Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/mm/kmmio.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Support for MMIO probes.
3
* Benefit many code from kprobes
4
* (C) 2002 Louis Zhuang <[email protected]>.
5
* 2007 Alexander Eichner
6
* 2008 Pekka Paalanen <[email protected]>
7
*/
8
9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11
#include <linux/list.h>
12
#include <linux/rculist.h>
13
#include <linux/spinlock.h>
14
#include <linux/hash.h>
15
#include <linux/export.h>
16
#include <linux/kernel.h>
17
#include <linux/uaccess.h>
18
#include <linux/ptrace.h>
19
#include <linux/preempt.h>
20
#include <linux/percpu.h>
21
#include <linux/kdebug.h>
22
#include <linux/mutex.h>
23
#include <linux/io.h>
24
#include <linux/slab.h>
25
#include <asm/cacheflush.h>
26
#include <asm/tlbflush.h>
27
#include <linux/errno.h>
28
#include <asm/debugreg.h>
29
#include <linux/mmiotrace.h>
30
31
#define KMMIO_PAGE_HASH_BITS 4
32
#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
33
34
struct kmmio_fault_page {
35
struct list_head list;
36
struct kmmio_fault_page *release_next;
37
unsigned long addr; /* the requested address */
38
pteval_t old_presence; /* page presence prior to arming */
39
bool armed;
40
41
/*
42
* Number of times this page has been registered as a part
43
* of a probe. If zero, page is disarmed and this may be freed.
44
* Used only by writers (RCU) and post_kmmio_handler().
45
* Protected by kmmio_lock, when linked into kmmio_page_table.
46
*/
47
int count;
48
49
bool scheduled_for_release;
50
};
51
52
struct kmmio_delayed_release {
53
struct rcu_head rcu;
54
struct kmmio_fault_page *release_list;
55
};
56
57
struct kmmio_context {
58
struct kmmio_fault_page *fpage;
59
struct kmmio_probe *probe;
60
unsigned long saved_flags;
61
unsigned long addr;
62
int active;
63
};
64
65
/*
66
* The kmmio_lock is taken in int3 context, which is treated as NMI context.
67
* This causes lockdep to complain about it bein in both NMI and normal
68
* context. Hide it from lockdep, as it should not have any other locks
69
* taken under it, and this is only enabled for debugging mmio anyway.
70
*/
71
static arch_spinlock_t kmmio_lock = __ARCH_SPIN_LOCK_UNLOCKED;
72
73
/* Protected by kmmio_lock */
74
unsigned int kmmio_count;
75
76
/* Read-protected by RCU, write-protected by kmmio_lock. */
77
static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
78
static LIST_HEAD(kmmio_probes);
79
80
static struct list_head *kmmio_page_list(unsigned long addr)
81
{
82
unsigned int l;
83
pte_t *pte = lookup_address(addr, &l);
84
85
if (!pte)
86
return NULL;
87
addr &= page_level_mask(l);
88
89
return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
90
}
91
92
/* Accessed per-cpu */
93
static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
94
95
/*
96
* this is basically a dynamic stabbing problem:
97
* Could use the existing prio tree code or
98
* Possible better implementations:
99
* The Interval Skip List: A Data Structure for Finding All Intervals That
100
* Overlap a Point (might be simple)
101
* Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
102
*/
103
/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
104
static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
105
{
106
struct kmmio_probe *p;
107
list_for_each_entry_rcu(p, &kmmio_probes, list) {
108
if (addr >= p->addr && addr < (p->addr + p->len))
109
return p;
110
}
111
return NULL;
112
}
113
114
/* You must be holding RCU read lock. */
115
static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
116
{
117
struct list_head *head;
118
struct kmmio_fault_page *f;
119
unsigned int l;
120
pte_t *pte = lookup_address(addr, &l);
121
122
if (!pte)
123
return NULL;
124
addr &= page_level_mask(l);
125
head = kmmio_page_list(addr);
126
list_for_each_entry_rcu(f, head, list) {
127
if (f->addr == addr)
128
return f;
129
}
130
return NULL;
131
}
132
133
static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
134
{
135
pmd_t new_pmd;
136
pmdval_t v = pmd_val(*pmd);
137
if (clear) {
138
*old = v;
139
new_pmd = pmd_mkinvalid(*pmd);
140
} else {
141
/* Presume this has been called with clear==true previously */
142
new_pmd = __pmd(*old);
143
}
144
set_pmd(pmd, new_pmd);
145
}
146
147
static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
148
{
149
pteval_t v = pte_val(*pte);
150
if (clear) {
151
*old = v;
152
/* Nothing should care about address */
153
pte_clear(&init_mm, 0, pte);
154
} else {
155
/* Presume this has been called with clear==true previously */
156
set_pte_atomic(pte, __pte(*old));
157
}
158
}
159
160
static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
161
{
162
unsigned int level;
163
pte_t *pte = lookup_address(f->addr, &level);
164
165
if (!pte) {
166
pr_err("no pte for addr 0x%08lx\n", f->addr);
167
return -1;
168
}
169
170
switch (level) {
171
case PG_LEVEL_2M:
172
clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
173
break;
174
case PG_LEVEL_4K:
175
clear_pte_presence(pte, clear, &f->old_presence);
176
break;
177
default:
178
pr_err("unexpected page level 0x%x.\n", level);
179
return -1;
180
}
181
182
flush_tlb_one_kernel(f->addr);
183
return 0;
184
}
185
186
/*
187
* Mark the given page as not present. Access to it will trigger a fault.
188
*
189
* Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
190
* protection is ignored here. RCU read lock is assumed held, so the struct
191
* will not disappear unexpectedly. Furthermore, the caller must guarantee,
192
* that double arming the same virtual address (page) cannot occur.
193
*
194
* Double disarming on the other hand is allowed, and may occur when a fault
195
* and mmiotrace shutdown happen simultaneously.
196
*/
197
static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
198
{
199
int ret;
200
WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
201
if (f->armed) {
202
pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n",
203
f->addr, f->count, !!f->old_presence);
204
}
205
ret = clear_page_presence(f, true);
206
WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
207
f->addr);
208
f->armed = true;
209
return ret;
210
}
211
212
/** Restore the given page to saved presence state. */
213
static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
214
{
215
int ret = clear_page_presence(f, false);
216
WARN_ONCE(ret < 0,
217
KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
218
f->armed = false;
219
}
220
221
/*
222
* This is being called from do_page_fault().
223
*
224
* We may be in an interrupt or a critical section. Also prefecthing may
225
* trigger a page fault. We may be in the middle of process switch.
226
* We cannot take any locks, because we could be executing especially
227
* within a kmmio critical section.
228
*
229
* Local interrupts are disabled, so preemption cannot happen.
230
* Do not enable interrupts, do not sleep, and watch out for other CPUs.
231
*/
232
/*
233
* Interrupts are disabled on entry as trap3 is an interrupt gate
234
* and they remain disabled throughout this function.
235
*/
236
int kmmio_handler(struct pt_regs *regs, unsigned long addr)
237
{
238
struct kmmio_context *ctx;
239
struct kmmio_fault_page *faultpage;
240
int ret = 0; /* default to fault not handled */
241
unsigned long page_base = addr;
242
unsigned int l;
243
pte_t *pte = lookup_address(addr, &l);
244
if (!pte)
245
return -EINVAL;
246
page_base &= page_level_mask(l);
247
248
/*
249
* Hold the RCU read lock over single stepping to avoid looking
250
* up the probe and kmmio_fault_page again. The rcu_read_lock_sched()
251
* also disables preemption and prevents process switch during
252
* the single stepping. We can only handle one active kmmio trace
253
* per cpu, so ensure that we finish it before something else
254
* gets to run.
255
*/
256
rcu_read_lock_sched_notrace();
257
258
faultpage = get_kmmio_fault_page(page_base);
259
if (!faultpage) {
260
/*
261
* Either this page fault is not caused by kmmio, or
262
* another CPU just pulled the kmmio probe from under
263
* our feet. The latter case should not be possible.
264
*/
265
goto no_kmmio;
266
}
267
268
ctx = this_cpu_ptr(&kmmio_ctx);
269
if (ctx->active) {
270
if (page_base == ctx->addr) {
271
/*
272
* A second fault on the same page means some other
273
* condition needs handling by do_page_fault(), the
274
* page really not being present is the most common.
275
*/
276
pr_debug("secondary hit for 0x%08lx CPU %d.\n",
277
addr, smp_processor_id());
278
279
if (!faultpage->old_presence)
280
pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
281
addr, smp_processor_id());
282
} else {
283
/*
284
* Prevent overwriting already in-flight context.
285
* This should not happen, let's hope disarming at
286
* least prevents a panic.
287
*/
288
pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
289
smp_processor_id(), addr);
290
pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
291
disarm_kmmio_fault_page(faultpage);
292
}
293
goto no_kmmio;
294
}
295
ctx->active++;
296
297
ctx->fpage = faultpage;
298
ctx->probe = get_kmmio_probe(page_base);
299
ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
300
ctx->addr = page_base;
301
302
if (ctx->probe && ctx->probe->pre_handler)
303
ctx->probe->pre_handler(ctx->probe, regs, addr);
304
305
/*
306
* Enable single-stepping and disable interrupts for the faulting
307
* context. Local interrupts must not get enabled during stepping.
308
*/
309
regs->flags |= X86_EFLAGS_TF;
310
regs->flags &= ~X86_EFLAGS_IF;
311
312
/* Now we set present bit in PTE and single step. */
313
disarm_kmmio_fault_page(ctx->fpage);
314
315
/*
316
* If another cpu accesses the same page while we are stepping,
317
* the access will not be caught. It will simply succeed and the
318
* only downside is we lose the event. If this becomes a problem,
319
* the user should drop to single cpu before tracing.
320
*/
321
322
return 1; /* fault handled */
323
324
no_kmmio:
325
rcu_read_unlock_sched_notrace();
326
return ret;
327
}
328
329
/*
330
* Interrupts are disabled on entry as trap1 is an interrupt gate
331
* and they remain disabled throughout this function.
332
* This must always get called as the pair to kmmio_handler().
333
*/
334
static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
335
{
336
int ret = 0;
337
struct kmmio_context *ctx = this_cpu_ptr(&kmmio_ctx);
338
339
if (!ctx->active) {
340
/*
341
* debug traps without an active context are due to either
342
* something external causing them (f.e. using a debugger while
343
* mmio tracing enabled), or erroneous behaviour
344
*/
345
pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id());
346
goto out;
347
}
348
349
if (ctx->probe && ctx->probe->post_handler)
350
ctx->probe->post_handler(ctx->probe, condition, regs);
351
352
/* Prevent racing against release_kmmio_fault_page(). */
353
arch_spin_lock(&kmmio_lock);
354
if (ctx->fpage->count)
355
arm_kmmio_fault_page(ctx->fpage);
356
arch_spin_unlock(&kmmio_lock);
357
358
regs->flags &= ~X86_EFLAGS_TF;
359
regs->flags |= ctx->saved_flags;
360
361
/* These were acquired in kmmio_handler(). */
362
ctx->active--;
363
BUG_ON(ctx->active);
364
rcu_read_unlock_sched_notrace();
365
366
/*
367
* if somebody else is singlestepping across a probe point, flags
368
* will have TF set, in which case, continue the remaining processing
369
* of do_debug, as if this is not a probe hit.
370
*/
371
if (!(regs->flags & X86_EFLAGS_TF))
372
ret = 1;
373
out:
374
return ret;
375
}
376
377
/* You must be holding kmmio_lock. */
378
static int add_kmmio_fault_page(unsigned long addr)
379
{
380
struct kmmio_fault_page *f;
381
382
f = get_kmmio_fault_page(addr);
383
if (f) {
384
if (!f->count)
385
arm_kmmio_fault_page(f);
386
f->count++;
387
return 0;
388
}
389
390
f = kzalloc(sizeof(*f), GFP_ATOMIC);
391
if (!f)
392
return -1;
393
394
f->count = 1;
395
f->addr = addr;
396
397
if (arm_kmmio_fault_page(f)) {
398
kfree(f);
399
return -1;
400
}
401
402
list_add_rcu(&f->list, kmmio_page_list(f->addr));
403
404
return 0;
405
}
406
407
/* You must be holding kmmio_lock. */
408
static void release_kmmio_fault_page(unsigned long addr,
409
struct kmmio_fault_page **release_list)
410
{
411
struct kmmio_fault_page *f;
412
413
f = get_kmmio_fault_page(addr);
414
if (!f)
415
return;
416
417
f->count--;
418
BUG_ON(f->count < 0);
419
if (!f->count) {
420
disarm_kmmio_fault_page(f);
421
if (!f->scheduled_for_release) {
422
f->release_next = *release_list;
423
*release_list = f;
424
f->scheduled_for_release = true;
425
}
426
}
427
}
428
429
/*
430
* With page-unaligned ioremaps, one or two armed pages may contain
431
* addresses from outside the intended mapping. Events for these addresses
432
* are currently silently dropped. The events may result only from programming
433
* mistakes by accessing addresses before the beginning or past the end of a
434
* mapping.
435
*/
436
int register_kmmio_probe(struct kmmio_probe *p)
437
{
438
unsigned long flags;
439
int ret = 0;
440
unsigned long size = 0;
441
unsigned long addr = p->addr & PAGE_MASK;
442
const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
443
unsigned int l;
444
pte_t *pte;
445
446
local_irq_save(flags);
447
arch_spin_lock(&kmmio_lock);
448
if (get_kmmio_probe(addr)) {
449
ret = -EEXIST;
450
goto out;
451
}
452
453
pte = lookup_address(addr, &l);
454
if (!pte) {
455
ret = -EINVAL;
456
goto out;
457
}
458
459
kmmio_count++;
460
list_add_rcu(&p->list, &kmmio_probes);
461
while (size < size_lim) {
462
if (add_kmmio_fault_page(addr + size))
463
pr_err("Unable to set page fault.\n");
464
size += page_level_size(l);
465
}
466
out:
467
arch_spin_unlock(&kmmio_lock);
468
local_irq_restore(flags);
469
470
/*
471
* XXX: What should I do here?
472
* Here was a call to global_flush_tlb(), but it does not exist
473
* anymore. It seems it's not needed after all.
474
*/
475
return ret;
476
}
477
EXPORT_SYMBOL(register_kmmio_probe);
478
479
static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
480
{
481
struct kmmio_delayed_release *dr = container_of(
482
head,
483
struct kmmio_delayed_release,
484
rcu);
485
struct kmmio_fault_page *f = dr->release_list;
486
while (f) {
487
struct kmmio_fault_page *next = f->release_next;
488
BUG_ON(f->count);
489
kfree(f);
490
f = next;
491
}
492
kfree(dr);
493
}
494
495
static void remove_kmmio_fault_pages(struct rcu_head *head)
496
{
497
struct kmmio_delayed_release *dr =
498
container_of(head, struct kmmio_delayed_release, rcu);
499
struct kmmio_fault_page *f = dr->release_list;
500
struct kmmio_fault_page **prevp = &dr->release_list;
501
unsigned long flags;
502
503
local_irq_save(flags);
504
arch_spin_lock(&kmmio_lock);
505
while (f) {
506
if (!f->count) {
507
list_del_rcu(&f->list);
508
prevp = &f->release_next;
509
} else {
510
*prevp = f->release_next;
511
f->release_next = NULL;
512
f->scheduled_for_release = false;
513
}
514
f = *prevp;
515
}
516
arch_spin_unlock(&kmmio_lock);
517
local_irq_restore(flags);
518
519
/* This is the real RCU destroy call. */
520
call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
521
}
522
523
/*
524
* Remove a kmmio probe. You have to synchronize_rcu() before you can be
525
* sure that the callbacks will not be called anymore. Only after that
526
* you may actually release your struct kmmio_probe.
527
*
528
* Unregistering a kmmio fault page has three steps:
529
* 1. release_kmmio_fault_page()
530
* Disarm the page, wait a grace period to let all faults finish.
531
* 2. remove_kmmio_fault_pages()
532
* Remove the pages from kmmio_page_table.
533
* 3. rcu_free_kmmio_fault_pages()
534
* Actually free the kmmio_fault_page structs as with RCU.
535
*/
536
void unregister_kmmio_probe(struct kmmio_probe *p)
537
{
538
unsigned long flags;
539
unsigned long size = 0;
540
unsigned long addr = p->addr & PAGE_MASK;
541
const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
542
struct kmmio_fault_page *release_list = NULL;
543
struct kmmio_delayed_release *drelease;
544
unsigned int l;
545
pte_t *pte;
546
547
pte = lookup_address(addr, &l);
548
if (!pte)
549
return;
550
551
local_irq_save(flags);
552
arch_spin_lock(&kmmio_lock);
553
while (size < size_lim) {
554
release_kmmio_fault_page(addr + size, &release_list);
555
size += page_level_size(l);
556
}
557
list_del_rcu(&p->list);
558
kmmio_count--;
559
arch_spin_unlock(&kmmio_lock);
560
local_irq_restore(flags);
561
562
if (!release_list)
563
return;
564
565
drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
566
if (!drelease) {
567
pr_crit("leaking kmmio_fault_page objects.\n");
568
return;
569
}
570
drelease->release_list = release_list;
571
572
/*
573
* This is not really RCU here. We have just disarmed a set of
574
* pages so that they cannot trigger page faults anymore. However,
575
* we cannot remove the pages from kmmio_page_table,
576
* because a probe hit might be in flight on another CPU. The
577
* pages are collected into a list, and they will be removed from
578
* kmmio_page_table when it is certain that no probe hit related to
579
* these pages can be in flight. RCU grace period sounds like a
580
* good choice.
581
*
582
* If we removed the pages too early, kmmio page fault handler might
583
* not find the respective kmmio_fault_page and determine it's not
584
* a kmmio fault, when it actually is. This would lead to madness.
585
*/
586
call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
587
}
588
EXPORT_SYMBOL(unregister_kmmio_probe);
589
590
static int
591
kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
592
{
593
struct die_args *arg = args;
594
unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
595
596
if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
597
if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
598
/*
599
* Reset the BS bit in dr6 (pointed by args->err) to
600
* denote completion of processing
601
*/
602
*dr6_p &= ~DR_STEP;
603
return NOTIFY_STOP;
604
}
605
606
return NOTIFY_DONE;
607
}
608
609
static struct notifier_block nb_die = {
610
.notifier_call = kmmio_die_notifier
611
};
612
613
int kmmio_init(void)
614
{
615
int i;
616
617
for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
618
INIT_LIST_HEAD(&kmmio_page_table[i]);
619
620
return register_die_notifier(&nb_die);
621
}
622
623
void kmmio_cleanup(void)
624
{
625
int i;
626
627
unregister_die_notifier(&nb_die);
628
for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
629
WARN_ONCE(!list_empty(&kmmio_page_table[i]),
630
KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
631
}
632
}
633
634