Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/math-emu/poly_tan.c
26439 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*---------------------------------------------------------------------------+
3
| poly_tan.c |
4
| |
5
| Compute the tan of a FPU_REG, using a polynomial approximation. |
6
| |
7
| Copyright (C) 1992,1993,1994,1997,1999 |
8
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
9
| Australia. E-mail [email protected] |
10
| |
11
| |
12
+---------------------------------------------------------------------------*/
13
14
#include "exception.h"
15
#include "reg_constant.h"
16
#include "fpu_emu.h"
17
#include "fpu_system.h"
18
#include "control_w.h"
19
#include "poly.h"
20
21
#define HiPOWERop 3 /* odd poly, positive terms */
22
static const unsigned long long oddplterm[HiPOWERop] = {
23
0x0000000000000000LL,
24
0x0051a1cf08fca228LL,
25
0x0000000071284ff7LL
26
};
27
28
#define HiPOWERon 2 /* odd poly, negative terms */
29
static const unsigned long long oddnegterm[HiPOWERon] = {
30
0x1291a9a184244e80LL,
31
0x0000583245819c21LL
32
};
33
34
#define HiPOWERep 2 /* even poly, positive terms */
35
static const unsigned long long evenplterm[HiPOWERep] = {
36
0x0e848884b539e888LL,
37
0x00003c7f18b887daLL
38
};
39
40
#define HiPOWERen 2 /* even poly, negative terms */
41
static const unsigned long long evennegterm[HiPOWERen] = {
42
0xf1f0200fd51569ccLL,
43
0x003afb46105c4432LL
44
};
45
46
static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
47
48
/*--- poly_tan() ------------------------------------------------------------+
49
| |
50
+---------------------------------------------------------------------------*/
51
void poly_tan(FPU_REG *st0_ptr)
52
{
53
long int exponent;
54
int invert;
55
Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
56
argSignif, fix_up;
57
unsigned long adj;
58
59
exponent = exponent(st0_ptr);
60
61
#ifdef PARANOID
62
if (signnegative(st0_ptr)) { /* Can't hack a number < 0.0 */
63
arith_invalid(0);
64
return;
65
} /* Need a positive number */
66
#endif /* PARANOID */
67
68
/* Split the problem into two domains, smaller and larger than pi/4 */
69
if ((exponent == 0)
70
|| ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) {
71
/* The argument is greater than (approx) pi/4 */
72
invert = 1;
73
accum.lsw = 0;
74
XSIG_LL(accum) = significand(st0_ptr);
75
76
if (exponent == 0) {
77
/* The argument is >= 1.0 */
78
/* Put the binary point at the left. */
79
XSIG_LL(accum) <<= 1;
80
}
81
/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
82
XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
83
/* This is a special case which arises due to rounding. */
84
if (XSIG_LL(accum) == 0xffffffffffffffffLL) {
85
FPU_settag0(TAG_Valid);
86
significand(st0_ptr) = 0x8a51e04daabda360LL;
87
setexponent16(st0_ptr,
88
(0x41 + EXTENDED_Ebias) | SIGN_Negative);
89
return;
90
}
91
92
argSignif.lsw = accum.lsw;
93
XSIG_LL(argSignif) = XSIG_LL(accum);
94
exponent = -1 + norm_Xsig(&argSignif);
95
} else {
96
invert = 0;
97
argSignif.lsw = 0;
98
XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
99
100
if (exponent < -1) {
101
/* shift the argument right by the required places */
102
if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >=
103
0x80000000U)
104
XSIG_LL(accum)++; /* round up */
105
}
106
}
107
108
XSIG_LL(argSq) = XSIG_LL(accum);
109
argSq.lsw = accum.lsw;
110
mul_Xsig_Xsig(&argSq, &argSq);
111
XSIG_LL(argSqSq) = XSIG_LL(argSq);
112
argSqSq.lsw = argSq.lsw;
113
mul_Xsig_Xsig(&argSqSq, &argSqSq);
114
115
/* Compute the negative terms for the numerator polynomial */
116
accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
117
polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm,
118
HiPOWERon - 1);
119
mul_Xsig_Xsig(&accumulatoro, &argSq);
120
negate_Xsig(&accumulatoro);
121
/* Add the positive terms */
122
polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm,
123
HiPOWERop - 1);
124
125
/* Compute the positive terms for the denominator polynomial */
126
accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
127
polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm,
128
HiPOWERep - 1);
129
mul_Xsig_Xsig(&accumulatore, &argSq);
130
negate_Xsig(&accumulatore);
131
/* Add the negative terms */
132
polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm,
133
HiPOWERen - 1);
134
/* Multiply by arg^2 */
135
mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
136
mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
137
/* de-normalize and divide by 2 */
138
shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1);
139
negate_Xsig(&accumulatore); /* This does 1 - accumulator */
140
141
/* Now find the ratio. */
142
if (accumulatore.msw == 0) {
143
/* accumulatoro must contain 1.0 here, (actually, 0) but it
144
really doesn't matter what value we use because it will
145
have negligible effect in later calculations
146
*/
147
XSIG_LL(accum) = 0x8000000000000000LL;
148
accum.lsw = 0;
149
} else {
150
div_Xsig(&accumulatoro, &accumulatore, &accum);
151
}
152
153
/* Multiply by 1/3 * arg^3 */
154
mul64_Xsig(&accum, &XSIG_LL(argSignif));
155
mul64_Xsig(&accum, &XSIG_LL(argSignif));
156
mul64_Xsig(&accum, &XSIG_LL(argSignif));
157
mul64_Xsig(&accum, &twothirds);
158
shr_Xsig(&accum, -2 * (exponent + 1));
159
160
/* tan(arg) = arg + accum */
161
add_two_Xsig(&accum, &argSignif, &exponent);
162
163
if (invert) {
164
/* We now have the value of tan(pi_2 - arg) where pi_2 is an
165
approximation for pi/2
166
*/
167
/* The next step is to fix the answer to compensate for the
168
error due to the approximation used for pi/2
169
*/
170
171
/* This is (approx) delta, the error in our approx for pi/2
172
(see above). It has an exponent of -65
173
*/
174
XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
175
fix_up.lsw = 0;
176
177
if (exponent == 0)
178
adj = 0xffffffff; /* We want approx 1.0 here, but
179
this is close enough. */
180
else if (exponent > -30) {
181
adj = accum.msw >> -(exponent + 1); /* tan */
182
adj = mul_32_32(adj, adj); /* tan^2 */
183
} else
184
adj = 0;
185
adj = mul_32_32(0x898cc517, adj); /* delta * tan^2 */
186
187
fix_up.msw += adj;
188
if (!(fix_up.msw & 0x80000000)) { /* did fix_up overflow ? */
189
/* Yes, we need to add an msb */
190
shr_Xsig(&fix_up, 1);
191
fix_up.msw |= 0x80000000;
192
shr_Xsig(&fix_up, 64 + exponent);
193
} else
194
shr_Xsig(&fix_up, 65 + exponent);
195
196
add_two_Xsig(&accum, &fix_up, &exponent);
197
198
/* accum now contains tan(pi/2 - arg).
199
Use tan(arg) = 1.0 / tan(pi/2 - arg)
200
*/
201
accumulatoro.lsw = accumulatoro.midw = 0;
202
accumulatoro.msw = 0x80000000;
203
div_Xsig(&accumulatoro, &accum, &accum);
204
exponent = -exponent - 1;
205
}
206
207
/* Transfer the result */
208
round_Xsig(&accum);
209
FPU_settag0(TAG_Valid);
210
significand(st0_ptr) = XSIG_LL(accum);
211
setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */
212
213
}
214
215