Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/mm/fault.c
50677 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 1995 Linus Torvalds
4
* Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5
* Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6
*/
7
#include <linux/sched.h> /* test_thread_flag(), ... */
8
#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9
#include <linux/kdebug.h> /* oops_begin/end, ... */
10
#include <linux/memblock.h> /* max_low_pfn */
11
#include <linux/kfence.h> /* kfence_handle_page_fault */
12
#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13
#include <linux/mmiotrace.h> /* kmmio_handler, ... */
14
#include <linux/perf_event.h> /* perf_sw_event */
15
#include <linux/hugetlb.h> /* hstate_index_to_shift */
16
#include <linux/context_tracking.h> /* exception_enter(), ... */
17
#include <linux/uaccess.h> /* faulthandler_disabled() */
18
#include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
19
#include <linux/mm_types.h>
20
#include <linux/mm.h> /* find_and_lock_vma() */
21
#include <linux/vmalloc.h>
22
23
#include <asm/cpufeature.h> /* boot_cpu_has, ... */
24
#include <asm/traps.h> /* dotraplinkage, ... */
25
#include <asm/fixmap.h> /* VSYSCALL_ADDR */
26
#include <asm/vsyscall.h> /* emulate_vsyscall */
27
#include <asm/vm86.h> /* struct vm86 */
28
#include <asm/mmu_context.h> /* vma_pkey() */
29
#include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
30
#include <asm/desc.h> /* store_idt(), ... */
31
#include <asm/cpu_entry_area.h> /* exception stack */
32
#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
33
#include <asm/kvm_para.h> /* kvm_handle_async_pf */
34
#include <asm/vdso.h> /* fixup_vdso_exception() */
35
#include <asm/irq_stack.h>
36
#include <asm/fred.h>
37
#include <asm/sev.h> /* snp_dump_hva_rmpentry() */
38
39
#define CREATE_TRACE_POINTS
40
#include <trace/events/exceptions.h>
41
42
/*
43
* Returns 0 if mmiotrace is disabled, or if the fault is not
44
* handled by mmiotrace:
45
*/
46
static nokprobe_inline int
47
kmmio_fault(struct pt_regs *regs, unsigned long addr)
48
{
49
if (unlikely(is_kmmio_active()))
50
if (kmmio_handler(regs, addr) == 1)
51
return -1;
52
return 0;
53
}
54
55
/*
56
* Prefetch quirks:
57
*
58
* 32-bit mode:
59
*
60
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
61
* Check that here and ignore it. This is AMD erratum #91.
62
*
63
* 64-bit mode:
64
*
65
* Sometimes the CPU reports invalid exceptions on prefetch.
66
* Check that here and ignore it.
67
*
68
* Opcode checker based on code by Richard Brunner.
69
*/
70
static inline int
71
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
72
unsigned char opcode, int *prefetch)
73
{
74
unsigned char instr_hi = opcode & 0xf0;
75
unsigned char instr_lo = opcode & 0x0f;
76
77
switch (instr_hi) {
78
case 0x20:
79
case 0x30:
80
/*
81
* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
82
* In X86_64 long mode, the CPU will signal invalid
83
* opcode if some of these prefixes are present so
84
* X86_64 will never get here anyway
85
*/
86
return ((instr_lo & 7) == 0x6);
87
#ifdef CONFIG_X86_64
88
case 0x40:
89
/*
90
* In 64-bit mode 0x40..0x4F are valid REX prefixes
91
*/
92
return (!user_mode(regs) || user_64bit_mode(regs));
93
#endif
94
case 0x60:
95
/* 0x64 thru 0x67 are valid prefixes in all modes. */
96
return (instr_lo & 0xC) == 0x4;
97
case 0xF0:
98
/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
99
return !instr_lo || (instr_lo>>1) == 1;
100
case 0x00:
101
/* Prefetch instruction is 0x0F0D or 0x0F18 */
102
if (get_kernel_nofault(opcode, instr))
103
return 0;
104
105
*prefetch = (instr_lo == 0xF) &&
106
(opcode == 0x0D || opcode == 0x18);
107
return 0;
108
default:
109
return 0;
110
}
111
}
112
113
static bool is_amd_k8_pre_npt(void)
114
{
115
struct cpuinfo_x86 *c = &boot_cpu_data;
116
117
return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
118
c->x86_vendor == X86_VENDOR_AMD &&
119
c->x86 == 0xf && c->x86_model < 0x40);
120
}
121
122
static int
123
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
124
{
125
unsigned char *max_instr;
126
unsigned char *instr;
127
int prefetch = 0;
128
129
/* Erratum #91 affects AMD K8, pre-NPT CPUs */
130
if (!is_amd_k8_pre_npt())
131
return 0;
132
133
/*
134
* If it was a exec (instruction fetch) fault on NX page, then
135
* do not ignore the fault:
136
*/
137
if (error_code & X86_PF_INSTR)
138
return 0;
139
140
instr = (void *)convert_ip_to_linear(current, regs);
141
max_instr = instr + 15;
142
143
/*
144
* This code has historically always bailed out if IP points to a
145
* not-present page (e.g. due to a race). No one has ever
146
* complained about this.
147
*/
148
pagefault_disable();
149
150
while (instr < max_instr) {
151
unsigned char opcode;
152
153
if (user_mode(regs)) {
154
if (get_user(opcode, (unsigned char __user *) instr))
155
break;
156
} else {
157
if (get_kernel_nofault(opcode, instr))
158
break;
159
}
160
161
instr++;
162
163
if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
164
break;
165
}
166
167
pagefault_enable();
168
return prefetch;
169
}
170
171
DEFINE_SPINLOCK(pgd_lock);
172
LIST_HEAD(pgd_list);
173
174
#ifdef CONFIG_X86_32
175
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
176
{
177
unsigned index = pgd_index(address);
178
pgd_t *pgd_k;
179
p4d_t *p4d, *p4d_k;
180
pud_t *pud, *pud_k;
181
pmd_t *pmd, *pmd_k;
182
183
pgd += index;
184
pgd_k = init_mm.pgd + index;
185
186
if (!pgd_present(*pgd_k))
187
return NULL;
188
189
/*
190
* set_pgd(pgd, *pgd_k); here would be useless on PAE
191
* and redundant with the set_pmd() on non-PAE. As would
192
* set_p4d/set_pud.
193
*/
194
p4d = p4d_offset(pgd, address);
195
p4d_k = p4d_offset(pgd_k, address);
196
if (!p4d_present(*p4d_k))
197
return NULL;
198
199
pud = pud_offset(p4d, address);
200
pud_k = pud_offset(p4d_k, address);
201
if (!pud_present(*pud_k))
202
return NULL;
203
204
pmd = pmd_offset(pud, address);
205
pmd_k = pmd_offset(pud_k, address);
206
207
if (pmd_present(*pmd) != pmd_present(*pmd_k))
208
set_pmd(pmd, *pmd_k);
209
210
if (!pmd_present(*pmd_k))
211
return NULL;
212
else
213
BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
214
215
return pmd_k;
216
}
217
218
/*
219
* Handle a fault on the vmalloc or module mapping area
220
*
221
* This is needed because there is a race condition between the time
222
* when the vmalloc mapping code updates the PMD to the point in time
223
* where it synchronizes this update with the other page-tables in the
224
* system.
225
*
226
* In this race window another thread/CPU can map an area on the same
227
* PMD, finds it already present and does not synchronize it with the
228
* rest of the system yet. As a result v[mz]alloc might return areas
229
* which are not mapped in every page-table in the system, causing an
230
* unhandled page-fault when they are accessed.
231
*/
232
static noinline int vmalloc_fault(unsigned long address)
233
{
234
unsigned long pgd_paddr;
235
pmd_t *pmd_k;
236
pte_t *pte_k;
237
238
/* Make sure we are in vmalloc area: */
239
if (!(address >= VMALLOC_START && address < VMALLOC_END))
240
return -1;
241
242
/*
243
* Synchronize this task's top level page-table
244
* with the 'reference' page table.
245
*
246
* Do _not_ use "current" here. We might be inside
247
* an interrupt in the middle of a task switch..
248
*/
249
pgd_paddr = read_cr3_pa();
250
pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
251
if (!pmd_k)
252
return -1;
253
254
if (pmd_leaf(*pmd_k))
255
return 0;
256
257
pte_k = pte_offset_kernel(pmd_k, address);
258
if (!pte_present(*pte_k))
259
return -1;
260
261
return 0;
262
}
263
NOKPROBE_SYMBOL(vmalloc_fault);
264
265
void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
266
{
267
unsigned long addr;
268
269
for (addr = start & PMD_MASK;
270
addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
271
addr += PMD_SIZE) {
272
struct page *page;
273
274
spin_lock(&pgd_lock);
275
list_for_each_entry(page, &pgd_list, lru) {
276
spinlock_t *pgt_lock;
277
278
/* the pgt_lock only for Xen */
279
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
280
281
spin_lock(pgt_lock);
282
vmalloc_sync_one(page_address(page), addr);
283
spin_unlock(pgt_lock);
284
}
285
spin_unlock(&pgd_lock);
286
}
287
}
288
289
static bool low_pfn(unsigned long pfn)
290
{
291
return pfn < max_low_pfn;
292
}
293
294
static void dump_pagetable(unsigned long address)
295
{
296
pgd_t *base = __va(read_cr3_pa());
297
pgd_t *pgd = &base[pgd_index(address)];
298
p4d_t *p4d;
299
pud_t *pud;
300
pmd_t *pmd;
301
pte_t *pte;
302
303
#ifdef CONFIG_X86_PAE
304
pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
305
if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
306
goto out;
307
#define pr_pde pr_cont
308
#else
309
#define pr_pde pr_info
310
#endif
311
p4d = p4d_offset(pgd, address);
312
pud = pud_offset(p4d, address);
313
pmd = pmd_offset(pud, address);
314
pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
315
#undef pr_pde
316
317
/*
318
* We must not directly access the pte in the highpte
319
* case if the page table is located in highmem.
320
* And let's rather not kmap-atomic the pte, just in case
321
* it's allocated already:
322
*/
323
if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
324
goto out;
325
326
pte = pte_offset_kernel(pmd, address);
327
pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
328
out:
329
pr_cont("\n");
330
}
331
332
#else /* CONFIG_X86_64: */
333
334
#ifdef CONFIG_CPU_SUP_AMD
335
static const char errata93_warning[] =
336
KERN_ERR
337
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
338
"******* Working around it, but it may cause SEGVs or burn power.\n"
339
"******* Please consider a BIOS update.\n"
340
"******* Disabling USB legacy in the BIOS may also help.\n";
341
#endif
342
343
static int bad_address(void *p)
344
{
345
unsigned long dummy;
346
347
return get_kernel_nofault(dummy, (unsigned long *)p);
348
}
349
350
static void dump_pagetable(unsigned long address)
351
{
352
pgd_t *base = __va(read_cr3_pa());
353
pgd_t *pgd = base + pgd_index(address);
354
p4d_t *p4d;
355
pud_t *pud;
356
pmd_t *pmd;
357
pte_t *pte;
358
359
if (bad_address(pgd))
360
goto bad;
361
362
pr_info("PGD %lx ", pgd_val(*pgd));
363
364
if (!pgd_present(*pgd))
365
goto out;
366
367
p4d = p4d_offset(pgd, address);
368
if (bad_address(p4d))
369
goto bad;
370
371
pr_cont("P4D %lx ", p4d_val(*p4d));
372
if (!p4d_present(*p4d) || p4d_leaf(*p4d))
373
goto out;
374
375
pud = pud_offset(p4d, address);
376
if (bad_address(pud))
377
goto bad;
378
379
pr_cont("PUD %lx ", pud_val(*pud));
380
if (!pud_present(*pud) || pud_leaf(*pud))
381
goto out;
382
383
pmd = pmd_offset(pud, address);
384
if (bad_address(pmd))
385
goto bad;
386
387
pr_cont("PMD %lx ", pmd_val(*pmd));
388
if (!pmd_present(*pmd) || pmd_leaf(*pmd))
389
goto out;
390
391
pte = pte_offset_kernel(pmd, address);
392
if (bad_address(pte))
393
goto bad;
394
395
pr_cont("PTE %lx", pte_val(*pte));
396
out:
397
pr_cont("\n");
398
return;
399
bad:
400
pr_info("BAD\n");
401
}
402
403
#endif /* CONFIG_X86_64 */
404
405
/*
406
* Workaround for K8 erratum #93 & buggy BIOS.
407
*
408
* BIOS SMM functions are required to use a specific workaround
409
* to avoid corruption of the 64bit RIP register on C stepping K8.
410
*
411
* A lot of BIOS that didn't get tested properly miss this.
412
*
413
* The OS sees this as a page fault with the upper 32bits of RIP cleared.
414
* Try to work around it here.
415
*
416
* Note we only handle faults in kernel here.
417
* Does nothing on 32-bit.
418
*/
419
static int is_errata93(struct pt_regs *regs, unsigned long address)
420
{
421
#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
422
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
423
|| boot_cpu_data.x86 != 0xf)
424
return 0;
425
426
if (user_mode(regs))
427
return 0;
428
429
if (address != regs->ip)
430
return 0;
431
432
if ((address >> 32) != 0)
433
return 0;
434
435
address |= 0xffffffffUL << 32;
436
if ((address >= (u64)_stext && address <= (u64)_etext) ||
437
(address >= MODULES_VADDR && address <= MODULES_END)) {
438
printk_once(errata93_warning);
439
regs->ip = address;
440
return 1;
441
}
442
#endif
443
return 0;
444
}
445
446
/*
447
* Work around K8 erratum #100 K8 in compat mode occasionally jumps
448
* to illegal addresses >4GB.
449
*
450
* We catch this in the page fault handler because these addresses
451
* are not reachable. Just detect this case and return. Any code
452
* segment in LDT is compatibility mode.
453
*/
454
static int is_errata100(struct pt_regs *regs, unsigned long address)
455
{
456
#ifdef CONFIG_X86_64
457
if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
458
return 1;
459
#endif
460
return 0;
461
}
462
463
/* Pentium F0 0F C7 C8 bug workaround: */
464
static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
465
unsigned long address)
466
{
467
#ifdef CONFIG_X86_F00F_BUG
468
if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
469
idt_is_f00f_address(address)) {
470
handle_invalid_op(regs);
471
return 1;
472
}
473
#endif
474
return 0;
475
}
476
477
static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
478
{
479
u32 offset = (index >> 3) * sizeof(struct desc_struct);
480
unsigned long addr;
481
struct ldttss_desc desc;
482
483
if (index == 0) {
484
pr_alert("%s: NULL\n", name);
485
return;
486
}
487
488
if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
489
pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
490
return;
491
}
492
493
if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
494
sizeof(struct ldttss_desc))) {
495
pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
496
name, index);
497
return;
498
}
499
500
addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
501
#ifdef CONFIG_X86_64
502
addr |= ((u64)desc.base3 << 32);
503
#endif
504
pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
505
name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
506
}
507
508
static void
509
show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
510
{
511
if (!oops_may_print())
512
return;
513
514
if (error_code & X86_PF_INSTR) {
515
unsigned int level;
516
bool nx, rw;
517
pgd_t *pgd;
518
pte_t *pte;
519
520
pgd = __va(read_cr3_pa());
521
pgd += pgd_index(address);
522
523
pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw);
524
525
if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx))
526
pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
527
from_kuid(&init_user_ns, current_uid()));
528
if (pte && pte_present(*pte) && pte_exec(*pte) && !nx &&
529
(pgd_flags(*pgd) & _PAGE_USER) &&
530
(__read_cr4() & X86_CR4_SMEP))
531
pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
532
from_kuid(&init_user_ns, current_uid()));
533
}
534
535
if (address < PAGE_SIZE && !user_mode(regs))
536
pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
537
(void *)address);
538
else
539
pr_alert("BUG: unable to handle page fault for address: %px\n",
540
(void *)address);
541
542
pr_alert("#PF: %s %s in %s mode\n",
543
(error_code & X86_PF_USER) ? "user" : "supervisor",
544
(error_code & X86_PF_INSTR) ? "instruction fetch" :
545
(error_code & X86_PF_WRITE) ? "write access" :
546
"read access",
547
user_mode(regs) ? "user" : "kernel");
548
pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
549
!(error_code & X86_PF_PROT) ? "not-present page" :
550
(error_code & X86_PF_RSVD) ? "reserved bit violation" :
551
(error_code & X86_PF_PK) ? "protection keys violation" :
552
(error_code & X86_PF_RMP) ? "RMP violation" :
553
"permissions violation");
554
555
if (!(error_code & X86_PF_USER) && user_mode(regs)) {
556
struct desc_ptr idt, gdt;
557
u16 ldtr, tr;
558
559
/*
560
* This can happen for quite a few reasons. The more obvious
561
* ones are faults accessing the GDT, or LDT. Perhaps
562
* surprisingly, if the CPU tries to deliver a benign or
563
* contributory exception from user code and gets a page fault
564
* during delivery, the page fault can be delivered as though
565
* it originated directly from user code. This could happen
566
* due to wrong permissions on the IDT, GDT, LDT, TSS, or
567
* kernel or IST stack.
568
*/
569
store_idt(&idt);
570
571
/* Usable even on Xen PV -- it's just slow. */
572
native_store_gdt(&gdt);
573
574
pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
575
idt.address, idt.size, gdt.address, gdt.size);
576
577
store_ldt(ldtr);
578
show_ldttss(&gdt, "LDTR", ldtr);
579
580
store_tr(tr);
581
show_ldttss(&gdt, "TR", tr);
582
}
583
584
dump_pagetable(address);
585
586
if (error_code & X86_PF_RMP)
587
snp_dump_hva_rmpentry(address);
588
}
589
590
static noinline void
591
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
592
unsigned long address)
593
{
594
struct task_struct *tsk;
595
unsigned long flags;
596
int sig;
597
598
flags = oops_begin();
599
tsk = current;
600
sig = SIGKILL;
601
602
printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
603
tsk->comm, address);
604
dump_pagetable(address);
605
606
if (__die("Bad pagetable", regs, error_code))
607
sig = 0;
608
609
oops_end(flags, regs, sig);
610
}
611
612
static void sanitize_error_code(unsigned long address,
613
unsigned long *error_code)
614
{
615
/*
616
* To avoid leaking information about the kernel page
617
* table layout, pretend that user-mode accesses to
618
* kernel addresses are always protection faults.
619
*
620
* NB: This means that failed vsyscalls with vsyscall=none
621
* will have the PROT bit. This doesn't leak any
622
* information and does not appear to cause any problems.
623
*/
624
if (address >= TASK_SIZE_MAX)
625
*error_code |= X86_PF_PROT;
626
}
627
628
static void set_signal_archinfo(unsigned long address,
629
unsigned long error_code)
630
{
631
struct task_struct *tsk = current;
632
633
tsk->thread.trap_nr = X86_TRAP_PF;
634
tsk->thread.error_code = error_code | X86_PF_USER;
635
tsk->thread.cr2 = address;
636
}
637
638
static noinline void
639
page_fault_oops(struct pt_regs *regs, unsigned long error_code,
640
unsigned long address)
641
{
642
#ifdef CONFIG_VMAP_STACK
643
struct stack_info info;
644
#endif
645
unsigned long flags;
646
int sig;
647
648
if (user_mode(regs)) {
649
/*
650
* Implicit kernel access from user mode? Skip the stack
651
* overflow and EFI special cases.
652
*/
653
goto oops;
654
}
655
656
#ifdef CONFIG_VMAP_STACK
657
/*
658
* Stack overflow? During boot, we can fault near the initial
659
* stack in the direct map, but that's not an overflow -- check
660
* that we're in vmalloc space to avoid this.
661
*/
662
if (is_vmalloc_addr((void *)address) &&
663
get_stack_guard_info((void *)address, &info)) {
664
/*
665
* We're likely to be running with very little stack space
666
* left. It's plausible that we'd hit this condition but
667
* double-fault even before we get this far, in which case
668
* we're fine: the double-fault handler will deal with it.
669
*
670
* We don't want to make it all the way into the oops code
671
* and then double-fault, though, because we're likely to
672
* break the console driver and lose most of the stack dump.
673
*/
674
call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
675
handle_stack_overflow,
676
ASM_CALL_ARG3,
677
, [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
678
679
BUG();
680
}
681
#endif
682
683
/*
684
* Buggy firmware could access regions which might page fault. If
685
* this happens, EFI has a special OOPS path that will try to
686
* avoid hanging the system.
687
*/
688
if (IS_ENABLED(CONFIG_EFI))
689
efi_crash_gracefully_on_page_fault(address);
690
691
/* Only not-present faults should be handled by KFENCE. */
692
if (!(error_code & X86_PF_PROT) &&
693
kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
694
return;
695
696
oops:
697
/*
698
* Oops. The kernel tried to access some bad page. We'll have to
699
* terminate things with extreme prejudice:
700
*/
701
flags = oops_begin();
702
703
show_fault_oops(regs, error_code, address);
704
705
if (task_stack_end_corrupted(current))
706
printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
707
708
sig = SIGKILL;
709
if (__die("Oops", regs, error_code))
710
sig = 0;
711
712
/* Executive summary in case the body of the oops scrolled away */
713
printk(KERN_DEFAULT "CR2: %016lx\n", address);
714
715
oops_end(flags, regs, sig);
716
}
717
718
static noinline void
719
kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
720
unsigned long address, int signal, int si_code,
721
u32 pkey)
722
{
723
WARN_ON_ONCE(user_mode(regs));
724
725
/* Are we prepared to handle this kernel fault? */
726
if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
727
return;
728
729
/*
730
* AMD erratum #91 manifests as a spurious page fault on a PREFETCH
731
* instruction.
732
*/
733
if (is_prefetch(regs, error_code, address))
734
return;
735
736
page_fault_oops(regs, error_code, address);
737
}
738
739
/*
740
* Print out info about fatal segfaults, if the show_unhandled_signals
741
* sysctl is set:
742
*/
743
static inline void
744
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
745
unsigned long address, struct task_struct *tsk)
746
{
747
const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
748
/* This is a racy snapshot, but it's better than nothing. */
749
int cpu = raw_smp_processor_id();
750
751
if (!unhandled_signal(tsk, SIGSEGV))
752
return;
753
754
if (!printk_ratelimit())
755
return;
756
757
printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
758
loglvl, tsk->comm, task_pid_nr(tsk), address,
759
(void *)regs->ip, (void *)regs->sp, error_code);
760
761
print_vma_addr(KERN_CONT " in ", regs->ip);
762
763
/*
764
* Dump the likely CPU where the fatal segfault happened.
765
* This can help identify faulty hardware.
766
*/
767
printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
768
topology_core_id(cpu), topology_physical_package_id(cpu));
769
770
771
printk(KERN_CONT "\n");
772
773
show_opcodes(regs, loglvl);
774
}
775
776
static void
777
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
778
unsigned long address, u32 pkey, int si_code)
779
{
780
struct task_struct *tsk = current;
781
782
if (!user_mode(regs)) {
783
kernelmode_fixup_or_oops(regs, error_code, address,
784
SIGSEGV, si_code, pkey);
785
return;
786
}
787
788
if (!(error_code & X86_PF_USER)) {
789
/* Implicit user access to kernel memory -- just oops */
790
page_fault_oops(regs, error_code, address);
791
return;
792
}
793
794
/*
795
* User mode accesses just cause a SIGSEGV.
796
* It's possible to have interrupts off here:
797
*/
798
local_irq_enable();
799
800
/*
801
* Valid to do another page fault here because this one came
802
* from user space:
803
*/
804
if (is_prefetch(regs, error_code, address))
805
return;
806
807
if (is_errata100(regs, address))
808
return;
809
810
sanitize_error_code(address, &error_code);
811
812
if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
813
return;
814
815
if (likely(show_unhandled_signals))
816
show_signal_msg(regs, error_code, address, tsk);
817
818
set_signal_archinfo(address, error_code);
819
820
if (si_code == SEGV_PKUERR)
821
force_sig_pkuerr((void __user *)address, pkey);
822
else
823
force_sig_fault(SIGSEGV, si_code, (void __user *)address);
824
}
825
826
static noinline void
827
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
828
unsigned long address)
829
{
830
__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
831
}
832
833
static void
834
__bad_area(struct pt_regs *regs, unsigned long error_code,
835
unsigned long address, struct mm_struct *mm,
836
struct vm_area_struct *vma, u32 pkey, int si_code)
837
{
838
/*
839
* Something tried to access memory that isn't in our memory map..
840
* Fix it, but check if it's kernel or user first..
841
*/
842
if (mm)
843
mmap_read_unlock(mm);
844
else
845
vma_end_read(vma);
846
847
__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
848
}
849
850
static inline bool bad_area_access_from_pkeys(unsigned long error_code,
851
struct vm_area_struct *vma)
852
{
853
/* This code is always called on the current mm */
854
bool foreign = false;
855
856
if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
857
return false;
858
if (error_code & X86_PF_PK)
859
return true;
860
/* this checks permission keys on the VMA: */
861
if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
862
(error_code & X86_PF_INSTR), foreign))
863
return true;
864
return false;
865
}
866
867
static noinline void
868
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
869
unsigned long address, struct mm_struct *mm,
870
struct vm_area_struct *vma)
871
{
872
/*
873
* This OSPKE check is not strictly necessary at runtime.
874
* But, doing it this way allows compiler optimizations
875
* if pkeys are compiled out.
876
*/
877
if (bad_area_access_from_pkeys(error_code, vma)) {
878
/*
879
* A protection key fault means that the PKRU value did not allow
880
* access to some PTE. Userspace can figure out what PKRU was
881
* from the XSAVE state. This function captures the pkey from
882
* the vma and passes it to userspace so userspace can discover
883
* which protection key was set on the PTE.
884
*
885
* If we get here, we know that the hardware signaled a X86_PF_PK
886
* fault and that there was a VMA once we got in the fault
887
* handler. It does *not* guarantee that the VMA we find here
888
* was the one that we faulted on.
889
*
890
* 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
891
* 2. T1 : set PKRU to deny access to pkey=4, touches page
892
* 3. T1 : faults...
893
* 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
894
* 5. T1 : enters fault handler, takes mmap_lock, etc...
895
* 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
896
* faulted on a pte with its pkey=4.
897
*/
898
u32 pkey = vma_pkey(vma);
899
900
__bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR);
901
} else {
902
__bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR);
903
}
904
}
905
906
static void
907
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
908
vm_fault_t fault)
909
{
910
/* Kernel mode? Handle exceptions or die: */
911
if (!user_mode(regs)) {
912
kernelmode_fixup_or_oops(regs, error_code, address,
913
SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
914
return;
915
}
916
917
/* User-space => ok to do another page fault: */
918
if (is_prefetch(regs, error_code, address))
919
return;
920
921
sanitize_error_code(address, &error_code);
922
923
if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
924
return;
925
926
set_signal_archinfo(address, error_code);
927
928
#ifdef CONFIG_MEMORY_FAILURE
929
if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
930
struct task_struct *tsk = current;
931
unsigned lsb = 0;
932
933
pr_err(
934
"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
935
tsk->comm, tsk->pid, address);
936
if (fault & VM_FAULT_HWPOISON_LARGE)
937
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
938
if (fault & VM_FAULT_HWPOISON)
939
lsb = PAGE_SHIFT;
940
force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
941
return;
942
}
943
#endif
944
force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
945
}
946
947
static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
948
{
949
if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
950
return 0;
951
952
if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
953
return 0;
954
955
return 1;
956
}
957
958
/*
959
* Handle a spurious fault caused by a stale TLB entry.
960
*
961
* This allows us to lazily refresh the TLB when increasing the
962
* permissions of a kernel page (RO -> RW or NX -> X). Doing it
963
* eagerly is very expensive since that implies doing a full
964
* cross-processor TLB flush, even if no stale TLB entries exist
965
* on other processors.
966
*
967
* Spurious faults may only occur if the TLB contains an entry with
968
* fewer permission than the page table entry. Non-present (P = 0)
969
* and reserved bit (R = 1) faults are never spurious.
970
*
971
* There are no security implications to leaving a stale TLB when
972
* increasing the permissions on a page.
973
*
974
* Returns non-zero if a spurious fault was handled, zero otherwise.
975
*
976
* See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
977
* (Optional Invalidation).
978
*/
979
static noinline int
980
spurious_kernel_fault(unsigned long error_code, unsigned long address)
981
{
982
pgd_t *pgd;
983
p4d_t *p4d;
984
pud_t *pud;
985
pmd_t *pmd;
986
pte_t *pte;
987
int ret;
988
989
/*
990
* Only writes to RO or instruction fetches from NX may cause
991
* spurious faults.
992
*
993
* These could be from user or supervisor accesses but the TLB
994
* is only lazily flushed after a kernel mapping protection
995
* change, so user accesses are not expected to cause spurious
996
* faults.
997
*/
998
if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
999
error_code != (X86_PF_INSTR | X86_PF_PROT))
1000
return 0;
1001
1002
pgd = init_mm.pgd + pgd_index(address);
1003
if (!pgd_present(*pgd))
1004
return 0;
1005
1006
p4d = p4d_offset(pgd, address);
1007
if (!p4d_present(*p4d))
1008
return 0;
1009
1010
if (p4d_leaf(*p4d))
1011
return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1012
1013
pud = pud_offset(p4d, address);
1014
if (!pud_present(*pud))
1015
return 0;
1016
1017
if (pud_leaf(*pud))
1018
return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1019
1020
pmd = pmd_offset(pud, address);
1021
if (!pmd_present(*pmd))
1022
return 0;
1023
1024
if (pmd_leaf(*pmd))
1025
return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1026
1027
pte = pte_offset_kernel(pmd, address);
1028
if (!pte_present(*pte))
1029
return 0;
1030
1031
ret = spurious_kernel_fault_check(error_code, pte);
1032
if (!ret)
1033
return 0;
1034
1035
/*
1036
* Make sure we have permissions in PMD.
1037
* If not, then there's a bug in the page tables:
1038
*/
1039
ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1040
WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1041
1042
return ret;
1043
}
1044
NOKPROBE_SYMBOL(spurious_kernel_fault);
1045
1046
int show_unhandled_signals = 1;
1047
1048
static inline int
1049
access_error(unsigned long error_code, struct vm_area_struct *vma)
1050
{
1051
/* This is only called for the current mm, so: */
1052
bool foreign = false;
1053
1054
/*
1055
* Read or write was blocked by protection keys. This is
1056
* always an unconditional error and can never result in
1057
* a follow-up action to resolve the fault, like a COW.
1058
*/
1059
if (error_code & X86_PF_PK)
1060
return 1;
1061
1062
/*
1063
* SGX hardware blocked the access. This usually happens
1064
* when the enclave memory contents have been destroyed, like
1065
* after a suspend/resume cycle. In any case, the kernel can't
1066
* fix the cause of the fault. Handle the fault as an access
1067
* error even in cases where no actual access violation
1068
* occurred. This allows userspace to rebuild the enclave in
1069
* response to the signal.
1070
*/
1071
if (unlikely(error_code & X86_PF_SGX))
1072
return 1;
1073
1074
/*
1075
* Make sure to check the VMA so that we do not perform
1076
* faults just to hit a X86_PF_PK as soon as we fill in a
1077
* page.
1078
*/
1079
if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1080
(error_code & X86_PF_INSTR), foreign))
1081
return 1;
1082
1083
/*
1084
* Shadow stack accesses (PF_SHSTK=1) are only permitted to
1085
* shadow stack VMAs. All other accesses result in an error.
1086
*/
1087
if (error_code & X86_PF_SHSTK) {
1088
if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1089
return 1;
1090
if (unlikely(!(vma->vm_flags & VM_WRITE)))
1091
return 1;
1092
return 0;
1093
}
1094
1095
if (error_code & X86_PF_WRITE) {
1096
/* write, present and write, not present: */
1097
if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1098
return 1;
1099
if (unlikely(!(vma->vm_flags & VM_WRITE)))
1100
return 1;
1101
return 0;
1102
}
1103
1104
/* read, present: */
1105
if (unlikely(error_code & X86_PF_PROT))
1106
return 1;
1107
1108
/* read, not present: */
1109
if (unlikely(!vma_is_accessible(vma)))
1110
return 1;
1111
1112
return 0;
1113
}
1114
1115
bool fault_in_kernel_space(unsigned long address)
1116
{
1117
/*
1118
* On 64-bit systems, the vsyscall page is at an address above
1119
* TASK_SIZE_MAX, but is not considered part of the kernel
1120
* address space.
1121
*/
1122
if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1123
return false;
1124
1125
return address >= TASK_SIZE_MAX;
1126
}
1127
1128
/*
1129
* Called for all faults where 'address' is part of the kernel address
1130
* space. Might get called for faults that originate from *code* that
1131
* ran in userspace or the kernel.
1132
*/
1133
static void
1134
do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1135
unsigned long address)
1136
{
1137
/*
1138
* Protection keys exceptions only happen on user pages. We
1139
* have no user pages in the kernel portion of the address
1140
* space, so do not expect them here.
1141
*/
1142
WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1143
1144
#ifdef CONFIG_X86_32
1145
/*
1146
* We can fault-in kernel-space virtual memory on-demand. The
1147
* 'reference' page table is init_mm.pgd.
1148
*
1149
* NOTE! We MUST NOT take any locks for this case. We may
1150
* be in an interrupt or a critical region, and should
1151
* only copy the information from the master page table,
1152
* nothing more.
1153
*
1154
* Before doing this on-demand faulting, ensure that the
1155
* fault is not any of the following:
1156
* 1. A fault on a PTE with a reserved bit set.
1157
* 2. A fault caused by a user-mode access. (Do not demand-
1158
* fault kernel memory due to user-mode accesses).
1159
* 3. A fault caused by a page-level protection violation.
1160
* (A demand fault would be on a non-present page which
1161
* would have X86_PF_PROT==0).
1162
*
1163
* This is only needed to close a race condition on x86-32 in
1164
* the vmalloc mapping/unmapping code. See the comment above
1165
* vmalloc_fault() for details. On x86-64 the race does not
1166
* exist as the vmalloc mappings don't need to be synchronized
1167
* there.
1168
*/
1169
if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1170
if (vmalloc_fault(address) >= 0)
1171
return;
1172
}
1173
#endif
1174
1175
if (is_f00f_bug(regs, hw_error_code, address))
1176
return;
1177
1178
/* Was the fault spurious, caused by lazy TLB invalidation? */
1179
if (spurious_kernel_fault(hw_error_code, address))
1180
return;
1181
1182
/* kprobes don't want to hook the spurious faults: */
1183
if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1184
return;
1185
1186
/*
1187
* Note, despite being a "bad area", there are quite a few
1188
* acceptable reasons to get here, such as erratum fixups
1189
* and handling kernel code that can fault, like get_user().
1190
*
1191
* Don't take the mm semaphore here. If we fixup a prefetch
1192
* fault we could otherwise deadlock:
1193
*/
1194
bad_area_nosemaphore(regs, hw_error_code, address);
1195
}
1196
NOKPROBE_SYMBOL(do_kern_addr_fault);
1197
1198
/*
1199
* Handle faults in the user portion of the address space. Nothing in here
1200
* should check X86_PF_USER without a specific justification: for almost
1201
* all purposes, we should treat a normal kernel access to user memory
1202
* (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1203
* The one exception is AC flag handling, which is, per the x86
1204
* architecture, special for WRUSS.
1205
*/
1206
static inline
1207
void do_user_addr_fault(struct pt_regs *regs,
1208
unsigned long error_code,
1209
unsigned long address)
1210
{
1211
struct vm_area_struct *vma;
1212
struct task_struct *tsk;
1213
struct mm_struct *mm;
1214
vm_fault_t fault;
1215
unsigned int flags = FAULT_FLAG_DEFAULT;
1216
1217
tsk = current;
1218
mm = tsk->mm;
1219
1220
if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1221
/*
1222
* Whoops, this is kernel mode code trying to execute from
1223
* user memory. Unless this is AMD erratum #93, which
1224
* corrupts RIP such that it looks like a user address,
1225
* this is unrecoverable. Don't even try to look up the
1226
* VMA or look for extable entries.
1227
*/
1228
if (is_errata93(regs, address))
1229
return;
1230
1231
page_fault_oops(regs, error_code, address);
1232
return;
1233
}
1234
1235
/* kprobes don't want to hook the spurious faults: */
1236
if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1237
return;
1238
1239
/*
1240
* Reserved bits are never expected to be set on
1241
* entries in the user portion of the page tables.
1242
*/
1243
if (unlikely(error_code & X86_PF_RSVD))
1244
pgtable_bad(regs, error_code, address);
1245
1246
/*
1247
* If SMAP is on, check for invalid kernel (supervisor) access to user
1248
* pages in the user address space. The odd case here is WRUSS,
1249
* which, according to the preliminary documentation, does not respect
1250
* SMAP and will have the USER bit set so, in all cases, SMAP
1251
* enforcement appears to be consistent with the USER bit.
1252
*/
1253
if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1254
!(error_code & X86_PF_USER) &&
1255
!(regs->flags & X86_EFLAGS_AC))) {
1256
/*
1257
* No extable entry here. This was a kernel access to an
1258
* invalid pointer. get_kernel_nofault() will not get here.
1259
*/
1260
page_fault_oops(regs, error_code, address);
1261
return;
1262
}
1263
1264
/*
1265
* If we're in an interrupt, have no user context or are running
1266
* in a region with pagefaults disabled then we must not take the fault
1267
*/
1268
if (unlikely(faulthandler_disabled() || !mm)) {
1269
bad_area_nosemaphore(regs, error_code, address);
1270
return;
1271
}
1272
1273
/* Legacy check - remove this after verifying that it doesn't trigger */
1274
if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1275
bad_area_nosemaphore(regs, error_code, address);
1276
return;
1277
}
1278
1279
local_irq_enable();
1280
1281
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1282
1283
/*
1284
* Read-only permissions can not be expressed in shadow stack PTEs.
1285
* Treat all shadow stack accesses as WRITE faults. This ensures
1286
* that the MM will prepare everything (e.g., break COW) such that
1287
* maybe_mkwrite() can create a proper shadow stack PTE.
1288
*/
1289
if (error_code & X86_PF_SHSTK)
1290
flags |= FAULT_FLAG_WRITE;
1291
if (error_code & X86_PF_WRITE)
1292
flags |= FAULT_FLAG_WRITE;
1293
if (error_code & X86_PF_INSTR)
1294
flags |= FAULT_FLAG_INSTRUCTION;
1295
1296
/*
1297
* We set FAULT_FLAG_USER based on the register state, not
1298
* based on X86_PF_USER. User space accesses that cause
1299
* system page faults are still user accesses.
1300
*/
1301
if (user_mode(regs))
1302
flags |= FAULT_FLAG_USER;
1303
1304
#ifdef CONFIG_X86_64
1305
/*
1306
* Faults in the vsyscall page might need emulation. The
1307
* vsyscall page is at a high address (>PAGE_OFFSET), but is
1308
* considered to be part of the user address space.
1309
*
1310
* The vsyscall page does not have a "real" VMA, so do this
1311
* emulation before we go searching for VMAs.
1312
*
1313
* PKRU never rejects instruction fetches, so we don't need
1314
* to consider the PF_PK bit.
1315
*/
1316
if (is_vsyscall_vaddr(address)) {
1317
if (emulate_vsyscall(error_code, regs, address))
1318
return;
1319
}
1320
#endif
1321
1322
if (!(flags & FAULT_FLAG_USER))
1323
goto lock_mmap;
1324
1325
vma = lock_vma_under_rcu(mm, address);
1326
if (!vma)
1327
goto lock_mmap;
1328
1329
if (unlikely(access_error(error_code, vma))) {
1330
bad_area_access_error(regs, error_code, address, NULL, vma);
1331
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1332
return;
1333
}
1334
fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1335
if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1336
vma_end_read(vma);
1337
1338
if (!(fault & VM_FAULT_RETRY)) {
1339
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1340
goto done;
1341
}
1342
count_vm_vma_lock_event(VMA_LOCK_RETRY);
1343
if (fault & VM_FAULT_MAJOR)
1344
flags |= FAULT_FLAG_TRIED;
1345
1346
/* Quick path to respond to signals */
1347
if (fault_signal_pending(fault, regs)) {
1348
if (!user_mode(regs))
1349
kernelmode_fixup_or_oops(regs, error_code, address,
1350
SIGBUS, BUS_ADRERR,
1351
ARCH_DEFAULT_PKEY);
1352
return;
1353
}
1354
lock_mmap:
1355
1356
retry:
1357
vma = lock_mm_and_find_vma(mm, address, regs);
1358
if (unlikely(!vma)) {
1359
bad_area_nosemaphore(regs, error_code, address);
1360
return;
1361
}
1362
1363
/*
1364
* Ok, we have a good vm_area for this memory access, so
1365
* we can handle it..
1366
*/
1367
if (unlikely(access_error(error_code, vma))) {
1368
bad_area_access_error(regs, error_code, address, mm, vma);
1369
return;
1370
}
1371
1372
/*
1373
* If for any reason at all we couldn't handle the fault,
1374
* make sure we exit gracefully rather than endlessly redo
1375
* the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1376
* we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1377
*
1378
* Note that handle_userfault() may also release and reacquire mmap_lock
1379
* (and not return with VM_FAULT_RETRY), when returning to userland to
1380
* repeat the page fault later with a VM_FAULT_NOPAGE retval
1381
* (potentially after handling any pending signal during the return to
1382
* userland). The return to userland is identified whenever
1383
* FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1384
*/
1385
fault = handle_mm_fault(vma, address, flags, regs);
1386
1387
if (fault_signal_pending(fault, regs)) {
1388
/*
1389
* Quick path to respond to signals. The core mm code
1390
* has unlocked the mm for us if we get here.
1391
*/
1392
if (!user_mode(regs))
1393
kernelmode_fixup_or_oops(regs, error_code, address,
1394
SIGBUS, BUS_ADRERR,
1395
ARCH_DEFAULT_PKEY);
1396
return;
1397
}
1398
1399
/* The fault is fully completed (including releasing mmap lock) */
1400
if (fault & VM_FAULT_COMPLETED)
1401
return;
1402
1403
/*
1404
* If we need to retry the mmap_lock has already been released,
1405
* and if there is a fatal signal pending there is no guarantee
1406
* that we made any progress. Handle this case first.
1407
*/
1408
if (unlikely(fault & VM_FAULT_RETRY)) {
1409
flags |= FAULT_FLAG_TRIED;
1410
goto retry;
1411
}
1412
1413
mmap_read_unlock(mm);
1414
done:
1415
if (likely(!(fault & VM_FAULT_ERROR)))
1416
return;
1417
1418
if (fatal_signal_pending(current) && !user_mode(regs)) {
1419
kernelmode_fixup_or_oops(regs, error_code, address,
1420
0, 0, ARCH_DEFAULT_PKEY);
1421
return;
1422
}
1423
1424
if (fault & VM_FAULT_OOM) {
1425
/* Kernel mode? Handle exceptions or die: */
1426
if (!user_mode(regs)) {
1427
kernelmode_fixup_or_oops(regs, error_code, address,
1428
SIGSEGV, SEGV_MAPERR,
1429
ARCH_DEFAULT_PKEY);
1430
return;
1431
}
1432
1433
/*
1434
* We ran out of memory, call the OOM killer, and return the
1435
* userspace (which will retry the fault, or kill us if we got
1436
* oom-killed):
1437
*/
1438
pagefault_out_of_memory();
1439
} else {
1440
if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1441
VM_FAULT_HWPOISON_LARGE))
1442
do_sigbus(regs, error_code, address, fault);
1443
else if (fault & VM_FAULT_SIGSEGV)
1444
bad_area_nosemaphore(regs, error_code, address);
1445
else
1446
BUG();
1447
}
1448
}
1449
NOKPROBE_SYMBOL(do_user_addr_fault);
1450
1451
static __always_inline void
1452
trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1453
unsigned long address)
1454
{
1455
if (user_mode(regs))
1456
trace_page_fault_user(address, regs, error_code);
1457
else
1458
trace_page_fault_kernel(address, regs, error_code);
1459
}
1460
1461
static __always_inline void
1462
handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1463
unsigned long address)
1464
{
1465
trace_page_fault_entries(regs, error_code, address);
1466
1467
if (unlikely(kmmio_fault(regs, address)))
1468
return;
1469
1470
/* Was the fault on kernel-controlled part of the address space? */
1471
if (unlikely(fault_in_kernel_space(address))) {
1472
do_kern_addr_fault(regs, error_code, address);
1473
} else {
1474
do_user_addr_fault(regs, error_code, address);
1475
}
1476
/*
1477
* page fault handling might have reenabled interrupts,
1478
* make sure to disable them again.
1479
*/
1480
local_irq_disable();
1481
}
1482
1483
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1484
{
1485
irqentry_state_t state;
1486
unsigned long address;
1487
1488
address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1489
1490
/*
1491
* KVM uses #PF vector to deliver 'page not present' events to guests
1492
* (asynchronous page fault mechanism). The event happens when a
1493
* userspace task is trying to access some valid (from guest's point of
1494
* view) memory which is not currently mapped by the host (e.g. the
1495
* memory is swapped out). Note, the corresponding "page ready" event
1496
* which is injected when the memory becomes available, is delivered via
1497
* an interrupt mechanism and not a #PF exception
1498
* (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1499
*
1500
* We are relying on the interrupted context being sane (valid RSP,
1501
* relevant locks not held, etc.), which is fine as long as the
1502
* interrupted context had IF=1. We are also relying on the KVM
1503
* async pf type field and CR2 being read consistently instead of
1504
* getting values from real and async page faults mixed up.
1505
*
1506
* Fingers crossed.
1507
*
1508
* The async #PF handling code takes care of idtentry handling
1509
* itself.
1510
*/
1511
if (kvm_handle_async_pf(regs, (u32)address))
1512
return;
1513
1514
/*
1515
* Entry handling for valid #PF from kernel mode is slightly
1516
* different: RCU is already watching and ct_irq_enter() must not
1517
* be invoked because a kernel fault on a user space address might
1518
* sleep.
1519
*
1520
* In case the fault hit a RCU idle region the conditional entry
1521
* code reenabled RCU to avoid subsequent wreckage which helps
1522
* debuggability.
1523
*/
1524
state = irqentry_enter(regs);
1525
1526
instrumentation_begin();
1527
handle_page_fault(regs, error_code, address);
1528
instrumentation_end();
1529
1530
irqentry_exit(regs, state);
1531
}
1532
1533