Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/mm/init_64.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* linux/arch/x86_64/mm/init.c
4
*
5
* Copyright (C) 1995 Linus Torvalds
6
* Copyright (C) 2000 Pavel Machek <[email protected]>
7
* Copyright (C) 2002,2003 Andi Kleen <[email protected]>
8
*/
9
10
#include <linux/signal.h>
11
#include <linux/sched.h>
12
#include <linux/kernel.h>
13
#include <linux/errno.h>
14
#include <linux/string.h>
15
#include <linux/types.h>
16
#include <linux/ptrace.h>
17
#include <linux/mman.h>
18
#include <linux/mm.h>
19
#include <linux/swap.h>
20
#include <linux/smp.h>
21
#include <linux/init.h>
22
#include <linux/initrd.h>
23
#include <linux/pagemap.h>
24
#include <linux/memblock.h>
25
#include <linux/proc_fs.h>
26
#include <linux/pci.h>
27
#include <linux/pfn.h>
28
#include <linux/poison.h>
29
#include <linux/dma-mapping.h>
30
#include <linux/memory.h>
31
#include <linux/memory_hotplug.h>
32
#include <linux/memremap.h>
33
#include <linux/nmi.h>
34
#include <linux/gfp.h>
35
#include <linux/kcore.h>
36
#include <linux/bootmem_info.h>
37
38
#include <asm/processor.h>
39
#include <asm/bios_ebda.h>
40
#include <linux/uaccess.h>
41
#include <asm/pgalloc.h>
42
#include <asm/dma.h>
43
#include <asm/fixmap.h>
44
#include <asm/e820/api.h>
45
#include <asm/apic.h>
46
#include <asm/tlb.h>
47
#include <asm/mmu_context.h>
48
#include <asm/proto.h>
49
#include <asm/smp.h>
50
#include <asm/sections.h>
51
#include <asm/kdebug.h>
52
#include <asm/numa.h>
53
#include <asm/set_memory.h>
54
#include <asm/init.h>
55
#include <asm/uv/uv.h>
56
#include <asm/setup.h>
57
#include <asm/ftrace.h>
58
59
#include "mm_internal.h"
60
61
#include "ident_map.c"
62
63
#define DEFINE_POPULATE(fname, type1, type2, init) \
64
static inline void fname##_init(struct mm_struct *mm, \
65
type1##_t *arg1, type2##_t *arg2, bool init) \
66
{ \
67
if (init) \
68
fname##_safe(mm, arg1, arg2); \
69
else \
70
fname(mm, arg1, arg2); \
71
}
72
73
DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74
DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75
DEFINE_POPULATE(pud_populate, pud, pmd, init)
76
DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77
78
#define DEFINE_ENTRY(type1, type2, init) \
79
static inline void set_##type1##_init(type1##_t *arg1, \
80
type2##_t arg2, bool init) \
81
{ \
82
if (init) \
83
set_##type1##_safe(arg1, arg2); \
84
else \
85
set_##type1(arg1, arg2); \
86
}
87
88
DEFINE_ENTRY(p4d, p4d, init)
89
DEFINE_ENTRY(pud, pud, init)
90
DEFINE_ENTRY(pmd, pmd, init)
91
DEFINE_ENTRY(pte, pte, init)
92
93
static inline pgprot_t prot_sethuge(pgprot_t prot)
94
{
95
WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
96
97
return __pgprot(pgprot_val(prot) | _PAGE_PSE);
98
}
99
100
/*
101
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
102
* physical space so we can cache the place of the first one and move
103
* around without checking the pgd every time.
104
*/
105
106
/* Bits supported by the hardware: */
107
pteval_t __supported_pte_mask __read_mostly = ~0;
108
/* Bits allowed in normal kernel mappings: */
109
pteval_t __default_kernel_pte_mask __read_mostly = ~0;
110
EXPORT_SYMBOL_GPL(__supported_pte_mask);
111
/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
112
EXPORT_SYMBOL(__default_kernel_pte_mask);
113
114
int force_personality32;
115
116
/*
117
* noexec32=on|off
118
* Control non executable heap for 32bit processes.
119
*
120
* on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
121
* off PROT_READ implies PROT_EXEC
122
*/
123
static int __init nonx32_setup(char *str)
124
{
125
if (!strcmp(str, "on"))
126
force_personality32 &= ~READ_IMPLIES_EXEC;
127
else if (!strcmp(str, "off"))
128
force_personality32 |= READ_IMPLIES_EXEC;
129
return 1;
130
}
131
__setup("noexec32=", nonx32_setup);
132
133
static void sync_global_pgds_l5(unsigned long start, unsigned long end)
134
{
135
unsigned long addr;
136
137
for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138
const pgd_t *pgd_ref = pgd_offset_k(addr);
139
struct page *page;
140
141
/* Check for overflow */
142
if (addr < start)
143
break;
144
145
if (pgd_none(*pgd_ref))
146
continue;
147
148
spin_lock(&pgd_lock);
149
list_for_each_entry(page, &pgd_list, lru) {
150
pgd_t *pgd;
151
spinlock_t *pgt_lock;
152
153
pgd = (pgd_t *)page_address(page) + pgd_index(addr);
154
/* the pgt_lock only for Xen */
155
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
156
spin_lock(pgt_lock);
157
158
if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
159
BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
160
161
if (pgd_none(*pgd))
162
set_pgd(pgd, *pgd_ref);
163
164
spin_unlock(pgt_lock);
165
}
166
spin_unlock(&pgd_lock);
167
}
168
}
169
170
static void sync_global_pgds_l4(unsigned long start, unsigned long end)
171
{
172
unsigned long addr;
173
174
for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
175
pgd_t *pgd_ref = pgd_offset_k(addr);
176
const p4d_t *p4d_ref;
177
struct page *page;
178
179
/*
180
* With folded p4d, pgd_none() is always false, we need to
181
* handle synchronization on p4d level.
182
*/
183
MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
184
p4d_ref = p4d_offset(pgd_ref, addr);
185
186
if (p4d_none(*p4d_ref))
187
continue;
188
189
spin_lock(&pgd_lock);
190
list_for_each_entry(page, &pgd_list, lru) {
191
pgd_t *pgd;
192
p4d_t *p4d;
193
spinlock_t *pgt_lock;
194
195
pgd = (pgd_t *)page_address(page) + pgd_index(addr);
196
p4d = p4d_offset(pgd, addr);
197
/* the pgt_lock only for Xen */
198
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
199
spin_lock(pgt_lock);
200
201
if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
202
BUG_ON(p4d_pgtable(*p4d)
203
!= p4d_pgtable(*p4d_ref));
204
205
if (p4d_none(*p4d))
206
set_p4d(p4d, *p4d_ref);
207
208
spin_unlock(pgt_lock);
209
}
210
spin_unlock(&pgd_lock);
211
}
212
}
213
214
/*
215
* When memory was added make sure all the processes MM have
216
* suitable PGD entries in the local PGD level page.
217
*/
218
static void sync_global_pgds(unsigned long start, unsigned long end)
219
{
220
if (pgtable_l5_enabled())
221
sync_global_pgds_l5(start, end);
222
else
223
sync_global_pgds_l4(start, end);
224
}
225
226
/*
227
* Make kernel mappings visible in all page tables in the system.
228
* This is necessary except when the init task populates kernel mappings
229
* during the boot process. In that case, all processes originating from
230
* the init task copies the kernel mappings, so there is no issue.
231
* Otherwise, missing synchronization could lead to kernel crashes due
232
* to missing page table entries for certain kernel mappings.
233
*
234
* Synchronization is performed at the top level, which is the PGD in
235
* 5-level paging systems. But in 4-level paging systems, however,
236
* pgd_populate() is a no-op, so synchronization is done at the P4D level.
237
* sync_global_pgds() handles this difference between paging levels.
238
*/
239
void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
240
{
241
sync_global_pgds(start, end);
242
}
243
244
/*
245
* NOTE: This function is marked __ref because it calls __init function
246
* (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
247
*/
248
static __ref void *spp_getpage(void)
249
{
250
void *ptr;
251
252
if (after_bootmem)
253
ptr = (void *) get_zeroed_page(GFP_ATOMIC);
254
else
255
ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
256
257
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
258
panic("set_pte_phys: cannot allocate page data %s\n",
259
after_bootmem ? "after bootmem" : "");
260
}
261
262
pr_debug("spp_getpage %p\n", ptr);
263
264
return ptr;
265
}
266
267
static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
268
{
269
if (pgd_none(*pgd)) {
270
p4d_t *p4d = (p4d_t *)spp_getpage();
271
pgd_populate(&init_mm, pgd, p4d);
272
if (p4d != p4d_offset(pgd, 0))
273
printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
274
p4d, p4d_offset(pgd, 0));
275
}
276
return p4d_offset(pgd, vaddr);
277
}
278
279
static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
280
{
281
if (p4d_none(*p4d)) {
282
pud_t *pud = (pud_t *)spp_getpage();
283
p4d_populate(&init_mm, p4d, pud);
284
if (pud != pud_offset(p4d, 0))
285
printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
286
pud, pud_offset(p4d, 0));
287
}
288
return pud_offset(p4d, vaddr);
289
}
290
291
static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
292
{
293
if (pud_none(*pud)) {
294
pmd_t *pmd = (pmd_t *) spp_getpage();
295
pud_populate(&init_mm, pud, pmd);
296
if (pmd != pmd_offset(pud, 0))
297
printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
298
pmd, pmd_offset(pud, 0));
299
}
300
return pmd_offset(pud, vaddr);
301
}
302
303
static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
304
{
305
if (pmd_none(*pmd)) {
306
pte_t *pte = (pte_t *) spp_getpage();
307
pmd_populate_kernel(&init_mm, pmd, pte);
308
if (pte != pte_offset_kernel(pmd, 0))
309
printk(KERN_ERR "PAGETABLE BUG #03!\n");
310
}
311
return pte_offset_kernel(pmd, vaddr);
312
}
313
314
static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
315
{
316
pmd_t *pmd = fill_pmd(pud, vaddr);
317
pte_t *pte = fill_pte(pmd, vaddr);
318
319
set_pte(pte, new_pte);
320
321
/*
322
* It's enough to flush this one mapping.
323
* (PGE mappings get flushed as well)
324
*/
325
flush_tlb_one_kernel(vaddr);
326
}
327
328
void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
329
{
330
p4d_t *p4d = p4d_page + p4d_index(vaddr);
331
pud_t *pud = fill_pud(p4d, vaddr);
332
333
__set_pte_vaddr(pud, vaddr, new_pte);
334
}
335
336
void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
337
{
338
pud_t *pud = pud_page + pud_index(vaddr);
339
340
__set_pte_vaddr(pud, vaddr, new_pte);
341
}
342
343
void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
344
{
345
pgd_t *pgd;
346
p4d_t *p4d_page;
347
348
pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
349
350
pgd = pgd_offset_k(vaddr);
351
if (pgd_none(*pgd)) {
352
printk(KERN_ERR
353
"PGD FIXMAP MISSING, it should be setup in head.S!\n");
354
return;
355
}
356
357
p4d_page = p4d_offset(pgd, 0);
358
set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
359
}
360
361
pmd_t * __init populate_extra_pmd(unsigned long vaddr)
362
{
363
pgd_t *pgd;
364
p4d_t *p4d;
365
pud_t *pud;
366
367
pgd = pgd_offset_k(vaddr);
368
p4d = fill_p4d(pgd, vaddr);
369
pud = fill_pud(p4d, vaddr);
370
return fill_pmd(pud, vaddr);
371
}
372
373
pte_t * __init populate_extra_pte(unsigned long vaddr)
374
{
375
pmd_t *pmd;
376
377
pmd = populate_extra_pmd(vaddr);
378
return fill_pte(pmd, vaddr);
379
}
380
381
/*
382
* Create large page table mappings for a range of physical addresses.
383
*/
384
static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
385
enum page_cache_mode cache)
386
{
387
pgd_t *pgd;
388
p4d_t *p4d;
389
pud_t *pud;
390
pmd_t *pmd;
391
pgprot_t prot;
392
393
pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
394
protval_4k_2_large(cachemode2protval(cache));
395
BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
396
for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
397
pgd = pgd_offset_k((unsigned long)__va(phys));
398
if (pgd_none(*pgd)) {
399
p4d = (p4d_t *) spp_getpage();
400
set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
401
_PAGE_USER));
402
}
403
p4d = p4d_offset(pgd, (unsigned long)__va(phys));
404
if (p4d_none(*p4d)) {
405
pud = (pud_t *) spp_getpage();
406
set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
407
_PAGE_USER));
408
}
409
pud = pud_offset(p4d, (unsigned long)__va(phys));
410
if (pud_none(*pud)) {
411
pmd = (pmd_t *) spp_getpage();
412
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
413
_PAGE_USER));
414
}
415
pmd = pmd_offset(pud, phys);
416
BUG_ON(!pmd_none(*pmd));
417
set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
418
}
419
}
420
421
void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
422
{
423
__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
424
}
425
426
void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
427
{
428
__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
429
}
430
431
/*
432
* The head.S code sets up the kernel high mapping:
433
*
434
* from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
435
*
436
* phys_base holds the negative offset to the kernel, which is added
437
* to the compile time generated pmds. This results in invalid pmds up
438
* to the point where we hit the physaddr 0 mapping.
439
*
440
* We limit the mappings to the region from _text to _brk_end. _brk_end
441
* is rounded up to the 2MB boundary. This catches the invalid pmds as
442
* well, as they are located before _text:
443
*/
444
void __init cleanup_highmap(void)
445
{
446
unsigned long vaddr = __START_KERNEL_map;
447
unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
448
unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
449
pmd_t *pmd = level2_kernel_pgt;
450
451
/*
452
* Native path, max_pfn_mapped is not set yet.
453
* Xen has valid max_pfn_mapped set in
454
* arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
455
*/
456
if (max_pfn_mapped)
457
vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
458
459
for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
460
if (pmd_none(*pmd))
461
continue;
462
if (vaddr < (unsigned long) _text || vaddr > end)
463
set_pmd(pmd, __pmd(0));
464
}
465
}
466
467
/*
468
* Create PTE level page table mapping for physical addresses.
469
* It returns the last physical address mapped.
470
*/
471
static unsigned long __meminit
472
phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
473
pgprot_t prot, bool init)
474
{
475
unsigned long pages = 0, paddr_next;
476
unsigned long paddr_last = paddr_end;
477
pte_t *pte;
478
int i;
479
480
pte = pte_page + pte_index(paddr);
481
i = pte_index(paddr);
482
483
for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
484
paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
485
if (paddr >= paddr_end) {
486
if (!after_bootmem &&
487
!e820__mapped_any(paddr & PAGE_MASK, paddr_next,
488
E820_TYPE_RAM) &&
489
!e820__mapped_any(paddr & PAGE_MASK, paddr_next,
490
E820_TYPE_ACPI))
491
set_pte_init(pte, __pte(0), init);
492
continue;
493
}
494
495
/*
496
* We will re-use the existing mapping.
497
* Xen for example has some special requirements, like mapping
498
* pagetable pages as RO. So assume someone who pre-setup
499
* these mappings are more intelligent.
500
*/
501
if (!pte_none(*pte)) {
502
if (!after_bootmem)
503
pages++;
504
continue;
505
}
506
507
if (0)
508
pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
509
pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
510
pages++;
511
set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
512
paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
513
}
514
515
update_page_count(PG_LEVEL_4K, pages);
516
517
return paddr_last;
518
}
519
520
/*
521
* Create PMD level page table mapping for physical addresses. The virtual
522
* and physical address have to be aligned at this level.
523
* It returns the last physical address mapped.
524
*/
525
static unsigned long __meminit
526
phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
527
unsigned long page_size_mask, pgprot_t prot, bool init)
528
{
529
unsigned long pages = 0, paddr_next;
530
unsigned long paddr_last = paddr_end;
531
532
int i = pmd_index(paddr);
533
534
for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
535
pmd_t *pmd = pmd_page + pmd_index(paddr);
536
pte_t *pte;
537
pgprot_t new_prot = prot;
538
539
paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
540
if (paddr >= paddr_end) {
541
if (!after_bootmem &&
542
!e820__mapped_any(paddr & PMD_MASK, paddr_next,
543
E820_TYPE_RAM) &&
544
!e820__mapped_any(paddr & PMD_MASK, paddr_next,
545
E820_TYPE_ACPI))
546
set_pmd_init(pmd, __pmd(0), init);
547
continue;
548
}
549
550
if (!pmd_none(*pmd)) {
551
if (!pmd_leaf(*pmd)) {
552
spin_lock(&init_mm.page_table_lock);
553
pte = (pte_t *)pmd_page_vaddr(*pmd);
554
paddr_last = phys_pte_init(pte, paddr,
555
paddr_end, prot,
556
init);
557
spin_unlock(&init_mm.page_table_lock);
558
continue;
559
}
560
/*
561
* If we are ok with PG_LEVEL_2M mapping, then we will
562
* use the existing mapping,
563
*
564
* Otherwise, we will split the large page mapping but
565
* use the same existing protection bits except for
566
* large page, so that we don't violate Intel's TLB
567
* Application note (317080) which says, while changing
568
* the page sizes, new and old translations should
569
* not differ with respect to page frame and
570
* attributes.
571
*/
572
if (page_size_mask & (1 << PG_LEVEL_2M)) {
573
if (!after_bootmem)
574
pages++;
575
paddr_last = paddr_next;
576
continue;
577
}
578
new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
579
}
580
581
if (page_size_mask & (1<<PG_LEVEL_2M)) {
582
pages++;
583
spin_lock(&init_mm.page_table_lock);
584
set_pmd_init(pmd,
585
pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
586
init);
587
spin_unlock(&init_mm.page_table_lock);
588
paddr_last = paddr_next;
589
continue;
590
}
591
592
pte = alloc_low_page();
593
paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
594
595
spin_lock(&init_mm.page_table_lock);
596
pmd_populate_kernel_init(&init_mm, pmd, pte, init);
597
spin_unlock(&init_mm.page_table_lock);
598
}
599
update_page_count(PG_LEVEL_2M, pages);
600
return paddr_last;
601
}
602
603
/*
604
* Create PUD level page table mapping for physical addresses. The virtual
605
* and physical address do not have to be aligned at this level. KASLR can
606
* randomize virtual addresses up to this level.
607
* It returns the last physical address mapped.
608
*/
609
static unsigned long __meminit
610
phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
611
unsigned long page_size_mask, pgprot_t _prot, bool init)
612
{
613
unsigned long pages = 0, paddr_next;
614
unsigned long paddr_last = paddr_end;
615
unsigned long vaddr = (unsigned long)__va(paddr);
616
int i = pud_index(vaddr);
617
618
for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
619
pud_t *pud;
620
pmd_t *pmd;
621
pgprot_t prot = _prot;
622
623
vaddr = (unsigned long)__va(paddr);
624
pud = pud_page + pud_index(vaddr);
625
paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
626
627
if (paddr >= paddr_end) {
628
if (!after_bootmem &&
629
!e820__mapped_any(paddr & PUD_MASK, paddr_next,
630
E820_TYPE_RAM) &&
631
!e820__mapped_any(paddr & PUD_MASK, paddr_next,
632
E820_TYPE_ACPI))
633
set_pud_init(pud, __pud(0), init);
634
continue;
635
}
636
637
if (!pud_none(*pud)) {
638
if (!pud_leaf(*pud)) {
639
pmd = pmd_offset(pud, 0);
640
paddr_last = phys_pmd_init(pmd, paddr,
641
paddr_end,
642
page_size_mask,
643
prot, init);
644
continue;
645
}
646
/*
647
* If we are ok with PG_LEVEL_1G mapping, then we will
648
* use the existing mapping.
649
*
650
* Otherwise, we will split the gbpage mapping but use
651
* the same existing protection bits except for large
652
* page, so that we don't violate Intel's TLB
653
* Application note (317080) which says, while changing
654
* the page sizes, new and old translations should
655
* not differ with respect to page frame and
656
* attributes.
657
*/
658
if (page_size_mask & (1 << PG_LEVEL_1G)) {
659
if (!after_bootmem)
660
pages++;
661
paddr_last = paddr_next;
662
continue;
663
}
664
prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
665
}
666
667
if (page_size_mask & (1<<PG_LEVEL_1G)) {
668
pages++;
669
spin_lock(&init_mm.page_table_lock);
670
set_pud_init(pud,
671
pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
672
init);
673
spin_unlock(&init_mm.page_table_lock);
674
paddr_last = paddr_next;
675
continue;
676
}
677
678
pmd = alloc_low_page();
679
paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
680
page_size_mask, prot, init);
681
682
spin_lock(&init_mm.page_table_lock);
683
pud_populate_init(&init_mm, pud, pmd, init);
684
spin_unlock(&init_mm.page_table_lock);
685
}
686
687
update_page_count(PG_LEVEL_1G, pages);
688
689
return paddr_last;
690
}
691
692
static unsigned long __meminit
693
phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
694
unsigned long page_size_mask, pgprot_t prot, bool init)
695
{
696
unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
697
698
paddr_last = paddr_end;
699
vaddr = (unsigned long)__va(paddr);
700
vaddr_end = (unsigned long)__va(paddr_end);
701
702
if (!pgtable_l5_enabled())
703
return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
704
page_size_mask, prot, init);
705
706
for (; vaddr < vaddr_end; vaddr = vaddr_next) {
707
p4d_t *p4d = p4d_page + p4d_index(vaddr);
708
pud_t *pud;
709
710
vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
711
paddr = __pa(vaddr);
712
713
if (paddr >= paddr_end) {
714
paddr_next = __pa(vaddr_next);
715
if (!after_bootmem &&
716
!e820__mapped_any(paddr & P4D_MASK, paddr_next,
717
E820_TYPE_RAM) &&
718
!e820__mapped_any(paddr & P4D_MASK, paddr_next,
719
E820_TYPE_ACPI))
720
set_p4d_init(p4d, __p4d(0), init);
721
continue;
722
}
723
724
if (!p4d_none(*p4d)) {
725
pud = pud_offset(p4d, 0);
726
paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
727
page_size_mask, prot, init);
728
continue;
729
}
730
731
pud = alloc_low_page();
732
paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
733
page_size_mask, prot, init);
734
735
spin_lock(&init_mm.page_table_lock);
736
p4d_populate_init(&init_mm, p4d, pud, init);
737
spin_unlock(&init_mm.page_table_lock);
738
}
739
740
return paddr_last;
741
}
742
743
static unsigned long __meminit
744
__kernel_physical_mapping_init(unsigned long paddr_start,
745
unsigned long paddr_end,
746
unsigned long page_size_mask,
747
pgprot_t prot, bool init)
748
{
749
bool pgd_changed = false;
750
unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
751
752
paddr_last = paddr_end;
753
vaddr = (unsigned long)__va(paddr_start);
754
vaddr_end = (unsigned long)__va(paddr_end);
755
vaddr_start = vaddr;
756
757
for (; vaddr < vaddr_end; vaddr = vaddr_next) {
758
pgd_t *pgd = pgd_offset_k(vaddr);
759
p4d_t *p4d;
760
761
vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
762
763
if (pgd_val(*pgd)) {
764
p4d = (p4d_t *)pgd_page_vaddr(*pgd);
765
paddr_last = phys_p4d_init(p4d, __pa(vaddr),
766
__pa(vaddr_end),
767
page_size_mask,
768
prot, init);
769
continue;
770
}
771
772
p4d = alloc_low_page();
773
paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
774
page_size_mask, prot, init);
775
776
spin_lock(&init_mm.page_table_lock);
777
if (pgtable_l5_enabled())
778
pgd_populate_init(&init_mm, pgd, p4d, init);
779
else
780
p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
781
(pud_t *) p4d, init);
782
783
spin_unlock(&init_mm.page_table_lock);
784
pgd_changed = true;
785
}
786
787
if (pgd_changed)
788
sync_global_pgds(vaddr_start, vaddr_end - 1);
789
790
return paddr_last;
791
}
792
793
794
/*
795
* Create page table mapping for the physical memory for specific physical
796
* addresses. Note that it can only be used to populate non-present entries.
797
* The virtual and physical addresses have to be aligned on PMD level
798
* down. It returns the last physical address mapped.
799
*/
800
unsigned long __meminit
801
kernel_physical_mapping_init(unsigned long paddr_start,
802
unsigned long paddr_end,
803
unsigned long page_size_mask, pgprot_t prot)
804
{
805
return __kernel_physical_mapping_init(paddr_start, paddr_end,
806
page_size_mask, prot, true);
807
}
808
809
/*
810
* This function is similar to kernel_physical_mapping_init() above with the
811
* exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
812
* when updating the mapping. The caller is responsible to flush the TLBs after
813
* the function returns.
814
*/
815
unsigned long __meminit
816
kernel_physical_mapping_change(unsigned long paddr_start,
817
unsigned long paddr_end,
818
unsigned long page_size_mask)
819
{
820
return __kernel_physical_mapping_init(paddr_start, paddr_end,
821
page_size_mask, PAGE_KERNEL,
822
false);
823
}
824
825
#ifndef CONFIG_NUMA
826
static __always_inline void x86_numa_init(void)
827
{
828
memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
829
}
830
#endif
831
832
void __init initmem_init(void)
833
{
834
x86_numa_init();
835
}
836
837
void __init paging_init(void)
838
{
839
sparse_init();
840
841
/*
842
* clear the default setting with node 0
843
* note: don't use nodes_clear here, that is really clearing when
844
* numa support is not compiled in, and later node_set_state
845
* will not set it back.
846
*/
847
node_clear_state(0, N_MEMORY);
848
node_clear_state(0, N_NORMAL_MEMORY);
849
850
zone_sizes_init();
851
}
852
853
#define PAGE_UNUSED 0xFD
854
855
/*
856
* The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
857
* from unused_pmd_start to next PMD_SIZE boundary.
858
*/
859
static unsigned long unused_pmd_start __meminitdata;
860
861
static void __meminit vmemmap_flush_unused_pmd(void)
862
{
863
if (!unused_pmd_start)
864
return;
865
/*
866
* Clears (unused_pmd_start, PMD_END]
867
*/
868
memset((void *)unused_pmd_start, PAGE_UNUSED,
869
ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
870
unused_pmd_start = 0;
871
}
872
873
#ifdef CONFIG_MEMORY_HOTPLUG
874
/* Returns true if the PMD is completely unused and thus it can be freed */
875
static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
876
{
877
unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
878
879
/*
880
* Flush the unused range cache to ensure that memchr_inv() will work
881
* for the whole range.
882
*/
883
vmemmap_flush_unused_pmd();
884
memset((void *)addr, PAGE_UNUSED, end - addr);
885
886
return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
887
}
888
#endif
889
890
static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
891
{
892
/*
893
* As we expect to add in the same granularity as we remove, it's
894
* sufficient to mark only some piece used to block the memmap page from
895
* getting removed when removing some other adjacent memmap (just in
896
* case the first memmap never gets initialized e.g., because the memory
897
* block never gets onlined).
898
*/
899
memset((void *)start, 0, sizeof(struct page));
900
}
901
902
static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
903
{
904
/*
905
* We only optimize if the new used range directly follows the
906
* previously unused range (esp., when populating consecutive sections).
907
*/
908
if (unused_pmd_start == start) {
909
if (likely(IS_ALIGNED(end, PMD_SIZE)))
910
unused_pmd_start = 0;
911
else
912
unused_pmd_start = end;
913
return;
914
}
915
916
/*
917
* If the range does not contiguously follows previous one, make sure
918
* to mark the unused range of the previous one so it can be removed.
919
*/
920
vmemmap_flush_unused_pmd();
921
__vmemmap_use_sub_pmd(start);
922
}
923
924
925
static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
926
{
927
const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
928
929
vmemmap_flush_unused_pmd();
930
931
/*
932
* Could be our memmap page is filled with PAGE_UNUSED already from a
933
* previous remove. Make sure to reset it.
934
*/
935
__vmemmap_use_sub_pmd(start);
936
937
/*
938
* Mark with PAGE_UNUSED the unused parts of the new memmap range
939
*/
940
if (!IS_ALIGNED(start, PMD_SIZE))
941
memset((void *)page, PAGE_UNUSED, start - page);
942
943
/*
944
* We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
945
* consecutive sections. Remember for the last added PMD where the
946
* unused range begins.
947
*/
948
if (!IS_ALIGNED(end, PMD_SIZE))
949
unused_pmd_start = end;
950
}
951
952
/*
953
* Memory hotplug specific functions
954
*/
955
#ifdef CONFIG_MEMORY_HOTPLUG
956
/*
957
* After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
958
* updating.
959
*/
960
static void update_end_of_memory_vars(u64 start, u64 size)
961
{
962
unsigned long end_pfn = PFN_UP(start + size);
963
964
if (end_pfn > max_pfn) {
965
max_pfn = end_pfn;
966
max_low_pfn = end_pfn;
967
high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
968
}
969
}
970
971
int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
972
struct mhp_params *params)
973
{
974
unsigned long end = ((start_pfn + nr_pages) << PAGE_SHIFT) - 1;
975
int ret;
976
977
if (WARN_ON_ONCE(end > DIRECT_MAP_PHYSMEM_END))
978
return -ERANGE;
979
980
ret = __add_pages(nid, start_pfn, nr_pages, params);
981
WARN_ON_ONCE(ret);
982
983
/*
984
* Special case: add_pages() is called by memremap_pages() for adding device
985
* private pages. Do not bump up max_pfn in the device private path,
986
* because max_pfn changes affect dma_addressing_limited().
987
*
988
* dma_addressing_limited() returning true when max_pfn is the device's
989
* addressable memory can force device drivers to use bounce buffers
990
* and impact their performance negatively:
991
*/
992
if (!params->pgmap)
993
/* update max_pfn, max_low_pfn and high_memory */
994
update_end_of_memory_vars(start_pfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
995
996
return ret;
997
}
998
999
int arch_add_memory(int nid, u64 start, u64 size,
1000
struct mhp_params *params)
1001
{
1002
unsigned long start_pfn = start >> PAGE_SHIFT;
1003
unsigned long nr_pages = size >> PAGE_SHIFT;
1004
1005
init_memory_mapping(start, start + size, params->pgprot);
1006
1007
return add_pages(nid, start_pfn, nr_pages, params);
1008
}
1009
1010
static void free_reserved_pages(struct page *page, unsigned long nr_pages)
1011
{
1012
while (nr_pages--)
1013
free_reserved_page(page++);
1014
}
1015
1016
static void __meminit free_pagetable(struct page *page, int order)
1017
{
1018
/* bootmem page has reserved flag */
1019
if (PageReserved(page)) {
1020
unsigned long nr_pages = 1 << order;
1021
#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1022
enum bootmem_type type = bootmem_type(page);
1023
1024
if (type == SECTION_INFO || type == MIX_SECTION_INFO) {
1025
while (nr_pages--)
1026
put_page_bootmem(page++);
1027
} else {
1028
free_reserved_pages(page, nr_pages);
1029
}
1030
#else
1031
free_reserved_pages(page, nr_pages);
1032
#endif
1033
} else {
1034
free_pages((unsigned long)page_address(page), order);
1035
}
1036
}
1037
1038
static void __meminit free_hugepage_table(struct page *page,
1039
struct vmem_altmap *altmap)
1040
{
1041
if (altmap)
1042
vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1043
else
1044
free_pagetable(page, get_order(PMD_SIZE));
1045
}
1046
1047
static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1048
{
1049
pte_t *pte;
1050
int i;
1051
1052
for (i = 0; i < PTRS_PER_PTE; i++) {
1053
pte = pte_start + i;
1054
if (!pte_none(*pte))
1055
return;
1056
}
1057
1058
/* free a pte table */
1059
free_pagetable(pmd_page(*pmd), 0);
1060
spin_lock(&init_mm.page_table_lock);
1061
pmd_clear(pmd);
1062
spin_unlock(&init_mm.page_table_lock);
1063
}
1064
1065
static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1066
{
1067
pmd_t *pmd;
1068
int i;
1069
1070
for (i = 0; i < PTRS_PER_PMD; i++) {
1071
pmd = pmd_start + i;
1072
if (!pmd_none(*pmd))
1073
return;
1074
}
1075
1076
/* free a pmd table */
1077
free_pagetable(pud_page(*pud), 0);
1078
spin_lock(&init_mm.page_table_lock);
1079
pud_clear(pud);
1080
spin_unlock(&init_mm.page_table_lock);
1081
}
1082
1083
static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1084
{
1085
pud_t *pud;
1086
int i;
1087
1088
for (i = 0; i < PTRS_PER_PUD; i++) {
1089
pud = pud_start + i;
1090
if (!pud_none(*pud))
1091
return;
1092
}
1093
1094
/* free a pud table */
1095
free_pagetable(p4d_page(*p4d), 0);
1096
spin_lock(&init_mm.page_table_lock);
1097
p4d_clear(p4d);
1098
spin_unlock(&init_mm.page_table_lock);
1099
}
1100
1101
static void __meminit
1102
remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1103
bool direct)
1104
{
1105
unsigned long next, pages = 0;
1106
pte_t *pte;
1107
phys_addr_t phys_addr;
1108
1109
pte = pte_start + pte_index(addr);
1110
for (; addr < end; addr = next, pte++) {
1111
next = (addr + PAGE_SIZE) & PAGE_MASK;
1112
if (next > end)
1113
next = end;
1114
1115
if (!pte_present(*pte))
1116
continue;
1117
1118
/*
1119
* We mapped [0,1G) memory as identity mapping when
1120
* initializing, in arch/x86/kernel/head_64.S. These
1121
* pagetables cannot be removed.
1122
*/
1123
phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1124
if (phys_addr < (phys_addr_t)0x40000000)
1125
return;
1126
1127
if (!direct)
1128
free_pagetable(pte_page(*pte), 0);
1129
1130
spin_lock(&init_mm.page_table_lock);
1131
pte_clear(&init_mm, addr, pte);
1132
spin_unlock(&init_mm.page_table_lock);
1133
1134
/* For non-direct mapping, pages means nothing. */
1135
pages++;
1136
}
1137
1138
/* Call free_pte_table() in remove_pmd_table(). */
1139
flush_tlb_all();
1140
if (direct)
1141
update_page_count(PG_LEVEL_4K, -pages);
1142
}
1143
1144
static void __meminit
1145
remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1146
bool direct, struct vmem_altmap *altmap)
1147
{
1148
unsigned long next, pages = 0;
1149
pte_t *pte_base;
1150
pmd_t *pmd;
1151
1152
pmd = pmd_start + pmd_index(addr);
1153
for (; addr < end; addr = next, pmd++) {
1154
next = pmd_addr_end(addr, end);
1155
1156
if (!pmd_present(*pmd))
1157
continue;
1158
1159
if (pmd_leaf(*pmd)) {
1160
if (IS_ALIGNED(addr, PMD_SIZE) &&
1161
IS_ALIGNED(next, PMD_SIZE)) {
1162
if (!direct)
1163
free_hugepage_table(pmd_page(*pmd),
1164
altmap);
1165
1166
spin_lock(&init_mm.page_table_lock);
1167
pmd_clear(pmd);
1168
spin_unlock(&init_mm.page_table_lock);
1169
pages++;
1170
} else if (vmemmap_pmd_is_unused(addr, next)) {
1171
free_hugepage_table(pmd_page(*pmd),
1172
altmap);
1173
spin_lock(&init_mm.page_table_lock);
1174
pmd_clear(pmd);
1175
spin_unlock(&init_mm.page_table_lock);
1176
}
1177
continue;
1178
}
1179
1180
pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1181
remove_pte_table(pte_base, addr, next, direct);
1182
free_pte_table(pte_base, pmd);
1183
}
1184
1185
/* Call free_pmd_table() in remove_pud_table(). */
1186
if (direct)
1187
update_page_count(PG_LEVEL_2M, -pages);
1188
}
1189
1190
static void __meminit
1191
remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1192
struct vmem_altmap *altmap, bool direct)
1193
{
1194
unsigned long next, pages = 0;
1195
pmd_t *pmd_base;
1196
pud_t *pud;
1197
1198
pud = pud_start + pud_index(addr);
1199
for (; addr < end; addr = next, pud++) {
1200
next = pud_addr_end(addr, end);
1201
1202
if (!pud_present(*pud))
1203
continue;
1204
1205
if (pud_leaf(*pud) &&
1206
IS_ALIGNED(addr, PUD_SIZE) &&
1207
IS_ALIGNED(next, PUD_SIZE)) {
1208
spin_lock(&init_mm.page_table_lock);
1209
pud_clear(pud);
1210
spin_unlock(&init_mm.page_table_lock);
1211
pages++;
1212
continue;
1213
}
1214
1215
pmd_base = pmd_offset(pud, 0);
1216
remove_pmd_table(pmd_base, addr, next, direct, altmap);
1217
free_pmd_table(pmd_base, pud);
1218
}
1219
1220
if (direct)
1221
update_page_count(PG_LEVEL_1G, -pages);
1222
}
1223
1224
static void __meminit
1225
remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1226
struct vmem_altmap *altmap, bool direct)
1227
{
1228
unsigned long next, pages = 0;
1229
pud_t *pud_base;
1230
p4d_t *p4d;
1231
1232
p4d = p4d_start + p4d_index(addr);
1233
for (; addr < end; addr = next, p4d++) {
1234
next = p4d_addr_end(addr, end);
1235
1236
if (!p4d_present(*p4d))
1237
continue;
1238
1239
BUILD_BUG_ON(p4d_leaf(*p4d));
1240
1241
pud_base = pud_offset(p4d, 0);
1242
remove_pud_table(pud_base, addr, next, altmap, direct);
1243
/*
1244
* For 4-level page tables we do not want to free PUDs, but in the
1245
* 5-level case we should free them. This code will have to change
1246
* to adapt for boot-time switching between 4 and 5 level page tables.
1247
*/
1248
if (pgtable_l5_enabled())
1249
free_pud_table(pud_base, p4d);
1250
}
1251
1252
if (direct)
1253
update_page_count(PG_LEVEL_512G, -pages);
1254
}
1255
1256
/* start and end are both virtual address. */
1257
static void __meminit
1258
remove_pagetable(unsigned long start, unsigned long end, bool direct,
1259
struct vmem_altmap *altmap)
1260
{
1261
unsigned long next;
1262
unsigned long addr;
1263
pgd_t *pgd;
1264
p4d_t *p4d;
1265
1266
for (addr = start; addr < end; addr = next) {
1267
next = pgd_addr_end(addr, end);
1268
1269
pgd = pgd_offset_k(addr);
1270
if (!pgd_present(*pgd))
1271
continue;
1272
1273
p4d = p4d_offset(pgd, 0);
1274
remove_p4d_table(p4d, addr, next, altmap, direct);
1275
}
1276
1277
flush_tlb_all();
1278
}
1279
1280
void __ref vmemmap_free(unsigned long start, unsigned long end,
1281
struct vmem_altmap *altmap)
1282
{
1283
VM_BUG_ON(!PAGE_ALIGNED(start));
1284
VM_BUG_ON(!PAGE_ALIGNED(end));
1285
1286
remove_pagetable(start, end, false, altmap);
1287
}
1288
1289
static void __meminit
1290
kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1291
{
1292
start = (unsigned long)__va(start);
1293
end = (unsigned long)__va(end);
1294
1295
remove_pagetable(start, end, true, NULL);
1296
}
1297
1298
void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1299
{
1300
unsigned long start_pfn = start >> PAGE_SHIFT;
1301
unsigned long nr_pages = size >> PAGE_SHIFT;
1302
1303
__remove_pages(start_pfn, nr_pages, altmap);
1304
kernel_physical_mapping_remove(start, start + size);
1305
}
1306
#endif /* CONFIG_MEMORY_HOTPLUG */
1307
1308
static struct kcore_list kcore_vsyscall;
1309
1310
static void __init register_page_bootmem_info(void)
1311
{
1312
#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1313
int i;
1314
1315
for_each_online_node(i)
1316
register_page_bootmem_info_node(NODE_DATA(i));
1317
#endif
1318
}
1319
1320
/*
1321
* Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1322
* Only the level which needs to be synchronized between all page-tables is
1323
* allocated because the synchronization can be expensive.
1324
*/
1325
static void __init preallocate_vmalloc_pages(void)
1326
{
1327
unsigned long addr;
1328
const char *lvl;
1329
1330
for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1331
pgd_t *pgd = pgd_offset_k(addr);
1332
p4d_t *p4d;
1333
pud_t *pud;
1334
1335
lvl = "p4d";
1336
p4d = p4d_alloc(&init_mm, pgd, addr);
1337
if (!p4d)
1338
goto failed;
1339
1340
if (pgtable_l5_enabled())
1341
continue;
1342
1343
/*
1344
* The goal here is to allocate all possibly required
1345
* hardware page tables pointed to by the top hardware
1346
* level.
1347
*
1348
* On 4-level systems, the P4D layer is folded away and
1349
* the above code does no preallocation. Below, go down
1350
* to the pud _software_ level to ensure the second
1351
* hardware level is allocated on 4-level systems too.
1352
*/
1353
lvl = "pud";
1354
pud = pud_alloc(&init_mm, p4d, addr);
1355
if (!pud)
1356
goto failed;
1357
}
1358
1359
return;
1360
1361
failed:
1362
1363
/*
1364
* The pages have to be there now or they will be missing in
1365
* process page-tables later.
1366
*/
1367
panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1368
}
1369
1370
void __init arch_mm_preinit(void)
1371
{
1372
pci_iommu_alloc();
1373
}
1374
1375
void __init mem_init(void)
1376
{
1377
/* clear_bss() already clear the empty_zero_page */
1378
1379
after_bootmem = 1;
1380
x86_init.hyper.init_after_bootmem();
1381
1382
/*
1383
* Must be done after boot memory is put on freelist, because here we
1384
* might set fields in deferred struct pages that have not yet been
1385
* initialized, and memblock_free_all() initializes all the reserved
1386
* deferred pages for us.
1387
*/
1388
register_page_bootmem_info();
1389
1390
/* Register memory areas for /proc/kcore */
1391
if (get_gate_vma(&init_mm))
1392
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1393
1394
preallocate_vmalloc_pages();
1395
}
1396
1397
int kernel_set_to_readonly;
1398
1399
void mark_rodata_ro(void)
1400
{
1401
unsigned long start = PFN_ALIGN(_text);
1402
unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1403
unsigned long end = (unsigned long)__end_rodata_hpage_align;
1404
unsigned long text_end = PFN_ALIGN(_etext);
1405
unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1406
unsigned long all_end;
1407
1408
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1409
(end - start) >> 10);
1410
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1411
1412
kernel_set_to_readonly = 1;
1413
1414
/*
1415
* The rodata/data/bss/brk section (but not the kernel text!)
1416
* should also be not-executable.
1417
*
1418
* We align all_end to PMD_SIZE because the existing mapping
1419
* is a full PMD. If we would align _brk_end to PAGE_SIZE we
1420
* split the PMD and the reminder between _brk_end and the end
1421
* of the PMD will remain mapped executable.
1422
*
1423
* Any PMD which was setup after the one which covers _brk_end
1424
* has been zapped already via cleanup_highmem().
1425
*/
1426
all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1427
set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1428
1429
set_ftrace_ops_ro();
1430
1431
#ifdef CONFIG_CPA_DEBUG
1432
printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1433
set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1434
1435
printk(KERN_INFO "Testing CPA: again\n");
1436
set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1437
#endif
1438
1439
free_kernel_image_pages("unused kernel image (text/rodata gap)",
1440
(void *)text_end, (void *)rodata_start);
1441
free_kernel_image_pages("unused kernel image (rodata/data gap)",
1442
(void *)rodata_end, (void *)_sdata);
1443
}
1444
1445
/*
1446
* Block size is the minimum amount of memory which can be hotplugged or
1447
* hotremoved. It must be power of two and must be equal or larger than
1448
* MIN_MEMORY_BLOCK_SIZE.
1449
*/
1450
#define MAX_BLOCK_SIZE (2UL << 30)
1451
1452
/* Amount of ram needed to start using large blocks */
1453
#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1454
1455
/* Adjustable memory block size */
1456
static unsigned long set_memory_block_size;
1457
int __init set_memory_block_size_order(unsigned int order)
1458
{
1459
unsigned long size = 1UL << order;
1460
1461
if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1462
return -EINVAL;
1463
1464
set_memory_block_size = size;
1465
return 0;
1466
}
1467
1468
static unsigned long probe_memory_block_size(void)
1469
{
1470
unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1471
unsigned long bz;
1472
1473
/* If memory block size has been set, then use it */
1474
bz = set_memory_block_size;
1475
if (bz)
1476
goto done;
1477
1478
/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1479
if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1480
bz = MIN_MEMORY_BLOCK_SIZE;
1481
goto done;
1482
}
1483
1484
/*
1485
* When hotplug alignment is not a concern, maximize blocksize
1486
* to minimize overhead. Otherwise, align to the lesser of advice
1487
* alignment and end of memory alignment.
1488
*/
1489
bz = memory_block_advised_max_size();
1490
if (!bz) {
1491
bz = MAX_BLOCK_SIZE;
1492
if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
1493
goto done;
1494
} else {
1495
bz = max(min(bz, MAX_BLOCK_SIZE), MIN_MEMORY_BLOCK_SIZE);
1496
}
1497
1498
/* Find the largest allowed block size that aligns to memory end */
1499
for (; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1500
if (IS_ALIGNED(boot_mem_end, bz))
1501
break;
1502
}
1503
done:
1504
pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1505
1506
return bz;
1507
}
1508
1509
static unsigned long memory_block_size_probed;
1510
unsigned long memory_block_size_bytes(void)
1511
{
1512
if (!memory_block_size_probed)
1513
memory_block_size_probed = probe_memory_block_size();
1514
1515
return memory_block_size_probed;
1516
}
1517
1518
/*
1519
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1520
*/
1521
static long __meminitdata addr_start, addr_end;
1522
static void __meminitdata *p_start, *p_end;
1523
static int __meminitdata node_start;
1524
1525
void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1526
unsigned long addr, unsigned long next)
1527
{
1528
pte_t entry;
1529
1530
entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1531
PAGE_KERNEL_LARGE);
1532
set_pmd(pmd, __pmd(pte_val(entry)));
1533
1534
/* check to see if we have contiguous blocks */
1535
if (p_end != p || node_start != node) {
1536
if (p_start)
1537
pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1538
addr_start, addr_end-1, p_start, p_end-1, node_start);
1539
addr_start = addr;
1540
node_start = node;
1541
p_start = p;
1542
}
1543
1544
addr_end = addr + PMD_SIZE;
1545
p_end = p + PMD_SIZE;
1546
1547
if (!IS_ALIGNED(addr, PMD_SIZE) ||
1548
!IS_ALIGNED(next, PMD_SIZE))
1549
vmemmap_use_new_sub_pmd(addr, next);
1550
}
1551
1552
int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1553
unsigned long addr, unsigned long next)
1554
{
1555
int large = pmd_leaf(*pmd);
1556
1557
if (pmd_leaf(*pmd)) {
1558
vmemmap_verify((pte_t *)pmd, node, addr, next);
1559
vmemmap_use_sub_pmd(addr, next);
1560
}
1561
1562
return large;
1563
}
1564
1565
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1566
struct vmem_altmap *altmap)
1567
{
1568
int err;
1569
1570
VM_BUG_ON(!PAGE_ALIGNED(start));
1571
VM_BUG_ON(!PAGE_ALIGNED(end));
1572
1573
if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1574
err = vmemmap_populate_basepages(start, end, node, NULL);
1575
else if (boot_cpu_has(X86_FEATURE_PSE))
1576
err = vmemmap_populate_hugepages(start, end, node, altmap);
1577
else if (altmap) {
1578
pr_err_once("%s: no cpu support for altmap allocations\n",
1579
__func__);
1580
err = -ENOMEM;
1581
} else
1582
err = vmemmap_populate_basepages(start, end, node, NULL);
1583
if (!err)
1584
sync_global_pgds(start, end - 1);
1585
return err;
1586
}
1587
1588
#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1589
void register_page_bootmem_memmap(unsigned long section_nr,
1590
struct page *start_page, unsigned long nr_pages)
1591
{
1592
unsigned long addr = (unsigned long)start_page;
1593
unsigned long end = (unsigned long)(start_page + nr_pages);
1594
unsigned long next;
1595
pgd_t *pgd;
1596
p4d_t *p4d;
1597
pud_t *pud;
1598
pmd_t *pmd;
1599
unsigned int nr_pmd_pages;
1600
struct page *page;
1601
1602
for (; addr < end; addr = next) {
1603
pte_t *pte = NULL;
1604
1605
pgd = pgd_offset_k(addr);
1606
if (pgd_none(*pgd)) {
1607
next = (addr + PAGE_SIZE) & PAGE_MASK;
1608
continue;
1609
}
1610
get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1611
1612
p4d = p4d_offset(pgd, addr);
1613
if (p4d_none(*p4d)) {
1614
next = (addr + PAGE_SIZE) & PAGE_MASK;
1615
continue;
1616
}
1617
get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1618
1619
pud = pud_offset(p4d, addr);
1620
if (pud_none(*pud)) {
1621
next = (addr + PAGE_SIZE) & PAGE_MASK;
1622
continue;
1623
}
1624
get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1625
1626
pmd = pmd_offset(pud, addr);
1627
if (pmd_none(*pmd)) {
1628
next = (addr + PAGE_SIZE) & PAGE_MASK;
1629
continue;
1630
}
1631
1632
if (!boot_cpu_has(X86_FEATURE_PSE) || !pmd_leaf(*pmd)) {
1633
next = (addr + PAGE_SIZE) & PAGE_MASK;
1634
get_page_bootmem(section_nr, pmd_page(*pmd),
1635
MIX_SECTION_INFO);
1636
1637
pte = pte_offset_kernel(pmd, addr);
1638
if (pte_none(*pte))
1639
continue;
1640
get_page_bootmem(section_nr, pte_page(*pte),
1641
SECTION_INFO);
1642
} else {
1643
next = pmd_addr_end(addr, end);
1644
nr_pmd_pages = (next - addr) >> PAGE_SHIFT;
1645
page = pmd_page(*pmd);
1646
while (nr_pmd_pages--)
1647
get_page_bootmem(section_nr, page++,
1648
SECTION_INFO);
1649
}
1650
}
1651
}
1652
#endif
1653
1654
void __meminit vmemmap_populate_print_last(void)
1655
{
1656
if (p_start) {
1657
pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1658
addr_start, addr_end-1, p_start, p_end-1, node_start);
1659
p_start = NULL;
1660
p_end = NULL;
1661
node_start = 0;
1662
}
1663
}
1664
1665