Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/math-emu/div_Xsig.S
26424 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
.file "div_Xsig.S"
3
/*---------------------------------------------------------------------------+
4
| div_Xsig.S |
5
| |
6
| Division subroutine for 96 bit quantities |
7
| |
8
| Copyright (C) 1994,1995 |
9
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
10
| Australia. E-mail [email protected] |
11
| |
12
| |
13
+---------------------------------------------------------------------------*/
14
15
/*---------------------------------------------------------------------------+
16
| Divide the 96 bit quantity pointed to by a, by that pointed to by b, and |
17
| put the 96 bit result at the location d. |
18
| |
19
| The result may not be accurate to 96 bits. It is intended for use where |
20
| a result better than 64 bits is required. The result should usually be |
21
| good to at least 94 bits. |
22
| The returned result is actually divided by one half. This is done to |
23
| prevent overflow. |
24
| |
25
| .aaaaaaaaaaaaaa / .bbbbbbbbbbbbb -> .dddddddddddd |
26
| |
27
| void div_Xsig(Xsig *a, Xsig *b, Xsig *dest) |
28
| |
29
+---------------------------------------------------------------------------*/
30
31
#include "exception.h"
32
#include "fpu_emu.h"
33
34
35
#define XsigLL(x) (x)
36
#define XsigL(x) 4(x)
37
#define XsigH(x) 8(x)
38
39
40
#ifndef NON_REENTRANT_FPU
41
/*
42
Local storage on the stack:
43
Accumulator: FPU_accum_3:FPU_accum_2:FPU_accum_1:FPU_accum_0
44
*/
45
#define FPU_accum_3 -4(%ebp)
46
#define FPU_accum_2 -8(%ebp)
47
#define FPU_accum_1 -12(%ebp)
48
#define FPU_accum_0 -16(%ebp)
49
#define FPU_result_3 -20(%ebp)
50
#define FPU_result_2 -24(%ebp)
51
#define FPU_result_1 -28(%ebp)
52
53
#else
54
.data
55
/*
56
Local storage in a static area:
57
Accumulator: FPU_accum_3:FPU_accum_2:FPU_accum_1:FPU_accum_0
58
*/
59
.align 4,0
60
FPU_accum_3:
61
.long 0
62
FPU_accum_2:
63
.long 0
64
FPU_accum_1:
65
.long 0
66
FPU_accum_0:
67
.long 0
68
FPU_result_3:
69
.long 0
70
FPU_result_2:
71
.long 0
72
FPU_result_1:
73
.long 0
74
#endif /* NON_REENTRANT_FPU */
75
76
77
.text
78
SYM_FUNC_START(div_Xsig)
79
pushl %ebp
80
movl %esp,%ebp
81
#ifndef NON_REENTRANT_FPU
82
subl $28,%esp
83
#endif /* NON_REENTRANT_FPU */
84
85
pushl %esi
86
pushl %edi
87
pushl %ebx
88
89
movl PARAM1,%esi /* pointer to num */
90
movl PARAM2,%ebx /* pointer to denom */
91
92
#ifdef PARANOID
93
testl $0x80000000, XsigH(%ebx) /* Divisor */
94
je L_bugged
95
#endif /* PARANOID */
96
97
98
/*---------------------------------------------------------------------------+
99
| Divide: Return arg1/arg2 to arg3. |
100
| |
101
| The maximum returned value is (ignoring exponents) |
102
| .ffffffff ffffffff |
103
| ------------------ = 1.ffffffff fffffffe |
104
| .80000000 00000000 |
105
| and the minimum is |
106
| .80000000 00000000 |
107
| ------------------ = .80000000 00000001 (rounded) |
108
| .ffffffff ffffffff |
109
| |
110
+---------------------------------------------------------------------------*/
111
112
/* Save extended dividend in local register */
113
114
/* Divide by 2 to prevent overflow */
115
clc
116
movl XsigH(%esi),%eax
117
rcrl %eax
118
movl %eax,FPU_accum_3
119
movl XsigL(%esi),%eax
120
rcrl %eax
121
movl %eax,FPU_accum_2
122
movl XsigLL(%esi),%eax
123
rcrl %eax
124
movl %eax,FPU_accum_1
125
movl $0,%eax
126
rcrl %eax
127
movl %eax,FPU_accum_0
128
129
movl FPU_accum_2,%eax /* Get the current num */
130
movl FPU_accum_3,%edx
131
132
/*----------------------------------------------------------------------*/
133
/* Initialization done.
134
Do the first 32 bits. */
135
136
/* We will divide by a number which is too large */
137
movl XsigH(%ebx),%ecx
138
addl $1,%ecx
139
jnc LFirst_div_not_1
140
141
/* here we need to divide by 100000000h,
142
i.e., no division at all.. */
143
mov %edx,%eax
144
jmp LFirst_div_done
145
146
LFirst_div_not_1:
147
divl %ecx /* Divide the numerator by the augmented
148
denom ms dw */
149
150
LFirst_div_done:
151
movl %eax,FPU_result_3 /* Put the result in the answer */
152
153
mull XsigH(%ebx) /* mul by the ms dw of the denom */
154
155
subl %eax,FPU_accum_2 /* Subtract from the num local reg */
156
sbbl %edx,FPU_accum_3
157
158
movl FPU_result_3,%eax /* Get the result back */
159
mull XsigL(%ebx) /* now mul the ls dw of the denom */
160
161
subl %eax,FPU_accum_1 /* Subtract from the num local reg */
162
sbbl %edx,FPU_accum_2
163
sbbl $0,FPU_accum_3
164
je LDo_2nd_32_bits /* Must check for non-zero result here */
165
166
#ifdef PARANOID
167
jb L_bugged_1
168
#endif /* PARANOID */
169
170
/* need to subtract another once of the denom */
171
incl FPU_result_3 /* Correct the answer */
172
173
movl XsigL(%ebx),%eax
174
movl XsigH(%ebx),%edx
175
subl %eax,FPU_accum_1 /* Subtract from the num local reg */
176
sbbl %edx,FPU_accum_2
177
178
#ifdef PARANOID
179
sbbl $0,FPU_accum_3
180
jne L_bugged_1 /* Must check for non-zero result here */
181
#endif /* PARANOID */
182
183
/*----------------------------------------------------------------------*/
184
/* Half of the main problem is done, there is just a reduced numerator
185
to handle now.
186
Work with the second 32 bits, FPU_accum_0 not used from now on */
187
LDo_2nd_32_bits:
188
movl FPU_accum_2,%edx /* get the reduced num */
189
movl FPU_accum_1,%eax
190
191
/* need to check for possible subsequent overflow */
192
cmpl XsigH(%ebx),%edx
193
jb LDo_2nd_div
194
ja LPrevent_2nd_overflow
195
196
cmpl XsigL(%ebx),%eax
197
jb LDo_2nd_div
198
199
LPrevent_2nd_overflow:
200
/* The numerator is greater or equal, would cause overflow */
201
/* prevent overflow */
202
subl XsigL(%ebx),%eax
203
sbbl XsigH(%ebx),%edx
204
movl %edx,FPU_accum_2
205
movl %eax,FPU_accum_1
206
207
incl FPU_result_3 /* Reflect the subtraction in the answer */
208
209
#ifdef PARANOID
210
je L_bugged_2 /* Can't bump the result to 1.0 */
211
#endif /* PARANOID */
212
213
LDo_2nd_div:
214
cmpl $0,%ecx /* augmented denom msw */
215
jnz LSecond_div_not_1
216
217
/* %ecx == 0, we are dividing by 1.0 */
218
mov %edx,%eax
219
jmp LSecond_div_done
220
221
LSecond_div_not_1:
222
divl %ecx /* Divide the numerator by the denom ms dw */
223
224
LSecond_div_done:
225
movl %eax,FPU_result_2 /* Put the result in the answer */
226
227
mull XsigH(%ebx) /* mul by the ms dw of the denom */
228
229
subl %eax,FPU_accum_1 /* Subtract from the num local reg */
230
sbbl %edx,FPU_accum_2
231
232
#ifdef PARANOID
233
jc L_bugged_2
234
#endif /* PARANOID */
235
236
movl FPU_result_2,%eax /* Get the result back */
237
mull XsigL(%ebx) /* now mul the ls dw of the denom */
238
239
subl %eax,FPU_accum_0 /* Subtract from the num local reg */
240
sbbl %edx,FPU_accum_1 /* Subtract from the num local reg */
241
sbbl $0,FPU_accum_2
242
243
#ifdef PARANOID
244
jc L_bugged_2
245
#endif /* PARANOID */
246
247
jz LDo_3rd_32_bits
248
249
#ifdef PARANOID
250
cmpl $1,FPU_accum_2
251
jne L_bugged_2
252
#endif /* PARANOID */
253
254
/* need to subtract another once of the denom */
255
movl XsigL(%ebx),%eax
256
movl XsigH(%ebx),%edx
257
subl %eax,FPU_accum_0 /* Subtract from the num local reg */
258
sbbl %edx,FPU_accum_1
259
sbbl $0,FPU_accum_2
260
261
#ifdef PARANOID
262
jc L_bugged_2
263
jne L_bugged_2
264
#endif /* PARANOID */
265
266
addl $1,FPU_result_2 /* Correct the answer */
267
adcl $0,FPU_result_3
268
269
#ifdef PARANOID
270
jc L_bugged_2 /* Must check for non-zero result here */
271
#endif /* PARANOID */
272
273
/*----------------------------------------------------------------------*/
274
/* The division is essentially finished here, we just need to perform
275
tidying operations.
276
Deal with the 3rd 32 bits */
277
LDo_3rd_32_bits:
278
/* We use an approximation for the third 32 bits.
279
To take account of the 3rd 32 bits of the divisor
280
(call them del), we subtract del * (a/b) */
281
282
movl FPU_result_3,%eax /* a/b */
283
mull XsigLL(%ebx) /* del */
284
285
subl %edx,FPU_accum_1
286
287
/* A borrow indicates that the result is negative */
288
jnb LTest_over
289
290
movl XsigH(%ebx),%edx
291
addl %edx,FPU_accum_1
292
293
subl $1,FPU_result_2 /* Adjust the answer */
294
sbbl $0,FPU_result_3
295
296
/* The above addition might not have been enough, check again. */
297
movl FPU_accum_1,%edx /* get the reduced num */
298
cmpl XsigH(%ebx),%edx /* denom */
299
jb LDo_3rd_div
300
301
movl XsigH(%ebx),%edx
302
addl %edx,FPU_accum_1
303
304
subl $1,FPU_result_2 /* Adjust the answer */
305
sbbl $0,FPU_result_3
306
jmp LDo_3rd_div
307
308
LTest_over:
309
movl FPU_accum_1,%edx /* get the reduced num */
310
311
/* need to check for possible subsequent overflow */
312
cmpl XsigH(%ebx),%edx /* denom */
313
jb LDo_3rd_div
314
315
/* prevent overflow */
316
subl XsigH(%ebx),%edx
317
movl %edx,FPU_accum_1
318
319
addl $1,FPU_result_2 /* Reflect the subtraction in the answer */
320
adcl $0,FPU_result_3
321
322
LDo_3rd_div:
323
movl FPU_accum_0,%eax
324
movl FPU_accum_1,%edx
325
divl XsigH(%ebx)
326
327
movl %eax,FPU_result_1 /* Rough estimate of third word */
328
329
movl PARAM3,%esi /* pointer to answer */
330
331
movl FPU_result_1,%eax
332
movl %eax,XsigLL(%esi)
333
movl FPU_result_2,%eax
334
movl %eax,XsigL(%esi)
335
movl FPU_result_3,%eax
336
movl %eax,XsigH(%esi)
337
338
L_exit:
339
popl %ebx
340
popl %edi
341
popl %esi
342
343
leave
344
RET
345
346
347
#ifdef PARANOID
348
/* The logic is wrong if we got here */
349
L_bugged:
350
pushl EX_INTERNAL|0x240
351
call EXCEPTION
352
pop %ebx
353
jmp L_exit
354
355
L_bugged_1:
356
pushl EX_INTERNAL|0x241
357
call EXCEPTION
358
pop %ebx
359
jmp L_exit
360
361
L_bugged_2:
362
pushl EX_INTERNAL|0x242
363
call EXCEPTION
364
pop %ebx
365
jmp L_exit
366
#endif /* PARANOID */
367
SYM_FUNC_END(div_Xsig)
368
369