables
9789
* to be updated and be sure the update takes place with the
9790
* new frequency before any guests proceed.
9791
*
9792
* Unfortunately, the combination of hotplug CPU and frequency
9793
* change creates an intractable locking scenario; the order
9794
* of when these callouts happen is undefined with respect to
9795
* CPU hotplug, and they can race with each other. As such,
9796
* merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9797
* undefined; you can actually have a CPU frequency change take
9798
* place in between the computation of X and the setting of the
9799
* variable. To protect against this problem, all updates of
9800
* the per_cpu tsc_khz variable are done in an interrupt
9801
* protected IPI, and all callers wishing to update the value
9802
* must wait for a synchronous IPI to complete (which is trivial
9803
* if the caller is on the CPU already). This establishes the
9804
* necessary total order on variable updates.
9805
*
9806
* Note that because a guest time update may take place
9807
* anytime after the setting of the VCPU's request bit, the
9808
* correct TSC value must be set before the request. However,
9809
* to ensure the update actually makes it to any guest which
9810
* starts running in hardware virtualization between the set
9811
* and the acquisition of the spinlock, we must also ping the
9812
* CPU after setting the request bit.
9813
*
9814
*/
9815
9816
smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9817
9818
mutex_lock(&kvm_lock);
9819
list_for_each_entry(kvm, &vm_list, vm_list) {
9820
kvm_for_each_vcpu(i, vcpu, kvm) {
9821
if (vcpu->cpu != cpu)
9822
continue;
9823
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9824
if (vcpu->cpu != raw_smp_processor_id())
9825
send_ipi = 1;
9826
}
9827
}
9828
mutex_unlock(&kvm_lock);
9829
9830
if (freq->old < freq->new && send_ipi) {
9831
/*
9832
* We upscale the frequency. Must make the guest
9833
* doesn't see old kvmclock values while running with
9834
* the new frequency, otherwise we risk the guest sees
9835
* time go backwards.
9836
*
9837
* In case we update the frequency for another cpu
9838
* (which might be in guest context) send an interrupt
9839
* to kick the cpu out of guest context. Next time
9840
* guest context is entered kvmclock will be updated,
9841
* so the guest will not see stale values.
9842
*/
9843
smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9844
}
9845
}
9846
9847
static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9848
void *data)
9849
{
9850
struct cpufreq_freqs *freq = data;
9851
int cpu;
9852
9853
if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9854
return 0;
9855
if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9856
return 0;
9857
9858
for_each_cpu(cpu, freq->policy->cpus)
9859
__kvmclock_cpufreq_notifier(freq, cpu);
9860
9861
return 0;
9862
}
9863
9864
static struct notifier_block kvmclock_cpufreq_notifier_block = {
9865
.notifier_call = kvmclock_cpufreq_notifier
9866
};
9867
9868
static int kvmclock_cpu_online(unsigned int cpu)
9869
{
9870
tsc_khz_changed(NULL);
9871
return 0;
9872
}
9873
9874
static void kvm_timer_init(void)
9875
{
9876
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9877
max_tsc_khz = tsc_khz;
9878
9879
if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9880
struct cpufreq_policy *policy;
9881
int cpu;
9882
9883
cpu = get_cpu();
9884
policy = cpufreq_cpu_get(cpu);
9885
if (policy) {
9886
if (policy->cpuinfo.max_freq)
9887
max_tsc_khz = policy->cpuinfo.max_freq;
9888
cpufreq_cpu_put(policy);
9889
}
9890
put_cpu();
9891
}
9892
cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9893
CPUFREQ_TRANSITION_NOTIFIER);
9894
9895
cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9896
kvmclock_cpu_online, kvmclock_cpu_down_prep);
9897
}
9898
}
9899
9900
#ifdef CONFIG_X86_64
9901
static void pvclock_gtod_update_fn(struct work_struct *work)
9902
{
9903
struct kvm *kvm;
9904
struct kvm_vcpu *vcpu;
9905
unsigned long i;
9906
9907
mutex_lock(&kvm_lock);
9908
list_for_each_entry(kvm, &vm_list, vm_list)
9909
kvm_for_each_vcpu(i, vcpu, kvm)
9910
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9911
atomic_set(&kvm_guest_has_master_clock, 0);
9912
mutex_unlock(&kvm_lock);
9913
}
9914
9915
static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9916
9917
/*
9918
* Indirection to move queue_work() out of the tk_core.seq write held
9919
* region to prevent possible deadlocks against time accessors which
9920
* are invoked with work related locks held.
9921
*/
9922
static void pvclock_irq_work_fn(struct irq_work *w)
9923
{
9924
queue_work(system_long_wq, &pvclock_gtod_work);
9925
}
9926
9927
static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9928
9929
/*
9930
* Notification about pvclock gtod data update.
9931
*/
9932
static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9933
void *priv)
9934
{
9935
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9936
struct timekeeper *tk = priv;
9937
9938
update_pvclock_gtod(tk);
9939
9940
/*
9941
* Disable master clock if host does not trust, or does not use,
9942
* TSC based clocksource. Delegate queue_work() to irq_work as
9943
* this is invoked with tk_core.seq write held.
9944
*/
9945
if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9946
atomic_read(&kvm_guest_has_master_clock) != 0)
9947
irq_work_queue(&pvclock_irq_work);
9948
return 0;
9949
}
9950
9951
static struct notifier_block pvclock_gtod_notifier = {
9952
.notifier_call = pvclock_gtod_notify,
9953
};
9954
#endif
9955
9956
void kvm_setup_xss_caps(void)
9957
{
9958
if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9959
kvm_caps.supported_xss = 0;
9960
9961
if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
9962
!kvm_cpu_cap_has(X86_FEATURE_IBT))
9963
kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
9964
9965
if ((kvm_caps.supported_xss & XFEATURE_MASK_CET_ALL) != XFEATURE_MASK_CET_ALL) {
9966
kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
9967
kvm_cpu_cap_clear(X86_FEATURE_IBT);
9968
kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
9969
}
9970
}
9971
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_setup_xss_caps);
9972
9973
static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9974
{
9975
memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9976
9977
#define __KVM_X86_OP(func) \
9978
static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9979
#define KVM_X86_OP(func) \
9980
WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9981
#define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9982
#define KVM_X86_OP_OPTIONAL_RET0(func) \
9983
static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9984
(void *)__static_call_return0);
9985
#include <asm/kvm-x86-ops.h>
9986
#undef __KVM_X86_OP
9987
9988
kvm_pmu_ops_update(ops->pmu_ops);
9989
}
9990
9991
static int kvm_x86_check_processor_compatibility(void)
9992
{
9993
int cpu = smp_processor_id();
9994
struct cpuinfo_x86 *c = &cpu_data(cpu);
9995
9996
/*
9997
* Compatibility checks are done when loading KVM and when enabling
9998
* hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9999
* compatible, i.e. KVM should never perform a compatibility check on
10000
* an offline CPU.
10001
*/
10002
WARN_ON(!cpu_online(cpu));
10003
10004
if (__cr4_reserved_bits(cpu_has, c) !=
10005
__cr4_reserved_bits(cpu_has, &boot_cpu_data))
10006
return -EIO;
10007
10008
return kvm_x86_call(check_processor_compatibility)();
10009
}
10010
10011
static void kvm_x86_check_cpu_compat(void *ret)
10012
{
10013
*(int *)ret = kvm_x86_check_processor_compatibility();
10014
}
10015
10016
int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
10017
{
10018
u64 host_pat;
10019
int r, cpu;
10020
10021
guard(mutex)(&vendor_module_lock);
10022
10023
if (kvm_x86_ops.enable_virtualization_cpu) {
10024
pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
10025
return -EEXIST;
10026
}
10027
10028
/*
10029
* KVM explicitly assumes that the guest has an FPU and
10030
* FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
10031
* vCPU's FPU state as a fxregs_state struct.
10032
*/
10033
if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
10034
pr_err("inadequate fpu\n");
10035
return -EOPNOTSUPP;
10036
}
10037
10038
if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
10039
pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
10040
return -EOPNOTSUPP;
10041
}
10042
10043
/*
10044
* KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
10045
* the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
10046
* other than WB. Note, EPT doesn't utilize the PAT, but don't bother
10047
* with an exception. PAT[0] is set to WB on RESET and also by the
10048
* kernel, i.e. failure indicates a kernel bug or broken firmware.
10049
*/
10050
if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) ||
10051
(host_pat & GENMASK(2, 0)) != 6) {
10052
pr_err("host PAT[0] is not WB\n");
10053
return -EIO;
10054
}
10055
10056
if (boot_cpu_has(X86_FEATURE_SHSTK) || boot_cpu_has(X86_FEATURE_IBT)) {
10057
rdmsrq(MSR_IA32_S_CET, kvm_host.s_cet);
10058
/*
10059
* Linux doesn't yet support supervisor shadow stacks (SSS), so
10060
* KVM doesn't save/restore the associated MSRs, i.e. KVM may
10061
* clobber the host values. Yell and refuse to load if SSS is
10062
* unexpectedly enabled, e.g. to avoid crashing the host.
10063
*/
10064
if (WARN_ON_ONCE(kvm_host.s_cet & CET_SHSTK_EN))
10065
return -EIO;
10066
}
10067
10068
memset(&kvm_caps, 0, sizeof(kvm_caps));
10069
10070
x86_emulator_cache = kvm_alloc_emulator_cache();
10071
if (!x86_emulator_cache) {
10072
pr_err("failed to allocate cache for x86 emulator\n");
10073
return -ENOMEM;
10074
}
10075
10076
r = kvm_mmu_vendor_module_init();
10077
if (r)
10078
goto out_free_x86_emulator_cache;
10079
10080
kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
10081
kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
10082
10083
if (boot_cpu_has(X86_FEATURE_XSAVE)) {
10084
kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
10085
kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
10086
}
10087
10088
if (boot_cpu_has(X86_FEATURE_XSAVES)) {
10089
rdmsrq(MSR_IA32_XSS, kvm_host.xss);
10090
kvm_caps.supported_xss = kvm_host.xss & KVM_SUPPORTED_XSS;
10091
}
10092
10093
kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS;
10094
kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS;
10095
10096
rdmsrq_safe(MSR_EFER, &kvm_host.efer);
10097
10098
kvm_init_pmu_capability(ops->pmu_ops);
10099
10100
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
10101
rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
10102
10103
WARN_ON_ONCE(kvm_nr_uret_msrs);
10104
10105
r = ops->hardware_setup();
10106
if (r != 0)
10107
goto out_mmu_exit;
10108
10109
enable_device_posted_irqs &= enable_apicv &&
10110
irq_remapping_cap(IRQ_POSTING_CAP);
10111
10112
kvm_ops_update(ops);
10113
10114
for_each_online_cpu(cpu) {
10115
smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
10116
if (r < 0)
10117
goto out_unwind_ops;
10118
}
10119
10120
/*
10121
* Point of no return! DO NOT add error paths below this point unless
10122
* absolutely necessary, as most operations from this point forward
10123
* require unwinding.
10124
*/
10125
kvm_timer_init();
10126
10127
if (pi_inject_timer == -1)
10128
pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
10129
#ifdef CONFIG_X86_64
10130
pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
10131
10132
if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10133
set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
10134
#endif
10135
10136
kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
10137
10138
if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
10139
kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
10140
10141
/* KVM always ignores guest PAT for shadow paging. */
10142
if (!tdp_enabled)
10143
kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
10144
10145
if (kvm_caps.has_tsc_control) {
10146
/*
10147
* Make sure the user can only configure tsc_khz values that
10148
* fit into a signed integer.
10149
* A min value is not calculated because it will always
10150
* be 1 on all machines.
10151
*/
10152
u64 max = min(0x7fffffffULL,
10153
__scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
10154
kvm_caps.max_guest_tsc_khz = max;
10155
}
10156
kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
10157
kvm_init_msr_lists();
10158
return 0;
10159
10160
out_unwind_ops:
10161
kvm_x86_ops.enable_virtualization_cpu = NULL;
10162
kvm_x86_call(hardware_unsetup)();
10163
out_mmu_exit:
10164
kvm_destroy_user_return_msrs();
10165
kvm_mmu_vendor_module_exit();
10166
out_free_x86_emulator_cache:
10167
kmem_cache_destroy(x86_emulator_cache);
10168
return r;
10169
}
10170
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_init);
10171
10172
void kvm_x86_vendor_exit(void)
10173
{
10174
kvm_unregister_perf_callbacks();
10175
10176
#ifdef CONFIG_X86_64
10177
if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10178
clear_hv_tscchange_cb();
10179
#endif
10180
kvm_lapic_exit();
10181
10182
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
10183
cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
10184
CPUFREQ_TRANSITION_NOTIFIER);
10185
cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
10186
}
10187
#ifdef CONFIG_X86_64
10188
pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
10189
irq_work_sync(&pvclock_irq_work);
10190
cancel_work_sync(&pvclock_gtod_work);
10191
#endif
10192
kvm_x86_call(hardware_unsetup)();
10193
kvm_destroy_user_return_msrs();
10194
kvm_mmu_vendor_module_exit();
10195
kmem_cache_destroy(x86_emulator_cache);
10196
#ifdef CONFIG_KVM_XEN
10197
static_key_deferred_flush(&kvm_xen_enabled);
10198
WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
10199
#endif
10200
mutex_lock(&vendor_module_lock);
10201
kvm_x86_ops.enable_virtualization_cpu = NULL;
10202
mutex_unlock(&vendor_module_lock);
10203
}
10204
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_exit);
10205
10206
#ifdef CONFIG_X86_64
10207
static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
10208
unsigned long clock_type)
10209
{
10210
struct kvm_clock_pairing clock_pairing;
10211
struct timespec64 ts;
10212
u64 cycle;
10213
int ret;
10214
10215
if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
10216
return -KVM_EOPNOTSUPP;
10217
10218
/*
10219
* When tsc is in permanent catchup mode guests won't be able to use
10220
* pvclock_read_retry loop to get consistent view of pvclock
10221
*/
10222
if (vcpu->arch.tsc_always_catchup)
10223
return -KVM_EOPNOTSUPP;
10224
10225
if (!kvm_get_walltime_and_clockread(&ts, &cycle))
10226
return -KVM_EOPNOTSUPP;
10227
10228
clock_pairing.sec = ts.tv_sec;
10229
clock_pairing.nsec = ts.tv_nsec;
10230
clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
10231
clock_pairing.flags = 0;
10232
memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
10233
10234
ret = 0;
10235
if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
10236
sizeof(struct kvm_clock_pairing)))
10237
ret = -KVM_EFAULT;
10238
10239
return ret;
10240
}
10241
#endif
10242
10243
/*
10244
* kvm_pv_kick_cpu_op: Kick a vcpu.
10245
*
10246
* @apicid - apicid of vcpu to be kicked.
10247
*/
10248
static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
10249
{
10250
/*
10251
* All other fields are unused for APIC_DM_REMRD, but may be consumed by
10252
* common code, e.g. for tracing. Defer initialization to the compiler.
10253
*/
10254
struct kvm_lapic_irq lapic_irq = {
10255
.delivery_mode = APIC_DM_REMRD,
10256
.dest_mode = APIC_DEST_PHYSICAL,
10257
.shorthand = APIC_DEST_NOSHORT,
10258
.dest_id = apicid,
10259
};
10260
10261
kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
10262
}
10263
10264
bool kvm_apicv_activated(struct kvm *kvm)
10265
{
10266
return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
10267
}
10268
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apicv_activated);
10269
10270
bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10271
{
10272
ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10273
ulong vcpu_reasons =
10274
kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
10275
10276
return (vm_reasons | vcpu_reasons) == 0;
10277
}
10278
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_apicv_activated);
10279
10280
static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10281
enum kvm_apicv_inhibit reason, bool set)
10282
{
10283
const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
10284
10285
BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
10286
10287
if (set)
10288
__set_bit(reason, inhibits);
10289
else
10290
__clear_bit(reason, inhibits);
10291
10292
trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10293
}
10294
10295
static void kvm_apicv_init(struct kvm *kvm)
10296
{
10297
enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10298
APICV_INHIBIT_REASON_DISABLED;
10299
10300
set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10301
10302
init_rwsem(&kvm->arch.apicv_update_lock);
10303
}
10304
10305
static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10306
{
10307
struct kvm_vcpu *target = NULL;
10308
struct kvm_apic_map *map;
10309
10310
vcpu->stat.directed_yield_attempted++;
10311
10312
if (single_task_running())
10313
goto no_yield;
10314
10315
rcu_read_lock();
10316
map = rcu_dereference(vcpu->kvm->arch.apic_map);
10317
10318
if (likely(map) && dest_id <= map->max_apic_id) {
10319
dest_id = array_index_nospec(dest_id, map->max_apic_id + 1);
10320
if (map->phys_map[dest_id])
10321
target = map->phys_map[dest_id]->vcpu;
10322
}
10323
10324
rcu_read_unlock();
10325
10326
if (!target || !READ_ONCE(target->ready))
10327
goto no_yield;
10328
10329
/* Ignore requests to yield to self */
10330
if (vcpu == target)
10331
goto no_yield;
10332
10333
if (kvm_vcpu_yield_to(target) <= 0)
10334
goto no_yield;
10335
10336
vcpu->stat.directed_yield_successful++;
10337
10338
no_yield:
10339
return;
10340
}
10341
10342
static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10343
{
10344
u64 ret = vcpu->run->hypercall.ret;
10345
10346
if (!is_64_bit_hypercall(vcpu))
10347
ret = (u32)ret;
10348
kvm_rax_write(vcpu, ret);
10349
return kvm_skip_emulated_instruction(vcpu);
10350
}
10351
10352
int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
10353
int (*complete_hypercall)(struct kvm_vcpu *))
10354
{
10355
unsigned long ret;
10356
unsigned long nr = kvm_rax_read(vcpu);
10357
unsigned long a0 = kvm_rbx_read(vcpu);
10358
unsigned long a1 = kvm_rcx_read(vcpu);
10359
unsigned long a2 = kvm_rdx_read(vcpu);
10360
unsigned long a3 = kvm_rsi_read(vcpu);
10361
int op_64_bit = is_64_bit_hypercall(vcpu);
10362
10363
++vcpu->stat.hypercalls;
10364
10365
trace_kvm_hypercall(nr, a0, a1, a2, a3);
10366
10367
if (!op_64_bit) {
10368
nr &= 0xFFFFFFFF;
10369
a0 &= 0xFFFFFFFF;
10370
a1 &= 0xFFFFFFFF;
10371
a2 &= 0xFFFFFFFF;
10372
a3 &= 0xFFFFFFFF;
10373
}
10374
10375
if (cpl) {
10376
ret = -KVM_EPERM;
10377
goto out;
10378
}
10379
10380
ret = -KVM_ENOSYS;
10381
10382
switch (nr) {
10383
case KVM_HC_VAPIC_POLL_IRQ:
10384
ret = 0;
10385
break;
10386
case KVM_HC_KICK_CPU:
10387
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10388
break;
10389
10390
kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10391
kvm_sched_yield(vcpu, a1);
10392
ret = 0;
10393
break;
10394
#ifdef CONFIG_X86_64
10395
case KVM_HC_CLOCK_PAIRING:
10396
ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10397
break;
10398
#endif
10399
case KVM_HC_SEND_IPI:
10400
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10401
break;
10402
10403
ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10404
break;
10405
case KVM_HC_SCHED_YIELD:
10406
if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10407
break;
10408
10409
kvm_sched_yield(vcpu, a0);
10410
ret = 0;
10411
break;
10412
case KVM_HC_MAP_GPA_RANGE: {
10413
u64 gpa = a0, npages = a1, attrs = a2;
10414
10415
ret = -KVM_ENOSYS;
10416
if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10417
break;
10418
10419
if (!PAGE_ALIGNED(gpa) || !npages ||
10420
gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10421
ret = -KVM_EINVAL;
10422
break;
10423
}
10424
10425
vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10426
vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10427
/*
10428
* In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10429
* assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10430
* it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
10431
* vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10432
*/
10433
vcpu->run->hypercall.ret = 0;
10434
vcpu->run->hypercall.args[0] = gpa;
10435
vcpu->run->hypercall.args[1] = npages;
10436
vcpu->run->hypercall.args[2] = attrs;
10437
vcpu->run->hypercall.flags = 0;
10438
if (op_64_bit)
10439
vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10440
10441
WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10442
vcpu->arch.complete_userspace_io = complete_hypercall;
10443
return 0;
10444
}
10445
default:
10446
ret = -KVM_ENOSYS;
10447
break;
10448
}
10449
10450
out:
10451
vcpu->run->hypercall.ret = ret;
10452
return 1;
10453
}
10454
EXPORT_SYMBOL_FOR_KVM_INTERNAL(____kvm_emulate_hypercall);
10455
10456
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10457
{
10458
if (kvm_xen_hypercall_enabled(vcpu->kvm))
10459
return kvm_xen_hypercall(vcpu);
10460
10461
if (kvm_hv_hypercall_enabled(vcpu))
10462
return kvm_hv_hypercall(vcpu);
10463
10464
return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu),
10465
complete_hypercall_exit);
10466
}
10467
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_hypercall);
10468
10469
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10470
{
10471
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10472
char instruction[3];
10473
unsigned long rip = kvm_rip_read(vcpu);
10474
10475
/*
10476
* If the quirk is disabled, synthesize a #UD and let the guest pick up
10477
* the pieces.
10478
*/
10479
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10480
ctxt->exception.error_code_valid = false;
10481
ctxt->exception.vector = UD_VECTOR;
10482
ctxt->have_exception = true;
10483
return X86EMUL_PROPAGATE_FAULT;
10484
}
10485
10486
kvm_x86_call(patch_hypercall)(vcpu, instruction);
10487
10488
return emulator_write_emulated(ctxt, rip, instruction, 3,
10489
&ctxt->exception);
10490
}
10491
10492
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10493
{
10494
return vcpu->run->request_interrupt_window &&
10495
likely(!pic_in_kernel(vcpu->kvm));
10496
}
10497
10498
/* Called within kvm->srcu read side. */
10499
static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10500
{
10501
struct kvm_run *kvm_run = vcpu->run;
10502
10503
kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10504
kvm_run->cr8 = kvm_get_cr8(vcpu);
10505
kvm_run->apic_base = vcpu->arch.apic_base;
10506
10507
kvm_run->ready_for_interrupt_injection =
10508
pic_in_kernel(vcpu->kvm) ||
10509
kvm_vcpu_ready_for_interrupt_injection(vcpu);
10510
10511
if (is_smm(vcpu))
10512
kvm_run->flags |= KVM_RUN_X86_SMM;
10513
if (is_guest_mode(vcpu))
10514
kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10515
}
10516
10517
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10518
{
10519
int max_irr, tpr;
10520
10521
if (!kvm_x86_ops.update_cr8_intercept)
10522
return;
10523
10524
if (!lapic_in_kernel(vcpu))
10525
return;
10526
10527
if (vcpu->arch.apic->apicv_active)
10528
return;
10529
10530
if (!vcpu->arch.apic->vapic_addr)
10531
max_irr = kvm_lapic_find_highest_irr(vcpu);
10532
else
10533
max_irr = -1;
10534
10535
if (max_irr != -1)
10536
max_irr >>= 4;
10537
10538
tpr = kvm_lapic_get_cr8(vcpu);
10539
10540
kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10541
}
10542
10543
10544
int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10545
{
10546
if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10547
kvm_x86_ops.nested_ops->triple_fault(vcpu);
10548
return 1;
10549
}
10550
10551
return kvm_x86_ops.nested_ops->check_events(vcpu);
10552
}
10553
10554
static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10555
{
10556
/*
10557
* Suppress the error code if the vCPU is in Real Mode, as Real Mode
10558
* exceptions don't report error codes. The presence of an error code
10559
* is carried with the exception and only stripped when the exception
10560
* is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10561
* report an error code despite the CPU being in Real Mode.
10562
*/
10563
vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10564
10565
trace_kvm_inj_exception(vcpu->arch.exception.vector,
10566
vcpu->arch.exception.has_error_code,
10567
vcpu->arch.exception.error_code,
10568
vcpu->arch.exception.injected);
10569
10570
kvm_x86_call(inject_exception)(vcpu);
10571
}
10572
10573
/*
10574
* Check for any event (interrupt or exception) that is ready to be injected,
10575
* and if there is at least one event, inject the event with the highest
10576
* priority. This handles both "pending" events, i.e. events that have never
10577
* been injected into the guest, and "injected" events, i.e. events that were
10578
* injected as part of a previous VM-Enter, but weren't successfully delivered
10579
* and need to be re-injected.
10580
*
10581
* Note, this is not guaranteed to be invoked on a guest instruction boundary,
10582
* i.e. doesn't guarantee that there's an event window in the guest. KVM must
10583
* be able to inject exceptions in the "middle" of an instruction, and so must
10584
* also be able to re-inject NMIs and IRQs in the middle of an instruction.
10585
* I.e. for exceptions and re-injected events, NOT invoking this on instruction
10586
* boundaries is necessary and correct.
10587
*
10588
* For simplicity, KVM uses a single path to inject all events (except events
10589
* that are injected directly from L1 to L2) and doesn't explicitly track
10590
* instruction boundaries for asynchronous events. However, because VM-Exits
10591
* that can occur during instruction execution typically result in KVM skipping
10592
* the instruction or injecting an exception, e.g. instruction and exception
10593
* intercepts, and because pending exceptions have higher priority than pending
10594
* interrupts, KVM still honors instruction boundaries in most scenarios.
10595
*
10596
* But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10597
* the instruction or inject an exception, then KVM can incorrecty inject a new
10598
* asynchronous event if the event became pending after the CPU fetched the
10599
* instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10600
* occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10601
* injected on the restarted instruction instead of being deferred until the
10602
* instruction completes.
10603
*
10604
* In practice, this virtualization hole is unlikely to be observed by the
10605
* guest, and even less likely to cause functional problems. To detect the
10606
* hole, the guest would have to trigger an event on a side effect of an early
10607
* phase of instruction execution, e.g. on the instruction fetch from memory.
10608
* And for it to be a functional problem, the guest would need to depend on the
10609
* ordering between that side effect, the instruction completing, _and_ the
10610
* delivery of the asynchronous event.
10611
*/
10612
static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10613
bool *req_immediate_exit)
10614
{
10615
bool can_inject;
10616
int r;
10617
10618
/*
10619
* Process nested events first, as nested VM-Exit supersedes event
10620
* re-injection. If there's an event queued for re-injection, it will
10621
* be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10622
*/
10623
if (is_guest_mode(vcpu))
10624
r = kvm_check_nested_events(vcpu);
10625
else
10626
r = 0;
10627
10628
/*
10629
* Re-inject exceptions and events *especially* if immediate entry+exit
10630
* to/from L2 is needed, as any event that has already been injected
10631
* into L2 needs to complete its lifecycle before injecting a new event.
10632
*
10633
* Don't re-inject an NMI or interrupt if there is a pending exception.
10634
* This collision arises if an exception occurred while vectoring the
10635
* injected event, KVM intercepted said exception, and KVM ultimately
10636
* determined the fault belongs to the guest and queues the exception
10637
* for injection back into the guest.
10638
*
10639
* "Injected" interrupts can also collide with pending exceptions if
10640
* userspace ignores the "ready for injection" flag and blindly queues
10641
* an interrupt. In that case, prioritizing the exception is correct,
10642
* as the exception "occurred" before the exit to userspace. Trap-like
10643
* exceptions, e.g. most #DBs, have higher priority than interrupts.
10644
* And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10645
* priority, they're only generated (pended) during instruction
10646
* execution, and interrupts are recognized at instruction boundaries.
10647
* Thus a pending fault-like exception means the fault occurred on the
10648
* *previous* instruction and must be serviced prior to recognizing any
10649
* new events in order to fully complete the previous instruction.
10650
*/
10651
if (vcpu->arch.exception.injected)
10652
kvm_inject_exception(vcpu);
10653
else if (kvm_is_exception_pending(vcpu))
10654
; /* see above */
10655
else if (vcpu->arch.nmi_injected)
10656
kvm_x86_call(inject_nmi)(vcpu);
10657
else if (vcpu->arch.interrupt.injected)
10658
kvm_x86_call(inject_irq)(vcpu, true);
10659
10660
/*
10661
* Exceptions that morph to VM-Exits are handled above, and pending
10662
* exceptions on top of injected exceptions that do not VM-Exit should
10663
* either morph to #DF or, sadly, override the injected exception.
10664
*/
10665
WARN_ON_ONCE(vcpu->arch.exception.injected &&
10666
vcpu->arch.exception.pending);
10667
10668
/*
10669
* Bail if immediate entry+exit to/from the guest is needed to complete
10670
* nested VM-Enter or event re-injection so that a different pending
10671
* event can be serviced (or if KVM needs to exit to userspace).
10672
*
10673
* Otherwise, continue processing events even if VM-Exit occurred. The
10674
* VM-Exit will have cleared exceptions that were meant for L2, but
10675
* there may now be events that can be injected into L1.
10676
*/
10677
if (r < 0)
10678
goto out;
10679
10680
/*
10681
* A pending exception VM-Exit should either result in nested VM-Exit
10682
* or force an immediate re-entry and exit to/from L2, and exception
10683
* VM-Exits cannot be injected (flag should _never_ be set).
10684
*/
10685
WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10686
vcpu->arch.exception_vmexit.pending);
10687
10688
/*
10689
* New events, other than exceptions, cannot be injected if KVM needs
10690
* to re-inject a previous event. See above comments on re-injecting
10691
* for why pending exceptions get priority.
10692
*/
10693
can_inject = !kvm_event_needs_reinjection(vcpu);
10694
10695
if (vcpu->arch.exception.pending) {
10696
/*
10697
* Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10698
* value pushed on the stack. Trap-like exception and all #DBs
10699
* leave RF as-is (KVM follows Intel's behavior in this regard;
10700
* AMD states that code breakpoint #DBs excplitly clear RF=0).
10701
*
10702
* Note, most versions of Intel's SDM and AMD's APM incorrectly
10703
* describe the behavior of General Detect #DBs, which are
10704
* fault-like. They do _not_ set RF, a la code breakpoints.
10705
*/
10706
if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10707
__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10708
X86_EFLAGS_RF);
10709
10710
if (vcpu->arch.exception.vector == DB_VECTOR) {
10711
kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10712
if (vcpu->arch.dr7 & DR7_GD) {
10713
vcpu->arch.dr7 &= ~DR7_GD;
10714
kvm_update_dr7(vcpu);
10715
}
10716
}
10717
10718
kvm_inject_exception(vcpu);
10719
10720
vcpu->arch.exception.pending = false;
10721
vcpu->arch.exception.injected = true;
10722
10723
can_inject = false;
10724
}
10725
10726
/* Don't inject interrupts if the user asked to avoid doing so */
10727
if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10728
return 0;
10729
10730
/*
10731
* Finally, inject interrupt events. If an event cannot be injected
10732
* due to architectural conditions (e.g. IF=0) a window-open exit
10733
* will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10734
* and can architecturally be injected, but we cannot do it right now:
10735
* an interrupt could have arrived just now and we have to inject it
10736
* as a vmexit, or there could already an event in the queue, which is
10737
* indicated by can_inject. In that case we request an immediate exit
10738
* in order to make progress and get back here for another iteration.
10739
* The kvm_x86_ops hooks communicate this by returning -EBUSY.
10740
*/
10741
#ifdef CONFIG_KVM_SMM
10742
if (vcpu->arch.smi_pending) {
10743
r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10744
-EBUSY;
10745
if (r < 0)
10746
goto out;
10747
if (r) {
10748
vcpu->arch.smi_pending = false;
10749
++vcpu->arch.smi_count;
10750
enter_smm(vcpu);
10751
can_inject = false;
10752
} else
10753
kvm_x86_call(enable_smi_window)(vcpu);
10754
}
10755
#endif
10756
10757
if (vcpu->arch.nmi_pending) {
10758
r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10759
-EBUSY;
10760
if (r < 0)
10761
goto out;
10762
if (r) {
10763
--vcpu->arch.nmi_pending;
10764
vcpu->arch.nmi_injected = true;
10765
kvm_x86_call(inject_nmi)(vcpu);
10766
can_inject = false;
10767
WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10768
}
10769
if (vcpu->arch.nmi_pending)
10770
kvm_x86_call(enable_nmi_window)(vcpu);
10771
}
10772
10773
if (kvm_cpu_has_injectable_intr(vcpu)) {
10774
r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10775
-EBUSY;
10776
if (r < 0)
10777
goto out;
10778
if (r) {
10779
int irq = kvm_cpu_get_interrupt(vcpu);
10780
10781
if (!WARN_ON_ONCE(irq == -1)) {
10782
kvm_queue_interrupt(vcpu, irq, false);
10783
kvm_x86_call(inject_irq)(vcpu, false);
10784
WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10785
}
10786
}
10787
if (kvm_cpu_has_injectable_intr(vcpu))
10788
kvm_x86_call(enable_irq_window)(vcpu);
10789
}
10790
10791
if (is_guest_mode(vcpu) &&
10792
kvm_x86_ops.nested_ops->has_events &&
10793
kvm_x86_ops.nested_ops->has_events(vcpu, true))
10794
*req_immediate_exit = true;
10795
10796
/*
10797
* KVM must never queue a new exception while injecting an event; KVM
10798
* is done emulating and should only propagate the to-be-injected event
10799
* to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10800
* infinite loop as KVM will bail from VM-Enter to inject the pending
10801
* exception and start the cycle all over.
10802
*
10803
* Exempt triple faults as they have special handling and won't put the
10804
* vCPU into an infinite loop. Triple fault can be queued when running
10805
* VMX without unrestricted guest, as that requires KVM to emulate Real
10806
* Mode events (see kvm_inject_realmode_interrupt()).
10807
*/
10808
WARN_ON_ONCE(vcpu->arch.exception.pending ||
10809
vcpu->arch.exception_vmexit.pending);
10810
return 0;
10811
10812
out:
10813
if (r == -EBUSY) {
10814
*req_immediate_exit = true;
10815
r = 0;
10816
}
10817
return r;
10818
}
10819
10820
static void process_nmi(struct kvm_vcpu *vcpu)
10821
{
10822
unsigned int limit;
10823
10824
/*
10825
* x86 is limited to one NMI pending, but because KVM can't react to
10826
* incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10827
* scheduled out, KVM needs to play nice with two queued NMIs showing
10828
* up at the same time. To handle this scenario, allow two NMIs to be
10829
* (temporarily) pending so long as NMIs are not blocked and KVM is not
10830
* waiting for a previous NMI injection to complete (which effectively
10831
* blocks NMIs). KVM will immediately inject one of the two NMIs, and
10832
* will request an NMI window to handle the second NMI.
10833
*/
10834
if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10835
limit = 1;
10836
else
10837
limit = 2;
10838
10839
/*
10840
* Adjust the limit to account for pending virtual NMIs, which aren't
10841
* tracked in vcpu->arch.nmi_pending.
10842
*/
10843
if (kvm_x86_call(is_vnmi_pending)(vcpu))
10844
limit--;
10845
10846
vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10847
vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10848
10849
if (vcpu->arch.nmi_pending &&
10850
(kvm_x86_call(set_vnmi_pending)(vcpu)))
10851
vcpu->arch.nmi_pending--;
10852
10853
if (vcpu->arch.nmi_pending)
10854
kvm_make_request(KVM_REQ_EVENT, vcpu);
10855
}
10856
10857
/* Return total number of NMIs pending injection to the VM */
10858
int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10859
{
10860
return vcpu->arch.nmi_pending +
10861
kvm_x86_call(is_vnmi_pending)(vcpu);
10862
}
10863
10864
void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10865
unsigned long *vcpu_bitmap)
10866
{
10867
kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10868
}
10869
10870
void kvm_make_scan_ioapic_request(struct kvm *kvm)
10871
{
10872
kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10873
}
10874
10875
void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10876
{
10877
struct kvm_lapic *apic = vcpu->arch.apic;
10878
bool activate;
10879
10880
if (!lapic_in_kernel(vcpu))
10881
return;
10882
10883
down_read(&vcpu->kvm->arch.apicv_update_lock);
10884
preempt_disable();
10885
10886
/* Do not activate APICV when APIC is disabled */
10887
activate = kvm_vcpu_apicv_activated(vcpu) &&
10888
(kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10889
10890
if (apic->apicv_active == activate)
10891
goto out;
10892
10893
apic->apicv_active = activate;
10894
kvm_apic_update_apicv(vcpu);
10895
kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10896
10897
/*
10898
* When APICv gets disabled, we may still have injected interrupts
10899
* pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10900
* still active when the interrupt got accepted. Make sure
10901
* kvm_check_and_inject_events() is called to check for that.
10902
*
10903
* Update SVI when APICv gets enabled, otherwise SVI won't reflect the
10904
* highest bit in vISR and the next accelerated EOI in the guest won't
10905
* be virtualized correctly (the CPU uses SVI to determine which vISR
10906
* vector to clear).
10907
*/
10908
if (!apic->apicv_active)
10909
kvm_make_request(KVM_REQ_EVENT, vcpu);
10910
else
10911
kvm_apic_update_hwapic_isr(vcpu);
10912
10913
out:
10914
preempt_enable();
10915
up_read(&vcpu->kvm->arch.apicv_update_lock);
10916
}
10917
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_update_apicv);
10918
10919
static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10920
{
10921
if (!lapic_in_kernel(vcpu))
10922
return;
10923
10924
/*
10925
* Due to sharing page tables across vCPUs, the xAPIC memslot must be
10926
* deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10927
* and hardware doesn't support x2APIC virtualization. E.g. some AMD
10928
* CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10929
* this case so that KVM can use the AVIC doorbell to inject interrupts
10930
* to running vCPUs, but KVM must not create SPTEs for the APIC base as
10931
* the vCPU would incorrectly be able to access the vAPIC page via MMIO
10932
* despite being in x2APIC mode. For simplicity, inhibiting the APIC
10933
* access page is sticky.
10934
*/
10935
if (apic_x2apic_mode(vcpu->arch.apic) &&
10936
kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10937
kvm_inhibit_apic_access_page(vcpu);
10938
10939
__kvm_vcpu_update_apicv(vcpu);
10940
}
10941
10942
void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10943
enum kvm_apicv_inhibit reason, bool set)
10944
{
10945
unsigned long old, new;
10946
10947
lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10948
10949
if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10950
return;
10951
10952
old = new = kvm->arch.apicv_inhibit_reasons;
10953
10954
set_or_clear_apicv_inhibit(&new, reason, set);
10955
10956
if (!!old != !!new) {
10957
/*
10958
* Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10959
* false positives in the sanity check WARN in vcpu_enter_guest().
10960
* This task will wait for all vCPUs to ack the kick IRQ before
10961
* updating apicv_inhibit_reasons, and all other vCPUs will
10962
* block on acquiring apicv_update_lock so that vCPUs can't
10963
* redo vcpu_enter_guest() without seeing the new inhibit state.
10964
*
10965
* Note, holding apicv_update_lock and taking it in the read
10966
* side (handling the request) also prevents other vCPUs from
10967
* servicing the request with a stale apicv_inhibit_reasons.
10968
*/
10969
kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10970
kvm->arch.apicv_inhibit_reasons = new;
10971
if (new) {
10972
unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10973
int idx = srcu_read_lock(&kvm->srcu);
10974
10975
kvm_zap_gfn_range(kvm, gfn, gfn+1);
10976
srcu_read_unlock(&kvm->srcu, idx);
10977
}
10978
} else {
10979
kvm->arch.apicv_inhibit_reasons = new;
10980
}
10981
}
10982
10983
void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10984
enum kvm_apicv_inhibit reason, bool set)
10985
{
10986
if (!enable_apicv)
10987
return;
10988
10989
down_write(&kvm->arch.apicv_update_lock);
10990
__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10991
up_write(&kvm->arch.apicv_update_lock);
10992
}
10993
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_or_clear_apicv_inhibit);
10994
10995
static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10996
{
10997
if (!kvm_apic_present(vcpu))
10998
return;
10999
11000
bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
11001
vcpu->arch.highest_stale_pending_ioapic_eoi = -1;
11002
11003
kvm_x86_call(sync_pir_to_irr)(vcpu);
11004
11005
if (irqchip_split(vcpu->kvm))
11006
kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
11007
#ifdef CONFIG_KVM_IOAPIC
11008
else if (ioapic_in_kernel(vcpu->kvm))
11009
kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
11010
#endif
11011
11012
if (is_guest_mode(vcpu))
11013
vcpu->arch.load_eoi_exitmap_pending = true;
11014
else
11015
kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
11016
}
11017
11018
static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
11019
{
11020
if (!kvm_apic_hw_enabled(vcpu->arch.apic))
11021
return;
11022
11023
#ifdef CONFIG_KVM_HYPERV
11024
if (to_hv_vcpu(vcpu)) {
11025
u64 eoi_exit_bitmap[4];
11026
11027
bitmap_or((ulong *)eoi_exit_bitmap,
11028
vcpu->arch.ioapic_handled_vectors,
11029
to_hv_synic(vcpu)->vec_bitmap, 256);
11030
kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
11031
return;
11032
}
11033
#endif
11034
kvm_x86_call(load_eoi_exitmap)(
11035
vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
11036
}
11037
11038
void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
11039
{
11040
kvm_x86_call(guest_memory_reclaimed)(kvm);
11041
}
11042
11043
static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
11044
{
11045
if (!lapic_in_kernel(vcpu))
11046
return;
11047
11048
kvm_x86_call(set_apic_access_page_addr)(vcpu);
11049
}
11050
11051
/*
11052
* Called within kvm->srcu read side.
11053
* Returns 1 to let vcpu_run() continue the guest execution loop without
11054
* exiting to the userspace. Otherwise, the value will be returned to the
11055
* userspace.
11056
*/
11057
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
11058
{
11059
int r;
11060
bool req_int_win =
11061
dm_request_for_irq_injection(vcpu) &&
11062
kvm_cpu_accept_dm_intr(vcpu);
11063
fastpath_t exit_fastpath;
11064
u64 run_flags, debug_ctl;
11065
11066
bool req_immediate_exit = false;
11067
11068
if (kvm_request_pending(vcpu)) {
11069
if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
11070
r = -EIO;
11071
goto out;
11072
}
11073
11074
if (kvm_dirty_ring_check_request(vcpu)) {
11075
r = 0;
11076
goto out;
11077
}
11078
11079
if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
11080
if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
11081
r = 0;
11082
goto out;
11083
}
11084
}
11085
if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
11086
kvm_mmu_free_obsolete_roots(vcpu);
11087
if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
11088
__kvm_migrate_timers(vcpu);
11089
if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
11090
kvm_update_masterclock(vcpu->kvm);
11091
if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
11092
kvm_gen_kvmclock_update(vcpu);
11093
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
11094
r = kvm_guest_time_update(vcpu);
11095
if (unlikely(r))
11096
goto out;
11097
}
11098
if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
11099
kvm_mmu_sync_roots(vcpu);
11100
if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
11101
kvm_mmu_load_pgd(vcpu);
11102
11103
/*
11104
* Note, the order matters here, as flushing "all" TLB entries
11105
* also flushes the "current" TLB entries, i.e. servicing the
11106
* flush "all" will clear any request to flush "current".
11107
*/
11108
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
11109
kvm_vcpu_flush_tlb_all(vcpu);
11110
11111
kvm_service_local_tlb_flush_requests(vcpu);
11112
11113
/*
11114
* Fall back to a "full" guest flush if Hyper-V's precise
11115
* flushing fails. Note, Hyper-V's flushing is per-vCPU, but
11116
* the flushes are considered "remote" and not "local" because
11117
* the requests can be initiated from other vCPUs.
11118
*/
11119
#ifdef CONFIG_KVM_HYPERV
11120
if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
11121
kvm_hv_vcpu_flush_tlb(vcpu))
11122
kvm_vcpu_flush_tlb_guest(vcpu);
11123
#endif
11124
11125
if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
11126
vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
11127
r = 0;
11128
goto out;
11129
}
11130
if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11131
if (is_guest_mode(vcpu))
11132
kvm_x86_ops.nested_ops->triple_fault(vcpu);
11133
11134
if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11135
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
11136
vcpu->mmio_needed = 0;
11137
r = 0;
11138
goto out;
11139
}
11140
}
11141
if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
11142
/* Page is swapped out. Do synthetic halt */
11143
vcpu->arch.apf.halted = true;
11144
r = 1;
11145
goto out;
11146
}
11147
if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
11148
record_steal_time(vcpu);
11149
if (kvm_check_request(KVM_REQ_PMU, vcpu))
11150
kvm_pmu_handle_event(vcpu);
11151
if (kvm_check_request(KVM_REQ_PMI, vcpu))
11152
kvm_pmu_deliver_pmi(vcpu);
11153
#ifdef CONFIG_KVM_SMM
11154
if (kvm_check_request(KVM_REQ_SMI, vcpu))
11155
process_smi(vcpu);
11156
#endif
11157
if (kvm_check_request(KVM_REQ_NMI, vcpu))
11158
process_nmi(vcpu);
11159
if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
11160
BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
11161
if (test_bit(vcpu->arch.pending_ioapic_eoi,
11162
vcpu->arch.ioapic_handled_vectors)) {
11163
vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
11164
vcpu->run->eoi.vector =
11165
vcpu->arch.pending_ioapic_eoi;
11166
r = 0;
11167
goto out;
11168
}
11169
}
11170
if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
11171
vcpu_scan_ioapic(vcpu);
11172
if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
11173
vcpu_load_eoi_exitmap(vcpu);
11174
if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
11175
kvm_vcpu_reload_apic_access_page(vcpu);
11176
#ifdef CONFIG_KVM_HYPERV
11177
if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
11178
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11179
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
11180
vcpu->run->system_event.ndata = 0;
11181
r = 0;
11182
goto out;
11183
}
11184
if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
11185
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11186
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
11187
vcpu->run->system_event.ndata = 0;
11188
r = 0;
11189
goto out;
11190
}
11191
if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
11192
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
11193
11194
vcpu->run->exit_reason = KVM_EXIT_HYPERV;
11195
vcpu->run->hyperv = hv_vcpu->exit;
11196
r = 0;
11197
goto out;
11198
}
11199
11200
/*
11201
* KVM_REQ_HV_STIMER has to be processed after
11202
* KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
11203
* depend on the guest clock being up-to-date
11204
*/
11205
if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
11206
kvm_hv_process_stimers(vcpu);
11207
#endif
11208
if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
11209
kvm_vcpu_update_apicv(vcpu);
11210
if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
11211
kvm_check_async_pf_completion(vcpu);
11212
11213
if (kvm_check_request(KVM_REQ_RECALC_INTERCEPTS, vcpu))
11214
kvm_x86_call(recalc_intercepts)(vcpu);
11215
11216
if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
11217
kvm_x86_call(update_cpu_dirty_logging)(vcpu);
11218
11219
if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
11220
kvm_vcpu_reset(vcpu, true);
11221
if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
11222
r = 1;
11223
goto out;
11224
}
11225
}
11226
}
11227
11228
if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
11229
kvm_xen_has_interrupt(vcpu)) {
11230
++vcpu->stat.req_event;
11231
r = kvm_apic_accept_events(vcpu);
11232
if (r < 0) {
11233
r = 0;
11234
goto out;
11235
}
11236
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
11237
r = 1;
11238
goto out;
11239
}
11240
11241
r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
11242
if (r < 0) {
11243
r = 0;
11244
goto out;
11245
}
11246
if (req_int_win)
11247
kvm_x86_call(enable_irq_window)(vcpu);
11248
11249
if (kvm_lapic_enabled(vcpu)) {
11250
update_cr8_intercept(vcpu);
11251
kvm_lapic_sync_to_vapic(vcpu);
11252
}
11253
}
11254
11255
r = kvm_mmu_reload(vcpu);
11256
if (unlikely(r)) {
11257
goto cancel_injection;
11258
}
11259
11260
preempt_disable();
11261
11262
kvm_x86_call(prepare_switch_to_guest)(vcpu);
11263
11264
/*
11265
* Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
11266
* IPI are then delayed after guest entry, which ensures that they
11267
* result in virtual interrupt delivery.
11268
*/
11269
local_irq_disable();
11270
11271
/* Store vcpu->apicv_active before vcpu->mode. */
11272
smp_store_release(&vcpu->mode, IN_GUEST_MODE);
11273
11274
kvm_vcpu_srcu_read_unlock(vcpu);
11275
11276
/*
11277
* 1) We should set ->mode before checking ->requests. Please see
11278
* the comment in kvm_vcpu_exiting_guest_mode().
11279
*
11280
* 2) For APICv, we should set ->mode before checking PID.ON. This
11281
* pairs with the memory barrier implicit in pi_test_and_set_on
11282
* (see vmx_deliver_posted_interrupt).
11283
*
11284
* 3) This also orders the write to mode from any reads to the page
11285
* tables done while the VCPU is running. Please see the comment
11286
* in kvm_flush_remote_tlbs.
11287
*/
11288
smp_mb__after_srcu_read_unlock();
11289
11290
/*
11291
* Process pending posted interrupts to handle the case where the
11292
* notification IRQ arrived in the host, or was never sent (because the
11293
* target vCPU wasn't running). Do this regardless of the vCPU's APICv
11294
* status, KVM doesn't update assigned devices when APICv is inhibited,
11295
* i.e. they can post interrupts even if APICv is temporarily disabled.
11296
*/
11297
if (kvm_lapic_enabled(vcpu))
11298
kvm_x86_call(sync_pir_to_irr)(vcpu);
11299
11300
if (kvm_vcpu_exit_request(vcpu)) {
11301
vcpu->mode = OUTSIDE_GUEST_MODE;
11302
smp_wmb();
11303
local_irq_enable();
11304
preempt_enable();
11305
kvm_vcpu_srcu_read_lock(vcpu);
11306
r = 1;
11307
goto cancel_injection;
11308
}
11309
11310
run_flags = 0;
11311
if (req_immediate_exit) {
11312
run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT;
11313
kvm_make_request(KVM_REQ_EVENT, vcpu);
11314
}
11315
11316
fpregs_assert_state_consistent();
11317
if (test_thread_flag(TIF_NEED_FPU_LOAD))
11318
switch_fpu_return();
11319
11320
if (vcpu->arch.guest_fpu.xfd_err)
11321
wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11322
11323
kvm_load_xfeatures(vcpu, true);
11324
11325
if (unlikely(vcpu->arch.switch_db_regs &&
11326
!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) {
11327
set_debugreg(DR7_FIXED_1, 7);
11328
set_debugreg(vcpu->arch.eff_db[0], 0);
11329
set_debugreg(vcpu->arch.eff_db[1], 1);
11330
set_debugreg(vcpu->arch.eff_db[2], 2);
11331
set_debugreg(vcpu->arch.eff_db[3], 3);
11332
/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
11333
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
11334
run_flags |= KVM_RUN_LOAD_GUEST_DR6;
11335
} else if (unlikely(hw_breakpoint_active())) {
11336
set_debugreg(DR7_FIXED_1, 7);
11337
}
11338
11339
/*
11340
* Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL
11341
* can be modified in IRQ context, e.g. via SMP function calls. Inform
11342
* vendor code if any host-owned bits were changed, e.g. so that the
11343
* value loaded into hardware while running the guest can be updated.
11344
*/
11345
debug_ctl = get_debugctlmsr();
11346
if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL &&
11347
!vcpu->arch.guest_state_protected)
11348
run_flags |= KVM_RUN_LOAD_DEBUGCTL;
11349
vcpu->arch.host_debugctl = debug_ctl;
11350
11351
guest_timing_enter_irqoff();
11352
11353
/*
11354
* Swap PKRU with hardware breakpoints disabled to minimize the number
11355
* of flows where non-KVM code can run with guest state loaded.
11356
*/
11357
kvm_load_guest_pkru(vcpu);
11358
11359
for (;;) {
11360
/*
11361
* Assert that vCPU vs. VM APICv state is consistent. An APICv
11362
* update must kick and wait for all vCPUs before toggling the
11363
* per-VM state, and responding vCPUs must wait for the update
11364
* to complete before servicing KVM_REQ_APICV_UPDATE.
11365
*/
11366
WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11367
(kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11368
11369
exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags);
11370
if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11371
break;
11372
11373
if (kvm_lapic_enabled(vcpu))
11374
kvm_x86_call(sync_pir_to_irr)(vcpu);
11375
11376
if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11377
exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11378
break;
11379
}
11380
11381
run_flags = 0;
11382
11383
/* Note, VM-Exits that go down the "slow" path are accounted below. */
11384
++vcpu->stat.exits;
11385
}
11386
11387
kvm_load_host_pkru(vcpu);
11388
11389
/*
11390
* Do this here before restoring debug registers on the host. And
11391
* since we do this before handling the vmexit, a DR access vmexit
11392
* can (a) read the correct value of the debug registers, (b) set
11393
* KVM_DEBUGREG_WONT_EXIT again.
11394
*/
11395
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11396
WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11397
WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH);
11398
kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11399
kvm_update_dr0123(vcpu);
11400
kvm_update_dr7(vcpu);
11401
}
11402
11403
/*
11404
* If the guest has used debug registers, at least dr7
11405
* will be disabled while returning to the host.
11406
* If we don't have active breakpoints in the host, we don't
11407
* care about the messed up debug address registers. But if
11408
* we have some of them active, restore the old state.
11409
*/
11410
if (hw_breakpoint_active())
11411
hw_breakpoint_restore();
11412
11413
vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11414
vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11415
11416
vcpu->mode = OUTSIDE_GUEST_MODE;
11417
smp_wmb();
11418
11419
kvm_load_xfeatures(vcpu, false);
11420
11421
/*
11422
* Sync xfd before calling handle_exit_irqoff() which may
11423
* rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11424
* in #NM irqoff handler).
11425
*/
11426
if (vcpu->arch.xfd_no_write_intercept)
11427
fpu_sync_guest_vmexit_xfd_state();
11428
11429
kvm_x86_call(handle_exit_irqoff)(vcpu);
11430
11431
if (vcpu->arch.guest_fpu.xfd_err)
11432
wrmsrq(MSR_IA32_XFD_ERR, 0);
11433
11434
/*
11435
* Mark this CPU as needing a branch predictor flush before running
11436
* userspace. Must be done before enabling preemption to ensure it gets
11437
* set for the CPU that actually ran the guest, and not the CPU that it
11438
* may migrate to.
11439
*/
11440
if (cpu_feature_enabled(X86_FEATURE_IBPB_EXIT_TO_USER))
11441
this_cpu_write(x86_ibpb_exit_to_user, true);
11442
11443
/*
11444
* Consume any pending interrupts, including the possible source of
11445
* VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11446
* An instruction is required after local_irq_enable() to fully unblock
11447
* interrupts on processors that implement an interrupt shadow, the
11448
* stat.exits increment will do nicely.
11449
*/
11450
kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11451
local_irq_enable();
11452
++vcpu->stat.exits;
11453
local_irq_disable();
11454
kvm_after_interrupt(vcpu);
11455
11456
/*
11457
* Wait until after servicing IRQs to account guest time so that any
11458
* ticks that occurred while running the guest are properly accounted
11459
* to the guest. Waiting until IRQs are enabled degrades the accuracy
11460
* of accounting via context tracking, but the loss of accuracy is
11461
* acceptable for all known use cases.
11462
*/
11463
guest_timing_exit_irqoff();
11464
11465
local_irq_enable();
11466
preempt_enable();
11467
11468
kvm_vcpu_srcu_read_lock(vcpu);
11469
11470
/*
11471
* Call this to ensure WC buffers in guest are evicted after each VM
11472
* Exit, so that the evicted WC writes can be snooped across all cpus
11473
*/
11474
smp_mb__after_srcu_read_lock();
11475
11476
/*
11477
* Profile KVM exit RIPs:
11478
*/
11479
if (unlikely(prof_on == KVM_PROFILING &&
11480
!vcpu->arch.guest_state_protected)) {
11481
unsigned long rip = kvm_rip_read(vcpu);
11482
profile_hit(KVM_PROFILING, (void *)rip);
11483
}
11484
11485
if (unlikely(vcpu->arch.tsc_always_catchup))
11486
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11487
11488
if (vcpu->arch.apic_attention)
11489
kvm_lapic_sync_from_vapic(vcpu);
11490
11491
if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11492
return 0;
11493
11494
r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11495
return r;
11496
11497
cancel_injection:
11498
if (req_immediate_exit)
11499
kvm_make_request(KVM_REQ_EVENT, vcpu);
11500
kvm_x86_call(cancel_injection)(vcpu);
11501
if (unlikely(vcpu->arch.apic_attention))
11502
kvm_lapic_sync_from_vapic(vcpu);
11503
out:
11504
return r;
11505
}
11506
11507
static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11508
{
11509
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11510
!vcpu->arch.apf.halted);
11511
}
11512
11513
bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11514
{
11515
if (!list_empty_careful(&vcpu->async_pf.done))
11516
return true;
11517
11518
if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11519
kvm_apic_init_sipi_allowed(vcpu))
11520
return true;
11521
11522
if (kvm_is_exception_pending(vcpu))
11523
return true;
11524
11525
if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11526
(vcpu->arch.nmi_pending &&
11527
kvm_x86_call(nmi_allowed)(vcpu, false)))
11528
return true;
11529
11530
#ifdef CONFIG_KVM_SMM
11531
if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11532
(vcpu->arch.smi_pending &&
11533
kvm_x86_call(smi_allowed)(vcpu, false)))
11534
return true;
11535
#endif
11536
11537
if (kvm_test_request(KVM_REQ_PMI, vcpu))
11538
return true;
11539
11540
if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11541
return true;
11542
11543
if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11544
return true;
11545
11546
if (kvm_hv_has_stimer_pending(vcpu))
11547
return true;
11548
11549
if (is_guest_mode(vcpu) &&
11550
kvm_x86_ops.nested_ops->has_events &&
11551
kvm_x86_ops.nested_ops->has_events(vcpu, false))
11552
return true;
11553
11554
if (kvm_xen_has_pending_events(vcpu))
11555
return true;
11556
11557
return false;
11558
}
11559
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_has_events);
11560
11561
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11562
{
11563
return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted ||
11564
kvm_vcpu_has_events(vcpu);
11565
}
11566
11567
/* Called within kvm->srcu read side. */
11568
static inline int vcpu_block(struct kvm_vcpu *vcpu)
11569
{
11570
bool hv_timer;
11571
11572
if (!kvm_arch_vcpu_runnable(vcpu)) {
11573
/*
11574
* Switch to the software timer before halt-polling/blocking as
11575
* the guest's timer may be a break event for the vCPU, and the
11576
* hypervisor timer runs only when the CPU is in guest mode.
11577
* Switch before halt-polling so that KVM recognizes an expired
11578
* timer before blocking.
11579
*/
11580
hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11581
if (hv_timer)
11582
kvm_lapic_switch_to_sw_timer(vcpu);
11583
11584
kvm_vcpu_srcu_read_unlock(vcpu);
11585
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11586
kvm_vcpu_halt(vcpu);
11587
else
11588
kvm_vcpu_block(vcpu);
11589
kvm_vcpu_srcu_read_lock(vcpu);
11590
11591
if (hv_timer)
11592
kvm_lapic_switch_to_hv_timer(vcpu);
11593
11594
/*
11595
* If the vCPU is not runnable, a signal or another host event
11596
* of some kind is pending; service it without changing the
11597
* vCPU's activity state.
11598
*/
11599
if (!kvm_arch_vcpu_runnable(vcpu))
11600
return 1;
11601
}
11602
11603
/*
11604
* Evaluate nested events before exiting the halted state. This allows
11605
* the halt state to be recorded properly in the VMCS12's activity
11606
* state field (AMD does not have a similar field and a VM-Exit always
11607
* causes a spurious wakeup from HLT).
11608
*/
11609
if (is_guest_mode(vcpu)) {
11610
int r = kvm_check_nested_events(vcpu);
11611
11612
WARN_ON_ONCE(r == -EBUSY);
11613
if (r < 0)
11614
return 0;
11615
}
11616
11617
if (kvm_apic_accept_events(vcpu) < 0)
11618
return 0;
11619
switch(vcpu->arch.mp_state) {
11620
case KVM_MP_STATE_HALTED:
11621
case KVM_MP_STATE_AP_RESET_HOLD:
11622
kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11623
fallthrough;
11624
case KVM_MP_STATE_RUNNABLE:
11625
vcpu->arch.apf.halted = false;
11626
break;
11627
case KVM_MP_STATE_INIT_RECEIVED:
11628
break;
11629
default:
11630
WARN_ON_ONCE(1);
11631
break;
11632
}
11633
return 1;
11634
}
11635
11636
/* Called within kvm->srcu read side. */
11637
static int vcpu_run(struct kvm_vcpu *vcpu)
11638
{
11639
int r;
11640
11641
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11642
11643
for (;;) {
11644
/*
11645
* If another guest vCPU requests a PV TLB flush in the middle
11646
* of instruction emulation, the rest of the emulation could
11647
* use a stale page translation. Assume that any code after
11648
* this point can start executing an instruction.
11649
*/
11650
vcpu->arch.at_instruction_boundary = false;
11651
if (kvm_vcpu_running(vcpu)) {
11652
r = vcpu_enter_guest(vcpu);
11653
} else {
11654
r = vcpu_block(vcpu);
11655
}
11656
11657
if (r <= 0)
11658
break;
11659
11660
kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11661
if (kvm_xen_has_pending_events(vcpu))
11662
kvm_xen_inject_pending_events(vcpu);
11663
11664
if (kvm_cpu_has_pending_timer(vcpu))
11665
kvm_inject_pending_timer_irqs(vcpu);
11666
11667
if (dm_request_for_irq_injection(vcpu) &&
11668
kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11669
r = 0;
11670
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11671
++vcpu->stat.request_irq_exits;
11672
break;
11673
}
11674
11675
if (__xfer_to_guest_mode_work_pending()) {
11676
kvm_vcpu_srcu_read_unlock(vcpu);
11677
r = kvm_xfer_to_guest_mode_handle_work(vcpu);
11678
kvm_vcpu_srcu_read_lock(vcpu);
11679
if (r)
11680
return r;
11681
}
11682
}
11683
11684
return r;
11685
}
11686
11687
static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11688
{
11689
/*
11690
* The vCPU has halted, e.g. executed HLT. Update the run state if the
11691
* local APIC is in-kernel, the run loop will detect the non-runnable
11692
* state and halt the vCPU. Exit to userspace if the local APIC is
11693
* managed by userspace, in which case userspace is responsible for
11694
* handling wake events.
11695
*/
11696
++vcpu->stat.halt_exits;
11697
if (lapic_in_kernel(vcpu)) {
11698
if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted)
11699
state = KVM_MP_STATE_RUNNABLE;
11700
kvm_set_mp_state(vcpu, state);
11701
return 1;
11702
} else {
11703
vcpu->run->exit_reason = reason;
11704
return 0;
11705
}
11706
}
11707
11708
int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11709
{
11710
return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11711
}
11712
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt_noskip);
11713
11714
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11715
{
11716
int ret = kvm_skip_emulated_instruction(vcpu);
11717
/*
11718
* TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11719
* KVM_EXIT_DEBUG here.
11720
*/
11721
return kvm_emulate_halt_noskip(vcpu) && ret;
11722
}
11723
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt);
11724
11725
fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11726
{
11727
if (!kvm_emulate_halt(vcpu))
11728
return EXIT_FASTPATH_EXIT_USERSPACE;
11729
11730
if (kvm_vcpu_running(vcpu))
11731
return EXIT_FASTPATH_REENTER_GUEST;
11732
11733
return EXIT_FASTPATH_EXIT_HANDLED;
11734
}
11735
EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_hlt);
11736
11737
int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11738
{
11739
int ret = kvm_skip_emulated_instruction(vcpu);
11740
11741
return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11742
KVM_EXIT_AP_RESET_HOLD) && ret;
11743
}
11744
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_ap_reset_hold);
11745
11746
bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11747
{
11748
return kvm_vcpu_apicv_active(vcpu) &&
11749
kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11750
}
11751
11752
bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11753
{
11754
return vcpu->arch.preempted_in_kernel;
11755
}
11756
11757
bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11758
{
11759
if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11760
return true;
11761
11762
if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11763
#ifdef CONFIG_KVM_SMM
11764
kvm_test_request(KVM_REQ_SMI, vcpu) ||
11765
#endif
11766
kvm_test_request(KVM_REQ_EVENT, vcpu))
11767
return true;
11768
11769
return kvm_arch_dy_has_pending_interrupt(vcpu);
11770
}
11771
11772
static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11773
{
11774
return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11775
}
11776
11777
static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11778
{
11779
BUG_ON(!vcpu->arch.pio.count);
11780
11781
return complete_emulated_io(vcpu);
11782
}
11783
11784
/*
11785
* Implements the following, as a state machine:
11786
*
11787
* read:
11788
* for each fragment
11789
* for each mmio piece in the fragment
11790
* write gpa, len
11791
* exit
11792
* copy data
11793
* execute insn
11794
*
11795
* write:
11796
* for each fragment
11797
* for each mmio piece in the fragment
11798
* write gpa, len
11799
* copy data
11800
* exit
11801
*/
11802
static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11803
{
11804
struct kvm_run *run = vcpu->run;
11805
struct kvm_mmio_fragment *frag;
11806
unsigned len;
11807
11808
BUG_ON(!vcpu->mmio_needed);
11809
11810
/* Complete previous fragment */
11811
frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11812
len = min(8u, frag->len);
11813
if (!vcpu->mmio_is_write)
11814
memcpy(frag->data, run->mmio.data, len);
11815
11816
if (frag->len <= 8) {
11817
/* Switch to the next fragment. */
11818
frag++;
11819
vcpu->mmio_cur_fragment++;
11820
} else {
11821
/* Go forward to the next mmio piece. */
11822
frag->data += len;
11823
frag->gpa += len;
11824
frag->len -= len;
11825
}
11826
11827
if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11828
vcpu->mmio_needed = 0;
11829
11830
/* FIXME: return into emulator if single-stepping. */
11831
if (vcpu->mmio_is_write)
11832
return 1;
11833
vcpu->mmio_read_completed = 1;
11834
return complete_emulated_io(vcpu);
11835
}
11836
11837
run->exit_reason = KVM_EXIT_MMIO;
11838
run->mmio.phys_addr = frag->gpa;
11839
if (vcpu->mmio_is_write)
11840
memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11841
run->mmio.len = min(8u, frag->len);
11842
run->mmio.is_write = vcpu->mmio_is_write;
11843
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11844
return 0;
11845
}
11846
11847
/* Swap (qemu) user FPU context for the guest FPU context. */
11848
static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11849
{
11850
if (KVM_BUG_ON(vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm))
11851
return;
11852
11853
/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11854
fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11855
trace_kvm_fpu(1);
11856
}
11857
11858
/* When vcpu_run ends, restore user space FPU context. */
11859
static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11860
{
11861
if (KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm))
11862
return;
11863
11864
fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11865
++vcpu->stat.fpu_reload;
11866
trace_kvm_fpu(0);
11867
}
11868
11869
static int kvm_x86_vcpu_pre_run(struct kvm_vcpu *vcpu)
11870
{
11871
/*
11872
* SIPI_RECEIVED is obsolete; KVM leaves the vCPU in Wait-For-SIPI and
11873
* tracks the pending SIPI separately. SIPI_RECEIVED is still accepted
11874
* by KVM_SET_VCPU_EVENTS for backwards compatibility, but should be
11875
* converted to INIT_RECEIVED.
11876
*/
11877
if (WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED))
11878
return -EINVAL;
11879
11880
/*
11881
* Disallow running the vCPU if userspace forced it into an impossible
11882
* MP_STATE, e.g. if the vCPU is in WFS but SIPI is blocked.
11883
*/
11884
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED &&
11885
!kvm_apic_init_sipi_allowed(vcpu))
11886
return -EINVAL;
11887
11888
return kvm_x86_call(vcpu_pre_run)(vcpu);
11889
}
11890
11891
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11892
{
11893
struct kvm_queued_exception *ex = &vcpu->arch.exception;
11894
struct kvm_run *kvm_run = vcpu->run;
11895
u64 sync_valid_fields;
11896
int r;
11897
11898
r = kvm_mmu_post_init_vm(vcpu->kvm);
11899
if (r)
11900
return r;
11901
11902
vcpu_load(vcpu);
11903
kvm_sigset_activate(vcpu);
11904
kvm_run->flags = 0;
11905
kvm_load_guest_fpu(vcpu);
11906
11907
kvm_vcpu_srcu_read_lock(vcpu);
11908
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11909
if (!vcpu->wants_to_run) {
11910
r = -EINTR;
11911
goto out;
11912
}
11913
11914
/*
11915
* Don't bother switching APIC timer emulation from the
11916
* hypervisor timer to the software timer, the only way for the
11917
* APIC timer to be active is if userspace stuffed vCPU state,
11918
* i.e. put the vCPU into a nonsensical state. Only an INIT
11919
* will transition the vCPU out of UNINITIALIZED (without more
11920
* state stuffing from userspace), which will reset the local
11921
* APIC and thus cancel the timer or drop the IRQ (if the timer
11922
* already expired).
11923
*/
11924
kvm_vcpu_srcu_read_unlock(vcpu);
11925
kvm_vcpu_block(vcpu);
11926
kvm_vcpu_srcu_read_lock(vcpu);
11927
11928
if (kvm_apic_accept_events(vcpu) < 0) {
11929
r = 0;
11930
goto out;
11931
}
11932
r = -EAGAIN;
11933
if (signal_pending(current)) {
11934
r = -EINTR;
11935
kvm_run->exit_reason = KVM_EXIT_INTR;
11936
++vcpu->stat.signal_exits;
11937
}
11938
goto out;
11939
}
11940
11941
sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11942
if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11943
(kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11944
r = -EINVAL;
11945
goto out;
11946
}
11947
11948
if (kvm_run->kvm_dirty_regs) {
11949
r = sync_regs(vcpu);
11950
if (r != 0)
11951
goto out;
11952
}
11953
11954
/* re-sync apic's tpr */
11955
if (!lapic_in_kernel(vcpu)) {
11956
if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11957
r = -EINVAL;
11958
goto out;
11959
}
11960
}
11961
11962
/*
11963
* If userspace set a pending exception and L2 is active, convert it to
11964
* a pending VM-Exit if L1 wants to intercept the exception.
11965
*/
11966
if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11967
kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11968
ex->error_code)) {
11969
kvm_queue_exception_vmexit(vcpu, ex->vector,
11970
ex->has_error_code, ex->error_code,
11971
ex->has_payload, ex->payload);
11972
ex->injected = false;
11973
ex->pending = false;
11974
}
11975
vcpu->arch.exception_from_userspace = false;
11976
11977
if (unlikely(vcpu->arch.complete_userspace_io)) {
11978
int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11979
vcpu->arch.complete_userspace_io = NULL;
11980
r = cui(vcpu);
11981
if (r <= 0)
11982
goto out;
11983
} else {
11984
WARN_ON_ONCE(vcpu->arch.pio.count);
11985
WARN_ON_ONCE(vcpu->mmio_needed);
11986
}
11987
11988
if (!vcpu->wants_to_run) {
11989
r = -EINTR;
11990
goto out;
11991
}
11992
11993
r = kvm_x86_vcpu_pre_run(vcpu);
11994
if (r <= 0)
11995
goto out;
11996
11997
r = vcpu_run(vcpu);
11998
11999
out:
12000
kvm_put_guest_fpu(vcpu);
12001
if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
12002
store_regs(vcpu);
12003
post_kvm_run_save(vcpu);
12004
kvm_vcpu_srcu_read_unlock(vcpu);
12005
12006
kvm_sigset_deactivate(vcpu);
12007
vcpu_put(vcpu);
12008
return r;
12009
}
12010
12011
static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12012
{
12013
if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
12014
/*
12015
* We are here if userspace calls get_regs() in the middle of
12016
* instruction emulation. Registers state needs to be copied
12017
* back from emulation context to vcpu. Userspace shouldn't do
12018
* that usually, but some bad designed PV devices (vmware
12019
* backdoor interface) need this to work
12020
*/
12021
emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
12022
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
12023
}
12024
regs->rax = kvm_rax_read(vcpu);
12025
regs->rbx = kvm_rbx_read(vcpu);
12026
regs->rcx = kvm_rcx_read(vcpu);
12027
regs->rdx = kvm_rdx_read(vcpu);
12028
regs->rsi = kvm_rsi_read(vcpu);
12029
regs->rdi = kvm_rdi_read(vcpu);
12030
regs->rsp = kvm_rsp_read(vcpu);
12031
regs->rbp = kvm_rbp_read(vcpu);
12032
#ifdef CONFIG_X86_64
12033
regs->r8 = kvm_r8_read(vcpu);
12034
regs->r9 = kvm_r9_read(vcpu);
12035
regs->r10 = kvm_r10_read(vcpu);
12036
regs->r11 = kvm_r11_read(vcpu);
12037
regs->r12 = kvm_r12_read(vcpu);
12038
regs->r13 = kvm_r13_read(vcpu);
12039
regs->r14 = kvm_r14_read(vcpu);
12040
regs->r15 = kvm_r15_read(vcpu);
12041
#endif
12042
12043
regs->rip = kvm_rip_read(vcpu);
12044
regs->rflags = kvm_get_rflags(vcpu);
12045
}
12046
12047
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12048
{
12049
if (vcpu->kvm->arch.has_protected_state &&
12050
vcpu->arch.guest_state_protected)
12051
return -EINVAL;
12052
12053
vcpu_load(vcpu);
12054
__get_regs(vcpu, regs);
12055
vcpu_put(vcpu);
12056
return 0;
12057
}
12058
12059
static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12060
{
12061
vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
12062
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
12063
12064
kvm_rax_write(vcpu, regs->rax);
12065
kvm_rbx_write(vcpu, regs->rbx);
12066
kvm_rcx_write(vcpu, regs->rcx);
12067
kvm_rdx_write(vcpu, regs->rdx);
12068
kvm_rsi_write(vcpu, regs->rsi);
12069
kvm_rdi_write(vcpu, regs->rdi);
12070
kvm_rsp_write(vcpu, regs->rsp);
12071
kvm_rbp_write(vcpu, regs->rbp);
12072
#ifdef CONFIG_X86_64
12073
kvm_r8_write(vcpu, regs->r8);
12074
kvm_r9_write(vcpu, regs->r9);
12075
kvm_r10_write(vcpu, regs->r10);
12076
kvm_r11_write(vcpu, regs->r11);
12077
kvm_r12_write(vcpu, regs->r12);
12078
kvm_r13_write(vcpu, regs->r13);
12079
kvm_r14_write(vcpu, regs->r14);
12080
kvm_r15_write(vcpu, regs->r15);
12081
#endif
12082
12083
kvm_rip_write(vcpu, regs->rip);
12084
kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
12085
12086
vcpu->arch.exception.pending = false;
12087
vcpu->arch.exception_vmexit.pending = false;
12088
12089
kvm_make_request(KVM_REQ_EVENT, vcpu);
12090
}
12091
12092
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12093
{
12094
if (vcpu->kvm->arch.has_protected_state &&
12095
vcpu->arch.guest_state_protected)
12096
return -EINVAL;
12097
12098
vcpu_load(vcpu);
12099
__set_regs(vcpu, regs);
12100
vcpu_put(vcpu);
12101
return 0;
12102
}
12103
12104
static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12105
{
12106
struct desc_ptr dt;
12107
12108
if (vcpu->arch.guest_state_protected)
12109
goto skip_protected_regs;
12110
12111
kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12112
kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12113
kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12114
kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12115
kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12116
kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12117
12118
kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12119
kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12120
12121
kvm_x86_call(get_idt)(vcpu, &dt);
12122
sregs->idt.limit = dt.size;
12123
sregs->idt.base = dt.address;
12124
kvm_x86_call(get_gdt)(vcpu, &dt);
12125
sregs->gdt.limit = dt.size;
12126
sregs->gdt.base = dt.address;
12127
12128
sregs->cr2 = vcpu->arch.cr2;
12129
sregs->cr3 = kvm_read_cr3(vcpu);
12130
12131
skip_protected_regs:
12132
sregs->cr0 = kvm_read_cr0(vcpu);
12133
sregs->cr4 = kvm_read_cr4(vcpu);
12134
sregs->cr8 = kvm_get_cr8(vcpu);
12135
sregs->efer = vcpu->arch.efer;
12136
sregs->apic_base = vcpu->arch.apic_base;
12137
}
12138
12139
static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12140
{
12141
__get_sregs_common(vcpu, sregs);
12142
12143
if (vcpu->arch.guest_state_protected)
12144
return;
12145
12146
if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
12147
set_bit(vcpu->arch.interrupt.nr,
12148
(unsigned long *)sregs->interrupt_bitmap);
12149
}
12150
12151
static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12152
{
12153
int i;
12154
12155
__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
12156
12157
if (vcpu->arch.guest_state_protected)
12158
return;
12159
12160
if (is_pae_paging(vcpu)) {
12161
for (i = 0 ; i < 4 ; i++)
12162
sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
12163
sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
12164
}
12165
}
12166
12167
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
12168
struct kvm_sregs *sregs)
12169
{
12170
if (vcpu->kvm->arch.has_protected_state &&
12171
vcpu->arch.guest_state_protected)
12172
return -EINVAL;
12173
12174
vcpu_load(vcpu);
12175
__get_sregs(vcpu, sregs);
12176
vcpu_put(vcpu);
12177
return 0;
12178
}
12179
12180
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
12181
struct kvm_mp_state *mp_state)
12182
{
12183
int r;
12184
12185
vcpu_load(vcpu);
12186
kvm_vcpu_srcu_read_lock(vcpu);
12187
12188
r = kvm_apic_accept_events(vcpu);
12189
if (r < 0)
12190
goto out;
12191
r = 0;
12192
12193
if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
12194
vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
12195
vcpu->arch.pv.pv_unhalted)
12196
mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
12197
else
12198
mp_state->mp_state = vcpu->arch.mp_state;
12199
12200
out:
12201
kvm_vcpu_srcu_read_unlock(vcpu);
12202
vcpu_put(vcpu);
12203
return r;
12204
}
12205
12206
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
12207
struct kvm_mp_state *mp_state)
12208
{
12209
int ret = -EINVAL;
12210
12211
vcpu_load(vcpu);
12212
12213
switch (mp_state->mp_state) {
12214
case KVM_MP_STATE_UNINITIALIZED:
12215
case KVM_MP_STATE_HALTED:
12216
case KVM_MP_STATE_AP_RESET_HOLD:
12217
case KVM_MP_STATE_INIT_RECEIVED:
12218
case KVM_MP_STATE_SIPI_RECEIVED:
12219
if (!lapic_in_kernel(vcpu))
12220
goto out;
12221
break;
12222
12223
case KVM_MP_STATE_RUNNABLE:
12224
break;
12225
12226
default:
12227
goto out;
12228
}
12229
12230
/*
12231
* SIPI_RECEIVED is obsolete and no longer used internally; KVM instead
12232
* leaves the vCPU in INIT_RECIEVED (Wait-For-SIPI) and pends the SIPI.
12233
* Translate SIPI_RECEIVED as appropriate for backwards compatibility.
12234
*/
12235
if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
12236
mp_state->mp_state = KVM_MP_STATE_INIT_RECEIVED;
12237
set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
12238
}
12239
12240
kvm_set_mp_state(vcpu, mp_state->mp_state);
12241
kvm_make_request(KVM_REQ_EVENT, vcpu);
12242
12243
ret = 0;
12244
out:
12245
vcpu_put(vcpu);
12246
return ret;
12247
}
12248
12249
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
12250
int reason, bool has_error_code, u32 error_code)
12251
{
12252
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
12253
int ret;
12254
12255
if (kvm_is_cr4_bit_set(vcpu, X86_CR4_CET)) {
12256
u64 u_cet, s_cet;
12257
12258
/*
12259
* Check both User and Supervisor on task switches as inter-
12260
* privilege level task switches are impacted by CET at both
12261
* the current privilege level and the new privilege level, and
12262
* that information is not known at this time. The expectation
12263
* is that the guest won't require emulation of task switches
12264
* while using IBT or Shadow Stacks.
12265
*/
12266
if (__kvm_emulate_msr_read(vcpu, MSR_IA32_U_CET, &u_cet) ||
12267
__kvm_emulate_msr_read(vcpu, MSR_IA32_S_CET, &s_cet))
12268
goto unhandled_task_switch;
12269
12270
if ((u_cet | s_cet) & (CET_ENDBR_EN | CET_SHSTK_EN))
12271
goto unhandled_task_switch;
12272
}
12273
12274
init_emulate_ctxt(vcpu);
12275
12276
ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
12277
has_error_code, error_code);
12278
12279
/*
12280
* Report an error userspace if MMIO is needed, as KVM doesn't support
12281
* MMIO during a task switch (or any other complex operation).
12282
*/
12283
if (ret || vcpu->mmio_needed)
12284
goto unhandled_task_switch;
12285
12286
kvm_rip_write(vcpu, ctxt->eip);
12287
kvm_set_rflags(vcpu, ctxt->eflags);
12288
return 1;
12289
12290
unhandled_task_switch:
12291
vcpu->mmio_needed = false;
12292
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12293
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12294
vcpu->run->internal.ndata = 0;
12295
return 0;
12296
}
12297
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_task_switch);
12298
12299
static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12300
{
12301
if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
12302
/*
12303
* When EFER.LME and CR0.PG are set, the processor is in
12304
* 64-bit mode (though maybe in a 32-bit code segment).
12305
* CR4.PAE and EFER.LMA must be set.
12306
*/
12307
if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
12308
return false;
12309
if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
12310
return false;
12311
} else {
12312
/*
12313
* Not in 64-bit mode: EFER.LMA is clear and the code
12314
* segment cannot be 64-bit.
12315
*/
12316
if (sregs->efer & EFER_LMA || sregs->cs.l)
12317
return false;
12318
}
12319
12320
return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
12321
kvm_is_valid_cr0(vcpu, sregs->cr0);
12322
}
12323
12324
static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
12325
int *mmu_reset_needed, bool update_pdptrs)
12326
{
12327
int idx;
12328
struct desc_ptr dt;
12329
12330
if (!kvm_is_valid_sregs(vcpu, sregs))
12331
return -EINVAL;
12332
12333
if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
12334
return -EINVAL;
12335
12336
if (vcpu->arch.guest_state_protected)
12337
return 0;
12338
12339
dt.size = sregs->idt.limit;
12340
dt.address = sregs->idt.base;
12341
kvm_x86_call(set_idt)(vcpu, &dt);
12342
dt.size = sregs->gdt.limit;
12343
dt.address = sregs->gdt.base;
12344
kvm_x86_call(set_gdt)(vcpu, &dt);
12345
12346
vcpu->arch.cr2 = sregs->cr2;
12347
*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
12348
vcpu->arch.cr3 = sregs->cr3;
12349
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12350
kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
12351
12352
kvm_set_cr8(vcpu, sregs->cr8);
12353
12354
*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
12355
kvm_x86_call(set_efer)(vcpu, sregs->efer);
12356
12357
*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
12358
kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
12359
12360
*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
12361
kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
12362
12363
if (update_pdptrs) {
12364
idx = srcu_read_lock(&vcpu->kvm->srcu);
12365
if (is_pae_paging(vcpu)) {
12366
load_pdptrs(vcpu, kvm_read_cr3(vcpu));
12367
*mmu_reset_needed = 1;
12368
}
12369
srcu_read_unlock(&vcpu->kvm->srcu, idx);
12370
}
12371
12372
kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12373
kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12374
kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12375
kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12376
kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12377
kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12378
12379
kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12380
kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12381
12382
update_cr8_intercept(vcpu);
12383
12384
/* Older userspace won't unhalt the vcpu on reset. */
12385
if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
12386
sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
12387
!is_protmode(vcpu))
12388
kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12389
12390
return 0;
12391
}
12392
12393
static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12394
{
12395
int pending_vec, max_bits;
12396
int mmu_reset_needed = 0;
12397
int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
12398
12399
if (ret)
12400
return ret;
12401
12402
if (mmu_reset_needed) {
12403
kvm_mmu_reset_context(vcpu);
12404
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12405
}
12406
12407
max_bits = KVM_NR_INTERRUPTS;
12408
pending_vec = find_first_bit(
12409
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
12410
12411
if (pending_vec < max_bits) {
12412
kvm_queue_interrupt(vcpu, pending_vec, false);
12413
pr_debug("Set back pending irq %d\n", pending_vec);
12414
kvm_make_request(KVM_REQ_EVENT, vcpu);
12415
}
12416
return 0;
12417
}
12418
12419
static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12420
{
12421
int mmu_reset_needed = 0;
12422
bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12423
bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12424
!(sregs2->efer & EFER_LMA);
12425
int i, ret;
12426
12427
if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12428
return -EINVAL;
12429
12430
if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12431
return -EINVAL;
12432
12433
ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12434
&mmu_reset_needed, !valid_pdptrs);
12435
if (ret)
12436
return ret;
12437
12438
if (valid_pdptrs) {
12439
for (i = 0; i < 4 ; i++)
12440
kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12441
12442
kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12443
mmu_reset_needed = 1;
12444
vcpu->arch.pdptrs_from_userspace = true;
12445
}
12446
if (mmu_reset_needed) {
12447
kvm_mmu_reset_context(vcpu);
12448
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12449
}
12450
return 0;
12451
}
12452
12453
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12454
struct kvm_sregs *sregs)
12455
{
12456
int ret;
12457
12458
if (vcpu->kvm->arch.has_protected_state &&
12459
vcpu->arch.guest_state_protected)
12460
return -EINVAL;
12461
12462
vcpu_load(vcpu);
12463
ret = __set_sregs(vcpu, sregs);
12464
vcpu_put(vcpu);
12465
return ret;
12466
}
12467
12468
static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12469
{
12470
bool set = false;
12471
struct kvm_vcpu *vcpu;
12472
unsigned long i;
12473
12474
if (!enable_apicv)
12475
return;
12476
12477
down_write(&kvm->arch.apicv_update_lock);
12478
12479
kvm_for_each_vcpu(i, vcpu, kvm) {
12480
if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12481
set = true;
12482
break;
12483
}
12484
}
12485
__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12486
up_write(&kvm->arch.apicv_update_lock);
12487
}
12488
12489
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12490
struct kvm_guest_debug *dbg)
12491
{
12492
unsigned long rflags;
12493
int i, r;
12494
12495
if (vcpu->arch.guest_state_protected)
12496
return -EINVAL;
12497
12498
vcpu_load(vcpu);
12499
12500
if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12501
r = -EBUSY;
12502
if (kvm_is_exception_pending(vcpu))
12503
goto out;
12504
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12505
kvm_queue_exception(vcpu, DB_VECTOR);
12506
else
12507
kvm_queue_exception(vcpu, BP_VECTOR);
12508
}
12509
12510
/*
12511
* Read rflags as long as potentially injected trace flags are still
12512
* filtered out.
12513
*/
12514
rflags = kvm_get_rflags(vcpu);
12515
12516
vcpu->guest_debug = dbg->control;
12517
if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12518
vcpu->guest_debug = 0;
12519
12520
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12521
for (i = 0; i < KVM_NR_DB_REGS; ++i)
12522
vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12523
vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12524
} else {
12525
for (i = 0; i < KVM_NR_DB_REGS; i++)
12526
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12527
}
12528
kvm_update_dr7(vcpu);
12529
12530
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12531
vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12532
12533
/*
12534
* Trigger an rflags update that will inject or remove the trace
12535
* flags.
12536
*/
12537
kvm_set_rflags(vcpu, rflags);
12538
12539
kvm_x86_call(update_exception_bitmap)(vcpu);
12540
12541
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12542
12543
r = 0;
12544
12545
out:
12546
vcpu_put(vcpu);
12547
return r;
12548
}
12549
12550
/*
12551
* Translate a guest virtual address to a guest physical address.
12552
*/
12553
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12554
struct kvm_translation *tr)
12555
{
12556
unsigned long vaddr = tr->linear_address;
12557
gpa_t gpa;
12558
int idx;
12559
12560
vcpu_load(vcpu);
12561
12562
idx = srcu_read_lock(&vcpu->kvm->srcu);
12563
gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12564
srcu_read_unlock(&vcpu->kvm->srcu, idx);
12565
tr->physical_address = gpa;
12566
tr->valid = gpa != INVALID_GPA;
12567
tr->writeable = 1;
12568
tr->usermode = 0;
12569
12570
vcpu_put(vcpu);
12571
return 0;
12572
}
12573
12574
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12575
{
12576
struct fxregs_state *fxsave;
12577
12578
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12579
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12580
12581
vcpu_load(vcpu);
12582
12583
fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12584
memcpy(fpu->fpr, fxsave->st_space, 128);
12585
fpu->fcw = fxsave->cwd;
12586
fpu->fsw = fxsave->swd;
12587
fpu->ftwx = fxsave->twd;
12588
fpu->last_opcode = fxsave->fop;
12589
fpu->last_ip = fxsave->rip;
12590
fpu->last_dp = fxsave->rdp;
12591
memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12592
12593
vcpu_put(vcpu);
12594
return 0;
12595
}
12596
12597
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12598
{
12599
struct fxregs_state *fxsave;
12600
12601
if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12602
return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12603
12604
vcpu_load(vcpu);
12605
12606
fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12607
12608
memcpy(fxsave->st_space, fpu->fpr, 128);
12609
fxsave->cwd = fpu->fcw;
12610
fxsave->swd = fpu->fsw;
12611
fxsave->twd = fpu->ftwx;
12612
fxsave->fop = fpu->last_opcode;
12613
fxsave->rip = fpu->last_ip;
12614
fxsave->rdp = fpu->last_dp;
12615
memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12616
12617
vcpu_put(vcpu);
12618
return 0;
12619
}
12620
12621
static void store_regs(struct kvm_vcpu *vcpu)
12622
{
12623
BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12624
12625
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12626
__get_regs(vcpu, &vcpu->run->s.regs.regs);
12627
12628
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12629
__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12630
12631
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12632
kvm_vcpu_ioctl_x86_get_vcpu_events(
12633
vcpu, &vcpu->run->s.regs.events);
12634
}
12635
12636
static int sync_regs(struct kvm_vcpu *vcpu)
12637
{
12638
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12639
__set_regs(vcpu, &vcpu->run->s.regs.regs);
12640
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12641
}
12642
12643
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12644
struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12645
12646
if (__set_sregs(vcpu, &sregs))
12647
return -EINVAL;
12648
12649
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12650
}
12651
12652
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12653
struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12654
12655
if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12656
return -EINVAL;
12657
12658
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12659
}
12660
12661
return 0;
12662
}
12663
12664
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12665
{
12666
if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12667
pr_warn_once("SMP vm created on host with unstable TSC; "
12668
"guest TSC will not be reliable\n");
12669
12670
if (!kvm->arch.max_vcpu_ids)
12671
kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12672
12673
if (id >= kvm->arch.max_vcpu_ids)
12674
return -EINVAL;
12675
12676
return kvm_x86_call(vcpu_precreate)(kvm);
12677
}
12678
12679
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12680
{
12681
struct page *page;
12682
int r;
12683
12684
vcpu->arch.last_vmentry_cpu = -1;
12685
vcpu->arch.regs_avail = ~0;
12686
vcpu->arch.regs_dirty = ~0;
12687
12688
kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12689
12690
if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12691
kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12692
else
12693
kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12694
12695
r = kvm_mmu_create(vcpu);
12696
if (r < 0)
12697
return r;
12698
12699
r = kvm_create_lapic(vcpu);
12700
if (r < 0)
12701
goto fail_mmu_destroy;
12702
12703
r = -ENOMEM;
12704
12705
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12706
if (!page)
12707
goto fail_free_lapic;
12708
vcpu->arch.pio_data = page_address(page);
12709
12710
vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12711
GFP_KERNEL_ACCOUNT);
12712
vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12713
GFP_KERNEL_ACCOUNT);
12714
if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12715
goto fail_free_mce_banks;
12716
vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12717
12718
if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12719
GFP_KERNEL_ACCOUNT))
12720
goto fail_free_mce_banks;
12721
12722
if (!alloc_emulate_ctxt(vcpu))
12723
goto free_wbinvd_dirty_mask;
12724
12725
if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12726
pr_err("failed to allocate vcpu's fpu\n");
12727
goto free_emulate_ctxt;
12728
}
12729
12730
kvm_async_pf_hash_reset(vcpu);
12731
12732
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12733
vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12734
vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12735
vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12736
}
12737
kvm_pmu_init(vcpu);
12738
12739
vcpu->arch.pending_external_vector = -1;
12740
vcpu->arch.preempted_in_kernel = false;
12741
12742
#if IS_ENABLED(CONFIG_HYPERV)
12743
vcpu->arch.hv_root_tdp = INVALID_PAGE;
12744
#endif
12745
12746
r = kvm_x86_call(vcpu_create)(vcpu);
12747
if (r)
12748
goto free_guest_fpu;
12749
12750
kvm_xen_init_vcpu(vcpu);
12751
vcpu_load(vcpu);
12752
kvm_vcpu_after_set_cpuid(vcpu);
12753
kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12754
kvm_vcpu_reset(vcpu, false);
12755
kvm_init_mmu(vcpu);
12756
vcpu_put(vcpu);
12757
return 0;
12758
12759
free_guest_fpu:
12760
fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12761
free_emulate_ctxt:
12762
kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12763
free_wbinvd_dirty_mask:
12764
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12765
fail_free_mce_banks:
12766
kfree(vcpu->arch.mce_banks);
12767
kfree(vcpu->arch.mci_ctl2_banks);
12768
free_page((unsigned long)vcpu->arch.pio_data);
12769
fail_free_lapic:
12770
kvm_free_lapic(vcpu);
12771
fail_mmu_destroy:
12772
kvm_mmu_destroy(vcpu);
12773
return r;
12774
}
12775
12776
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12777
{
12778
if (mutex_lock_killable(&vcpu->mutex))
12779
return;
12780
vcpu_load(vcpu);
12781
kvm_synchronize_tsc(vcpu, NULL);
12782
vcpu_put(vcpu);
12783
12784
/* poll control enabled by default */
12785
vcpu->arch.msr_kvm_poll_control = 1;
12786
12787
mutex_unlock(&vcpu->mutex);
12788
}
12789
12790
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12791
{
12792
int idx, cpu;
12793
12794
kvm_clear_async_pf_completion_queue(vcpu);
12795
kvm_mmu_unload(vcpu);
12796
12797
kvmclock_reset(vcpu);
12798
12799
for_each_possible_cpu(cpu)
12800
cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL);
12801
12802
kvm_x86_call(vcpu_free)(vcpu);
12803
12804
kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12805
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12806
fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12807
12808
kvm_xen_destroy_vcpu(vcpu);
12809
kvm_hv_vcpu_uninit(vcpu);
12810
kvm_pmu_destroy(vcpu);
12811
kfree(vcpu->arch.mce_banks);
12812
kfree(vcpu->arch.mci_ctl2_banks);
12813
kvm_free_lapic(vcpu);
12814
idx = srcu_read_lock(&vcpu->kvm->srcu);
12815
kvm_mmu_destroy(vcpu);
12816
srcu_read_unlock(&vcpu->kvm->srcu, idx);
12817
free_page((unsigned long)vcpu->arch.pio_data);
12818
kvfree(vcpu->arch.cpuid_entries);
12819
}
12820
12821
static void kvm_xstate_reset(struct kvm_vcpu *vcpu, bool init_event)
12822
{
12823
struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12824
u64 xfeatures_mask;
12825
bool fpu_in_use;
12826
int i;
12827
12828
/*
12829
* Guest FPU state is zero allocated and so doesn't need to be manually
12830
* cleared on RESET, i.e. during vCPU creation.
12831
*/
12832
if (!init_event || !fpstate)
12833
return;
12834
12835
/*
12836
* On INIT, only select XSTATE components are zeroed, most components
12837
* are unchanged. Currently, the only components that are zeroed and
12838
* supported by KVM are MPX and CET related.
12839
*/
12840
xfeatures_mask = (kvm_caps.supported_xcr0 | kvm_caps.supported_xss) &
12841
(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR |
12842
XFEATURE_MASK_CET_ALL);
12843
if (!xfeatures_mask)
12844
return;
12845
12846
BUILD_BUG_ON(sizeof(xfeatures_mask) * BITS_PER_BYTE <= XFEATURE_MAX);
12847
12848
/*
12849
* Unload guest FPU state (if necessary) before zeroing XSTATE fields
12850
* as the kernel can only modify the state when its resident in memory,
12851
* i.e. when it's not loaded into hardware.
12852
*
12853
* WARN if the vCPU's desire to run, i.e. whether or not its in KVM_RUN,
12854
* doesn't match the loaded/in-use state of the FPU, as KVM_RUN is the
12855
* only path that can trigger INIT emulation _and_ loads FPU state, and
12856
* KVM_RUN should _always_ load FPU state.
12857
*/
12858
WARN_ON_ONCE(vcpu->wants_to_run != fpstate->in_use);
12859
fpu_in_use = fpstate->in_use;
12860
if (fpu_in_use)
12861
kvm_put_guest_fpu(vcpu);
12862
for_each_set_bit(i, (unsigned long *)&xfeatures_mask, XFEATURE_MAX)
12863
fpstate_clear_xstate_component(fpstate, i);
12864
if (fpu_in_use)
12865
kvm_load_guest_fpu(vcpu);
12866
}
12867
12868
void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12869
{
12870
struct kvm_cpuid_entry2 *cpuid_0x1;
12871
unsigned long old_cr0 = kvm_read_cr0(vcpu);
12872
unsigned long new_cr0;
12873
12874
/*
12875
* Several of the "set" flows, e.g. ->set_cr0(), read other registers
12876
* to handle side effects. RESET emulation hits those flows and relies
12877
* on emulated/virtualized registers, including those that are loaded
12878
* into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12879
* to detect improper or missing initialization.
12880
*/
12881
WARN_ON_ONCE(!init_event &&
12882
(old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12883
12884
/*
12885
* SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12886
* possible to INIT the vCPU while L2 is active. Force the vCPU back
12887
* into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12888
* bits), i.e. virtualization is disabled.
12889
*/
12890
if (is_guest_mode(vcpu))
12891
kvm_leave_nested(vcpu);
12892
12893
kvm_lapic_reset(vcpu, init_event);
12894
12895
WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12896
vcpu->arch.hflags = 0;
12897
12898
vcpu->arch.smi_pending = 0;
12899
vcpu->arch.smi_count = 0;
12900
atomic_set(&vcpu->arch.nmi_queued, 0);
12901
vcpu->arch.nmi_pending = 0;
12902
vcpu->arch.nmi_injected = false;
12903
kvm_clear_interrupt_queue(vcpu);
12904
kvm_clear_exception_queue(vcpu);
12905
12906
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12907
kvm_update_dr0123(vcpu);
12908
vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12909
vcpu->arch.dr7 = DR7_FIXED_1;
12910
kvm_update_dr7(vcpu);
12911
12912
vcpu->arch.cr2 = 0;
12913
12914
kvm_make_request(KVM_REQ_EVENT, vcpu);
12915
vcpu->arch.apf.msr_en_val = 0;
12916
vcpu->arch.apf.msr_int_val = 0;
12917
vcpu->arch.st.msr_val = 0;
12918
12919
kvmclock_reset(vcpu);
12920
12921
kvm_clear_async_pf_completion_queue(vcpu);
12922
kvm_async_pf_hash_reset(vcpu);
12923
vcpu->arch.apf.halted = false;
12924
12925
kvm_xstate_reset(vcpu, init_event);
12926
12927
if (!init_event) {
12928
vcpu->arch.smbase = 0x30000;
12929
12930
vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12931
12932
vcpu->arch.msr_misc_features_enables = 0;
12933
vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12934
MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12935
12936
__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12937
kvm_msr_write(vcpu, MSR_IA32_XSS, 0);
12938
}
12939
12940
/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12941
memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12942
kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12943
12944
/*
12945
* Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12946
* if no CPUID match is found. Note, it's impossible to get a match at
12947
* RESET since KVM emulates RESET before exposing the vCPU to userspace,
12948
* i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12949
* on RESET. But, go through the motions in case that's ever remedied.
12950
*/
12951
cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12952
kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12953
12954
kvm_x86_call(vcpu_reset)(vcpu, init_event);
12955
12956
kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12957
kvm_rip_write(vcpu, 0xfff0);
12958
12959
vcpu->arch.cr3 = 0;
12960
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12961
12962
/*
12963
* CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12964
* of Intel's SDM list CD/NW as being set on INIT, but they contradict
12965
* (or qualify) that with a footnote stating that CD/NW are preserved.
12966
*/
12967
new_cr0 = X86_CR0_ET;
12968
if (init_event)
12969
new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12970
else
12971
new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12972
12973
kvm_x86_call(set_cr0)(vcpu, new_cr0);
12974
kvm_x86_call(set_cr4)(vcpu, 0);
12975
kvm_x86_call(set_efer)(vcpu, 0);
12976
kvm_x86_call(update_exception_bitmap)(vcpu);
12977
12978
/*
12979
* On the standard CR0/CR4/EFER modification paths, there are several
12980
* complex conditions determining whether the MMU has to be reset and/or
12981
* which PCIDs have to be flushed. However, CR0.WP and the paging-related
12982
* bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12983
* is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12984
* CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12985
*/
12986
if (old_cr0 & X86_CR0_PG) {
12987
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12988
kvm_mmu_reset_context(vcpu);
12989
}
12990
12991
/*
12992
* Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12993
* APM states the TLBs are untouched by INIT, but it also states that
12994
* the TLBs are flushed on "External initialization of the processor."
12995
* Flush the guest TLB regardless of vendor, there is no meaningful
12996
* benefit in relying on the guest to flush the TLB immediately after
12997
* INIT. A spurious TLB flush is benign and likely negligible from a
12998
* performance perspective.
12999
*/
13000
if (init_event)
13001
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13002
}
13003
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_reset);
13004
13005
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
13006
{
13007
struct kvm_segment cs;
13008
13009
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
13010
cs.selector = vector << 8;
13011
cs.base = vector << 12;
13012
kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
13013
kvm_rip_write(vcpu, 0);
13014
}
13015
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_deliver_sipi_vector);
13016
13017
void kvm_arch_enable_virtualization(void)
13018
{
13019
cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
13020
}
13021
13022
void kvm_arch_disable_virtualization(void)
13023
{
13024
cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
13025
}
13026
13027
int kvm_arch_enable_virtualization_cpu(void)
13028
{
13029
struct kvm *kvm;
13030
struct kvm_vcpu *vcpu;
13031
unsigned long i;
13032
int ret;
13033
u64 local_tsc;
13034
u64 max_tsc = 0;
13035
bool stable, backwards_tsc = false;
13036
13037
kvm_user_return_msr_cpu_online();
13038
13039
ret = kvm_x86_check_processor_compatibility();
13040
if (ret)
13041
return ret;
13042
13043
ret = kvm_x86_call(enable_virtualization_cpu)();
13044
if (ret != 0)
13045
return ret;
13046
13047
local_tsc = rdtsc();
13048
stable = !kvm_check_tsc_unstable();
13049
list_for_each_entry(kvm, &vm_list, vm_list) {
13050
kvm_for_each_vcpu(i, vcpu, kvm) {
13051
if (!stable && vcpu->cpu == smp_processor_id())
13052
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
13053
if (stable && vcpu->arch.last_host_tsc > local_tsc) {
13054
backwards_tsc = true;
13055
if (vcpu->arch.last_host_tsc > max_tsc)
13056
max_tsc = vcpu->arch.last_host_tsc;
13057
}
13058
}
13059
}
13060
13061
/*
13062
* Sometimes, even reliable TSCs go backwards. This happens on
13063
* platforms that reset TSC during suspend or hibernate actions, but
13064
* maintain synchronization. We must compensate. Fortunately, we can
13065
* detect that condition here, which happens early in CPU bringup,
13066
* before any KVM threads can be running. Unfortunately, we can't
13067
* bring the TSCs fully up to date with real time, as we aren't yet far
13068
* enough into CPU bringup that we know how much real time has actually
13069
* elapsed; our helper function, ktime_get_boottime_ns() will be using boot
13070
* variables that haven't been updated yet.
13071
*
13072
* So we simply find the maximum observed TSC above, then record the
13073
* adjustment to TSC in each VCPU. When the VCPU later gets loaded,
13074
* the adjustment will be applied. Note that we accumulate
13075
* adjustments, in case multiple suspend cycles happen before some VCPU
13076
* gets a chance to run again. In the event that no KVM threads get a
13077
* chance to run, we will miss the entire elapsed period, as we'll have
13078
* reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
13079
* loose cycle time. This isn't too big a deal, since the loss will be
13080
* uniform across all VCPUs (not to mention the scenario is extremely
13081
* unlikely). It is possible that a second hibernate recovery happens
13082
* much faster than a first, causing the observed TSC here to be
13083
* smaller; this would require additional padding adjustment, which is
13084
* why we set last_host_tsc to the local tsc observed here.
13085
*
13086
* N.B. - this code below runs only on platforms with reliable TSC,
13087
* as that is the only way backwards_tsc is set above. Also note
13088
* that this runs for ALL vcpus, which is not a bug; all VCPUs should
13089
* have the same delta_cyc adjustment applied if backwards_tsc
13090
* is detected. Note further, this adjustment is only done once,
13091
* as we reset last_host_tsc on all VCPUs to stop this from being
13092
* called multiple times (one for each physical CPU bringup).
13093
*
13094
* Platforms with unreliable TSCs don't have to deal with this, they
13095
* will be compensated by the logic in vcpu_load, which sets the TSC to
13096
* catchup mode. This will catchup all VCPUs to real time, but cannot
13097
* guarantee that they stay in perfect synchronization.
13098
*/
13099
if (backwards_tsc) {
13100
u64 delta_cyc = max_tsc - local_tsc;
13101
list_for_each_entry(kvm, &vm_list, vm_list) {
13102
kvm->arch.backwards_tsc_observed = true;
13103
kvm_for_each_vcpu(i, vcpu, kvm) {
13104
vcpu->arch.tsc_offset_adjustment += delta_cyc;
13105
vcpu->arch.last_host_tsc = local_tsc;
13106
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
13107
}
13108
13109
/*
13110
* We have to disable TSC offset matching.. if you were
13111
* booting a VM while issuing an S4 host suspend....
13112
* you may have some problem. Solving this issue is
13113
* left as an exercise to the reader.
13114
*/
13115
kvm->arch.last_tsc_nsec = 0;
13116
kvm->arch.last_tsc_write = 0;
13117
}
13118
13119
}
13120
return 0;
13121
}
13122
13123
void kvm_arch_disable_virtualization_cpu(void)
13124
{
13125
kvm_x86_call(disable_virtualization_cpu)();
13126
13127
/*
13128
* Leave the user-return notifiers as-is when disabling virtualization
13129
* for reboot, i.e. when disabling via IPI function call, and instead
13130
* pin kvm.ko (if it's a module) to defend against use-after-free (in
13131
* the *very* unlikely scenario module unload is racing with reboot).
13132
* On a forced reboot, tasks aren't frozen before shutdown, and so KVM
13133
* could be actively modifying user-return MSR state when the IPI to
13134
* disable virtualization arrives. Handle the extreme edge case here
13135
* instead of trying to account for it in the normal flows.
13136
*/
13137
if (in_task() || WARN_ON_ONCE(!kvm_rebooting))
13138
drop_user_return_notifiers();
13139
else
13140
__module_get(THIS_MODULE);
13141
}
13142
13143
bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
13144
{
13145
return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
13146
}
13147
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_reset_bsp);
13148
13149
bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
13150
{
13151
return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
13152
}
13153
13154
void kvm_arch_free_vm(struct kvm *kvm)
13155
{
13156
#if IS_ENABLED(CONFIG_HYPERV)
13157
kfree(kvm->arch.hv_pa_pg);
13158
#endif
13159
__kvm_arch_free_vm(kvm);
13160
}
13161
13162
13163
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
13164
{
13165
int ret;
13166
unsigned long flags;
13167
13168
if (!kvm_is_vm_type_supported(type))
13169
return -EINVAL;
13170
13171
kvm->arch.vm_type = type;
13172
kvm->arch.has_private_mem =
13173
(type == KVM_X86_SW_PROTECTED_VM);
13174
/* Decided by the vendor code for other VM types. */
13175
kvm->arch.pre_fault_allowed =
13176
type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
13177
kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks;
13178
13179
ret = kvm_page_track_init(kvm);
13180
if (ret)
13181
goto out;
13182
13183
ret = kvm_mmu_init_vm(kvm);
13184
if (ret)
13185
goto out_cleanup_page_track;
13186
13187
ret = kvm_x86_call(vm_init)(kvm);
13188
if (ret)
13189
goto out_uninit_mmu;
13190
13191
atomic_set(&kvm->arch.noncoherent_dma_count, 0);
13192
13193
raw_spin_lock_init(&kvm->arch.tsc_write_lock);
13194
mutex_init(&kvm->arch.apic_map_lock);
13195
seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
13196
kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
13197
13198
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
13199
pvclock_update_vm_gtod_copy(kvm);
13200
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
13201
13202
kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
13203
kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
13204
kvm->arch.guest_can_read_msr_platform_info = true;
13205
kvm->arch.enable_pmu = enable_pmu;
13206
13207
#if IS_ENABLED(CONFIG_HYPERV)
13208
spin_lock_init(&kvm->arch.hv_root_tdp_lock);
13209
kvm->arch.hv_root_tdp = INVALID_PAGE;
13210
#endif
13211
13212
kvm_apicv_init(kvm);
13213
kvm_hv_init_vm(kvm);
13214
kvm_xen_init_vm(kvm);
13215
13216
if (ignore_msrs && !report_ignored_msrs) {
13217
pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
13218
"a supported configuration. Lying to the guest about the existence of MSRs\n"
13219
"may cause the guest operating system to hang or produce errors. If a guest\n"
13220
"does not run without ignore_msrs=1, please report it to [email protected].\n");
13221
}
13222
13223
once_init(&kvm->arch.nx_once);
13224
return 0;
13225
13226
out_uninit_mmu:
13227
kvm_mmu_uninit_vm(kvm);
13228
out_cleanup_page_track:
13229
kvm_page_track_cleanup(kvm);
13230
out:
13231
return ret;
13232
}
13233
13234
/**
13235
* __x86_set_memory_region: Setup KVM internal memory slot
13236
*
13237
* @kvm: the kvm pointer to the VM.
13238
* @id: the slot ID to setup.
13239
* @gpa: the GPA to install the slot (unused when @size == 0).
13240
* @size: the size of the slot. Set to zero to uninstall a slot.
13241
*
13242
* This function helps to setup a KVM internal memory slot. Specify
13243
* @size > 0 to install a new slot, while @size == 0 to uninstall a
13244
* slot. The return code can be one of the following:
13245
*
13246
* HVA: on success (uninstall will return a bogus HVA)
13247
* -errno: on error
13248
*
13249
* The caller should always use IS_ERR() to check the return value
13250
* before use. Note, the KVM internal memory slots are guaranteed to
13251
* remain valid and unchanged until the VM is destroyed, i.e., the
13252
* GPA->HVA translation will not change. However, the HVA is a user
13253
* address, i.e. its accessibility is not guaranteed, and must be
13254
* accessed via __copy_{to,from}_user().
13255
*/
13256
void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
13257
u32 size)
13258
{
13259
int i, r;
13260
unsigned long hva, old_npages;
13261
struct kvm_memslots *slots = kvm_memslots(kvm);
13262
struct kvm_memory_slot *slot;
13263
13264
lockdep_assert_held(&kvm->slots_lock);
13265
13266
if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
13267
return ERR_PTR_USR(-EINVAL);
13268
13269
slot = id_to_memslot(slots, id);
13270
if (size) {
13271
if (slot && slot->npages)
13272
return ERR_PTR_USR(-EEXIST);
13273
13274
/*
13275
* MAP_SHARED to prevent internal slot pages from being moved
13276
* by fork()/COW.
13277
*/
13278
hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
13279
MAP_SHARED | MAP_ANONYMOUS, 0);
13280
if (IS_ERR_VALUE(hva))
13281
return (void __user *)hva;
13282
} else {
13283
if (!slot || !slot->npages)
13284
return NULL;
13285
13286
old_npages = slot->npages;
13287
hva = slot->userspace_addr;
13288
}
13289
13290
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
13291
struct kvm_userspace_memory_region2 m;
13292
13293
m.slot = id | (i << 16);
13294
m.flags = 0;
13295
m.guest_phys_addr = gpa;
13296
m.userspace_addr = hva;
13297
m.memory_size = size;
13298
r = kvm_set_internal_memslot(kvm, &m);
13299
if (r < 0)
13300
return ERR_PTR_USR(r);
13301
}
13302
13303
if (!size)
13304
vm_munmap(hva, old_npages * PAGE_SIZE);
13305
13306
return (void __user *)hva;
13307
}
13308
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__x86_set_memory_region);
13309
13310
void kvm_arch_pre_destroy_vm(struct kvm *kvm)
13311
{
13312
/*
13313
* Stop all background workers and kthreads before destroying vCPUs, as
13314
* iterating over vCPUs in a different task while vCPUs are being freed
13315
* is unsafe, i.e. will lead to use-after-free. The PIT also needs to
13316
* be stopped before IRQ routing is freed.
13317
*/
13318
#ifdef CONFIG_KVM_IOAPIC
13319
kvm_free_pit(kvm);
13320
#endif
13321
13322
kvm_mmu_pre_destroy_vm(kvm);
13323
static_call_cond(kvm_x86_vm_pre_destroy)(kvm);
13324
}
13325
13326
void kvm_arch_destroy_vm(struct kvm *kvm)
13327
{
13328
if (current->mm == kvm->mm) {
13329
/*
13330
* Free memory regions allocated on behalf of userspace,
13331
* unless the memory map has changed due to process exit
13332
* or fd copying.
13333
*/
13334
mutex_lock(&kvm->slots_lock);
13335
__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
13336
0, 0);
13337
__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
13338
0, 0);
13339
__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
13340
mutex_unlock(&kvm->slots_lock);
13341
}
13342
kvm_destroy_vcpus(kvm);
13343
kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
13344
#ifdef CONFIG_KVM_IOAPIC
13345
kvm_pic_destroy(kvm);
13346
kvm_ioapic_destroy(kvm);
13347
#endif
13348
kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
13349
kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
13350
kvm_mmu_uninit_vm(kvm);
13351
kvm_page_track_cleanup(kvm);
13352
kvm_xen_destroy_vm(kvm);
13353
kvm_hv_destroy_vm(kvm);
13354
kvm_x86_call(vm_destroy)(kvm);
13355
}
13356
13357
static void memslot_rmap_free(struct kvm_memory_slot *slot)
13358
{
13359
int i;
13360
13361
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13362
vfree(slot->arch.rmap[i]);
13363
slot->arch.rmap[i] = NULL;
13364
}
13365
}
13366
13367
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
13368
{
13369
int i;
13370
13371
memslot_rmap_free(slot);
13372
13373
for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13374
vfree(slot->arch.lpage_info[i - 1]);
13375
slot->arch.lpage_info[i - 1] = NULL;
13376
}
13377
13378
kvm_page_track_free_memslot(slot);
13379
}
13380
13381
int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
13382
{
13383
const int sz = sizeof(*slot->arch.rmap[0]);
13384
int i;
13385
13386
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13387
int level = i + 1;
13388
int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13389
13390
if (slot->arch.rmap[i])
13391
continue;
13392
13393
slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
13394
if (!slot->arch.rmap[i]) {
13395
memslot_rmap_free(slot);
13396
return -ENOMEM;
13397
}
13398
}
13399
13400
return 0;
13401
}
13402
13403
static int kvm_alloc_memslot_metadata(struct kvm *kvm,
13404
struct kvm_memory_slot *slot)
13405
{
13406
unsigned long npages = slot->npages;
13407
int i, r;
13408
13409
/*
13410
* Clear out the previous array pointers for the KVM_MR_MOVE case. The
13411
* old arrays will be freed by kvm_set_memory_region() if installing
13412
* the new memslot is successful.
13413
*/
13414
memset(&slot->arch, 0, sizeof(slot->arch));
13415
13416
if (kvm_memslots_have_rmaps(kvm)) {
13417
r = memslot_rmap_alloc(slot, npages);
13418
if (r)
13419
return r;
13420
}
13421
13422
for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13423
struct kvm_lpage_info *linfo;
13424
unsigned long ugfn;
13425
int lpages;
13426
int level = i + 1;
13427
13428
lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13429
13430
linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
13431
if (!linfo)
13432
goto out_free;
13433
13434
slot->arch.lpage_info[i - 1] = linfo;
13435
13436
if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
13437
linfo[0].disallow_lpage = 1;
13438
if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
13439
linfo[lpages - 1].disallow_lpage = 1;
13440
ugfn = slot->userspace_addr >> PAGE_SHIFT;
13441
/*
13442
* If the gfn and userspace address are not aligned wrt each
13443
* other, disable large page support for this slot.
13444
*/
13445
if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
13446
unsigned long j;
13447
13448
for (j = 0; j < lpages; ++j)
13449
linfo[j].disallow_lpage = 1;
13450
}
13451
}
13452
13453
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13454
kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13455
#endif
13456
13457
if (kvm_page_track_create_memslot(kvm, slot, npages))
13458
goto out_free;
13459
13460
return 0;
13461
13462
out_free:
13463
memslot_rmap_free(slot);
13464
13465
for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13466
vfree(slot->arch.lpage_info[i - 1]);
13467
slot->arch.lpage_info[i - 1] = NULL;
13468
}
13469
return -ENOMEM;
13470
}
13471
13472
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13473
{
13474
struct kvm_vcpu *vcpu;
13475
unsigned long i;
13476
13477
/*
13478
* memslots->generation has been incremented.
13479
* mmio generation may have reached its maximum value.
13480
*/
13481
kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13482
13483
/* Force re-initialization of steal_time cache */
13484
kvm_for_each_vcpu(i, vcpu, kvm)
13485
kvm_vcpu_kick(vcpu);
13486
}
13487
13488
int kvm_arch_prepare_memory_region(struct kvm *kvm,
13489
const struct kvm_memory_slot *old,
13490
struct kvm_memory_slot *new,
13491
enum kvm_mr_change change)
13492
{
13493
/*
13494
* KVM doesn't support moving memslots when there are external page
13495
* trackers attached to the VM, i.e. if KVMGT is in use.
13496
*/
13497
if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13498
return -EINVAL;
13499
13500
if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13501
if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13502
return -EINVAL;
13503
13504
if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13505
return -EINVAL;
13506
13507
return kvm_alloc_memslot_metadata(kvm, new);
13508
}
13509
13510
if (change == KVM_MR_FLAGS_ONLY)
13511
memcpy(&new->arch, &old->arch, sizeof(old->arch));
13512
else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13513
return -EIO;
13514
13515
return 0;
13516
}
13517
13518
13519
static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13520
{
13521
int nr_slots;
13522
13523
if (!kvm->arch.cpu_dirty_log_size)
13524
return;
13525
13526
nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13527
if ((enable && nr_slots == 1) || !nr_slots)
13528
kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13529
}
13530
13531
static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13532
struct kvm_memory_slot *old,
13533
const struct kvm_memory_slot *new,
13534
enum kvm_mr_change change)
13535
{
13536
u32 old_flags = old ? old->flags : 0;
13537
u32 new_flags = new ? new->flags : 0;
13538
bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13539
13540
/*
13541
* Update CPU dirty logging if dirty logging is being toggled. This
13542
* applies to all operations.
13543
*/
13544
if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13545
kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13546
13547
/*
13548
* Nothing more to do for RO slots (which can't be dirtied and can't be
13549
* made writable) or CREATE/MOVE/DELETE of a slot.
13550
*
13551
* For a memslot with dirty logging disabled:
13552
* CREATE: No dirty mappings will already exist.
13553
* MOVE/DELETE: The old mappings will already have been cleaned up by
13554
* kvm_arch_flush_shadow_memslot()
13555
*
13556
* For a memslot with dirty logging enabled:
13557
* CREATE: No shadow pages exist, thus nothing to write-protect
13558
* and no dirty bits to clear.
13559
* MOVE/DELETE: The old mappings will already have been cleaned up by
13560
* kvm_arch_flush_shadow_memslot().
13561
*/
13562
if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13563
return;
13564
13565
/*
13566
* READONLY and non-flags changes were filtered out above, and the only
13567
* other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13568
* logging isn't being toggled on or off.
13569
*/
13570
if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13571
return;
13572
13573
if (!log_dirty_pages) {
13574
/*
13575
* Recover huge page mappings in the slot now that dirty logging
13576
* is disabled, i.e. now that KVM does not have to track guest
13577
* writes at 4KiB granularity.
13578
*
13579
* Dirty logging might be disabled by userspace if an ongoing VM
13580
* live migration is cancelled and the VM must continue running
13581
* on the source.
13582
*/
13583
kvm_mmu_recover_huge_pages(kvm, new);
13584
} else {
13585
/*
13586
* Initially-all-set does not require write protecting any page,
13587
* because they're all assumed to be dirty.
13588
*/
13589
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13590
return;
13591
13592
if (READ_ONCE(eager_page_split))
13593
kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13594
13595
if (kvm->arch.cpu_dirty_log_size) {
13596
kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13597
kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13598
} else {
13599
kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13600
}
13601
13602
/*
13603
* Unconditionally flush the TLBs after enabling dirty logging.
13604
* A flush is almost always going to be necessary (see below),
13605
* and unconditionally flushing allows the helpers to omit
13606
* the subtly complex checks when removing write access.
13607
*
13608
* Do the flush outside of mmu_lock to reduce the amount of
13609
* time mmu_lock is held. Flushing after dropping mmu_lock is
13610
* safe as KVM only needs to guarantee the slot is fully
13611
* write-protected before returning to userspace, i.e. before
13612
* userspace can consume the dirty status.
13613
*
13614
* Flushing outside of mmu_lock requires KVM to be careful when
13615
* making decisions based on writable status of an SPTE, e.g. a
13616
* !writable SPTE doesn't guarantee a CPU can't perform writes.
13617
*
13618
* Specifically, KVM also write-protects guest page tables to
13619
* monitor changes when using shadow paging, and must guarantee
13620
* no CPUs can write to those page before mmu_lock is dropped.
13621
* Because CPUs may have stale TLB entries at this point, a
13622
* !writable SPTE doesn't guarantee CPUs can't perform writes.
13623
*
13624
* KVM also allows making SPTES writable outside of mmu_lock,
13625
* e.g. to allow dirty logging without taking mmu_lock.
13626
*
13627
* To handle these scenarios, KVM uses a separate software-only
13628
* bit (MMU-writable) to track if a SPTE is !writable due to
13629
* a guest page table being write-protected (KVM clears the
13630
* MMU-writable flag when write-protecting for shadow paging).
13631
*
13632
* The use of MMU-writable is also the primary motivation for
13633
* the unconditional flush. Because KVM must guarantee that a
13634
* CPU doesn't contain stale, writable TLB entries for a
13635
* !MMU-writable SPTE, KVM must flush if it encounters any
13636
* MMU-writable SPTE regardless of whether the actual hardware
13637
* writable bit was set. I.e. KVM is almost guaranteed to need
13638
* to flush, while unconditionally flushing allows the "remove
13639
* write access" helpers to ignore MMU-writable entirely.
13640
*
13641
* See is_writable_pte() for more details (the case involving
13642
* access-tracked SPTEs is particularly relevant).
13643
*/
13644
kvm_flush_remote_tlbs_memslot(kvm, new);
13645
}
13646
}
13647
13648
void kvm_arch_commit_memory_region(struct kvm *kvm,
13649
struct kvm_memory_slot *old,
13650
const struct kvm_memory_slot *new,
13651
enum kvm_mr_change change)
13652
{
13653
if (change == KVM_MR_DELETE)
13654
kvm_page_track_delete_slot(kvm, old);
13655
13656
if (!kvm->arch.n_requested_mmu_pages &&
13657
(change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13658
unsigned long nr_mmu_pages;
13659
13660
nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13661
nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13662
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13663
}
13664
13665
kvm_mmu_slot_apply_flags(kvm, old, new, change);
13666
13667
/* Free the arrays associated with the old memslot. */
13668
if (change == KVM_MR_MOVE)
13669
kvm_arch_free_memslot(kvm, old);
13670
}
13671
13672
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13673
{
13674
WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13675
13676
if (vcpu->arch.guest_state_protected)
13677
return true;
13678
13679
return kvm_x86_call(get_cpl)(vcpu) == 0;
13680
}
13681
13682
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13683
{
13684
WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13685
13686
if (vcpu->arch.guest_state_protected)
13687
return 0;
13688
13689
return kvm_rip_read(vcpu);
13690
}
13691
13692
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13693
{
13694
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13695
}
13696
13697
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13698
{
13699
return kvm_x86_call(interrupt_allowed)(vcpu, false);
13700
}
13701
13702
unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13703
{
13704
/* Can't read the RIP when guest state is protected, just return 0 */
13705
if (vcpu->arch.guest_state_protected)
13706
return 0;
13707
13708
if (is_64_bit_mode(vcpu))
13709
return kvm_rip_read(vcpu);
13710
return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13711
kvm_rip_read(vcpu));
13712
}
13713
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_linear_rip);
13714
13715
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13716
{
13717
return kvm_get_linear_rip(vcpu) == linear_rip;
13718
}
13719
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_linear_rip);
13720
13721
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13722
{
13723
unsigned long rflags;
13724
13725
rflags = kvm_x86_call(get_rflags)(vcpu);
13726
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13727
rflags &= ~X86_EFLAGS_TF;
13728
return rflags;
13729
}
13730
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_rflags);
13731
13732
static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13733
{
13734
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13735
kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13736
rflags |= X86_EFLAGS_TF;
13737
kvm_x86_call(set_rflags)(vcpu, rflags);
13738
}
13739
13740
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13741
{
13742
__kvm_set_rflags(vcpu, rflags);
13743
kvm_make_request(KVM_REQ_EVENT, vcpu);
13744
}
13745
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_rflags);
13746
13747
static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13748
{
13749
BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13750
13751
return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13752
}
13753
13754
static inline u32 kvm_async_pf_next_probe(u32 key)
13755
{
13756
return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13757
}
13758
13759
static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13760
{
13761
u32 key = kvm_async_pf_hash_fn(gfn);
13762
13763
while (vcpu->arch.apf.gfns[key] != ~0)
13764
key = kvm_async_pf_next_probe(key);
13765
13766
vcpu->arch.apf.gfns[key] = gfn;
13767
}
13768
13769
static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13770
{
13771
int i;
13772
u32 key = kvm_async_pf_hash_fn(gfn);
13773
13774
for (i = 0; i < ASYNC_PF_PER_VCPU &&
13775
(vcpu->arch.apf.gfns[key] != gfn &&
13776
vcpu->arch.apf.gfns[key] != ~0); i++)
13777
key = kvm_async_pf_next_probe(key);
13778
13779
return key;
13780
}
13781
13782
bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13783
{
13784
return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13785
}
13786
13787
static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13788
{
13789
u32 i, j, k;
13790
13791
i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13792
13793
if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13794
return;
13795
13796
while (true) {
13797
vcpu->arch.apf.gfns[i] = ~0;
13798
do {
13799
j = kvm_async_pf_next_probe(j);
13800
if (vcpu->arch.apf.gfns[j] == ~0)
13801
return;
13802
k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13803
/*
13804
* k lies cyclically in ]i,j]
13805
* | i.k.j |
13806
* |....j i.k.| or |.k..j i...|
13807
*/
13808
} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13809
vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13810
i = j;
13811
}
13812
}
13813
13814
static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13815
{
13816
u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13817
13818
return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13819
sizeof(reason));
13820
}
13821
13822
static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13823
{
13824
unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13825
13826
return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13827
&token, offset, sizeof(token));
13828
}
13829
13830
static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13831
{
13832
unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13833
u32 val;
13834
13835
if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13836
&val, offset, sizeof(val)))
13837
return false;
13838
13839
return !val;
13840
}
13841
13842
static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13843
{
13844
13845
if (!kvm_pv_async_pf_enabled(vcpu))
13846
return false;
13847
13848
if (!vcpu->arch.apf.send_always &&
13849
(vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13850
return false;
13851
13852
if (is_guest_mode(vcpu)) {
13853
/*
13854
* L1 needs to opt into the special #PF vmexits that are
13855
* used to deliver async page faults.
13856
*/
13857
return vcpu->arch.apf.delivery_as_pf_vmexit;
13858
} else {
13859
/*
13860
* Play it safe in case the guest temporarily disables paging.
13861
* The real mode IDT in particular is unlikely to have a #PF
13862
* exception setup.
13863
*/
13864
return is_paging(vcpu);
13865
}
13866
}
13867
13868
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13869
{
13870
if (unlikely(!lapic_in_kernel(vcpu) ||
13871
kvm_event_needs_reinjection(vcpu) ||
13872
kvm_is_exception_pending(vcpu)))
13873
return false;
13874
13875
if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13876
return false;
13877
13878
/*
13879
* If interrupts are off we cannot even use an artificial
13880
* halt state.
13881
*/
13882
return kvm_arch_interrupt_allowed(vcpu);
13883
}
13884
13885
bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13886
struct kvm_async_pf *work)
13887
{
13888
struct x86_exception fault;
13889
13890
trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13891
kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13892
13893
if (kvm_can_deliver_async_pf(vcpu) &&
13894
!apf_put_user_notpresent(vcpu)) {
13895
fault.vector = PF_VECTOR;
13896
fault.error_code_valid = true;
13897
fault.error_code = 0;
13898
fault.nested_page_fault = false;
13899
fault.address = work->arch.token;
13900
fault.async_page_fault = true;
13901
kvm_inject_page_fault(vcpu, &fault);
13902
return true;
13903
} else {
13904
/*
13905
* It is not possible to deliver a paravirtualized asynchronous
13906
* page fault, but putting the guest in an artificial halt state
13907
* can be beneficial nevertheless: if an interrupt arrives, we
13908
* can deliver it timely and perhaps the guest will schedule
13909
* another process. When the instruction that triggered a page
13910
* fault is retried, hopefully the page will be ready in the host.
13911
*/
13912
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13913
return false;
13914
}
13915
}
13916
13917
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13918
struct kvm_async_pf *work)
13919
{
13920
struct kvm_lapic_irq irq = {
13921
.delivery_mode = APIC_DM_FIXED,
13922
.vector = vcpu->arch.apf.vec
13923
};
13924
13925
if (work->wakeup_all)
13926
work->arch.token = ~0; /* broadcast wakeup */
13927
else
13928
kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13929
trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13930
13931
if ((work->wakeup_all || work->notpresent_injected) &&
13932
kvm_pv_async_pf_enabled(vcpu) &&
13933
!apf_put_user_ready(vcpu, work->arch.token)) {
13934
WRITE_ONCE(vcpu->arch.apf.pageready_pending, true);
13935
kvm_apic_set_irq(vcpu, &irq, NULL);
13936
}
13937
13938
vcpu->arch.apf.halted = false;
13939
kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13940
}
13941
13942
void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13943
{
13944
kvm_make_request(KVM_REQ_APF_READY, vcpu);
13945
13946
/* Pairs with smp_store_mb() in kvm_set_msr_common(). */
13947
smp_mb__after_atomic();
13948
13949
if (!READ_ONCE(vcpu->arch.apf.pageready_pending))
13950
kvm_vcpu_kick(vcpu);
13951
}
13952
13953
bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13954
{
13955
if (!kvm_pv_async_pf_enabled(vcpu))
13956
return true;
13957
else
13958
return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13959
}
13960
13961
static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13962
{
13963
/*
13964
* Non-coherent DMA assignment and de-assignment may affect whether or
13965
* not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13966
* due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13967
* (or last) non-coherent device is (un)registered to so that new SPTEs
13968
* with the correct "ignore guest PAT" setting are created.
13969
*
13970
* If KVM always honors guest PAT, however, there is nothing to do.
13971
*/
13972
if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT))
13973
kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13974
}
13975
13976
void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13977
{
13978
if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13979
kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13980
}
13981
13982
void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13983
{
13984
if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13985
kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13986
}
13987
13988
bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13989
{
13990
return atomic_read(&kvm->arch.noncoherent_dma_count);
13991
}
13992
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_arch_has_noncoherent_dma);
13993
13994
bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13995
{
13996
return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13997
}
13998
13999
#ifdef CONFIG_KVM_GUEST_MEMFD
14000
/*
14001
* KVM doesn't yet support initializing guest_memfd memory as shared for VMs
14002
* with private memory (the private vs. shared tracking needs to be moved into
14003
* guest_memfd).
14004
*/
14005
bool kvm_arch_supports_gmem_init_shared(struct kvm *kvm)
14006
{
14007
return !kvm_arch_has_private_mem(kvm);
14008
}
14009
14010
#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
14011
int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
14012
{
14013
return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
14014
}
14015
#endif
14016
14017
#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
14018
void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
14019
{
14020
kvm_x86_call(gmem_invalidate)(start, end);
14021
}
14022
#endif
14023
#endif
14024
14025
int kvm_spec_ctrl_test_value(u64 value)
14026
{
14027
/*
14028
* test that setting IA32_SPEC_CTRL to given value
14029
* is allowed by the host processor
14030
*/
14031
14032
u64 saved_value;
14033
unsigned long flags;
14034
int ret = 0;
14035
14036
local_irq_save(flags);
14037
14038
if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value))
14039
ret = 1;
14040
else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value))
14041
ret = 1;
14042
else
14043
wrmsrq(MSR_IA32_SPEC_CTRL, saved_value);
14044
14045
local_irq_restore(flags);
14046
14047
return ret;
14048
}
14049
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spec_ctrl_test_value);
14050
14051
void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
14052
{
14053
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
14054
struct x86_exception fault;
14055
u64 access = error_code &
14056
(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
14057
14058
if (!(error_code & PFERR_PRESENT_MASK) ||
14059
mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
14060
/*
14061
* If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
14062
* tables probably do not match the TLB. Just proceed
14063
* with the error code that the processor gave.
14064
*/
14065
fault.vector = PF_VECTOR;
14066
fault.error_code_valid = true;
14067
fault.error_code = error_code;
14068
fault.nested_page_fault = false;
14069
fault.address = gva;
14070
fault.async_page_fault = false;
14071
}
14072
vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
14073
}
14074
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fixup_and_inject_pf_error);
14075
14076
/*
14077
* Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
14078
* KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
14079
* indicates whether exit to userspace is needed.
14080
*/
14081
int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
14082
struct x86_exception *e)
14083
{
14084
if (r == X86EMUL_PROPAGATE_FAULT) {
14085
if (KVM_BUG_ON(!e, vcpu->kvm))
14086
return -EIO;
14087
14088
kvm_inject_emulated_page_fault(vcpu, e);
14089
return 1;
14090
}
14091
14092
/*
14093
* In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
14094
* while handling a VMX instruction KVM could've handled the request
14095
* correctly by exiting to userspace and performing I/O but there
14096
* doesn't seem to be a real use-case behind such requests, just return
14097
* KVM_EXIT_INTERNAL_ERROR for now.
14098
*/
14099
kvm_prepare_emulation_failure_exit(vcpu);
14100
14101
return 0;
14102
}
14103
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_memory_failure);
14104
14105
int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
14106
{
14107
bool pcid_enabled;
14108
struct x86_exception e;
14109
struct {
14110
u64 pcid;
14111
u64 gla;
14112
} operand;
14113
int r;
14114
14115
r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
14116
if (r != X86EMUL_CONTINUE)
14117
return kvm_handle_memory_failure(vcpu, r, &e);
14118
14119
if (operand.pcid >> 12 != 0) {
14120
kvm_inject_gp(vcpu, 0);
14121
return 1;
14122
}
14123
14124
pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
14125
14126
switch (type) {
14127
case INVPCID_TYPE_INDIV_ADDR:
14128
/*
14129
* LAM doesn't apply to addresses that are inputs to TLB
14130
* invalidation.
14131
*/
14132
if ((!pcid_enabled && (operand.pcid != 0)) ||
14133
is_noncanonical_invlpg_address(operand.gla, vcpu)) {
14134
kvm_inject_gp(vcpu, 0);
14135
return 1;
14136
}
14137
kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
14138
return kvm_skip_emulated_instruction(vcpu);
14139
14140
case INVPCID_TYPE_SINGLE_CTXT:
14141
if (!pcid_enabled && (operand.pcid != 0)) {
14142
kvm_inject_gp(vcpu, 0);
14143
return 1;
14144
}
14145
14146
kvm_invalidate_pcid(vcpu, operand.pcid);
14147
return kvm_skip_emulated_instruction(vcpu);
14148
14149
case INVPCID_TYPE_ALL_NON_GLOBAL:
14150
/*
14151
* Currently, KVM doesn't mark global entries in the shadow
14152
* page tables, so a non-global flush just degenerates to a
14153
* global flush. If needed, we could optimize this later by
14154
* keeping track of global entries in shadow page tables.
14155
*/
14156
14157
fallthrough;
14158
case INVPCID_TYPE_ALL_INCL_GLOBAL:
14159
kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
14160
return kvm_skip_emulated_instruction(vcpu);
14161
14162
default:
14163
kvm_inject_gp(vcpu, 0);
14164
return 1;
14165
}
14166
}
14167
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invpcid);
14168
14169
static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
14170
{
14171
struct kvm_run *run = vcpu->run;
14172
struct kvm_mmio_fragment *frag;
14173
unsigned int len;
14174
14175
BUG_ON(!vcpu->mmio_needed);
14176
14177
/* Complete previous fragment */
14178
frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
14179
len = min(8u, frag->len);
14180
if (!vcpu->mmio_is_write)
14181
memcpy(frag->data, run->mmio.data, len);
14182
14183
if (frag->len <= 8) {
14184
/* Switch to the next fragment. */
14185
frag++;
14186
vcpu->mmio_cur_fragment++;
14187
} else {
14188
/* Go forward to the next mmio piece. */
14189
frag->data += len;
14190
frag->gpa += len;
14191
frag->len -= len;
14192
}
14193
14194
if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
14195
vcpu->mmio_needed = 0;
14196
14197
// VMG change, at this point, we're always done
14198
// RIP has already been advanced
14199
return 1;
14200
}
14201
14202
// More MMIO is needed
14203
run->mmio.phys_addr = frag->gpa;
14204
run->mmio.len = min(8u, frag->len);
14205
run->mmio.is_write = vcpu->mmio_is_write;
14206
if (run->mmio.is_write)
14207
memcpy(run->mmio.data, frag->data, min(8u, frag->len));
14208
run->exit_reason = KVM_EXIT_MMIO;
14209
14210
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14211
14212
return 0;
14213
}
14214
14215
int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14216
void *data)
14217
{
14218
int handled;
14219
struct kvm_mmio_fragment *frag;
14220
14221
if (!data)
14222
return -EINVAL;
14223
14224
handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14225
if (handled == bytes)
14226
return 1;
14227
14228
bytes -= handled;
14229
gpa += handled;
14230
data += handled;
14231
14232
/*TODO: Check if need to increment number of frags */
14233
frag = vcpu->mmio_fragments;
14234
vcpu->mmio_nr_fragments = 1;
14235
frag->len = bytes;
14236
frag->gpa = gpa;
14237
frag->data = data;
14238
14239
vcpu->mmio_needed = 1;
14240
vcpu->mmio_cur_fragment = 0;
14241
14242
vcpu->run->mmio.phys_addr = gpa;
14243
vcpu->run->mmio.len = min(8u, frag->len);
14244
vcpu->run->mmio.is_write = 1;
14245
memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
14246
vcpu->run->exit_reason = KVM_EXIT_MMIO;
14247
14248
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14249
14250
return 0;
14251
}
14252
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_write);
14253
14254
int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14255
void *data)
14256
{
14257
int handled;
14258
struct kvm_mmio_fragment *frag;
14259
14260
if (!data)
14261
return -EINVAL;
14262
14263
handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14264
if (handled == bytes)
14265
return 1;
14266
14267
bytes -= handled;
14268
gpa += handled;
14269
data += handled;
14270
14271
/*TODO: Check if need to increment number of frags */
14272
frag = vcpu->mmio_fragments;
14273
vcpu->mmio_nr_fragments = 1;
14274
frag->len = bytes;
14275
frag->gpa = gpa;
14276
frag->data = data;
14277
14278
vcpu->mmio_needed = 1;
14279
vcpu->mmio_cur_fragment = 0;
14280
14281
vcpu->run->mmio.phys_addr = gpa;
14282
vcpu->run->mmio.len = min(8u, frag->len);
14283
vcpu->run->mmio.is_write = 0;
14284
vcpu->run->exit_reason = KVM_EXIT_MMIO;
14285
14286
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14287
14288
return 0;
14289
}
14290
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_read);
14291
14292
static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
14293
{
14294
vcpu->arch.sev_pio_count -= count;
14295
vcpu->arch.sev_pio_data += count * size;
14296
}
14297
14298
static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14299
unsigned int port);
14300
14301
static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
14302
{
14303
int size = vcpu->arch.pio.size;
14304
int port = vcpu->arch.pio.port;
14305
14306
vcpu->arch.pio.count = 0;
14307
if (vcpu->arch.sev_pio_count)
14308
return kvm_sev_es_outs(vcpu, size, port);
14309
return 1;
14310
}
14311
14312
static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14313
unsigned int port)
14314
{
14315
for (;;) {
14316
unsigned int count =
14317
min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14318
int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
14319
14320
/* memcpy done already by emulator_pio_out. */
14321
advance_sev_es_emulated_pio(vcpu, count, size);
14322
if (!ret)
14323
break;
14324
14325
/* Emulation done by the kernel. */
14326
if (!vcpu->arch.sev_pio_count)
14327
return 1;
14328
}
14329
14330
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
14331
return 0;
14332
}
14333
14334
static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14335
unsigned int port);
14336
14337
static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
14338
{
14339
unsigned count = vcpu->arch.pio.count;
14340
int size = vcpu->arch.pio.size;
14341
int port = vcpu->arch.pio.port;
14342
14343
complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
14344
advance_sev_es_emulated_pio(vcpu, count, size);
14345
if (vcpu->arch.sev_pio_count)
14346
return kvm_sev_es_ins(vcpu, size, port);
14347
return 1;
14348
}
14349
14350
static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14351
unsigned int port)
14352
{
14353
for (;;) {
14354
unsigned int count =
14355
min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14356
if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
14357
break;
14358
14359
/* Emulation done by the kernel. */
14360
advance_sev_es_emulated_pio(vcpu, count, size);
14361
if (!vcpu->arch.sev_pio_count)
14362
return 1;
14363
}
14364
14365
vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
14366
return 0;
14367
}
14368
14369
int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14370
unsigned int port, void *data, unsigned int count,
14371
int in)
14372
{
14373
vcpu->arch.sev_pio_data = data;
14374
vcpu->arch.sev_pio_count = count;
14375
return in ? kvm_sev_es_ins(vcpu, size, port)
14376
: kvm_sev_es_outs(vcpu, size, port);
14377
}
14378
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_string_io);
14379
14380
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14381
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14382
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio);
14383
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14384
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14385
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14386
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14387
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14388
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14389
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14390
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14391
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14392
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14393
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14394
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14395
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14396
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14397
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14398
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14399
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14400
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14401
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14402
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14403
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14404
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14405
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14406
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14407
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14408
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14409
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14410
14411
static int __init kvm_x86_init(void)
14412
{
14413
kvm_init_xstate_sizes();
14414
14415
kvm_mmu_x86_module_init();
14416
mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14417
return 0;
14418
}
14419
module_init(kvm_x86_init);
14420
14421
static void __exit kvm_x86_exit(void)
14422
{
14423
WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14424
}
14425
module_exit(kvm_x86_exit);
14426
14427