Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/mm/fault.c
26442 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 1995 Linus Torvalds
4
* Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5
* Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6
*/
7
#include <linux/sched.h> /* test_thread_flag(), ... */
8
#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9
#include <linux/kdebug.h> /* oops_begin/end, ... */
10
#include <linux/memblock.h> /* max_low_pfn */
11
#include <linux/kfence.h> /* kfence_handle_page_fault */
12
#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13
#include <linux/mmiotrace.h> /* kmmio_handler, ... */
14
#include <linux/perf_event.h> /* perf_sw_event */
15
#include <linux/hugetlb.h> /* hstate_index_to_shift */
16
#include <linux/context_tracking.h> /* exception_enter(), ... */
17
#include <linux/uaccess.h> /* faulthandler_disabled() */
18
#include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
19
#include <linux/mm_types.h>
20
#include <linux/mm.h> /* find_and_lock_vma() */
21
#include <linux/vmalloc.h>
22
23
#include <asm/cpufeature.h> /* boot_cpu_has, ... */
24
#include <asm/traps.h> /* dotraplinkage, ... */
25
#include <asm/fixmap.h> /* VSYSCALL_ADDR */
26
#include <asm/vsyscall.h> /* emulate_vsyscall */
27
#include <asm/vm86.h> /* struct vm86 */
28
#include <asm/mmu_context.h> /* vma_pkey() */
29
#include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
30
#include <asm/desc.h> /* store_idt(), ... */
31
#include <asm/cpu_entry_area.h> /* exception stack */
32
#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
33
#include <asm/kvm_para.h> /* kvm_handle_async_pf */
34
#include <asm/vdso.h> /* fixup_vdso_exception() */
35
#include <asm/irq_stack.h>
36
#include <asm/fred.h>
37
#include <asm/sev.h> /* snp_dump_hva_rmpentry() */
38
39
#define CREATE_TRACE_POINTS
40
#include <trace/events/exceptions.h>
41
42
/*
43
* Returns 0 if mmiotrace is disabled, or if the fault is not
44
* handled by mmiotrace:
45
*/
46
static nokprobe_inline int
47
kmmio_fault(struct pt_regs *regs, unsigned long addr)
48
{
49
if (unlikely(is_kmmio_active()))
50
if (kmmio_handler(regs, addr) == 1)
51
return -1;
52
return 0;
53
}
54
55
/*
56
* Prefetch quirks:
57
*
58
* 32-bit mode:
59
*
60
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
61
* Check that here and ignore it. This is AMD erratum #91.
62
*
63
* 64-bit mode:
64
*
65
* Sometimes the CPU reports invalid exceptions on prefetch.
66
* Check that here and ignore it.
67
*
68
* Opcode checker based on code by Richard Brunner.
69
*/
70
static inline int
71
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
72
unsigned char opcode, int *prefetch)
73
{
74
unsigned char instr_hi = opcode & 0xf0;
75
unsigned char instr_lo = opcode & 0x0f;
76
77
switch (instr_hi) {
78
case 0x20:
79
case 0x30:
80
/*
81
* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
82
* In X86_64 long mode, the CPU will signal invalid
83
* opcode if some of these prefixes are present so
84
* X86_64 will never get here anyway
85
*/
86
return ((instr_lo & 7) == 0x6);
87
#ifdef CONFIG_X86_64
88
case 0x40:
89
/*
90
* In 64-bit mode 0x40..0x4F are valid REX prefixes
91
*/
92
return (!user_mode(regs) || user_64bit_mode(regs));
93
#endif
94
case 0x60:
95
/* 0x64 thru 0x67 are valid prefixes in all modes. */
96
return (instr_lo & 0xC) == 0x4;
97
case 0xF0:
98
/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
99
return !instr_lo || (instr_lo>>1) == 1;
100
case 0x00:
101
/* Prefetch instruction is 0x0F0D or 0x0F18 */
102
if (get_kernel_nofault(opcode, instr))
103
return 0;
104
105
*prefetch = (instr_lo == 0xF) &&
106
(opcode == 0x0D || opcode == 0x18);
107
return 0;
108
default:
109
return 0;
110
}
111
}
112
113
static bool is_amd_k8_pre_npt(void)
114
{
115
struct cpuinfo_x86 *c = &boot_cpu_data;
116
117
return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
118
c->x86_vendor == X86_VENDOR_AMD &&
119
c->x86 == 0xf && c->x86_model < 0x40);
120
}
121
122
static int
123
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
124
{
125
unsigned char *max_instr;
126
unsigned char *instr;
127
int prefetch = 0;
128
129
/* Erratum #91 affects AMD K8, pre-NPT CPUs */
130
if (!is_amd_k8_pre_npt())
131
return 0;
132
133
/*
134
* If it was a exec (instruction fetch) fault on NX page, then
135
* do not ignore the fault:
136
*/
137
if (error_code & X86_PF_INSTR)
138
return 0;
139
140
instr = (void *)convert_ip_to_linear(current, regs);
141
max_instr = instr + 15;
142
143
/*
144
* This code has historically always bailed out if IP points to a
145
* not-present page (e.g. due to a race). No one has ever
146
* complained about this.
147
*/
148
pagefault_disable();
149
150
while (instr < max_instr) {
151
unsigned char opcode;
152
153
if (user_mode(regs)) {
154
if (get_user(opcode, (unsigned char __user *) instr))
155
break;
156
} else {
157
if (get_kernel_nofault(opcode, instr))
158
break;
159
}
160
161
instr++;
162
163
if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
164
break;
165
}
166
167
pagefault_enable();
168
return prefetch;
169
}
170
171
DEFINE_SPINLOCK(pgd_lock);
172
LIST_HEAD(pgd_list);
173
174
#ifdef CONFIG_X86_32
175
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
176
{
177
unsigned index = pgd_index(address);
178
pgd_t *pgd_k;
179
p4d_t *p4d, *p4d_k;
180
pud_t *pud, *pud_k;
181
pmd_t *pmd, *pmd_k;
182
183
pgd += index;
184
pgd_k = init_mm.pgd + index;
185
186
if (!pgd_present(*pgd_k))
187
return NULL;
188
189
/*
190
* set_pgd(pgd, *pgd_k); here would be useless on PAE
191
* and redundant with the set_pmd() on non-PAE. As would
192
* set_p4d/set_pud.
193
*/
194
p4d = p4d_offset(pgd, address);
195
p4d_k = p4d_offset(pgd_k, address);
196
if (!p4d_present(*p4d_k))
197
return NULL;
198
199
pud = pud_offset(p4d, address);
200
pud_k = pud_offset(p4d_k, address);
201
if (!pud_present(*pud_k))
202
return NULL;
203
204
pmd = pmd_offset(pud, address);
205
pmd_k = pmd_offset(pud_k, address);
206
207
if (pmd_present(*pmd) != pmd_present(*pmd_k))
208
set_pmd(pmd, *pmd_k);
209
210
if (!pmd_present(*pmd_k))
211
return NULL;
212
else
213
BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
214
215
return pmd_k;
216
}
217
218
/*
219
* Handle a fault on the vmalloc or module mapping area
220
*
221
* This is needed because there is a race condition between the time
222
* when the vmalloc mapping code updates the PMD to the point in time
223
* where it synchronizes this update with the other page-tables in the
224
* system.
225
*
226
* In this race window another thread/CPU can map an area on the same
227
* PMD, finds it already present and does not synchronize it with the
228
* rest of the system yet. As a result v[mz]alloc might return areas
229
* which are not mapped in every page-table in the system, causing an
230
* unhandled page-fault when they are accessed.
231
*/
232
static noinline int vmalloc_fault(unsigned long address)
233
{
234
unsigned long pgd_paddr;
235
pmd_t *pmd_k;
236
pte_t *pte_k;
237
238
/* Make sure we are in vmalloc area: */
239
if (!(address >= VMALLOC_START && address < VMALLOC_END))
240
return -1;
241
242
/*
243
* Synchronize this task's top level page-table
244
* with the 'reference' page table.
245
*
246
* Do _not_ use "current" here. We might be inside
247
* an interrupt in the middle of a task switch..
248
*/
249
pgd_paddr = read_cr3_pa();
250
pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
251
if (!pmd_k)
252
return -1;
253
254
if (pmd_leaf(*pmd_k))
255
return 0;
256
257
pte_k = pte_offset_kernel(pmd_k, address);
258
if (!pte_present(*pte_k))
259
return -1;
260
261
return 0;
262
}
263
NOKPROBE_SYMBOL(vmalloc_fault);
264
265
void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
266
{
267
unsigned long addr;
268
269
for (addr = start & PMD_MASK;
270
addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
271
addr += PMD_SIZE) {
272
struct page *page;
273
274
spin_lock(&pgd_lock);
275
list_for_each_entry(page, &pgd_list, lru) {
276
spinlock_t *pgt_lock;
277
278
/* the pgt_lock only for Xen */
279
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
280
281
spin_lock(pgt_lock);
282
vmalloc_sync_one(page_address(page), addr);
283
spin_unlock(pgt_lock);
284
}
285
spin_unlock(&pgd_lock);
286
}
287
}
288
289
static bool low_pfn(unsigned long pfn)
290
{
291
return pfn < max_low_pfn;
292
}
293
294
static void dump_pagetable(unsigned long address)
295
{
296
pgd_t *base = __va(read_cr3_pa());
297
pgd_t *pgd = &base[pgd_index(address)];
298
p4d_t *p4d;
299
pud_t *pud;
300
pmd_t *pmd;
301
pte_t *pte;
302
303
#ifdef CONFIG_X86_PAE
304
pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
305
if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
306
goto out;
307
#define pr_pde pr_cont
308
#else
309
#define pr_pde pr_info
310
#endif
311
p4d = p4d_offset(pgd, address);
312
pud = pud_offset(p4d, address);
313
pmd = pmd_offset(pud, address);
314
pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
315
#undef pr_pde
316
317
/*
318
* We must not directly access the pte in the highpte
319
* case if the page table is located in highmem.
320
* And let's rather not kmap-atomic the pte, just in case
321
* it's allocated already:
322
*/
323
if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
324
goto out;
325
326
pte = pte_offset_kernel(pmd, address);
327
pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
328
out:
329
pr_cont("\n");
330
}
331
332
#else /* CONFIG_X86_64: */
333
334
#ifdef CONFIG_CPU_SUP_AMD
335
static const char errata93_warning[] =
336
KERN_ERR
337
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
338
"******* Working around it, but it may cause SEGVs or burn power.\n"
339
"******* Please consider a BIOS update.\n"
340
"******* Disabling USB legacy in the BIOS may also help.\n";
341
#endif
342
343
static int bad_address(void *p)
344
{
345
unsigned long dummy;
346
347
return get_kernel_nofault(dummy, (unsigned long *)p);
348
}
349
350
static void dump_pagetable(unsigned long address)
351
{
352
pgd_t *base = __va(read_cr3_pa());
353
pgd_t *pgd = base + pgd_index(address);
354
p4d_t *p4d;
355
pud_t *pud;
356
pmd_t *pmd;
357
pte_t *pte;
358
359
if (bad_address(pgd))
360
goto bad;
361
362
pr_info("PGD %lx ", pgd_val(*pgd));
363
364
if (!pgd_present(*pgd))
365
goto out;
366
367
p4d = p4d_offset(pgd, address);
368
if (bad_address(p4d))
369
goto bad;
370
371
pr_cont("P4D %lx ", p4d_val(*p4d));
372
if (!p4d_present(*p4d) || p4d_leaf(*p4d))
373
goto out;
374
375
pud = pud_offset(p4d, address);
376
if (bad_address(pud))
377
goto bad;
378
379
pr_cont("PUD %lx ", pud_val(*pud));
380
if (!pud_present(*pud) || pud_leaf(*pud))
381
goto out;
382
383
pmd = pmd_offset(pud, address);
384
if (bad_address(pmd))
385
goto bad;
386
387
pr_cont("PMD %lx ", pmd_val(*pmd));
388
if (!pmd_present(*pmd) || pmd_leaf(*pmd))
389
goto out;
390
391
pte = pte_offset_kernel(pmd, address);
392
if (bad_address(pte))
393
goto bad;
394
395
pr_cont("PTE %lx", pte_val(*pte));
396
out:
397
pr_cont("\n");
398
return;
399
bad:
400
pr_info("BAD\n");
401
}
402
403
#endif /* CONFIG_X86_64 */
404
405
/*
406
* Workaround for K8 erratum #93 & buggy BIOS.
407
*
408
* BIOS SMM functions are required to use a specific workaround
409
* to avoid corruption of the 64bit RIP register on C stepping K8.
410
*
411
* A lot of BIOS that didn't get tested properly miss this.
412
*
413
* The OS sees this as a page fault with the upper 32bits of RIP cleared.
414
* Try to work around it here.
415
*
416
* Note we only handle faults in kernel here.
417
* Does nothing on 32-bit.
418
*/
419
static int is_errata93(struct pt_regs *regs, unsigned long address)
420
{
421
#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
422
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
423
|| boot_cpu_data.x86 != 0xf)
424
return 0;
425
426
if (user_mode(regs))
427
return 0;
428
429
if (address != regs->ip)
430
return 0;
431
432
if ((address >> 32) != 0)
433
return 0;
434
435
address |= 0xffffffffUL << 32;
436
if ((address >= (u64)_stext && address <= (u64)_etext) ||
437
(address >= MODULES_VADDR && address <= MODULES_END)) {
438
printk_once(errata93_warning);
439
regs->ip = address;
440
return 1;
441
}
442
#endif
443
return 0;
444
}
445
446
/*
447
* Work around K8 erratum #100 K8 in compat mode occasionally jumps
448
* to illegal addresses >4GB.
449
*
450
* We catch this in the page fault handler because these addresses
451
* are not reachable. Just detect this case and return. Any code
452
* segment in LDT is compatibility mode.
453
*/
454
static int is_errata100(struct pt_regs *regs, unsigned long address)
455
{
456
#ifdef CONFIG_X86_64
457
if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
458
return 1;
459
#endif
460
return 0;
461
}
462
463
/* Pentium F0 0F C7 C8 bug workaround: */
464
static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
465
unsigned long address)
466
{
467
#ifdef CONFIG_X86_F00F_BUG
468
if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
469
idt_is_f00f_address(address)) {
470
handle_invalid_op(regs);
471
return 1;
472
}
473
#endif
474
return 0;
475
}
476
477
static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
478
{
479
u32 offset = (index >> 3) * sizeof(struct desc_struct);
480
unsigned long addr;
481
struct ldttss_desc desc;
482
483
if (index == 0) {
484
pr_alert("%s: NULL\n", name);
485
return;
486
}
487
488
if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
489
pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
490
return;
491
}
492
493
if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
494
sizeof(struct ldttss_desc))) {
495
pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
496
name, index);
497
return;
498
}
499
500
addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
501
#ifdef CONFIG_X86_64
502
addr |= ((u64)desc.base3 << 32);
503
#endif
504
pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
505
name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
506
}
507
508
static void
509
show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
510
{
511
if (!oops_may_print())
512
return;
513
514
if (error_code & X86_PF_INSTR) {
515
unsigned int level;
516
bool nx, rw;
517
pgd_t *pgd;
518
pte_t *pte;
519
520
pgd = __va(read_cr3_pa());
521
pgd += pgd_index(address);
522
523
pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw);
524
525
if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx))
526
pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
527
from_kuid(&init_user_ns, current_uid()));
528
if (pte && pte_present(*pte) && pte_exec(*pte) && !nx &&
529
(pgd_flags(*pgd) & _PAGE_USER) &&
530
(__read_cr4() & X86_CR4_SMEP))
531
pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
532
from_kuid(&init_user_ns, current_uid()));
533
}
534
535
if (address < PAGE_SIZE && !user_mode(regs))
536
pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
537
(void *)address);
538
else
539
pr_alert("BUG: unable to handle page fault for address: %px\n",
540
(void *)address);
541
542
pr_alert("#PF: %s %s in %s mode\n",
543
(error_code & X86_PF_USER) ? "user" : "supervisor",
544
(error_code & X86_PF_INSTR) ? "instruction fetch" :
545
(error_code & X86_PF_WRITE) ? "write access" :
546
"read access",
547
user_mode(regs) ? "user" : "kernel");
548
pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
549
!(error_code & X86_PF_PROT) ? "not-present page" :
550
(error_code & X86_PF_RSVD) ? "reserved bit violation" :
551
(error_code & X86_PF_PK) ? "protection keys violation" :
552
(error_code & X86_PF_RMP) ? "RMP violation" :
553
"permissions violation");
554
555
if (!(error_code & X86_PF_USER) && user_mode(regs)) {
556
struct desc_ptr idt, gdt;
557
u16 ldtr, tr;
558
559
/*
560
* This can happen for quite a few reasons. The more obvious
561
* ones are faults accessing the GDT, or LDT. Perhaps
562
* surprisingly, if the CPU tries to deliver a benign or
563
* contributory exception from user code and gets a page fault
564
* during delivery, the page fault can be delivered as though
565
* it originated directly from user code. This could happen
566
* due to wrong permissions on the IDT, GDT, LDT, TSS, or
567
* kernel or IST stack.
568
*/
569
store_idt(&idt);
570
571
/* Usable even on Xen PV -- it's just slow. */
572
native_store_gdt(&gdt);
573
574
pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
575
idt.address, idt.size, gdt.address, gdt.size);
576
577
store_ldt(ldtr);
578
show_ldttss(&gdt, "LDTR", ldtr);
579
580
store_tr(tr);
581
show_ldttss(&gdt, "TR", tr);
582
}
583
584
dump_pagetable(address);
585
586
if (error_code & X86_PF_RMP)
587
snp_dump_hva_rmpentry(address);
588
}
589
590
static noinline void
591
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
592
unsigned long address)
593
{
594
struct task_struct *tsk;
595
unsigned long flags;
596
int sig;
597
598
flags = oops_begin();
599
tsk = current;
600
sig = SIGKILL;
601
602
printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
603
tsk->comm, address);
604
dump_pagetable(address);
605
606
if (__die("Bad pagetable", regs, error_code))
607
sig = 0;
608
609
oops_end(flags, regs, sig);
610
}
611
612
static void sanitize_error_code(unsigned long address,
613
unsigned long *error_code)
614
{
615
/*
616
* To avoid leaking information about the kernel page
617
* table layout, pretend that user-mode accesses to
618
* kernel addresses are always protection faults.
619
*
620
* NB: This means that failed vsyscalls with vsyscall=none
621
* will have the PROT bit. This doesn't leak any
622
* information and does not appear to cause any problems.
623
*/
624
if (address >= TASK_SIZE_MAX)
625
*error_code |= X86_PF_PROT;
626
}
627
628
static void set_signal_archinfo(unsigned long address,
629
unsigned long error_code)
630
{
631
struct task_struct *tsk = current;
632
633
tsk->thread.trap_nr = X86_TRAP_PF;
634
tsk->thread.error_code = error_code | X86_PF_USER;
635
tsk->thread.cr2 = address;
636
}
637
638
static noinline void
639
page_fault_oops(struct pt_regs *regs, unsigned long error_code,
640
unsigned long address)
641
{
642
#ifdef CONFIG_VMAP_STACK
643
struct stack_info info;
644
#endif
645
unsigned long flags;
646
int sig;
647
648
if (user_mode(regs)) {
649
/*
650
* Implicit kernel access from user mode? Skip the stack
651
* overflow and EFI special cases.
652
*/
653
goto oops;
654
}
655
656
#ifdef CONFIG_VMAP_STACK
657
/*
658
* Stack overflow? During boot, we can fault near the initial
659
* stack in the direct map, but that's not an overflow -- check
660
* that we're in vmalloc space to avoid this.
661
*/
662
if (is_vmalloc_addr((void *)address) &&
663
get_stack_guard_info((void *)address, &info)) {
664
/*
665
* We're likely to be running with very little stack space
666
* left. It's plausible that we'd hit this condition but
667
* double-fault even before we get this far, in which case
668
* we're fine: the double-fault handler will deal with it.
669
*
670
* We don't want to make it all the way into the oops code
671
* and then double-fault, though, because we're likely to
672
* break the console driver and lose most of the stack dump.
673
*/
674
call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
675
handle_stack_overflow,
676
ASM_CALL_ARG3,
677
, [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
678
679
BUG();
680
}
681
#endif
682
683
/*
684
* Buggy firmware could access regions which might page fault. If
685
* this happens, EFI has a special OOPS path that will try to
686
* avoid hanging the system.
687
*/
688
if (IS_ENABLED(CONFIG_EFI))
689
efi_crash_gracefully_on_page_fault(address);
690
691
/* Only not-present faults should be handled by KFENCE. */
692
if (!(error_code & X86_PF_PROT) &&
693
kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
694
return;
695
696
oops:
697
/*
698
* Oops. The kernel tried to access some bad page. We'll have to
699
* terminate things with extreme prejudice:
700
*/
701
flags = oops_begin();
702
703
show_fault_oops(regs, error_code, address);
704
705
if (task_stack_end_corrupted(current))
706
printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
707
708
sig = SIGKILL;
709
if (__die("Oops", regs, error_code))
710
sig = 0;
711
712
/* Executive summary in case the body of the oops scrolled away */
713
printk(KERN_DEFAULT "CR2: %016lx\n", address);
714
715
oops_end(flags, regs, sig);
716
}
717
718
static noinline void
719
kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
720
unsigned long address, int signal, int si_code,
721
u32 pkey)
722
{
723
WARN_ON_ONCE(user_mode(regs));
724
725
/* Are we prepared to handle this kernel fault? */
726
if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
727
return;
728
729
/*
730
* AMD erratum #91 manifests as a spurious page fault on a PREFETCH
731
* instruction.
732
*/
733
if (is_prefetch(regs, error_code, address))
734
return;
735
736
page_fault_oops(regs, error_code, address);
737
}
738
739
/*
740
* Print out info about fatal segfaults, if the show_unhandled_signals
741
* sysctl is set:
742
*/
743
static inline void
744
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
745
unsigned long address, struct task_struct *tsk)
746
{
747
const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
748
/* This is a racy snapshot, but it's better than nothing. */
749
int cpu = raw_smp_processor_id();
750
751
if (!unhandled_signal(tsk, SIGSEGV))
752
return;
753
754
if (!printk_ratelimit())
755
return;
756
757
printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
758
loglvl, tsk->comm, task_pid_nr(tsk), address,
759
(void *)regs->ip, (void *)regs->sp, error_code);
760
761
print_vma_addr(KERN_CONT " in ", regs->ip);
762
763
/*
764
* Dump the likely CPU where the fatal segfault happened.
765
* This can help identify faulty hardware.
766
*/
767
printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
768
topology_core_id(cpu), topology_physical_package_id(cpu));
769
770
771
printk(KERN_CONT "\n");
772
773
show_opcodes(regs, loglvl);
774
}
775
776
static void
777
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
778
unsigned long address, u32 pkey, int si_code)
779
{
780
struct task_struct *tsk = current;
781
782
if (!user_mode(regs)) {
783
kernelmode_fixup_or_oops(regs, error_code, address,
784
SIGSEGV, si_code, pkey);
785
return;
786
}
787
788
if (!(error_code & X86_PF_USER)) {
789
/* Implicit user access to kernel memory -- just oops */
790
page_fault_oops(regs, error_code, address);
791
return;
792
}
793
794
/*
795
* User mode accesses just cause a SIGSEGV.
796
* It's possible to have interrupts off here:
797
*/
798
local_irq_enable();
799
800
/*
801
* Valid to do another page fault here because this one came
802
* from user space:
803
*/
804
if (is_prefetch(regs, error_code, address))
805
return;
806
807
if (is_errata100(regs, address))
808
return;
809
810
sanitize_error_code(address, &error_code);
811
812
if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
813
return;
814
815
if (likely(show_unhandled_signals))
816
show_signal_msg(regs, error_code, address, tsk);
817
818
set_signal_archinfo(address, error_code);
819
820
if (si_code == SEGV_PKUERR)
821
force_sig_pkuerr((void __user *)address, pkey);
822
else
823
force_sig_fault(SIGSEGV, si_code, (void __user *)address);
824
825
local_irq_disable();
826
}
827
828
static noinline void
829
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
830
unsigned long address)
831
{
832
__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
833
}
834
835
static void
836
__bad_area(struct pt_regs *regs, unsigned long error_code,
837
unsigned long address, struct mm_struct *mm,
838
struct vm_area_struct *vma, u32 pkey, int si_code)
839
{
840
/*
841
* Something tried to access memory that isn't in our memory map..
842
* Fix it, but check if it's kernel or user first..
843
*/
844
if (mm)
845
mmap_read_unlock(mm);
846
else
847
vma_end_read(vma);
848
849
__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
850
}
851
852
static inline bool bad_area_access_from_pkeys(unsigned long error_code,
853
struct vm_area_struct *vma)
854
{
855
/* This code is always called on the current mm */
856
bool foreign = false;
857
858
if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
859
return false;
860
if (error_code & X86_PF_PK)
861
return true;
862
/* this checks permission keys on the VMA: */
863
if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
864
(error_code & X86_PF_INSTR), foreign))
865
return true;
866
return false;
867
}
868
869
static noinline void
870
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
871
unsigned long address, struct mm_struct *mm,
872
struct vm_area_struct *vma)
873
{
874
/*
875
* This OSPKE check is not strictly necessary at runtime.
876
* But, doing it this way allows compiler optimizations
877
* if pkeys are compiled out.
878
*/
879
if (bad_area_access_from_pkeys(error_code, vma)) {
880
/*
881
* A protection key fault means that the PKRU value did not allow
882
* access to some PTE. Userspace can figure out what PKRU was
883
* from the XSAVE state. This function captures the pkey from
884
* the vma and passes it to userspace so userspace can discover
885
* which protection key was set on the PTE.
886
*
887
* If we get here, we know that the hardware signaled a X86_PF_PK
888
* fault and that there was a VMA once we got in the fault
889
* handler. It does *not* guarantee that the VMA we find here
890
* was the one that we faulted on.
891
*
892
* 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
893
* 2. T1 : set PKRU to deny access to pkey=4, touches page
894
* 3. T1 : faults...
895
* 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
896
* 5. T1 : enters fault handler, takes mmap_lock, etc...
897
* 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
898
* faulted on a pte with its pkey=4.
899
*/
900
u32 pkey = vma_pkey(vma);
901
902
__bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR);
903
} else {
904
__bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR);
905
}
906
}
907
908
static void
909
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
910
vm_fault_t fault)
911
{
912
/* Kernel mode? Handle exceptions or die: */
913
if (!user_mode(regs)) {
914
kernelmode_fixup_or_oops(regs, error_code, address,
915
SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
916
return;
917
}
918
919
/* User-space => ok to do another page fault: */
920
if (is_prefetch(regs, error_code, address))
921
return;
922
923
sanitize_error_code(address, &error_code);
924
925
if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
926
return;
927
928
set_signal_archinfo(address, error_code);
929
930
#ifdef CONFIG_MEMORY_FAILURE
931
if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
932
struct task_struct *tsk = current;
933
unsigned lsb = 0;
934
935
pr_err(
936
"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
937
tsk->comm, tsk->pid, address);
938
if (fault & VM_FAULT_HWPOISON_LARGE)
939
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
940
if (fault & VM_FAULT_HWPOISON)
941
lsb = PAGE_SHIFT;
942
force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
943
return;
944
}
945
#endif
946
force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
947
}
948
949
static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
950
{
951
if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
952
return 0;
953
954
if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
955
return 0;
956
957
return 1;
958
}
959
960
/*
961
* Handle a spurious fault caused by a stale TLB entry.
962
*
963
* This allows us to lazily refresh the TLB when increasing the
964
* permissions of a kernel page (RO -> RW or NX -> X). Doing it
965
* eagerly is very expensive since that implies doing a full
966
* cross-processor TLB flush, even if no stale TLB entries exist
967
* on other processors.
968
*
969
* Spurious faults may only occur if the TLB contains an entry with
970
* fewer permission than the page table entry. Non-present (P = 0)
971
* and reserved bit (R = 1) faults are never spurious.
972
*
973
* There are no security implications to leaving a stale TLB when
974
* increasing the permissions on a page.
975
*
976
* Returns non-zero if a spurious fault was handled, zero otherwise.
977
*
978
* See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
979
* (Optional Invalidation).
980
*/
981
static noinline int
982
spurious_kernel_fault(unsigned long error_code, unsigned long address)
983
{
984
pgd_t *pgd;
985
p4d_t *p4d;
986
pud_t *pud;
987
pmd_t *pmd;
988
pte_t *pte;
989
int ret;
990
991
/*
992
* Only writes to RO or instruction fetches from NX may cause
993
* spurious faults.
994
*
995
* These could be from user or supervisor accesses but the TLB
996
* is only lazily flushed after a kernel mapping protection
997
* change, so user accesses are not expected to cause spurious
998
* faults.
999
*/
1000
if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1001
error_code != (X86_PF_INSTR | X86_PF_PROT))
1002
return 0;
1003
1004
pgd = init_mm.pgd + pgd_index(address);
1005
if (!pgd_present(*pgd))
1006
return 0;
1007
1008
p4d = p4d_offset(pgd, address);
1009
if (!p4d_present(*p4d))
1010
return 0;
1011
1012
if (p4d_leaf(*p4d))
1013
return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1014
1015
pud = pud_offset(p4d, address);
1016
if (!pud_present(*pud))
1017
return 0;
1018
1019
if (pud_leaf(*pud))
1020
return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1021
1022
pmd = pmd_offset(pud, address);
1023
if (!pmd_present(*pmd))
1024
return 0;
1025
1026
if (pmd_leaf(*pmd))
1027
return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1028
1029
pte = pte_offset_kernel(pmd, address);
1030
if (!pte_present(*pte))
1031
return 0;
1032
1033
ret = spurious_kernel_fault_check(error_code, pte);
1034
if (!ret)
1035
return 0;
1036
1037
/*
1038
* Make sure we have permissions in PMD.
1039
* If not, then there's a bug in the page tables:
1040
*/
1041
ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1042
WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1043
1044
return ret;
1045
}
1046
NOKPROBE_SYMBOL(spurious_kernel_fault);
1047
1048
int show_unhandled_signals = 1;
1049
1050
static inline int
1051
access_error(unsigned long error_code, struct vm_area_struct *vma)
1052
{
1053
/* This is only called for the current mm, so: */
1054
bool foreign = false;
1055
1056
/*
1057
* Read or write was blocked by protection keys. This is
1058
* always an unconditional error and can never result in
1059
* a follow-up action to resolve the fault, like a COW.
1060
*/
1061
if (error_code & X86_PF_PK)
1062
return 1;
1063
1064
/*
1065
* SGX hardware blocked the access. This usually happens
1066
* when the enclave memory contents have been destroyed, like
1067
* after a suspend/resume cycle. In any case, the kernel can't
1068
* fix the cause of the fault. Handle the fault as an access
1069
* error even in cases where no actual access violation
1070
* occurred. This allows userspace to rebuild the enclave in
1071
* response to the signal.
1072
*/
1073
if (unlikely(error_code & X86_PF_SGX))
1074
return 1;
1075
1076
/*
1077
* Make sure to check the VMA so that we do not perform
1078
* faults just to hit a X86_PF_PK as soon as we fill in a
1079
* page.
1080
*/
1081
if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1082
(error_code & X86_PF_INSTR), foreign))
1083
return 1;
1084
1085
/*
1086
* Shadow stack accesses (PF_SHSTK=1) are only permitted to
1087
* shadow stack VMAs. All other accesses result in an error.
1088
*/
1089
if (error_code & X86_PF_SHSTK) {
1090
if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1091
return 1;
1092
if (unlikely(!(vma->vm_flags & VM_WRITE)))
1093
return 1;
1094
return 0;
1095
}
1096
1097
if (error_code & X86_PF_WRITE) {
1098
/* write, present and write, not present: */
1099
if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1100
return 1;
1101
if (unlikely(!(vma->vm_flags & VM_WRITE)))
1102
return 1;
1103
return 0;
1104
}
1105
1106
/* read, present: */
1107
if (unlikely(error_code & X86_PF_PROT))
1108
return 1;
1109
1110
/* read, not present: */
1111
if (unlikely(!vma_is_accessible(vma)))
1112
return 1;
1113
1114
return 0;
1115
}
1116
1117
bool fault_in_kernel_space(unsigned long address)
1118
{
1119
/*
1120
* On 64-bit systems, the vsyscall page is at an address above
1121
* TASK_SIZE_MAX, but is not considered part of the kernel
1122
* address space.
1123
*/
1124
if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1125
return false;
1126
1127
return address >= TASK_SIZE_MAX;
1128
}
1129
1130
/*
1131
* Called for all faults where 'address' is part of the kernel address
1132
* space. Might get called for faults that originate from *code* that
1133
* ran in userspace or the kernel.
1134
*/
1135
static void
1136
do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1137
unsigned long address)
1138
{
1139
/*
1140
* Protection keys exceptions only happen on user pages. We
1141
* have no user pages in the kernel portion of the address
1142
* space, so do not expect them here.
1143
*/
1144
WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1145
1146
#ifdef CONFIG_X86_32
1147
/*
1148
* We can fault-in kernel-space virtual memory on-demand. The
1149
* 'reference' page table is init_mm.pgd.
1150
*
1151
* NOTE! We MUST NOT take any locks for this case. We may
1152
* be in an interrupt or a critical region, and should
1153
* only copy the information from the master page table,
1154
* nothing more.
1155
*
1156
* Before doing this on-demand faulting, ensure that the
1157
* fault is not any of the following:
1158
* 1. A fault on a PTE with a reserved bit set.
1159
* 2. A fault caused by a user-mode access. (Do not demand-
1160
* fault kernel memory due to user-mode accesses).
1161
* 3. A fault caused by a page-level protection violation.
1162
* (A demand fault would be on a non-present page which
1163
* would have X86_PF_PROT==0).
1164
*
1165
* This is only needed to close a race condition on x86-32 in
1166
* the vmalloc mapping/unmapping code. See the comment above
1167
* vmalloc_fault() for details. On x86-64 the race does not
1168
* exist as the vmalloc mappings don't need to be synchronized
1169
* there.
1170
*/
1171
if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1172
if (vmalloc_fault(address) >= 0)
1173
return;
1174
}
1175
#endif
1176
1177
if (is_f00f_bug(regs, hw_error_code, address))
1178
return;
1179
1180
/* Was the fault spurious, caused by lazy TLB invalidation? */
1181
if (spurious_kernel_fault(hw_error_code, address))
1182
return;
1183
1184
/* kprobes don't want to hook the spurious faults: */
1185
if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1186
return;
1187
1188
/*
1189
* Note, despite being a "bad area", there are quite a few
1190
* acceptable reasons to get here, such as erratum fixups
1191
* and handling kernel code that can fault, like get_user().
1192
*
1193
* Don't take the mm semaphore here. If we fixup a prefetch
1194
* fault we could otherwise deadlock:
1195
*/
1196
bad_area_nosemaphore(regs, hw_error_code, address);
1197
}
1198
NOKPROBE_SYMBOL(do_kern_addr_fault);
1199
1200
/*
1201
* Handle faults in the user portion of the address space. Nothing in here
1202
* should check X86_PF_USER without a specific justification: for almost
1203
* all purposes, we should treat a normal kernel access to user memory
1204
* (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1205
* The one exception is AC flag handling, which is, per the x86
1206
* architecture, special for WRUSS.
1207
*/
1208
static inline
1209
void do_user_addr_fault(struct pt_regs *regs,
1210
unsigned long error_code,
1211
unsigned long address)
1212
{
1213
struct vm_area_struct *vma;
1214
struct task_struct *tsk;
1215
struct mm_struct *mm;
1216
vm_fault_t fault;
1217
unsigned int flags = FAULT_FLAG_DEFAULT;
1218
1219
tsk = current;
1220
mm = tsk->mm;
1221
1222
if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1223
/*
1224
* Whoops, this is kernel mode code trying to execute from
1225
* user memory. Unless this is AMD erratum #93, which
1226
* corrupts RIP such that it looks like a user address,
1227
* this is unrecoverable. Don't even try to look up the
1228
* VMA or look for extable entries.
1229
*/
1230
if (is_errata93(regs, address))
1231
return;
1232
1233
page_fault_oops(regs, error_code, address);
1234
return;
1235
}
1236
1237
/* kprobes don't want to hook the spurious faults: */
1238
if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1239
return;
1240
1241
/*
1242
* Reserved bits are never expected to be set on
1243
* entries in the user portion of the page tables.
1244
*/
1245
if (unlikely(error_code & X86_PF_RSVD))
1246
pgtable_bad(regs, error_code, address);
1247
1248
/*
1249
* If SMAP is on, check for invalid kernel (supervisor) access to user
1250
* pages in the user address space. The odd case here is WRUSS,
1251
* which, according to the preliminary documentation, does not respect
1252
* SMAP and will have the USER bit set so, in all cases, SMAP
1253
* enforcement appears to be consistent with the USER bit.
1254
*/
1255
if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1256
!(error_code & X86_PF_USER) &&
1257
!(regs->flags & X86_EFLAGS_AC))) {
1258
/*
1259
* No extable entry here. This was a kernel access to an
1260
* invalid pointer. get_kernel_nofault() will not get here.
1261
*/
1262
page_fault_oops(regs, error_code, address);
1263
return;
1264
}
1265
1266
/*
1267
* If we're in an interrupt, have no user context or are running
1268
* in a region with pagefaults disabled then we must not take the fault
1269
*/
1270
if (unlikely(faulthandler_disabled() || !mm)) {
1271
bad_area_nosemaphore(regs, error_code, address);
1272
return;
1273
}
1274
1275
/* Legacy check - remove this after verifying that it doesn't trigger */
1276
if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1277
bad_area_nosemaphore(regs, error_code, address);
1278
return;
1279
}
1280
1281
local_irq_enable();
1282
1283
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1284
1285
/*
1286
* Read-only permissions can not be expressed in shadow stack PTEs.
1287
* Treat all shadow stack accesses as WRITE faults. This ensures
1288
* that the MM will prepare everything (e.g., break COW) such that
1289
* maybe_mkwrite() can create a proper shadow stack PTE.
1290
*/
1291
if (error_code & X86_PF_SHSTK)
1292
flags |= FAULT_FLAG_WRITE;
1293
if (error_code & X86_PF_WRITE)
1294
flags |= FAULT_FLAG_WRITE;
1295
if (error_code & X86_PF_INSTR)
1296
flags |= FAULT_FLAG_INSTRUCTION;
1297
1298
/*
1299
* We set FAULT_FLAG_USER based on the register state, not
1300
* based on X86_PF_USER. User space accesses that cause
1301
* system page faults are still user accesses.
1302
*/
1303
if (user_mode(regs))
1304
flags |= FAULT_FLAG_USER;
1305
1306
#ifdef CONFIG_X86_64
1307
/*
1308
* Faults in the vsyscall page might need emulation. The
1309
* vsyscall page is at a high address (>PAGE_OFFSET), but is
1310
* considered to be part of the user address space.
1311
*
1312
* The vsyscall page does not have a "real" VMA, so do this
1313
* emulation before we go searching for VMAs.
1314
*
1315
* PKRU never rejects instruction fetches, so we don't need
1316
* to consider the PF_PK bit.
1317
*/
1318
if (is_vsyscall_vaddr(address)) {
1319
if (emulate_vsyscall(error_code, regs, address))
1320
return;
1321
}
1322
#endif
1323
1324
if (!(flags & FAULT_FLAG_USER))
1325
goto lock_mmap;
1326
1327
vma = lock_vma_under_rcu(mm, address);
1328
if (!vma)
1329
goto lock_mmap;
1330
1331
if (unlikely(access_error(error_code, vma))) {
1332
bad_area_access_error(regs, error_code, address, NULL, vma);
1333
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1334
return;
1335
}
1336
fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1337
if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1338
vma_end_read(vma);
1339
1340
if (!(fault & VM_FAULT_RETRY)) {
1341
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1342
goto done;
1343
}
1344
count_vm_vma_lock_event(VMA_LOCK_RETRY);
1345
if (fault & VM_FAULT_MAJOR)
1346
flags |= FAULT_FLAG_TRIED;
1347
1348
/* Quick path to respond to signals */
1349
if (fault_signal_pending(fault, regs)) {
1350
if (!user_mode(regs))
1351
kernelmode_fixup_or_oops(regs, error_code, address,
1352
SIGBUS, BUS_ADRERR,
1353
ARCH_DEFAULT_PKEY);
1354
return;
1355
}
1356
lock_mmap:
1357
1358
retry:
1359
vma = lock_mm_and_find_vma(mm, address, regs);
1360
if (unlikely(!vma)) {
1361
bad_area_nosemaphore(regs, error_code, address);
1362
return;
1363
}
1364
1365
/*
1366
* Ok, we have a good vm_area for this memory access, so
1367
* we can handle it..
1368
*/
1369
if (unlikely(access_error(error_code, vma))) {
1370
bad_area_access_error(regs, error_code, address, mm, vma);
1371
return;
1372
}
1373
1374
/*
1375
* If for any reason at all we couldn't handle the fault,
1376
* make sure we exit gracefully rather than endlessly redo
1377
* the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1378
* we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1379
*
1380
* Note that handle_userfault() may also release and reacquire mmap_lock
1381
* (and not return with VM_FAULT_RETRY), when returning to userland to
1382
* repeat the page fault later with a VM_FAULT_NOPAGE retval
1383
* (potentially after handling any pending signal during the return to
1384
* userland). The return to userland is identified whenever
1385
* FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1386
*/
1387
fault = handle_mm_fault(vma, address, flags, regs);
1388
1389
if (fault_signal_pending(fault, regs)) {
1390
/*
1391
* Quick path to respond to signals. The core mm code
1392
* has unlocked the mm for us if we get here.
1393
*/
1394
if (!user_mode(regs))
1395
kernelmode_fixup_or_oops(regs, error_code, address,
1396
SIGBUS, BUS_ADRERR,
1397
ARCH_DEFAULT_PKEY);
1398
return;
1399
}
1400
1401
/* The fault is fully completed (including releasing mmap lock) */
1402
if (fault & VM_FAULT_COMPLETED)
1403
return;
1404
1405
/*
1406
* If we need to retry the mmap_lock has already been released,
1407
* and if there is a fatal signal pending there is no guarantee
1408
* that we made any progress. Handle this case first.
1409
*/
1410
if (unlikely(fault & VM_FAULT_RETRY)) {
1411
flags |= FAULT_FLAG_TRIED;
1412
goto retry;
1413
}
1414
1415
mmap_read_unlock(mm);
1416
done:
1417
if (likely(!(fault & VM_FAULT_ERROR)))
1418
return;
1419
1420
if (fatal_signal_pending(current) && !user_mode(regs)) {
1421
kernelmode_fixup_or_oops(regs, error_code, address,
1422
0, 0, ARCH_DEFAULT_PKEY);
1423
return;
1424
}
1425
1426
if (fault & VM_FAULT_OOM) {
1427
/* Kernel mode? Handle exceptions or die: */
1428
if (!user_mode(regs)) {
1429
kernelmode_fixup_or_oops(regs, error_code, address,
1430
SIGSEGV, SEGV_MAPERR,
1431
ARCH_DEFAULT_PKEY);
1432
return;
1433
}
1434
1435
/*
1436
* We ran out of memory, call the OOM killer, and return the
1437
* userspace (which will retry the fault, or kill us if we got
1438
* oom-killed):
1439
*/
1440
pagefault_out_of_memory();
1441
} else {
1442
if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1443
VM_FAULT_HWPOISON_LARGE))
1444
do_sigbus(regs, error_code, address, fault);
1445
else if (fault & VM_FAULT_SIGSEGV)
1446
bad_area_nosemaphore(regs, error_code, address);
1447
else
1448
BUG();
1449
}
1450
}
1451
NOKPROBE_SYMBOL(do_user_addr_fault);
1452
1453
static __always_inline void
1454
trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1455
unsigned long address)
1456
{
1457
if (user_mode(regs))
1458
trace_page_fault_user(address, regs, error_code);
1459
else
1460
trace_page_fault_kernel(address, regs, error_code);
1461
}
1462
1463
static __always_inline void
1464
handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1465
unsigned long address)
1466
{
1467
trace_page_fault_entries(regs, error_code, address);
1468
1469
if (unlikely(kmmio_fault(regs, address)))
1470
return;
1471
1472
/* Was the fault on kernel-controlled part of the address space? */
1473
if (unlikely(fault_in_kernel_space(address))) {
1474
do_kern_addr_fault(regs, error_code, address);
1475
} else {
1476
do_user_addr_fault(regs, error_code, address);
1477
/*
1478
* User address page fault handling might have reenabled
1479
* interrupts. Fixing up all potential exit points of
1480
* do_user_addr_fault() and its leaf functions is just not
1481
* doable w/o creating an unholy mess or turning the code
1482
* upside down.
1483
*/
1484
local_irq_disable();
1485
}
1486
}
1487
1488
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1489
{
1490
irqentry_state_t state;
1491
unsigned long address;
1492
1493
address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1494
1495
/*
1496
* KVM uses #PF vector to deliver 'page not present' events to guests
1497
* (asynchronous page fault mechanism). The event happens when a
1498
* userspace task is trying to access some valid (from guest's point of
1499
* view) memory which is not currently mapped by the host (e.g. the
1500
* memory is swapped out). Note, the corresponding "page ready" event
1501
* which is injected when the memory becomes available, is delivered via
1502
* an interrupt mechanism and not a #PF exception
1503
* (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1504
*
1505
* We are relying on the interrupted context being sane (valid RSP,
1506
* relevant locks not held, etc.), which is fine as long as the
1507
* interrupted context had IF=1. We are also relying on the KVM
1508
* async pf type field and CR2 being read consistently instead of
1509
* getting values from real and async page faults mixed up.
1510
*
1511
* Fingers crossed.
1512
*
1513
* The async #PF handling code takes care of idtentry handling
1514
* itself.
1515
*/
1516
if (kvm_handle_async_pf(regs, (u32)address))
1517
return;
1518
1519
/*
1520
* Entry handling for valid #PF from kernel mode is slightly
1521
* different: RCU is already watching and ct_irq_enter() must not
1522
* be invoked because a kernel fault on a user space address might
1523
* sleep.
1524
*
1525
* In case the fault hit a RCU idle region the conditional entry
1526
* code reenabled RCU to avoid subsequent wreckage which helps
1527
* debuggability.
1528
*/
1529
state = irqentry_enter(regs);
1530
1531
instrumentation_begin();
1532
handle_page_fault(regs, error_code, address);
1533
instrumentation_end();
1534
1535
irqentry_exit(regs, state);
1536
}
1537
1538