Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/mm/ioremap.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Re-map IO memory to kernel address space so that we can access it.
4
* This is needed for high PCI addresses that aren't mapped in the
5
* 640k-1MB IO memory area on PC's
6
*
7
* (C) Copyright 1995 1996 Linus Torvalds
8
*/
9
10
#include <linux/memblock.h>
11
#include <linux/init.h>
12
#include <linux/io.h>
13
#include <linux/ioport.h>
14
#include <linux/ioremap.h>
15
#include <linux/slab.h>
16
#include <linux/vmalloc.h>
17
#include <linux/mmiotrace.h>
18
#include <linux/cc_platform.h>
19
#include <linux/efi.h>
20
#include <linux/pgtable.h>
21
#include <linux/kmsan.h>
22
23
#include <asm/set_memory.h>
24
#include <asm/e820/api.h>
25
#include <asm/efi.h>
26
#include <asm/fixmap.h>
27
#include <asm/tlbflush.h>
28
#include <asm/pgalloc.h>
29
#include <asm/memtype.h>
30
#include <asm/setup.h>
31
32
#include "physaddr.h"
33
34
/*
35
* Descriptor controlling ioremap() behavior.
36
*/
37
struct ioremap_desc {
38
unsigned int flags;
39
};
40
41
/*
42
* Fix up the linear direct mapping of the kernel to avoid cache attribute
43
* conflicts.
44
*/
45
int ioremap_change_attr(unsigned long vaddr, unsigned long size,
46
enum page_cache_mode pcm)
47
{
48
unsigned long nrpages = size >> PAGE_SHIFT;
49
int err;
50
51
switch (pcm) {
52
case _PAGE_CACHE_MODE_UC:
53
default:
54
err = _set_memory_uc(vaddr, nrpages);
55
break;
56
case _PAGE_CACHE_MODE_WC:
57
err = _set_memory_wc(vaddr, nrpages);
58
break;
59
case _PAGE_CACHE_MODE_WT:
60
err = _set_memory_wt(vaddr, nrpages);
61
break;
62
case _PAGE_CACHE_MODE_WB:
63
err = _set_memory_wb(vaddr, nrpages);
64
break;
65
}
66
67
return err;
68
}
69
70
/* Does the range (or a subset of) contain normal RAM? */
71
static unsigned int __ioremap_check_ram(struct resource *res)
72
{
73
unsigned long start_pfn, stop_pfn;
74
unsigned long pfn;
75
76
if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
77
return 0;
78
79
start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
80
stop_pfn = (res->end + 1) >> PAGE_SHIFT;
81
if (stop_pfn > start_pfn) {
82
for_each_valid_pfn(pfn, start_pfn, stop_pfn)
83
if (!PageReserved(pfn_to_page(pfn)))
84
return IORES_MAP_SYSTEM_RAM;
85
}
86
87
return 0;
88
}
89
90
/*
91
* In a SEV guest, NONE and RESERVED should not be mapped encrypted because
92
* there the whole memory is already encrypted.
93
*/
94
static unsigned int __ioremap_check_encrypted(struct resource *res)
95
{
96
if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
97
return 0;
98
99
switch (res->desc) {
100
case IORES_DESC_NONE:
101
case IORES_DESC_RESERVED:
102
break;
103
default:
104
return IORES_MAP_ENCRYPTED;
105
}
106
107
return 0;
108
}
109
110
/*
111
* The EFI runtime services data area is not covered by walk_mem_res(), but must
112
* be mapped encrypted when SEV is active.
113
*/
114
static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
115
{
116
if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
117
return;
118
119
if (x86_platform.hyper.is_private_mmio(addr)) {
120
desc->flags |= IORES_MAP_ENCRYPTED;
121
return;
122
}
123
124
if (!IS_ENABLED(CONFIG_EFI))
125
return;
126
127
if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
128
(efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
129
efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
130
desc->flags |= IORES_MAP_ENCRYPTED;
131
}
132
133
static int __ioremap_collect_map_flags(struct resource *res, void *arg)
134
{
135
struct ioremap_desc *desc = arg;
136
137
if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
138
desc->flags |= __ioremap_check_ram(res);
139
140
if (!(desc->flags & IORES_MAP_ENCRYPTED))
141
desc->flags |= __ioremap_check_encrypted(res);
142
143
return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
144
(IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
145
}
146
147
/*
148
* To avoid multiple resource walks, this function walks resources marked as
149
* IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
150
* resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
151
*
152
* After that, deal with misc other ranges in __ioremap_check_other() which do
153
* not fall into the above category.
154
*/
155
static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
156
struct ioremap_desc *desc)
157
{
158
u64 start, end;
159
160
start = (u64)addr;
161
end = start + size - 1;
162
memset(desc, 0, sizeof(struct ioremap_desc));
163
164
walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
165
166
__ioremap_check_other(addr, desc);
167
}
168
169
/*
170
* Remap an arbitrary physical address space into the kernel virtual
171
* address space. It transparently creates kernel huge I/O mapping when
172
* the physical address is aligned by a huge page size (1GB or 2MB) and
173
* the requested size is at least the huge page size.
174
*
175
* NOTE: MTRRs can override PAT memory types with a 4KB granularity.
176
* Therefore, the mapping code falls back to use a smaller page toward 4KB
177
* when a mapping range is covered by non-WB type of MTRRs.
178
*
179
* NOTE! We need to allow non-page-aligned mappings too: we will obviously
180
* have to convert them into an offset in a page-aligned mapping, but the
181
* caller shouldn't need to know that small detail.
182
*/
183
static void __iomem *
184
__ioremap_caller(resource_size_t phys_addr, unsigned long size,
185
enum page_cache_mode pcm, void *caller, bool encrypted)
186
{
187
unsigned long offset, vaddr;
188
resource_size_t last_addr;
189
const resource_size_t unaligned_phys_addr = phys_addr;
190
const unsigned long unaligned_size = size;
191
struct ioremap_desc io_desc;
192
struct vm_struct *area;
193
enum page_cache_mode new_pcm;
194
pgprot_t prot;
195
int retval;
196
void __iomem *ret_addr;
197
198
/* Don't allow wraparound or zero size */
199
last_addr = phys_addr + size - 1;
200
if (!size || last_addr < phys_addr)
201
return NULL;
202
203
if (!phys_addr_valid(phys_addr)) {
204
printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
205
(unsigned long long)phys_addr);
206
WARN_ON_ONCE(1);
207
return NULL;
208
}
209
210
__ioremap_check_mem(phys_addr, size, &io_desc);
211
212
/*
213
* Don't allow anybody to remap normal RAM that we're using..
214
*/
215
if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
216
WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
217
&phys_addr, &last_addr);
218
return NULL;
219
}
220
221
/*
222
* Mappings have to be page-aligned
223
*/
224
offset = phys_addr & ~PAGE_MASK;
225
phys_addr &= PAGE_MASK;
226
size = PAGE_ALIGN(last_addr+1) - phys_addr;
227
228
/*
229
* Mask out any bits not part of the actual physical
230
* address, like memory encryption bits.
231
*/
232
phys_addr &= PHYSICAL_PAGE_MASK;
233
234
retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
235
pcm, &new_pcm);
236
if (retval) {
237
printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
238
return NULL;
239
}
240
241
if (pcm != new_pcm) {
242
if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
243
printk(KERN_ERR
244
"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
245
(unsigned long long)phys_addr,
246
(unsigned long long)(phys_addr + size),
247
pcm, new_pcm);
248
goto err_free_memtype;
249
}
250
pcm = new_pcm;
251
}
252
253
/*
254
* If the page being mapped is in memory and SEV is active then
255
* make sure the memory encryption attribute is enabled in the
256
* resulting mapping.
257
* In TDX guests, memory is marked private by default. If encryption
258
* is not requested (using encrypted), explicitly set decrypt
259
* attribute in all IOREMAPPED memory.
260
*/
261
prot = PAGE_KERNEL_IO;
262
if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
263
prot = pgprot_encrypted(prot);
264
else
265
prot = pgprot_decrypted(prot);
266
267
switch (pcm) {
268
case _PAGE_CACHE_MODE_UC:
269
default:
270
prot = __pgprot(pgprot_val(prot) |
271
cachemode2protval(_PAGE_CACHE_MODE_UC));
272
break;
273
case _PAGE_CACHE_MODE_UC_MINUS:
274
prot = __pgprot(pgprot_val(prot) |
275
cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
276
break;
277
case _PAGE_CACHE_MODE_WC:
278
prot = __pgprot(pgprot_val(prot) |
279
cachemode2protval(_PAGE_CACHE_MODE_WC));
280
break;
281
case _PAGE_CACHE_MODE_WT:
282
prot = __pgprot(pgprot_val(prot) |
283
cachemode2protval(_PAGE_CACHE_MODE_WT));
284
break;
285
case _PAGE_CACHE_MODE_WB:
286
break;
287
}
288
289
/*
290
* Ok, go for it..
291
*/
292
area = get_vm_area_caller(size, VM_IOREMAP, caller);
293
if (!area)
294
goto err_free_memtype;
295
area->phys_addr = phys_addr;
296
vaddr = (unsigned long) area->addr;
297
298
if (memtype_kernel_map_sync(phys_addr, size, pcm))
299
goto err_free_area;
300
301
if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
302
goto err_free_area;
303
304
ret_addr = (void __iomem *) (vaddr + offset);
305
mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
306
307
/*
308
* Check if the request spans more than any BAR in the iomem resource
309
* tree.
310
*/
311
if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
312
pr_warn("caller %pS mapping multiple BARs\n", caller);
313
314
return ret_addr;
315
err_free_area:
316
free_vm_area(area);
317
err_free_memtype:
318
memtype_free(phys_addr, phys_addr + size);
319
return NULL;
320
}
321
322
/**
323
* ioremap - map bus memory into CPU space
324
* @phys_addr: bus address of the memory
325
* @size: size of the resource to map
326
*
327
* ioremap performs a platform specific sequence of operations to
328
* make bus memory CPU accessible via the readb/readw/readl/writeb/
329
* writew/writel functions and the other mmio helpers. The returned
330
* address is not guaranteed to be usable directly as a virtual
331
* address.
332
*
333
* This version of ioremap ensures that the memory is marked uncachable
334
* on the CPU as well as honouring existing caching rules from things like
335
* the PCI bus. Note that there are other caches and buffers on many
336
* busses. In particular driver authors should read up on PCI writes
337
*
338
* It's useful if some control registers are in such an area and
339
* write combining or read caching is not desirable:
340
*
341
* Must be freed with iounmap.
342
*/
343
void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
344
{
345
/*
346
* Ideally, this should be:
347
* pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
348
*
349
* Till we fix all X drivers to use ioremap_wc(), we will use
350
* UC MINUS. Drivers that are certain they need or can already
351
* be converted over to strong UC can use ioremap_uc().
352
*/
353
enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
354
355
return __ioremap_caller(phys_addr, size, pcm,
356
__builtin_return_address(0), false);
357
}
358
EXPORT_SYMBOL(ioremap);
359
360
/**
361
* ioremap_uc - map bus memory into CPU space as strongly uncachable
362
* @phys_addr: bus address of the memory
363
* @size: size of the resource to map
364
*
365
* ioremap_uc performs a platform specific sequence of operations to
366
* make bus memory CPU accessible via the readb/readw/readl/writeb/
367
* writew/writel functions and the other mmio helpers. The returned
368
* address is not guaranteed to be usable directly as a virtual
369
* address.
370
*
371
* This version of ioremap ensures that the memory is marked with a strong
372
* preference as completely uncachable on the CPU when possible. For non-PAT
373
* systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
374
* systems this will set the PAT entry for the pages as strong UC. This call
375
* will honor existing caching rules from things like the PCI bus. Note that
376
* there are other caches and buffers on many busses. In particular driver
377
* authors should read up on PCI writes.
378
*
379
* It's useful if some control registers are in such an area and
380
* write combining or read caching is not desirable:
381
*
382
* Must be freed with iounmap.
383
*/
384
void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
385
{
386
enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
387
388
return __ioremap_caller(phys_addr, size, pcm,
389
__builtin_return_address(0), false);
390
}
391
EXPORT_SYMBOL_GPL(ioremap_uc);
392
393
/**
394
* ioremap_wc - map memory into CPU space write combined
395
* @phys_addr: bus address of the memory
396
* @size: size of the resource to map
397
*
398
* This version of ioremap ensures that the memory is marked write combining.
399
* Write combining allows faster writes to some hardware devices.
400
*
401
* Must be freed with iounmap.
402
*/
403
void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
404
{
405
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
406
__builtin_return_address(0), false);
407
}
408
EXPORT_SYMBOL(ioremap_wc);
409
410
/**
411
* ioremap_wt - map memory into CPU space write through
412
* @phys_addr: bus address of the memory
413
* @size: size of the resource to map
414
*
415
* This version of ioremap ensures that the memory is marked write through.
416
* Write through stores data into memory while keeping the cache up-to-date.
417
*
418
* Must be freed with iounmap.
419
*/
420
void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
421
{
422
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
423
__builtin_return_address(0), false);
424
}
425
EXPORT_SYMBOL(ioremap_wt);
426
427
void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
428
{
429
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
430
__builtin_return_address(0), true);
431
}
432
EXPORT_SYMBOL(ioremap_encrypted);
433
434
void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
435
{
436
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
437
__builtin_return_address(0), false);
438
}
439
EXPORT_SYMBOL(ioremap_cache);
440
441
void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
442
pgprot_t prot)
443
{
444
return __ioremap_caller(phys_addr, size,
445
pgprot2cachemode(prot),
446
__builtin_return_address(0), false);
447
}
448
EXPORT_SYMBOL(ioremap_prot);
449
450
/**
451
* iounmap - Free a IO remapping
452
* @addr: virtual address from ioremap_*
453
*
454
* Caller must ensure there is only one unmapping for the same pointer.
455
*/
456
void iounmap(volatile void __iomem *addr)
457
{
458
struct vm_struct *p, *o;
459
460
if (WARN_ON_ONCE(!is_ioremap_addr((void __force *)addr)))
461
return;
462
463
/*
464
* The PCI/ISA range special-casing was removed from __ioremap()
465
* so this check, in theory, can be removed. However, there are
466
* cases where iounmap() is called for addresses not obtained via
467
* ioremap() (vga16fb for example). Add a warning so that these
468
* cases can be caught and fixed.
469
*/
470
if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
471
(void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
472
WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
473
return;
474
}
475
476
mmiotrace_iounmap(addr);
477
478
addr = (volatile void __iomem *)
479
(PAGE_MASK & (unsigned long __force)addr);
480
481
/* Use the vm area unlocked, assuming the caller
482
ensures there isn't another iounmap for the same address
483
in parallel. Reuse of the virtual address is prevented by
484
leaving it in the global lists until we're done with it.
485
cpa takes care of the direct mappings. */
486
p = find_vm_area((void __force *)addr);
487
488
if (!p) {
489
printk(KERN_ERR "iounmap: bad address %p\n", addr);
490
dump_stack();
491
return;
492
}
493
494
kmsan_iounmap_page_range((unsigned long)addr,
495
(unsigned long)addr + get_vm_area_size(p));
496
memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
497
498
/* Finally remove it */
499
o = remove_vm_area((void __force *)addr);
500
BUG_ON(p != o || o == NULL);
501
kfree(p);
502
}
503
EXPORT_SYMBOL(iounmap);
504
505
void *arch_memremap_wb(phys_addr_t phys_addr, size_t size, unsigned long flags)
506
{
507
if ((flags & MEMREMAP_DEC) || cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
508
return (void __force *)ioremap_cache(phys_addr, size);
509
510
return (void __force *)ioremap_encrypted(phys_addr, size);
511
}
512
513
/*
514
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
515
* access
516
*/
517
void *xlate_dev_mem_ptr(phys_addr_t phys)
518
{
519
unsigned long start = phys & PAGE_MASK;
520
unsigned long offset = phys & ~PAGE_MASK;
521
void *vaddr;
522
523
/* memremap() maps if RAM, otherwise falls back to ioremap() */
524
vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
525
526
/* Only add the offset on success and return NULL if memremap() failed */
527
if (vaddr)
528
vaddr += offset;
529
530
return vaddr;
531
}
532
533
void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
534
{
535
memunmap((void *)((unsigned long)addr & PAGE_MASK));
536
}
537
538
#ifdef CONFIG_AMD_MEM_ENCRYPT
539
/*
540
* Examine the physical address to determine if it is an area of memory
541
* that should be mapped decrypted. If the memory is not part of the
542
* kernel usable area it was accessed and created decrypted, so these
543
* areas should be mapped decrypted. And since the encryption key can
544
* change across reboots, persistent memory should also be mapped
545
* decrypted.
546
*
547
* If SEV is active, that implies that BIOS/UEFI also ran encrypted so
548
* only persistent memory should be mapped decrypted.
549
*/
550
static bool memremap_should_map_decrypted(resource_size_t phys_addr,
551
unsigned long size)
552
{
553
int is_pmem;
554
555
/*
556
* Check if the address is part of a persistent memory region.
557
* This check covers areas added by E820, EFI and ACPI.
558
*/
559
is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
560
IORES_DESC_PERSISTENT_MEMORY);
561
if (is_pmem != REGION_DISJOINT)
562
return true;
563
564
/*
565
* Check if the non-volatile attribute is set for an EFI
566
* reserved area.
567
*/
568
if (efi_enabled(EFI_BOOT)) {
569
switch (efi_mem_type(phys_addr)) {
570
case EFI_RESERVED_TYPE:
571
if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
572
return true;
573
break;
574
default:
575
break;
576
}
577
}
578
579
/* Check if the address is outside kernel usable area */
580
switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
581
case E820_TYPE_RESERVED:
582
case E820_TYPE_ACPI:
583
case E820_TYPE_NVS:
584
case E820_TYPE_UNUSABLE:
585
/* For SEV, these areas are encrypted */
586
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
587
break;
588
fallthrough;
589
590
case E820_TYPE_PRAM:
591
return true;
592
default:
593
break;
594
}
595
596
return false;
597
}
598
599
/*
600
* Examine the physical address to determine if it is EFI data. Check
601
* it against the boot params structure and EFI tables and memory types.
602
*/
603
static bool memremap_is_efi_data(resource_size_t phys_addr)
604
{
605
u64 paddr;
606
607
/* Check if the address is part of EFI boot/runtime data */
608
if (!efi_enabled(EFI_BOOT))
609
return false;
610
611
paddr = boot_params.efi_info.efi_memmap_hi;
612
paddr <<= 32;
613
paddr |= boot_params.efi_info.efi_memmap;
614
if (phys_addr == paddr)
615
return true;
616
617
paddr = boot_params.efi_info.efi_systab_hi;
618
paddr <<= 32;
619
paddr |= boot_params.efi_info.efi_systab;
620
if (phys_addr == paddr)
621
return true;
622
623
if (efi_is_table_address(phys_addr))
624
return true;
625
626
switch (efi_mem_type(phys_addr)) {
627
case EFI_BOOT_SERVICES_DATA:
628
case EFI_RUNTIME_SERVICES_DATA:
629
return true;
630
default:
631
break;
632
}
633
634
return false;
635
}
636
637
/*
638
* Examine the physical address to determine if it is boot data by checking
639
* it against the boot params setup_data chain.
640
*/
641
static bool __ref __memremap_is_setup_data(resource_size_t phys_addr, bool early)
642
{
643
unsigned int setup_data_sz = sizeof(struct setup_data);
644
struct setup_indirect *indirect;
645
struct setup_data *data;
646
u64 paddr, paddr_next;
647
648
paddr = boot_params.hdr.setup_data;
649
while (paddr) {
650
unsigned int len, size;
651
652
if (phys_addr == paddr)
653
return true;
654
655
if (early)
656
data = early_memremap_decrypted(paddr, setup_data_sz);
657
else
658
data = memremap(paddr, setup_data_sz, MEMREMAP_WB | MEMREMAP_DEC);
659
if (!data) {
660
pr_warn("failed to remap setup_data entry\n");
661
return false;
662
}
663
664
size = setup_data_sz;
665
666
paddr_next = data->next;
667
len = data->len;
668
669
if ((phys_addr > paddr) &&
670
(phys_addr < (paddr + setup_data_sz + len))) {
671
if (early)
672
early_memunmap(data, setup_data_sz);
673
else
674
memunmap(data);
675
return true;
676
}
677
678
if (data->type == SETUP_INDIRECT) {
679
size += len;
680
if (early) {
681
early_memunmap(data, setup_data_sz);
682
data = early_memremap_decrypted(paddr, size);
683
} else {
684
memunmap(data);
685
data = memremap(paddr, size, MEMREMAP_WB | MEMREMAP_DEC);
686
}
687
if (!data) {
688
pr_warn("failed to remap indirect setup_data\n");
689
return false;
690
}
691
692
indirect = (struct setup_indirect *)data->data;
693
694
if (indirect->type != SETUP_INDIRECT) {
695
paddr = indirect->addr;
696
len = indirect->len;
697
}
698
}
699
700
if (early)
701
early_memunmap(data, size);
702
else
703
memunmap(data);
704
705
if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
706
return true;
707
708
paddr = paddr_next;
709
}
710
711
return false;
712
}
713
714
static bool memremap_is_setup_data(resource_size_t phys_addr)
715
{
716
return __memremap_is_setup_data(phys_addr, false);
717
}
718
719
static bool __init early_memremap_is_setup_data(resource_size_t phys_addr)
720
{
721
return __memremap_is_setup_data(phys_addr, true);
722
}
723
724
/*
725
* Architecture function to determine if RAM remap is allowed. By default, a
726
* RAM remap will map the data as encrypted. Determine if a RAM remap should
727
* not be done so that the data will be mapped decrypted.
728
*/
729
bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
730
unsigned long flags)
731
{
732
if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
733
return true;
734
735
if (flags & MEMREMAP_ENC)
736
return true;
737
738
if (flags & MEMREMAP_DEC)
739
return false;
740
741
if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
742
if (memremap_is_setup_data(phys_addr) ||
743
memremap_is_efi_data(phys_addr))
744
return false;
745
}
746
747
return !memremap_should_map_decrypted(phys_addr, size);
748
}
749
750
/*
751
* Architecture override of __weak function to adjust the protection attributes
752
* used when remapping memory. By default, early_memremap() will map the data
753
* as encrypted. Determine if an encrypted mapping should not be done and set
754
* the appropriate protection attributes.
755
*/
756
pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
757
unsigned long size,
758
pgprot_t prot)
759
{
760
bool encrypted_prot;
761
762
if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
763
return prot;
764
765
encrypted_prot = true;
766
767
if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
768
if (early_memremap_is_setup_data(phys_addr) ||
769
memremap_is_efi_data(phys_addr))
770
encrypted_prot = false;
771
}
772
773
if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
774
encrypted_prot = false;
775
776
return encrypted_prot ? pgprot_encrypted(prot)
777
: pgprot_decrypted(prot);
778
}
779
780
bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
781
{
782
return arch_memremap_can_ram_remap(phys_addr, size, 0);
783
}
784
785
/* Remap memory with encryption */
786
void __init *early_memremap_encrypted(resource_size_t phys_addr,
787
unsigned long size)
788
{
789
return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
790
}
791
792
/*
793
* Remap memory with encryption and write-protected - cannot be called
794
* before pat_init() is called
795
*/
796
void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
797
unsigned long size)
798
{
799
if (!x86_has_pat_wp())
800
return NULL;
801
return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
802
}
803
804
/* Remap memory without encryption */
805
void __init *early_memremap_decrypted(resource_size_t phys_addr,
806
unsigned long size)
807
{
808
return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
809
}
810
811
/*
812
* Remap memory without encryption and write-protected - cannot be called
813
* before pat_init() is called
814
*/
815
void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
816
unsigned long size)
817
{
818
if (!x86_has_pat_wp())
819
return NULL;
820
return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
821
}
822
#endif /* CONFIG_AMD_MEM_ENCRYPT */
823
824
static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
825
826
static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
827
{
828
/* Don't assume we're using swapper_pg_dir at this point */
829
pgd_t *base = __va(read_cr3_pa());
830
pgd_t *pgd = &base[pgd_index(addr)];
831
p4d_t *p4d = p4d_offset(pgd, addr);
832
pud_t *pud = pud_offset(p4d, addr);
833
pmd_t *pmd = pmd_offset(pud, addr);
834
835
return pmd;
836
}
837
838
static inline pte_t * __init early_ioremap_pte(unsigned long addr)
839
{
840
return &bm_pte[pte_index(addr)];
841
}
842
843
bool __init is_early_ioremap_ptep(pte_t *ptep)
844
{
845
return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
846
}
847
848
void __init early_ioremap_init(void)
849
{
850
pmd_t *pmd;
851
852
#ifdef CONFIG_X86_64
853
BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
854
#else
855
WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
856
#endif
857
858
early_ioremap_setup();
859
860
pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
861
memset(bm_pte, 0, sizeof(bm_pte));
862
pmd_populate_kernel(&init_mm, pmd, bm_pte);
863
864
/*
865
* The boot-ioremap range spans multiple pmds, for which
866
* we are not prepared:
867
*/
868
#define __FIXADDR_TOP (-PAGE_SIZE)
869
BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
870
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
871
#undef __FIXADDR_TOP
872
if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
873
WARN_ON(1);
874
printk(KERN_WARNING "pmd %p != %p\n",
875
pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
876
printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
877
fix_to_virt(FIX_BTMAP_BEGIN));
878
printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
879
fix_to_virt(FIX_BTMAP_END));
880
881
printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
882
printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
883
FIX_BTMAP_BEGIN);
884
}
885
}
886
887
void __init __early_set_fixmap(enum fixed_addresses idx,
888
phys_addr_t phys, pgprot_t flags)
889
{
890
unsigned long addr = __fix_to_virt(idx);
891
pte_t *pte;
892
893
if (idx >= __end_of_fixed_addresses) {
894
BUG();
895
return;
896
}
897
pte = early_ioremap_pte(addr);
898
899
/* Sanitize 'prot' against any unsupported bits: */
900
pgprot_val(flags) &= __supported_pte_mask;
901
902
if (pgprot_val(flags))
903
set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
904
else
905
pte_clear(&init_mm, addr, pte);
906
flush_tlb_one_kernel(addr);
907
}
908
909