Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/mm/pti.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright(c) 2017 Intel Corporation. All rights reserved.
4
*
5
* This code is based in part on work published here:
6
*
7
* https://github.com/IAIK/KAISER
8
*
9
* The original work was written by and signed off by for the Linux
10
* kernel by:
11
*
12
* Signed-off-by: Richard Fellner <[email protected]>
13
* Signed-off-by: Moritz Lipp <[email protected]>
14
* Signed-off-by: Daniel Gruss <[email protected]>
15
* Signed-off-by: Michael Schwarz <[email protected]>
16
*
17
* Major changes to the original code by: Dave Hansen <[email protected]>
18
* Mostly rewritten by Thomas Gleixner <[email protected]> and
19
* Andy Lutomirsky <[email protected]>
20
*/
21
#include <linux/kernel.h>
22
#include <linux/errno.h>
23
#include <linux/string.h>
24
#include <linux/types.h>
25
#include <linux/bug.h>
26
#include <linux/init.h>
27
#include <linux/spinlock.h>
28
#include <linux/mm.h>
29
#include <linux/uaccess.h>
30
#include <linux/cpu.h>
31
32
#include <asm/cpufeature.h>
33
#include <asm/hypervisor.h>
34
#include <asm/vsyscall.h>
35
#include <asm/cmdline.h>
36
#include <asm/pti.h>
37
#include <asm/tlbflush.h>
38
#include <asm/desc.h>
39
#include <asm/sections.h>
40
#include <asm/set_memory.h>
41
#include <asm/bugs.h>
42
43
#undef pr_fmt
44
#define pr_fmt(fmt) "Kernel/User page tables isolation: " fmt
45
46
/* Backporting helper */
47
#ifndef __GFP_NOTRACK
48
#define __GFP_NOTRACK 0
49
#endif
50
51
/*
52
* Define the page-table levels we clone for user-space on 32
53
* and 64 bit.
54
*/
55
#ifdef CONFIG_X86_64
56
#define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PMD
57
#else
58
#define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PTE
59
#endif
60
61
static void __init pti_print_if_insecure(const char *reason)
62
{
63
if (boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
64
pr_info("%s\n", reason);
65
}
66
67
static void __init pti_print_if_secure(const char *reason)
68
{
69
if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
70
pr_info("%s\n", reason);
71
}
72
73
/* Assume mode is auto unless overridden via cmdline below. */
74
static enum pti_mode {
75
PTI_AUTO = 0,
76
PTI_FORCE_OFF,
77
PTI_FORCE_ON
78
} pti_mode;
79
80
void __init pti_check_boottime_disable(void)
81
{
82
if (hypervisor_is_type(X86_HYPER_XEN_PV)) {
83
pti_mode = PTI_FORCE_OFF;
84
pti_print_if_insecure("disabled on XEN PV.");
85
return;
86
}
87
88
if (pti_mode == PTI_AUTO &&
89
!cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL))
90
pti_mode = PTI_FORCE_OFF;
91
if (pti_mode == PTI_FORCE_OFF) {
92
pti_print_if_insecure("disabled on command line.");
93
return;
94
}
95
96
if (pti_mode == PTI_FORCE_ON)
97
pti_print_if_secure("force enabled on command line.");
98
99
if (pti_mode == PTI_AUTO && !boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
100
return;
101
102
setup_force_cpu_cap(X86_FEATURE_PTI);
103
104
if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) {
105
pr_debug("PTI enabled, disabling INVLPGB\n");
106
setup_clear_cpu_cap(X86_FEATURE_INVLPGB);
107
}
108
}
109
110
static int __init pti_parse_cmdline(char *arg)
111
{
112
if (!strcmp(arg, "off"))
113
pti_mode = PTI_FORCE_OFF;
114
else if (!strcmp(arg, "on"))
115
pti_mode = PTI_FORCE_ON;
116
else if (!strcmp(arg, "auto"))
117
pti_mode = PTI_AUTO;
118
else
119
return -EINVAL;
120
return 0;
121
}
122
early_param("pti", pti_parse_cmdline);
123
124
static int __init pti_parse_cmdline_nopti(char *arg)
125
{
126
pti_mode = PTI_FORCE_OFF;
127
return 0;
128
}
129
early_param("nopti", pti_parse_cmdline_nopti);
130
131
pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
132
{
133
/*
134
* Changes to the high (kernel) portion of the kernelmode page
135
* tables are not automatically propagated to the usermode tables.
136
*
137
* Users should keep in mind that, unlike the kernelmode tables,
138
* there is no vmalloc_fault equivalent for the usermode tables.
139
* Top-level entries added to init_mm's usermode pgd after boot
140
* will not be automatically propagated to other mms.
141
*/
142
if (!pgdp_maps_userspace(pgdp) || (pgd.pgd & _PAGE_NOPTISHADOW))
143
return pgd;
144
145
/*
146
* The user page tables get the full PGD, accessible from
147
* userspace:
148
*/
149
kernel_to_user_pgdp(pgdp)->pgd = pgd.pgd;
150
151
/*
152
* If this is normal user memory, make it NX in the kernel
153
* pagetables so that, if we somehow screw up and return to
154
* usermode with the kernel CR3 loaded, we'll get a page fault
155
* instead of allowing user code to execute with the wrong CR3.
156
*
157
* As exceptions, we don't set NX if:
158
* - _PAGE_USER is not set. This could be an executable
159
* EFI runtime mapping or something similar, and the kernel
160
* may execute from it
161
* - we don't have NX support
162
* - we're clearing the PGD (i.e. the new pgd is not present).
163
*/
164
if ((pgd.pgd & (_PAGE_USER|_PAGE_PRESENT)) == (_PAGE_USER|_PAGE_PRESENT) &&
165
(__supported_pte_mask & _PAGE_NX))
166
pgd.pgd |= _PAGE_NX;
167
168
/* return the copy of the PGD we want the kernel to use: */
169
return pgd;
170
}
171
172
/*
173
* Walk the user copy of the page tables (optionally) trying to allocate
174
* page table pages on the way down.
175
*
176
* Returns a pointer to a P4D on success, or NULL on failure.
177
*/
178
static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address)
179
{
180
pgd_t *pgd = kernel_to_user_pgdp(pgd_offset_k(address));
181
gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
182
183
if (address < PAGE_OFFSET) {
184
WARN_ONCE(1, "attempt to walk user address\n");
185
return NULL;
186
}
187
188
if (pgd_none(*pgd)) {
189
unsigned long new_p4d_page = __get_free_page(gfp);
190
if (WARN_ON_ONCE(!new_p4d_page))
191
return NULL;
192
193
set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page)));
194
}
195
BUILD_BUG_ON(pgd_leaf(*pgd));
196
197
return p4d_offset(pgd, address);
198
}
199
200
/*
201
* Walk the user copy of the page tables (optionally) trying to allocate
202
* page table pages on the way down.
203
*
204
* Returns a pointer to a PMD on success, or NULL on failure.
205
*/
206
static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address)
207
{
208
gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
209
p4d_t *p4d;
210
pud_t *pud;
211
212
p4d = pti_user_pagetable_walk_p4d(address);
213
if (!p4d)
214
return NULL;
215
216
BUILD_BUG_ON(p4d_leaf(*p4d));
217
if (p4d_none(*p4d)) {
218
unsigned long new_pud_page = __get_free_page(gfp);
219
if (WARN_ON_ONCE(!new_pud_page))
220
return NULL;
221
222
set_p4d(p4d, __p4d(_KERNPG_TABLE | __pa(new_pud_page)));
223
}
224
225
pud = pud_offset(p4d, address);
226
/* The user page tables do not use large mappings: */
227
if (pud_leaf(*pud)) {
228
WARN_ON(1);
229
return NULL;
230
}
231
if (pud_none(*pud)) {
232
unsigned long new_pmd_page = __get_free_page(gfp);
233
if (WARN_ON_ONCE(!new_pmd_page))
234
return NULL;
235
236
set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page)));
237
}
238
239
return pmd_offset(pud, address);
240
}
241
242
/*
243
* Walk the shadow copy of the page tables (optionally) trying to allocate
244
* page table pages on the way down. Does not support large pages.
245
*
246
* Note: this is only used when mapping *new* kernel data into the
247
* user/shadow page tables. It is never used for userspace data.
248
*
249
* Returns a pointer to a PTE on success, or NULL on failure.
250
*/
251
static pte_t *pti_user_pagetable_walk_pte(unsigned long address, bool late_text)
252
{
253
gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
254
pmd_t *pmd;
255
pte_t *pte;
256
257
pmd = pti_user_pagetable_walk_pmd(address);
258
if (!pmd)
259
return NULL;
260
261
/* Large PMD mapping found */
262
if (pmd_leaf(*pmd)) {
263
/* Clear the PMD if we hit a large mapping from the first round */
264
if (late_text) {
265
set_pmd(pmd, __pmd(0));
266
} else {
267
WARN_ON_ONCE(1);
268
return NULL;
269
}
270
}
271
272
if (pmd_none(*pmd)) {
273
unsigned long new_pte_page = __get_free_page(gfp);
274
if (!new_pte_page)
275
return NULL;
276
277
set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page)));
278
}
279
280
pte = pte_offset_kernel(pmd, address);
281
if (pte_flags(*pte) & _PAGE_USER) {
282
WARN_ONCE(1, "attempt to walk to user pte\n");
283
return NULL;
284
}
285
return pte;
286
}
287
288
#ifdef CONFIG_X86_VSYSCALL_EMULATION
289
static void __init pti_setup_vsyscall(void)
290
{
291
pte_t *pte, *target_pte;
292
unsigned int level;
293
294
pte = lookup_address(VSYSCALL_ADDR, &level);
295
if (!pte || WARN_ON(level != PG_LEVEL_4K) || pte_none(*pte))
296
return;
297
298
target_pte = pti_user_pagetable_walk_pte(VSYSCALL_ADDR, false);
299
if (WARN_ON(!target_pte))
300
return;
301
302
*target_pte = *pte;
303
set_vsyscall_pgtable_user_bits(kernel_to_user_pgdp(swapper_pg_dir));
304
}
305
#else
306
static void __init pti_setup_vsyscall(void) { }
307
#endif
308
309
enum pti_clone_level {
310
PTI_CLONE_PMD,
311
PTI_CLONE_PTE,
312
};
313
314
static void
315
pti_clone_pgtable(unsigned long start, unsigned long end,
316
enum pti_clone_level level, bool late_text)
317
{
318
unsigned long addr;
319
320
/*
321
* Clone the populated PMDs which cover start to end. These PMD areas
322
* can have holes.
323
*/
324
for (addr = start; addr < end;) {
325
pte_t *pte, *target_pte;
326
pmd_t *pmd, *target_pmd;
327
pgd_t *pgd;
328
p4d_t *p4d;
329
pud_t *pud;
330
331
/* Overflow check */
332
if (addr < start)
333
break;
334
335
pgd = pgd_offset_k(addr);
336
if (WARN_ON(pgd_none(*pgd)))
337
return;
338
p4d = p4d_offset(pgd, addr);
339
if (WARN_ON(p4d_none(*p4d)))
340
return;
341
342
pud = pud_offset(p4d, addr);
343
if (pud_none(*pud)) {
344
WARN_ON_ONCE(addr & ~PUD_MASK);
345
addr = round_up(addr + 1, PUD_SIZE);
346
continue;
347
}
348
349
pmd = pmd_offset(pud, addr);
350
if (pmd_none(*pmd)) {
351
WARN_ON_ONCE(addr & ~PMD_MASK);
352
addr = round_up(addr + 1, PMD_SIZE);
353
continue;
354
}
355
356
if (pmd_leaf(*pmd) || level == PTI_CLONE_PMD) {
357
target_pmd = pti_user_pagetable_walk_pmd(addr);
358
if (WARN_ON(!target_pmd))
359
return;
360
361
/*
362
* Only clone present PMDs. This ensures only setting
363
* _PAGE_GLOBAL on present PMDs. This should only be
364
* called on well-known addresses anyway, so a non-
365
* present PMD would be a surprise.
366
*/
367
if (WARN_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT)))
368
return;
369
370
/*
371
* Setting 'target_pmd' below creates a mapping in both
372
* the user and kernel page tables. It is effectively
373
* global, so set it as global in both copies. Note:
374
* the X86_FEATURE_PGE check is not _required_ because
375
* the CPU ignores _PAGE_GLOBAL when PGE is not
376
* supported. The check keeps consistency with
377
* code that only set this bit when supported.
378
*/
379
if (boot_cpu_has(X86_FEATURE_PGE))
380
*pmd = pmd_set_flags(*pmd, _PAGE_GLOBAL);
381
382
/*
383
* Copy the PMD. That is, the kernelmode and usermode
384
* tables will share the last-level page tables of this
385
* address range
386
*/
387
*target_pmd = *pmd;
388
389
addr = round_up(addr + 1, PMD_SIZE);
390
391
} else if (level == PTI_CLONE_PTE) {
392
393
/* Walk the page-table down to the pte level */
394
pte = pte_offset_kernel(pmd, addr);
395
if (pte_none(*pte)) {
396
addr = round_up(addr + 1, PAGE_SIZE);
397
continue;
398
}
399
400
/* Only clone present PTEs */
401
if (WARN_ON(!(pte_flags(*pte) & _PAGE_PRESENT)))
402
return;
403
404
/* Allocate PTE in the user page-table */
405
target_pte = pti_user_pagetable_walk_pte(addr, late_text);
406
if (WARN_ON(!target_pte))
407
return;
408
409
/* Set GLOBAL bit in both PTEs */
410
if (boot_cpu_has(X86_FEATURE_PGE))
411
*pte = pte_set_flags(*pte, _PAGE_GLOBAL);
412
413
/* Clone the PTE */
414
*target_pte = *pte;
415
416
addr = round_up(addr + 1, PAGE_SIZE);
417
418
} else {
419
BUG();
420
}
421
}
422
}
423
424
#ifdef CONFIG_X86_64
425
/*
426
* Clone a single p4d (i.e. a top-level entry on 4-level systems and a
427
* next-level entry on 5-level systems.
428
*/
429
static void __init pti_clone_p4d(unsigned long addr)
430
{
431
p4d_t *kernel_p4d, *user_p4d;
432
pgd_t *kernel_pgd;
433
434
user_p4d = pti_user_pagetable_walk_p4d(addr);
435
if (!user_p4d)
436
return;
437
438
kernel_pgd = pgd_offset_k(addr);
439
kernel_p4d = p4d_offset(kernel_pgd, addr);
440
*user_p4d = *kernel_p4d;
441
}
442
443
/*
444
* Clone the CPU_ENTRY_AREA and associated data into the user space visible
445
* page table.
446
*/
447
static void __init pti_clone_user_shared(void)
448
{
449
unsigned int cpu;
450
451
pti_clone_p4d(CPU_ENTRY_AREA_BASE);
452
453
for_each_possible_cpu(cpu) {
454
/*
455
* The SYSCALL64 entry code needs one word of scratch space
456
* in which to spill a register. It lives in the sp2 slot
457
* of the CPU's TSS.
458
*
459
* This is done for all possible CPUs during boot to ensure
460
* that it's propagated to all mms.
461
*/
462
463
unsigned long va = (unsigned long)&per_cpu(cpu_tss_rw, cpu);
464
phys_addr_t pa = per_cpu_ptr_to_phys((void *)va);
465
pte_t *target_pte;
466
467
target_pte = pti_user_pagetable_walk_pte(va, false);
468
if (WARN_ON(!target_pte))
469
return;
470
471
*target_pte = pfn_pte(pa >> PAGE_SHIFT, PAGE_KERNEL);
472
}
473
}
474
475
#else /* CONFIG_X86_64 */
476
477
/*
478
* On 32 bit PAE systems with 1GB of Kernel address space there is only
479
* one pgd/p4d for the whole kernel. Cloning that would map the whole
480
* address space into the user page-tables, making PTI useless. So clone
481
* the page-table on the PMD level to prevent that.
482
*/
483
static void __init pti_clone_user_shared(void)
484
{
485
unsigned long start, end;
486
487
start = CPU_ENTRY_AREA_BASE;
488
end = start + (PAGE_SIZE * CPU_ENTRY_AREA_PAGES);
489
490
pti_clone_pgtable(start, end, PTI_CLONE_PMD, false);
491
}
492
#endif /* CONFIG_X86_64 */
493
494
/*
495
* Clone the ESPFIX P4D into the user space visible page table
496
*/
497
static void __init pti_setup_espfix64(void)
498
{
499
#ifdef CONFIG_X86_ESPFIX64
500
pti_clone_p4d(ESPFIX_BASE_ADDR);
501
#endif
502
}
503
504
/*
505
* Clone the populated PMDs of the entry text and force it RO.
506
*/
507
static void pti_clone_entry_text(bool late)
508
{
509
pti_clone_pgtable((unsigned long) __entry_text_start,
510
(unsigned long) __entry_text_end,
511
PTI_LEVEL_KERNEL_IMAGE, late);
512
}
513
514
/*
515
* Global pages and PCIDs are both ways to make kernel TLB entries
516
* live longer, reduce TLB misses and improve kernel performance.
517
* But, leaving all kernel text Global makes it potentially accessible
518
* to Meltdown-style attacks which make it trivial to find gadgets or
519
* defeat KASLR.
520
*
521
* Only use global pages when it is really worth it.
522
*/
523
static inline bool pti_kernel_image_global_ok(void)
524
{
525
/*
526
* Systems with PCIDs get little benefit from global
527
* kernel text and are not worth the downsides.
528
*/
529
if (cpu_feature_enabled(X86_FEATURE_PCID))
530
return false;
531
532
/*
533
* Only do global kernel image for pti=auto. Do the most
534
* secure thing (not global) if pti=on specified.
535
*/
536
if (pti_mode != PTI_AUTO)
537
return false;
538
539
/*
540
* K8 may not tolerate the cleared _PAGE_RW on the userspace
541
* global kernel image pages. Do the safe thing (disable
542
* global kernel image). This is unlikely to ever be
543
* noticed because PTI is disabled by default on AMD CPUs.
544
*/
545
if (boot_cpu_has(X86_FEATURE_K8))
546
return false;
547
548
/*
549
* RANDSTRUCT derives its hardening benefits from the
550
* attacker's lack of knowledge about the layout of kernel
551
* data structures. Keep the kernel image non-global in
552
* cases where RANDSTRUCT is in use to help keep the layout a
553
* secret.
554
*/
555
if (IS_ENABLED(CONFIG_RANDSTRUCT))
556
return false;
557
558
return true;
559
}
560
561
/*
562
* For some configurations, map all of kernel text into the user page
563
* tables. This reduces TLB misses, especially on non-PCID systems.
564
*/
565
static void pti_clone_kernel_text(void)
566
{
567
/*
568
* rodata is part of the kernel image and is normally
569
* readable on the filesystem or on the web. But, do not
570
* clone the areas past rodata, they might contain secrets.
571
*/
572
unsigned long start = PFN_ALIGN(_text);
573
unsigned long end_clone = (unsigned long)__end_rodata_aligned;
574
unsigned long end_global = PFN_ALIGN((unsigned long)_etext);
575
576
if (!pti_kernel_image_global_ok())
577
return;
578
579
pr_debug("mapping partial kernel image into user address space\n");
580
581
/*
582
* Note that this will undo _some_ of the work that
583
* pti_set_kernel_image_nonglobal() did to clear the
584
* global bit.
585
*/
586
pti_clone_pgtable(start, end_clone, PTI_LEVEL_KERNEL_IMAGE, false);
587
588
/*
589
* pti_clone_pgtable() will set the global bit in any PMDs
590
* that it clones, but we also need to get any PTEs in
591
* the last level for areas that are not huge-page-aligned.
592
*/
593
594
/* Set the global bit for normal non-__init kernel text: */
595
set_memory_global(start, (end_global - start) >> PAGE_SHIFT);
596
}
597
598
static void pti_set_kernel_image_nonglobal(void)
599
{
600
/*
601
* The identity map is created with PMDs, regardless of the
602
* actual length of the kernel. We need to clear
603
* _PAGE_GLOBAL up to a PMD boundary, not just to the end
604
* of the image.
605
*/
606
unsigned long start = PFN_ALIGN(_text);
607
unsigned long end = ALIGN((unsigned long)_end, PMD_SIZE);
608
609
/*
610
* This clears _PAGE_GLOBAL from the entire kernel image.
611
* pti_clone_kernel_text() map put _PAGE_GLOBAL back for
612
* areas that are mapped to userspace.
613
*/
614
set_memory_nonglobal(start, (end - start) >> PAGE_SHIFT);
615
}
616
617
/*
618
* Initialize kernel page table isolation
619
*/
620
void __init pti_init(void)
621
{
622
if (!boot_cpu_has(X86_FEATURE_PTI))
623
return;
624
625
pr_info("enabled\n");
626
627
#ifdef CONFIG_X86_32
628
/*
629
* We check for X86_FEATURE_PCID here. But the init-code will
630
* clear the feature flag on 32 bit because the feature is not
631
* supported on 32 bit anyway. To print the warning we need to
632
* check with cpuid directly again.
633
*/
634
if (cpuid_ecx(0x1) & BIT(17)) {
635
/* Use printk to work around pr_fmt() */
636
printk(KERN_WARNING "\n");
637
printk(KERN_WARNING "************************************************************\n");
638
printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n");
639
printk(KERN_WARNING "** **\n");
640
printk(KERN_WARNING "** You are using 32-bit PTI on a 64-bit PCID-capable CPU. **\n");
641
printk(KERN_WARNING "** Your performance will increase dramatically if you **\n");
642
printk(KERN_WARNING "** switch to a 64-bit kernel! **\n");
643
printk(KERN_WARNING "** **\n");
644
printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n");
645
printk(KERN_WARNING "************************************************************\n");
646
}
647
#endif
648
649
pti_clone_user_shared();
650
651
/* Undo all global bits from the init pagetables in head_64.S: */
652
pti_set_kernel_image_nonglobal();
653
654
/* Replace some of the global bits just for shared entry text: */
655
/*
656
* This is very early in boot. Device and Late initcalls can do
657
* modprobe before free_initmem() and mark_readonly(). This
658
* pti_clone_entry_text() allows those user-mode-helpers to function,
659
* but notably the text is still RW.
660
*/
661
pti_clone_entry_text(false);
662
pti_setup_espfix64();
663
pti_setup_vsyscall();
664
}
665
666
/*
667
* Finalize the kernel mappings in the userspace page-table. Some of the
668
* mappings for the kernel image might have changed since pti_init()
669
* cloned them. This is because parts of the kernel image have been
670
* mapped RO and/or NX. These changes need to be cloned again to the
671
* userspace page-table.
672
*/
673
void pti_finalize(void)
674
{
675
if (!boot_cpu_has(X86_FEATURE_PTI))
676
return;
677
/*
678
* This is after free_initmem() (all initcalls are done) and we've done
679
* mark_readonly(). Text is now NX which might've split some PMDs
680
* relative to the early clone.
681
*/
682
pti_clone_entry_text(true);
683
pti_clone_kernel_text();
684
685
debug_checkwx_user();
686
}
687
688