Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/net/bpf_jit_comp.c
50514 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* BPF JIT compiler
4
*
5
* Copyright (C) 2011-2013 Eric Dumazet ([email protected])
6
* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7
*/
8
#include <linux/netdevice.h>
9
#include <linux/filter.h>
10
#include <linux/if_vlan.h>
11
#include <linux/bitfield.h>
12
#include <linux/bpf.h>
13
#include <linux/memory.h>
14
#include <linux/sort.h>
15
#include <asm/extable.h>
16
#include <asm/ftrace.h>
17
#include <asm/set_memory.h>
18
#include <asm/nospec-branch.h>
19
#include <asm/text-patching.h>
20
#include <asm/unwind.h>
21
#include <asm/cfi.h>
22
23
static bool all_callee_regs_used[4] = {true, true, true, true};
24
25
static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
26
{
27
if (len == 1)
28
*ptr = bytes;
29
else if (len == 2)
30
*(u16 *)ptr = bytes;
31
else {
32
*(u32 *)ptr = bytes;
33
barrier();
34
}
35
return ptr + len;
36
}
37
38
#define EMIT(bytes, len) \
39
do { prog = emit_code(prog, bytes, len); } while (0)
40
41
#define EMIT1(b1) EMIT(b1, 1)
42
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
43
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
44
#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
45
#define EMIT5(b1, b2, b3, b4, b5) \
46
do { EMIT1(b1); EMIT4(b2, b3, b4, b5); } while (0)
47
48
#define EMIT1_off32(b1, off) \
49
do { EMIT1(b1); EMIT(off, 4); } while (0)
50
#define EMIT2_off32(b1, b2, off) \
51
do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
52
#define EMIT3_off32(b1, b2, b3, off) \
53
do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
54
#define EMIT4_off32(b1, b2, b3, b4, off) \
55
do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
56
57
#ifdef CONFIG_X86_KERNEL_IBT
58
#define EMIT_ENDBR() EMIT(gen_endbr(), 4)
59
#define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4)
60
#else
61
#define EMIT_ENDBR()
62
#define EMIT_ENDBR_POISON()
63
#endif
64
65
static bool is_imm8(int value)
66
{
67
return value <= 127 && value >= -128;
68
}
69
70
/*
71
* Let us limit the positive offset to be <= 123.
72
* This is to ensure eventual jit convergence For the following patterns:
73
* ...
74
* pass4, final_proglen=4391:
75
* ...
76
* 20e: 48 85 ff test rdi,rdi
77
* 211: 74 7d je 0x290
78
* 213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
79
* ...
80
* 289: 48 85 ff test rdi,rdi
81
* 28c: 74 17 je 0x2a5
82
* 28e: e9 7f ff ff ff jmp 0x212
83
* 293: bf 03 00 00 00 mov edi,0x3
84
* Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
85
* and insn at 0x28e is 5-byte jmp insn with offset -129.
86
*
87
* pass5, final_proglen=4392:
88
* ...
89
* 20e: 48 85 ff test rdi,rdi
90
* 211: 0f 84 80 00 00 00 je 0x297
91
* 217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
92
* ...
93
* 28d: 48 85 ff test rdi,rdi
94
* 290: 74 1a je 0x2ac
95
* 292: eb 84 jmp 0x218
96
* 294: bf 03 00 00 00 mov edi,0x3
97
* Note that insn at 0x211 is 6-byte cond jump insn now since its offset
98
* becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
99
* At the same time, insn at 0x292 is a 2-byte insn since its offset is
100
* -124.
101
*
102
* pass6 will repeat the same code as in pass4 and this will prevent
103
* eventual convergence.
104
*
105
* To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
106
* cycle in the above. In the above example je offset <= 0x7c should work.
107
*
108
* For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
109
* issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
110
* avoid no convergence issue.
111
*
112
* Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
113
* to maximum 123 (0x7b). This way, the jit pass can eventually converge.
114
*/
115
static bool is_imm8_jmp_offset(int value)
116
{
117
return value <= 123 && value >= -128;
118
}
119
120
static bool is_simm32(s64 value)
121
{
122
return value == (s64)(s32)value;
123
}
124
125
static bool is_uimm32(u64 value)
126
{
127
return value == (u64)(u32)value;
128
}
129
130
/* mov dst, src */
131
#define EMIT_mov(DST, SRC) \
132
do { \
133
if (DST != SRC) \
134
EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
135
} while (0)
136
137
static int bpf_size_to_x86_bytes(int bpf_size)
138
{
139
if (bpf_size == BPF_W)
140
return 4;
141
else if (bpf_size == BPF_H)
142
return 2;
143
else if (bpf_size == BPF_B)
144
return 1;
145
else if (bpf_size == BPF_DW)
146
return 4; /* imm32 */
147
else
148
return 0;
149
}
150
151
/*
152
* List of x86 cond jumps opcodes (. + s8)
153
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
154
*/
155
#define X86_JB 0x72
156
#define X86_JAE 0x73
157
#define X86_JE 0x74
158
#define X86_JNE 0x75
159
#define X86_JBE 0x76
160
#define X86_JA 0x77
161
#define X86_JL 0x7C
162
#define X86_JGE 0x7D
163
#define X86_JLE 0x7E
164
#define X86_JG 0x7F
165
166
/* Pick a register outside of BPF range for JIT internal work */
167
#define AUX_REG (MAX_BPF_JIT_REG + 1)
168
#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
169
#define X86_REG_R12 (MAX_BPF_JIT_REG + 3)
170
171
/*
172
* The following table maps BPF registers to x86-64 registers.
173
*
174
* x86-64 register R12 is unused, since if used as base address
175
* register in load/store instructions, it always needs an
176
* extra byte of encoding and is callee saved.
177
*
178
* x86-64 register R9 is not used by BPF programs, but can be used by BPF
179
* trampoline. x86-64 register R10 is used for blinding (if enabled).
180
*/
181
static const int reg2hex[] = {
182
[BPF_REG_0] = 0, /* RAX */
183
[BPF_REG_1] = 7, /* RDI */
184
[BPF_REG_2] = 6, /* RSI */
185
[BPF_REG_3] = 2, /* RDX */
186
[BPF_REG_4] = 1, /* RCX */
187
[BPF_REG_5] = 0, /* R8 */
188
[BPF_REG_6] = 3, /* RBX callee saved */
189
[BPF_REG_7] = 5, /* R13 callee saved */
190
[BPF_REG_8] = 6, /* R14 callee saved */
191
[BPF_REG_9] = 7, /* R15 callee saved */
192
[BPF_REG_FP] = 5, /* RBP readonly */
193
[BPF_REG_AX] = 2, /* R10 temp register */
194
[AUX_REG] = 3, /* R11 temp register */
195
[X86_REG_R9] = 1, /* R9 register, 6th function argument */
196
[X86_REG_R12] = 4, /* R12 callee saved */
197
};
198
199
static const int reg2pt_regs[] = {
200
[BPF_REG_0] = offsetof(struct pt_regs, ax),
201
[BPF_REG_1] = offsetof(struct pt_regs, di),
202
[BPF_REG_2] = offsetof(struct pt_regs, si),
203
[BPF_REG_3] = offsetof(struct pt_regs, dx),
204
[BPF_REG_4] = offsetof(struct pt_regs, cx),
205
[BPF_REG_5] = offsetof(struct pt_regs, r8),
206
[BPF_REG_6] = offsetof(struct pt_regs, bx),
207
[BPF_REG_7] = offsetof(struct pt_regs, r13),
208
[BPF_REG_8] = offsetof(struct pt_regs, r14),
209
[BPF_REG_9] = offsetof(struct pt_regs, r15),
210
};
211
212
/*
213
* is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
214
* which need extra byte of encoding.
215
* rax,rcx,...,rbp have simpler encoding
216
*/
217
static bool is_ereg(u32 reg)
218
{
219
return (1 << reg) & (BIT(BPF_REG_5) |
220
BIT(AUX_REG) |
221
BIT(BPF_REG_7) |
222
BIT(BPF_REG_8) |
223
BIT(BPF_REG_9) |
224
BIT(X86_REG_R9) |
225
BIT(X86_REG_R12) |
226
BIT(BPF_REG_AX));
227
}
228
229
/*
230
* is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
231
* lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
232
* of encoding. al,cl,dl,bl have simpler encoding.
233
*/
234
static bool is_ereg_8l(u32 reg)
235
{
236
return is_ereg(reg) ||
237
(1 << reg) & (BIT(BPF_REG_1) |
238
BIT(BPF_REG_2) |
239
BIT(BPF_REG_FP));
240
}
241
242
static bool is_axreg(u32 reg)
243
{
244
return reg == BPF_REG_0;
245
}
246
247
/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
248
static u8 add_1mod(u8 byte, u32 reg)
249
{
250
if (is_ereg(reg))
251
byte |= 1;
252
return byte;
253
}
254
255
static u8 add_2mod(u8 byte, u32 r1, u32 r2)
256
{
257
if (is_ereg(r1))
258
byte |= 1;
259
if (is_ereg(r2))
260
byte |= 4;
261
return byte;
262
}
263
264
static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index)
265
{
266
if (is_ereg(r1))
267
byte |= 1;
268
if (is_ereg(index))
269
byte |= 2;
270
if (is_ereg(r2))
271
byte |= 4;
272
return byte;
273
}
274
275
/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
276
static u8 add_1reg(u8 byte, u32 dst_reg)
277
{
278
return byte + reg2hex[dst_reg];
279
}
280
281
/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
282
static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
283
{
284
return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
285
}
286
287
/* Some 1-byte opcodes for binary ALU operations */
288
static u8 simple_alu_opcodes[] = {
289
[BPF_ADD] = 0x01,
290
[BPF_SUB] = 0x29,
291
[BPF_AND] = 0x21,
292
[BPF_OR] = 0x09,
293
[BPF_XOR] = 0x31,
294
[BPF_LSH] = 0xE0,
295
[BPF_RSH] = 0xE8,
296
[BPF_ARSH] = 0xF8,
297
};
298
299
static void jit_fill_hole(void *area, unsigned int size)
300
{
301
/* Fill whole space with INT3 instructions */
302
memset(area, 0xcc, size);
303
}
304
305
int bpf_arch_text_invalidate(void *dst, size_t len)
306
{
307
return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
308
}
309
310
struct jit_context {
311
int cleanup_addr; /* Epilogue code offset */
312
313
/*
314
* Program specific offsets of labels in the code; these rely on the
315
* JIT doing at least 2 passes, recording the position on the first
316
* pass, only to generate the correct offset on the second pass.
317
*/
318
int tail_call_direct_label;
319
int tail_call_indirect_label;
320
};
321
322
/* Maximum number of bytes emitted while JITing one eBPF insn */
323
#define BPF_MAX_INSN_SIZE 128
324
#define BPF_INSN_SAFETY 64
325
326
/* Number of bytes emit_patch() needs to generate instructions */
327
#define X86_PATCH_SIZE 5
328
/* Number of bytes that will be skipped on tailcall */
329
#define X86_TAIL_CALL_OFFSET (12 + ENDBR_INSN_SIZE)
330
331
static void push_r9(u8 **pprog)
332
{
333
u8 *prog = *pprog;
334
335
EMIT2(0x41, 0x51); /* push r9 */
336
*pprog = prog;
337
}
338
339
static void pop_r9(u8 **pprog)
340
{
341
u8 *prog = *pprog;
342
343
EMIT2(0x41, 0x59); /* pop r9 */
344
*pprog = prog;
345
}
346
347
static void push_r12(u8 **pprog)
348
{
349
u8 *prog = *pprog;
350
351
EMIT2(0x41, 0x54); /* push r12 */
352
*pprog = prog;
353
}
354
355
static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
356
{
357
u8 *prog = *pprog;
358
359
if (callee_regs_used[0])
360
EMIT1(0x53); /* push rbx */
361
if (callee_regs_used[1])
362
EMIT2(0x41, 0x55); /* push r13 */
363
if (callee_regs_used[2])
364
EMIT2(0x41, 0x56); /* push r14 */
365
if (callee_regs_used[3])
366
EMIT2(0x41, 0x57); /* push r15 */
367
*pprog = prog;
368
}
369
370
static void pop_r12(u8 **pprog)
371
{
372
u8 *prog = *pprog;
373
374
EMIT2(0x41, 0x5C); /* pop r12 */
375
*pprog = prog;
376
}
377
378
static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
379
{
380
u8 *prog = *pprog;
381
382
if (callee_regs_used[3])
383
EMIT2(0x41, 0x5F); /* pop r15 */
384
if (callee_regs_used[2])
385
EMIT2(0x41, 0x5E); /* pop r14 */
386
if (callee_regs_used[1])
387
EMIT2(0x41, 0x5D); /* pop r13 */
388
if (callee_regs_used[0])
389
EMIT1(0x5B); /* pop rbx */
390
*pprog = prog;
391
}
392
393
static void emit_nops(u8 **pprog, int len)
394
{
395
u8 *prog = *pprog;
396
int i, noplen;
397
398
while (len > 0) {
399
noplen = len;
400
401
if (noplen > ASM_NOP_MAX)
402
noplen = ASM_NOP_MAX;
403
404
for (i = 0; i < noplen; i++)
405
EMIT1(x86_nops[noplen][i]);
406
len -= noplen;
407
}
408
409
*pprog = prog;
410
}
411
412
/*
413
* Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
414
* in arch/x86/kernel/alternative.c
415
*/
416
static int emit_call(u8 **prog, void *func, void *ip);
417
418
static void emit_fineibt(u8 **pprog, u8 *ip, u32 hash, int arity)
419
{
420
u8 *prog = *pprog;
421
422
EMIT_ENDBR();
423
EMIT1_off32(0x2d, hash); /* subl $hash, %eax */
424
if (cfi_bhi) {
425
EMIT2(0x2e, 0x2e); /* cs cs */
426
emit_call(&prog, __bhi_args[arity], ip + 11);
427
} else {
428
EMIT3_off32(0x2e, 0x0f, 0x85, 3); /* jne.d32,pn 3 */
429
}
430
EMIT_ENDBR_POISON();
431
432
*pprog = prog;
433
}
434
435
static void emit_kcfi(u8 **pprog, u32 hash)
436
{
437
u8 *prog = *pprog;
438
439
EMIT1_off32(0xb8, hash); /* movl $hash, %eax */
440
#ifdef CONFIG_CALL_PADDING
441
EMIT1(0x90);
442
EMIT1(0x90);
443
EMIT1(0x90);
444
EMIT1(0x90);
445
EMIT1(0x90);
446
EMIT1(0x90);
447
EMIT1(0x90);
448
EMIT1(0x90);
449
EMIT1(0x90);
450
EMIT1(0x90);
451
EMIT1(0x90);
452
#endif
453
EMIT_ENDBR();
454
455
*pprog = prog;
456
}
457
458
static void emit_cfi(u8 **pprog, u8 *ip, u32 hash, int arity)
459
{
460
u8 *prog = *pprog;
461
462
switch (cfi_mode) {
463
case CFI_FINEIBT:
464
emit_fineibt(&prog, ip, hash, arity);
465
break;
466
467
case CFI_KCFI:
468
emit_kcfi(&prog, hash);
469
break;
470
471
default:
472
EMIT_ENDBR();
473
break;
474
}
475
476
*pprog = prog;
477
}
478
479
static void emit_prologue_tail_call(u8 **pprog, bool is_subprog)
480
{
481
u8 *prog = *pprog;
482
483
if (!is_subprog) {
484
/* cmp rax, MAX_TAIL_CALL_CNT */
485
EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT);
486
EMIT2(X86_JA, 6); /* ja 6 */
487
/* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT.
488
* case1: entry of main prog.
489
* case2: tail callee of main prog.
490
*/
491
EMIT1(0x50); /* push rax */
492
/* Make rax as tail_call_cnt_ptr. */
493
EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */
494
EMIT2(0xEB, 1); /* jmp 1 */
495
/* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT.
496
* case: tail callee of subprog.
497
*/
498
EMIT1(0x50); /* push rax */
499
/* push tail_call_cnt_ptr */
500
EMIT1(0x50); /* push rax */
501
} else { /* is_subprog */
502
/* rax is tail_call_cnt_ptr. */
503
EMIT1(0x50); /* push rax */
504
EMIT1(0x50); /* push rax */
505
}
506
507
*pprog = prog;
508
}
509
510
/*
511
* Emit x86-64 prologue code for BPF program.
512
* bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
513
* while jumping to another program
514
*/
515
static void emit_prologue(u8 **pprog, u8 *ip, u32 stack_depth, bool ebpf_from_cbpf,
516
bool tail_call_reachable, bool is_subprog,
517
bool is_exception_cb)
518
{
519
u8 *prog = *pprog;
520
521
if (is_subprog) {
522
emit_cfi(&prog, ip, cfi_bpf_subprog_hash, 5);
523
} else {
524
emit_cfi(&prog, ip, cfi_bpf_hash, 1);
525
}
526
/* BPF trampoline can be made to work without these nops,
527
* but let's waste 5 bytes for now and optimize later
528
*/
529
emit_nops(&prog, X86_PATCH_SIZE);
530
if (!ebpf_from_cbpf) {
531
if (tail_call_reachable && !is_subprog)
532
/* When it's the entry of the whole tailcall context,
533
* zeroing rax means initialising tail_call_cnt.
534
*/
535
EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */
536
else
537
/* Keep the same instruction layout. */
538
emit_nops(&prog, 3); /* nop3 */
539
}
540
/* Exception callback receives FP as third parameter */
541
if (is_exception_cb) {
542
EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
543
EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
544
/* The main frame must have exception_boundary as true, so we
545
* first restore those callee-saved regs from stack, before
546
* reusing the stack frame.
547
*/
548
pop_callee_regs(&prog, all_callee_regs_used);
549
pop_r12(&prog);
550
/* Reset the stack frame. */
551
EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
552
} else {
553
EMIT1(0x55); /* push rbp */
554
EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
555
}
556
557
/* X86_TAIL_CALL_OFFSET is here */
558
EMIT_ENDBR();
559
560
/* sub rsp, rounded_stack_depth */
561
if (stack_depth)
562
EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
563
if (tail_call_reachable)
564
emit_prologue_tail_call(&prog, is_subprog);
565
*pprog = prog;
566
}
567
568
static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
569
{
570
u8 *prog = *pprog;
571
s64 offset;
572
573
offset = func - (ip + X86_PATCH_SIZE);
574
if (!is_simm32(offset)) {
575
pr_err("Target call %p is out of range\n", func);
576
return -ERANGE;
577
}
578
EMIT1_off32(opcode, offset);
579
*pprog = prog;
580
return 0;
581
}
582
583
static int emit_call(u8 **pprog, void *func, void *ip)
584
{
585
return emit_patch(pprog, func, ip, 0xE8);
586
}
587
588
static int emit_rsb_call(u8 **pprog, void *func, void *ip)
589
{
590
OPTIMIZER_HIDE_VAR(func);
591
ip += x86_call_depth_emit_accounting(pprog, func, ip);
592
return emit_patch(pprog, func, ip, 0xE8);
593
}
594
595
static int emit_jump(u8 **pprog, void *func, void *ip)
596
{
597
return emit_patch(pprog, func, ip, 0xE9);
598
}
599
600
static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t,
601
enum bpf_text_poke_type new_t,
602
void *old_addr, void *new_addr)
603
{
604
const u8 *nop_insn = x86_nops[5];
605
u8 old_insn[X86_PATCH_SIZE];
606
u8 new_insn[X86_PATCH_SIZE];
607
u8 *prog;
608
int ret;
609
610
memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
611
if (old_t != BPF_MOD_NOP && old_addr) {
612
prog = old_insn;
613
ret = old_t == BPF_MOD_CALL ?
614
emit_call(&prog, old_addr, ip) :
615
emit_jump(&prog, old_addr, ip);
616
if (ret)
617
return ret;
618
}
619
620
memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
621
if (new_t != BPF_MOD_NOP && new_addr) {
622
prog = new_insn;
623
ret = new_t == BPF_MOD_CALL ?
624
emit_call(&prog, new_addr, ip) :
625
emit_jump(&prog, new_addr, ip);
626
if (ret)
627
return ret;
628
}
629
630
ret = -EBUSY;
631
mutex_lock(&text_mutex);
632
if (memcmp(ip, old_insn, X86_PATCH_SIZE))
633
goto out;
634
ret = 1;
635
if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
636
smp_text_poke_single(ip, new_insn, X86_PATCH_SIZE, NULL);
637
ret = 0;
638
}
639
out:
640
mutex_unlock(&text_mutex);
641
return ret;
642
}
643
644
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t,
645
enum bpf_text_poke_type new_t, void *old_addr,
646
void *new_addr)
647
{
648
if (!is_kernel_text((long)ip) &&
649
!is_bpf_text_address((long)ip))
650
/* BPF poking in modules is not supported */
651
return -EINVAL;
652
653
/*
654
* See emit_prologue(), for IBT builds the trampoline hook is preceded
655
* with an ENDBR instruction.
656
*/
657
if (is_endbr(ip))
658
ip += ENDBR_INSN_SIZE;
659
660
return __bpf_arch_text_poke(ip, old_t, new_t, old_addr, new_addr);
661
}
662
663
#define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
664
665
static void __emit_indirect_jump(u8 **pprog, int reg, bool ereg)
666
{
667
u8 *prog = *pprog;
668
669
if (ereg)
670
EMIT1(0x41);
671
672
EMIT2(0xFF, 0xE0 + reg);
673
674
*pprog = prog;
675
}
676
677
static void emit_indirect_jump(u8 **pprog, int bpf_reg, u8 *ip)
678
{
679
u8 *prog = *pprog;
680
int reg = reg2hex[bpf_reg];
681
bool ereg = is_ereg(bpf_reg);
682
683
if (cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) {
684
OPTIMIZER_HIDE_VAR(reg);
685
emit_jump(&prog, its_static_thunk(reg + 8*ereg), ip);
686
} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
687
EMIT_LFENCE();
688
__emit_indirect_jump(&prog, reg, ereg);
689
} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
690
OPTIMIZER_HIDE_VAR(reg);
691
if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
692
emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg + 8*ereg], ip);
693
else
694
emit_jump(&prog, &__x86_indirect_thunk_array[reg + 8*ereg], ip);
695
} else {
696
__emit_indirect_jump(&prog, reg, ereg);
697
if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
698
EMIT1(0xCC); /* int3 */
699
}
700
701
*pprog = prog;
702
}
703
704
static void emit_return(u8 **pprog, u8 *ip)
705
{
706
u8 *prog = *pprog;
707
708
if (cpu_wants_rethunk()) {
709
emit_jump(&prog, x86_return_thunk, ip);
710
} else {
711
EMIT1(0xC3); /* ret */
712
if (IS_ENABLED(CONFIG_MITIGATION_SLS))
713
EMIT1(0xCC); /* int3 */
714
}
715
716
*pprog = prog;
717
}
718
719
#define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack) (-16 - round_up(stack, 8))
720
721
/*
722
* Generate the following code:
723
*
724
* ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
725
* if (index >= array->map.max_entries)
726
* goto out;
727
* if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
728
* goto out;
729
* prog = array->ptrs[index];
730
* if (prog == NULL)
731
* goto out;
732
* goto *(prog->bpf_func + prologue_size);
733
* out:
734
*/
735
static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
736
u8 **pprog, bool *callee_regs_used,
737
u32 stack_depth, u8 *ip,
738
struct jit_context *ctx)
739
{
740
int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
741
u8 *prog = *pprog, *start = *pprog;
742
int offset;
743
744
/*
745
* rdi - pointer to ctx
746
* rsi - pointer to bpf_array
747
* rdx - index in bpf_array
748
*/
749
750
/*
751
* if (index >= array->map.max_entries)
752
* goto out;
753
*/
754
EMIT2(0x89, 0xD2); /* mov edx, edx */
755
EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
756
offsetof(struct bpf_array, map.max_entries));
757
758
offset = ctx->tail_call_indirect_label - (prog + 2 - start);
759
EMIT2(X86_JBE, offset); /* jbe out */
760
761
/*
762
* if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
763
* goto out;
764
*/
765
EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
766
EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
767
768
offset = ctx->tail_call_indirect_label - (prog + 2 - start);
769
EMIT2(X86_JAE, offset); /* jae out */
770
771
/* prog = array->ptrs[index]; */
772
EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
773
offsetof(struct bpf_array, ptrs));
774
775
/*
776
* if (prog == NULL)
777
* goto out;
778
*/
779
EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
780
781
offset = ctx->tail_call_indirect_label - (prog + 2 - start);
782
EMIT2(X86_JE, offset); /* je out */
783
784
/* Inc tail_call_cnt if the slot is populated. */
785
EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */
786
787
if (bpf_prog->aux->exception_boundary) {
788
pop_callee_regs(&prog, all_callee_regs_used);
789
pop_r12(&prog);
790
} else {
791
pop_callee_regs(&prog, callee_regs_used);
792
if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
793
pop_r12(&prog);
794
}
795
796
/* Pop tail_call_cnt_ptr. */
797
EMIT1(0x58); /* pop rax */
798
/* Pop tail_call_cnt, if it's main prog.
799
* Pop tail_call_cnt_ptr, if it's subprog.
800
*/
801
EMIT1(0x58); /* pop rax */
802
if (stack_depth)
803
EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
804
round_up(stack_depth, 8));
805
806
/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
807
EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
808
offsetof(struct bpf_prog, bpf_func));
809
EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
810
X86_TAIL_CALL_OFFSET);
811
/*
812
* Now we're ready to jump into next BPF program
813
* rdi == ctx (1st arg)
814
* rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
815
*/
816
emit_indirect_jump(&prog, BPF_REG_4 /* R4 -> rcx */, ip + (prog - start));
817
818
/* out: */
819
ctx->tail_call_indirect_label = prog - start;
820
*pprog = prog;
821
}
822
823
static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
824
struct bpf_jit_poke_descriptor *poke,
825
u8 **pprog, u8 *ip,
826
bool *callee_regs_used, u32 stack_depth,
827
struct jit_context *ctx)
828
{
829
int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
830
u8 *prog = *pprog, *start = *pprog;
831
int offset;
832
833
/*
834
* if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
835
* goto out;
836
*/
837
EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
838
EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
839
840
offset = ctx->tail_call_direct_label - (prog + 2 - start);
841
EMIT2(X86_JAE, offset); /* jae out */
842
843
poke->tailcall_bypass = ip + (prog - start);
844
poke->adj_off = X86_TAIL_CALL_OFFSET;
845
poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
846
poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
847
848
emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
849
poke->tailcall_bypass);
850
851
/* Inc tail_call_cnt if the slot is populated. */
852
EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */
853
854
if (bpf_prog->aux->exception_boundary) {
855
pop_callee_regs(&prog, all_callee_regs_used);
856
pop_r12(&prog);
857
} else {
858
pop_callee_regs(&prog, callee_regs_used);
859
if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
860
pop_r12(&prog);
861
}
862
863
/* Pop tail_call_cnt_ptr. */
864
EMIT1(0x58); /* pop rax */
865
/* Pop tail_call_cnt, if it's main prog.
866
* Pop tail_call_cnt_ptr, if it's subprog.
867
*/
868
EMIT1(0x58); /* pop rax */
869
if (stack_depth)
870
EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
871
872
emit_nops(&prog, X86_PATCH_SIZE);
873
874
/* out: */
875
ctx->tail_call_direct_label = prog - start;
876
877
*pprog = prog;
878
}
879
880
static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
881
{
882
struct bpf_jit_poke_descriptor *poke;
883
struct bpf_array *array;
884
struct bpf_prog *target;
885
int i, ret;
886
887
for (i = 0; i < prog->aux->size_poke_tab; i++) {
888
poke = &prog->aux->poke_tab[i];
889
if (poke->aux && poke->aux != prog->aux)
890
continue;
891
892
WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
893
894
if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
895
continue;
896
897
array = container_of(poke->tail_call.map, struct bpf_array, map);
898
mutex_lock(&array->aux->poke_mutex);
899
target = array->ptrs[poke->tail_call.key];
900
if (target) {
901
ret = __bpf_arch_text_poke(poke->tailcall_target,
902
BPF_MOD_NOP, BPF_MOD_JUMP,
903
NULL,
904
(u8 *)target->bpf_func +
905
poke->adj_off);
906
BUG_ON(ret < 0);
907
ret = __bpf_arch_text_poke(poke->tailcall_bypass,
908
BPF_MOD_JUMP, BPF_MOD_NOP,
909
(u8 *)poke->tailcall_target +
910
X86_PATCH_SIZE, NULL);
911
BUG_ON(ret < 0);
912
}
913
WRITE_ONCE(poke->tailcall_target_stable, true);
914
mutex_unlock(&array->aux->poke_mutex);
915
}
916
}
917
918
static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
919
u32 dst_reg, const u32 imm32)
920
{
921
u8 *prog = *pprog;
922
u8 b1, b2, b3;
923
924
/*
925
* Optimization: if imm32 is positive, use 'mov %eax, imm32'
926
* (which zero-extends imm32) to save 2 bytes.
927
*/
928
if (sign_propagate && (s32)imm32 < 0) {
929
/* 'mov %rax, imm32' sign extends imm32 */
930
b1 = add_1mod(0x48, dst_reg);
931
b2 = 0xC7;
932
b3 = 0xC0;
933
EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
934
goto done;
935
}
936
937
/*
938
* Optimization: if imm32 is zero, use 'xor %eax, %eax'
939
* to save 3 bytes.
940
*/
941
if (imm32 == 0) {
942
if (is_ereg(dst_reg))
943
EMIT1(add_2mod(0x40, dst_reg, dst_reg));
944
b2 = 0x31; /* xor */
945
b3 = 0xC0;
946
EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
947
goto done;
948
}
949
950
/* mov %eax, imm32 */
951
if (is_ereg(dst_reg))
952
EMIT1(add_1mod(0x40, dst_reg));
953
EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
954
done:
955
*pprog = prog;
956
}
957
958
static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
959
const u32 imm32_hi, const u32 imm32_lo)
960
{
961
u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo;
962
u8 *prog = *pprog;
963
964
if (is_uimm32(imm64)) {
965
/*
966
* For emitting plain u32, where sign bit must not be
967
* propagated LLVM tends to load imm64 over mov32
968
* directly, so save couple of bytes by just doing
969
* 'mov %eax, imm32' instead.
970
*/
971
emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
972
} else if (is_simm32(imm64)) {
973
emit_mov_imm32(&prog, true, dst_reg, imm32_lo);
974
} else {
975
/* movabsq rax, imm64 */
976
EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
977
EMIT(imm32_lo, 4);
978
EMIT(imm32_hi, 4);
979
}
980
981
*pprog = prog;
982
}
983
984
static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
985
{
986
u8 *prog = *pprog;
987
988
if (is64) {
989
/* mov dst, src */
990
EMIT_mov(dst_reg, src_reg);
991
} else {
992
/* mov32 dst, src */
993
if (is_ereg(dst_reg) || is_ereg(src_reg))
994
EMIT1(add_2mod(0x40, dst_reg, src_reg));
995
EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
996
}
997
998
*pprog = prog;
999
}
1000
1001
static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
1002
u32 src_reg)
1003
{
1004
u8 *prog = *pprog;
1005
1006
if (is64) {
1007
/* movs[b,w,l]q dst, src */
1008
if (num_bits == 8)
1009
EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
1010
add_2reg(0xC0, src_reg, dst_reg));
1011
else if (num_bits == 16)
1012
EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
1013
add_2reg(0xC0, src_reg, dst_reg));
1014
else if (num_bits == 32)
1015
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
1016
add_2reg(0xC0, src_reg, dst_reg));
1017
} else {
1018
/* movs[b,w]l dst, src */
1019
if (num_bits == 8) {
1020
EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
1021
add_2reg(0xC0, src_reg, dst_reg));
1022
} else if (num_bits == 16) {
1023
if (is_ereg(dst_reg) || is_ereg(src_reg))
1024
EMIT1(add_2mod(0x40, src_reg, dst_reg));
1025
EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
1026
add_2reg(0xC0, src_reg, dst_reg));
1027
}
1028
}
1029
1030
*pprog = prog;
1031
}
1032
1033
/* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
1034
static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
1035
{
1036
u8 *prog = *pprog;
1037
1038
if (is_imm8(off)) {
1039
/* 1-byte signed displacement.
1040
*
1041
* If off == 0 we could skip this and save one extra byte, but
1042
* special case of x86 R13 which always needs an offset is not
1043
* worth the hassle
1044
*/
1045
EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
1046
} else {
1047
/* 4-byte signed displacement */
1048
EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
1049
}
1050
*pprog = prog;
1051
}
1052
1053
static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off)
1054
{
1055
u8 *prog = *pprog;
1056
1057
if (is_imm8(off)) {
1058
EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1059
} else {
1060
EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1061
}
1062
*pprog = prog;
1063
}
1064
1065
/*
1066
* Emit a REX byte if it will be necessary to address these registers
1067
*/
1068
static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
1069
{
1070
u8 *prog = *pprog;
1071
1072
if (is64)
1073
EMIT1(add_2mod(0x48, dst_reg, src_reg));
1074
else if (is_ereg(dst_reg) || is_ereg(src_reg))
1075
EMIT1(add_2mod(0x40, dst_reg, src_reg));
1076
*pprog = prog;
1077
}
1078
1079
/*
1080
* Similar version of maybe_emit_mod() for a single register
1081
*/
1082
static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
1083
{
1084
u8 *prog = *pprog;
1085
1086
if (is64)
1087
EMIT1(add_1mod(0x48, reg));
1088
else if (is_ereg(reg))
1089
EMIT1(add_1mod(0x40, reg));
1090
*pprog = prog;
1091
}
1092
1093
/* LDX: dst_reg = *(u8*)(src_reg + off) */
1094
static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1095
{
1096
u8 *prog = *pprog;
1097
1098
switch (size) {
1099
case BPF_B:
1100
/* Emit 'movzx rax, byte ptr [rax + off]' */
1101
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
1102
break;
1103
case BPF_H:
1104
/* Emit 'movzx rax, word ptr [rax + off]' */
1105
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
1106
break;
1107
case BPF_W:
1108
/* Emit 'mov eax, dword ptr [rax+0x14]' */
1109
if (is_ereg(dst_reg) || is_ereg(src_reg))
1110
EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
1111
else
1112
EMIT1(0x8B);
1113
break;
1114
case BPF_DW:
1115
/* Emit 'mov rax, qword ptr [rax+0x14]' */
1116
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
1117
break;
1118
}
1119
emit_insn_suffix(&prog, src_reg, dst_reg, off);
1120
*pprog = prog;
1121
}
1122
1123
/* LDSX: dst_reg = *(s8*)(src_reg + off) */
1124
static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1125
{
1126
u8 *prog = *pprog;
1127
1128
switch (size) {
1129
case BPF_B:
1130
/* Emit 'movsx rax, byte ptr [rax + off]' */
1131
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
1132
break;
1133
case BPF_H:
1134
/* Emit 'movsx rax, word ptr [rax + off]' */
1135
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
1136
break;
1137
case BPF_W:
1138
/* Emit 'movsx rax, dword ptr [rax+0x14]' */
1139
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
1140
break;
1141
}
1142
emit_insn_suffix(&prog, src_reg, dst_reg, off);
1143
*pprog = prog;
1144
}
1145
1146
static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1147
{
1148
u8 *prog = *pprog;
1149
1150
switch (size) {
1151
case BPF_B:
1152
/* movzx rax, byte ptr [rax + r12 + off] */
1153
EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6);
1154
break;
1155
case BPF_H:
1156
/* movzx rax, word ptr [rax + r12 + off] */
1157
EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7);
1158
break;
1159
case BPF_W:
1160
/* mov eax, dword ptr [rax + r12 + off] */
1161
EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B);
1162
break;
1163
case BPF_DW:
1164
/* mov rax, qword ptr [rax + r12 + off] */
1165
EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B);
1166
break;
1167
}
1168
emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1169
*pprog = prog;
1170
}
1171
1172
static void emit_ldsx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1173
{
1174
u8 *prog = *pprog;
1175
1176
switch (size) {
1177
case BPF_B:
1178
/* movsx rax, byte ptr [rax + r12 + off] */
1179
EMIT3(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x0F, 0xBE);
1180
break;
1181
case BPF_H:
1182
/* movsx rax, word ptr [rax + r12 + off] */
1183
EMIT3(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x0F, 0xBF);
1184
break;
1185
case BPF_W:
1186
/* movsx rax, dword ptr [rax + r12 + off] */
1187
EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x63);
1188
break;
1189
}
1190
emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1191
*pprog = prog;
1192
}
1193
1194
static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1195
{
1196
emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1197
}
1198
1199
static void emit_ldsx_r12(u8 **prog, u32 size, u32 dst_reg, u32 src_reg, int off)
1200
{
1201
emit_ldsx_index(prog, size, dst_reg, src_reg, X86_REG_R12, off);
1202
}
1203
1204
/* STX: *(u8*)(dst_reg + off) = src_reg */
1205
static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1206
{
1207
u8 *prog = *pprog;
1208
1209
switch (size) {
1210
case BPF_B:
1211
/* Emit 'mov byte ptr [rax + off], al' */
1212
if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
1213
/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
1214
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
1215
else
1216
EMIT1(0x88);
1217
break;
1218
case BPF_H:
1219
if (is_ereg(dst_reg) || is_ereg(src_reg))
1220
EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
1221
else
1222
EMIT2(0x66, 0x89);
1223
break;
1224
case BPF_W:
1225
if (is_ereg(dst_reg) || is_ereg(src_reg))
1226
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
1227
else
1228
EMIT1(0x89);
1229
break;
1230
case BPF_DW:
1231
EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
1232
break;
1233
}
1234
emit_insn_suffix(&prog, dst_reg, src_reg, off);
1235
*pprog = prog;
1236
}
1237
1238
/* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */
1239
static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1240
{
1241
u8 *prog = *pprog;
1242
1243
switch (size) {
1244
case BPF_B:
1245
/* mov byte ptr [rax + r12 + off], al */
1246
EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88);
1247
break;
1248
case BPF_H:
1249
/* mov word ptr [rax + r12 + off], ax */
1250
EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1251
break;
1252
case BPF_W:
1253
/* mov dword ptr [rax + r12 + 1], eax */
1254
EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1255
break;
1256
case BPF_DW:
1257
/* mov qword ptr [rax + r12 + 1], rax */
1258
EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89);
1259
break;
1260
}
1261
emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1262
*pprog = prog;
1263
}
1264
1265
static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1266
{
1267
emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1268
}
1269
1270
/* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */
1271
static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm)
1272
{
1273
u8 *prog = *pprog;
1274
1275
switch (size) {
1276
case BPF_B:
1277
/* mov byte ptr [rax + r12 + off], imm8 */
1278
EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6);
1279
break;
1280
case BPF_H:
1281
/* mov word ptr [rax + r12 + off], imm16 */
1282
EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1283
break;
1284
case BPF_W:
1285
/* mov dword ptr [rax + r12 + 1], imm32 */
1286
EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1287
break;
1288
case BPF_DW:
1289
/* mov qword ptr [rax + r12 + 1], imm32 */
1290
EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7);
1291
break;
1292
}
1293
emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off);
1294
EMIT(imm, bpf_size_to_x86_bytes(size));
1295
*pprog = prog;
1296
}
1297
1298
static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm)
1299
{
1300
emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm);
1301
}
1302
1303
static void emit_store_stack_imm64(u8 **pprog, int reg, int stack_off, u64 imm64)
1304
{
1305
/*
1306
* mov reg, imm64
1307
* mov QWORD PTR [rbp + stack_off], reg
1308
*/
1309
emit_mov_imm64(pprog, reg, imm64 >> 32, (u32) imm64);
1310
emit_stx(pprog, BPF_DW, BPF_REG_FP, reg, stack_off);
1311
}
1312
1313
static int emit_atomic_rmw(u8 **pprog, u32 atomic_op,
1314
u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1315
{
1316
u8 *prog = *pprog;
1317
1318
if (atomic_op != BPF_XCHG)
1319
EMIT1(0xF0); /* lock prefix */
1320
1321
maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1322
1323
/* emit opcode */
1324
switch (atomic_op) {
1325
case BPF_ADD:
1326
case BPF_AND:
1327
case BPF_OR:
1328
case BPF_XOR:
1329
/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1330
EMIT1(simple_alu_opcodes[atomic_op]);
1331
break;
1332
case BPF_ADD | BPF_FETCH:
1333
/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1334
EMIT2(0x0F, 0xC1);
1335
break;
1336
case BPF_XCHG:
1337
/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1338
EMIT1(0x87);
1339
break;
1340
case BPF_CMPXCHG:
1341
/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1342
EMIT2(0x0F, 0xB1);
1343
break;
1344
default:
1345
pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1346
return -EFAULT;
1347
}
1348
1349
emit_insn_suffix(&prog, dst_reg, src_reg, off);
1350
1351
*pprog = prog;
1352
return 0;
1353
}
1354
1355
static int emit_atomic_rmw_index(u8 **pprog, u32 atomic_op, u32 size,
1356
u32 dst_reg, u32 src_reg, u32 index_reg,
1357
int off)
1358
{
1359
u8 *prog = *pprog;
1360
1361
if (atomic_op != BPF_XCHG)
1362
EMIT1(0xF0); /* lock prefix */
1363
1364
switch (size) {
1365
case BPF_W:
1366
EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg));
1367
break;
1368
case BPF_DW:
1369
EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg));
1370
break;
1371
default:
1372
pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
1373
return -EFAULT;
1374
}
1375
1376
/* emit opcode */
1377
switch (atomic_op) {
1378
case BPF_ADD:
1379
case BPF_AND:
1380
case BPF_OR:
1381
case BPF_XOR:
1382
/* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */
1383
EMIT1(simple_alu_opcodes[atomic_op]);
1384
break;
1385
case BPF_ADD | BPF_FETCH:
1386
/* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */
1387
EMIT2(0x0F, 0xC1);
1388
break;
1389
case BPF_XCHG:
1390
/* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */
1391
EMIT1(0x87);
1392
break;
1393
case BPF_CMPXCHG:
1394
/* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */
1395
EMIT2(0x0F, 0xB1);
1396
break;
1397
default:
1398
pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1399
return -EFAULT;
1400
}
1401
emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1402
*pprog = prog;
1403
return 0;
1404
}
1405
1406
static int emit_atomic_ld_st(u8 **pprog, u32 atomic_op, u32 dst_reg,
1407
u32 src_reg, s16 off, u8 bpf_size)
1408
{
1409
switch (atomic_op) {
1410
case BPF_LOAD_ACQ:
1411
/* dst_reg = smp_load_acquire(src_reg + off16) */
1412
emit_ldx(pprog, bpf_size, dst_reg, src_reg, off);
1413
break;
1414
case BPF_STORE_REL:
1415
/* smp_store_release(dst_reg + off16, src_reg) */
1416
emit_stx(pprog, bpf_size, dst_reg, src_reg, off);
1417
break;
1418
default:
1419
pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1420
atomic_op);
1421
return -EFAULT;
1422
}
1423
1424
return 0;
1425
}
1426
1427
static int emit_atomic_ld_st_index(u8 **pprog, u32 atomic_op, u32 size,
1428
u32 dst_reg, u32 src_reg, u32 index_reg,
1429
int off)
1430
{
1431
switch (atomic_op) {
1432
case BPF_LOAD_ACQ:
1433
/* dst_reg = smp_load_acquire(src_reg + idx_reg + off16) */
1434
emit_ldx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1435
break;
1436
case BPF_STORE_REL:
1437
/* smp_store_release(dst_reg + idx_reg + off16, src_reg) */
1438
emit_stx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1439
break;
1440
default:
1441
pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1442
atomic_op);
1443
return -EFAULT;
1444
}
1445
1446
return 0;
1447
}
1448
1449
/*
1450
* Metadata encoding for exception handling in JITed code.
1451
*
1452
* Format of `fixup` and `data` fields in `struct exception_table_entry`:
1453
*
1454
* Bit layout of `fixup` (32-bit):
1455
*
1456
* +-----------+--------+-----------+---------+----------+
1457
* | 31 | 30-24 | 23-16 | 15-8 | 7-0 |
1458
* | | | | | |
1459
* | ARENA_ACC | Unused | ARENA_REG | DST_REG | INSN_LEN |
1460
* +-----------+--------+-----------+---------+----------+
1461
*
1462
* - INSN_LEN (8 bits): Length of faulting insn (max x86 insn = 15 bytes (fits in 8 bits)).
1463
* - DST_REG (8 bits): Offset of dst_reg from reg2pt_regs[] (max offset = 112 (fits in 8 bits)).
1464
* This is set to DONT_CLEAR if the insn is a store.
1465
* - ARENA_REG (8 bits): Offset of the register that is used to calculate the
1466
* address for load/store when accessing the arena region.
1467
* - ARENA_ACCESS (1 bit): This bit is set when the faulting instruction accessed the arena region.
1468
*
1469
* Bit layout of `data` (32-bit):
1470
*
1471
* +--------------+--------+--------------+
1472
* | 31-16 | 15-8 | 7-0 |
1473
* | | | |
1474
* | ARENA_OFFSET | Unused | EX_TYPE_BPF |
1475
* +--------------+--------+--------------+
1476
*
1477
* - ARENA_OFFSET (16 bits): Offset used to calculate the address for load/store when
1478
* accessing the arena region.
1479
*/
1480
1481
#define DONT_CLEAR 1
1482
#define FIXUP_INSN_LEN_MASK GENMASK(7, 0)
1483
#define FIXUP_REG_MASK GENMASK(15, 8)
1484
#define FIXUP_ARENA_REG_MASK GENMASK(23, 16)
1485
#define FIXUP_ARENA_ACCESS BIT(31)
1486
#define DATA_ARENA_OFFSET_MASK GENMASK(31, 16)
1487
1488
bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1489
{
1490
u32 reg = FIELD_GET(FIXUP_REG_MASK, x->fixup);
1491
u32 insn_len = FIELD_GET(FIXUP_INSN_LEN_MASK, x->fixup);
1492
bool is_arena = !!(x->fixup & FIXUP_ARENA_ACCESS);
1493
bool is_write = (reg == DONT_CLEAR);
1494
unsigned long addr;
1495
s16 off;
1496
u32 arena_reg;
1497
1498
if (is_arena) {
1499
arena_reg = FIELD_GET(FIXUP_ARENA_REG_MASK, x->fixup);
1500
off = FIELD_GET(DATA_ARENA_OFFSET_MASK, x->data);
1501
addr = *(unsigned long *)((void *)regs + arena_reg) + off;
1502
bpf_prog_report_arena_violation(is_write, addr, regs->ip);
1503
}
1504
1505
/* jump over faulting load and clear dest register */
1506
if (reg != DONT_CLEAR)
1507
*(unsigned long *)((void *)regs + reg) = 0;
1508
regs->ip += insn_len;
1509
1510
return true;
1511
}
1512
1513
static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1514
bool *regs_used)
1515
{
1516
int i;
1517
1518
for (i = 1; i <= insn_cnt; i++, insn++) {
1519
if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1520
regs_used[0] = true;
1521
if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1522
regs_used[1] = true;
1523
if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1524
regs_used[2] = true;
1525
if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1526
regs_used[3] = true;
1527
}
1528
}
1529
1530
/* emit the 3-byte VEX prefix
1531
*
1532
* r: same as rex.r, extra bit for ModRM reg field
1533
* x: same as rex.x, extra bit for SIB index field
1534
* b: same as rex.b, extra bit for ModRM r/m, or SIB base
1535
* m: opcode map select, encoding escape bytes e.g. 0x0f38
1536
* w: same as rex.w (32 bit or 64 bit) or opcode specific
1537
* src_reg2: additional source reg (encoded as BPF reg)
1538
* l: vector length (128 bit or 256 bit) or reserved
1539
* pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1540
*/
1541
static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1542
bool w, u8 src_reg2, bool l, u8 pp)
1543
{
1544
u8 *prog = *pprog;
1545
const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1546
u8 b1, b2;
1547
u8 vvvv = reg2hex[src_reg2];
1548
1549
/* reg2hex gives only the lower 3 bit of vvvv */
1550
if (is_ereg(src_reg2))
1551
vvvv |= 1 << 3;
1552
1553
/*
1554
* 2nd byte of 3-byte VEX prefix
1555
* ~ means bit inverted encoding
1556
*
1557
* 7 0
1558
* +---+---+---+---+---+---+---+---+
1559
* |~R |~X |~B | m |
1560
* +---+---+---+---+---+---+---+---+
1561
*/
1562
b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1563
/*
1564
* 3rd byte of 3-byte VEX prefix
1565
*
1566
* 7 0
1567
* +---+---+---+---+---+---+---+---+
1568
* | W | ~vvvv | L | pp |
1569
* +---+---+---+---+---+---+---+---+
1570
*/
1571
b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1572
1573
EMIT3(b0, b1, b2);
1574
*pprog = prog;
1575
}
1576
1577
/* emit BMI2 shift instruction */
1578
static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1579
{
1580
u8 *prog = *pprog;
1581
bool r = is_ereg(dst_reg);
1582
u8 m = 2; /* escape code 0f38 */
1583
1584
emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1585
EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1586
*pprog = prog;
1587
}
1588
1589
static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr)
1590
{
1591
u8 *prog = *pprog;
1592
1593
/* movabs r9, priv_frame_ptr */
1594
emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32,
1595
(u32) (__force long) priv_frame_ptr);
1596
1597
#ifdef CONFIG_SMP
1598
/* add <r9>, gs:[<off>] */
1599
EMIT2(0x65, 0x4c);
1600
EMIT3(0x03, 0x0c, 0x25);
1601
EMIT((u32)(unsigned long)&this_cpu_off, 4);
1602
#endif
1603
1604
*pprog = prog;
1605
}
1606
1607
#define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1608
1609
#define __LOAD_TCC_PTR(off) \
1610
EMIT3_off32(0x48, 0x8B, 0x85, off)
1611
/* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */
1612
#define LOAD_TAIL_CALL_CNT_PTR(stack) \
1613
__LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack))
1614
1615
/* Memory size/value to protect private stack overflow/underflow */
1616
#define PRIV_STACK_GUARD_SZ 8
1617
#define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL
1618
1619
static int emit_spectre_bhb_barrier(u8 **pprog, u8 *ip,
1620
struct bpf_prog *bpf_prog)
1621
{
1622
u8 *prog = *pprog;
1623
u8 *func;
1624
1625
if (cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP)) {
1626
/* The clearing sequence clobbers eax and ecx. */
1627
EMIT1(0x50); /* push rax */
1628
EMIT1(0x51); /* push rcx */
1629
ip += 2;
1630
1631
func = (u8 *)clear_bhb_loop;
1632
ip += x86_call_depth_emit_accounting(&prog, func, ip);
1633
1634
if (emit_call(&prog, func, ip))
1635
return -EINVAL;
1636
EMIT1(0x59); /* pop rcx */
1637
EMIT1(0x58); /* pop rax */
1638
}
1639
/* Insert IBHF instruction */
1640
if ((cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP) &&
1641
cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) ||
1642
cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_HW)) {
1643
/*
1644
* Add an Indirect Branch History Fence (IBHF). IBHF acts as a
1645
* fence preventing branch history from before the fence from
1646
* affecting indirect branches after the fence. This is
1647
* specifically used in cBPF jitted code to prevent Intra-mode
1648
* BHI attacks. The IBHF instruction is designed to be a NOP on
1649
* hardware that doesn't need or support it. The REP and REX.W
1650
* prefixes are required by the microcode, and they also ensure
1651
* that the NOP is unlikely to be used in existing code.
1652
*
1653
* IBHF is not a valid instruction in 32-bit mode.
1654
*/
1655
EMIT5(0xF3, 0x48, 0x0F, 0x1E, 0xF8); /* ibhf */
1656
}
1657
*pprog = prog;
1658
return 0;
1659
}
1660
1661
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1662
int oldproglen, struct jit_context *ctx, bool jmp_padding)
1663
{
1664
bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1665
struct bpf_insn *insn = bpf_prog->insnsi;
1666
bool callee_regs_used[4] = {};
1667
int insn_cnt = bpf_prog->len;
1668
bool seen_exit = false;
1669
u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1670
void __percpu *priv_frame_ptr = NULL;
1671
u64 arena_vm_start, user_vm_start;
1672
void __percpu *priv_stack_ptr;
1673
int i, excnt = 0;
1674
int ilen, proglen = 0;
1675
u8 *prog = temp;
1676
u32 stack_depth;
1677
int err;
1678
1679
stack_depth = bpf_prog->aux->stack_depth;
1680
priv_stack_ptr = bpf_prog->aux->priv_stack_ptr;
1681
if (priv_stack_ptr) {
1682
priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8);
1683
stack_depth = 0;
1684
}
1685
1686
arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena);
1687
user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena);
1688
1689
detect_reg_usage(insn, insn_cnt, callee_regs_used);
1690
1691
emit_prologue(&prog, image, stack_depth,
1692
bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1693
bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1694
1695
bpf_prog->aux->ksym.fp_start = prog - temp;
1696
1697
/* Exception callback will clobber callee regs for its own use, and
1698
* restore the original callee regs from main prog's stack frame.
1699
*/
1700
if (bpf_prog->aux->exception_boundary) {
1701
/* We also need to save r12, which is not mapped to any BPF
1702
* register, as we throw after entry into the kernel, which may
1703
* overwrite r12.
1704
*/
1705
push_r12(&prog);
1706
push_callee_regs(&prog, all_callee_regs_used);
1707
} else {
1708
if (arena_vm_start)
1709
push_r12(&prog);
1710
push_callee_regs(&prog, callee_regs_used);
1711
}
1712
if (arena_vm_start)
1713
emit_mov_imm64(&prog, X86_REG_R12,
1714
arena_vm_start >> 32, (u32) arena_vm_start);
1715
1716
if (priv_frame_ptr)
1717
emit_priv_frame_ptr(&prog, priv_frame_ptr);
1718
1719
ilen = prog - temp;
1720
if (rw_image)
1721
memcpy(rw_image + proglen, temp, ilen);
1722
proglen += ilen;
1723
addrs[0] = proglen;
1724
prog = temp;
1725
1726
for (i = 1; i <= insn_cnt; i++, insn++) {
1727
const s32 imm32 = insn->imm;
1728
u32 dst_reg = insn->dst_reg;
1729
u32 src_reg = insn->src_reg;
1730
u8 b2 = 0, b3 = 0;
1731
u8 *start_of_ldx;
1732
s64 jmp_offset;
1733
s16 insn_off;
1734
u8 jmp_cond;
1735
u8 *func;
1736
int nops;
1737
1738
if (priv_frame_ptr) {
1739
if (src_reg == BPF_REG_FP)
1740
src_reg = X86_REG_R9;
1741
1742
if (dst_reg == BPF_REG_FP)
1743
dst_reg = X86_REG_R9;
1744
}
1745
1746
switch (insn->code) {
1747
/* ALU */
1748
case BPF_ALU | BPF_ADD | BPF_X:
1749
case BPF_ALU | BPF_SUB | BPF_X:
1750
case BPF_ALU | BPF_AND | BPF_X:
1751
case BPF_ALU | BPF_OR | BPF_X:
1752
case BPF_ALU | BPF_XOR | BPF_X:
1753
case BPF_ALU64 | BPF_ADD | BPF_X:
1754
case BPF_ALU64 | BPF_SUB | BPF_X:
1755
case BPF_ALU64 | BPF_AND | BPF_X:
1756
case BPF_ALU64 | BPF_OR | BPF_X:
1757
case BPF_ALU64 | BPF_XOR | BPF_X:
1758
maybe_emit_mod(&prog, dst_reg, src_reg,
1759
BPF_CLASS(insn->code) == BPF_ALU64);
1760
b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1761
EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1762
break;
1763
1764
case BPF_ALU64 | BPF_MOV | BPF_X:
1765
if (insn_is_cast_user(insn)) {
1766
if (dst_reg != src_reg)
1767
/* 32-bit mov */
1768
emit_mov_reg(&prog, false, dst_reg, src_reg);
1769
/* shl dst_reg, 32 */
1770
maybe_emit_1mod(&prog, dst_reg, true);
1771
EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32);
1772
1773
/* or dst_reg, user_vm_start */
1774
maybe_emit_1mod(&prog, dst_reg, true);
1775
if (is_axreg(dst_reg))
1776
EMIT1_off32(0x0D, user_vm_start >> 32);
1777
else
1778
EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32);
1779
1780
/* rol dst_reg, 32 */
1781
maybe_emit_1mod(&prog, dst_reg, true);
1782
EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32);
1783
1784
/* xor r11, r11 */
1785
EMIT3(0x4D, 0x31, 0xDB);
1786
1787
/* test dst_reg32, dst_reg32; check if lower 32-bit are zero */
1788
maybe_emit_mod(&prog, dst_reg, dst_reg, false);
1789
EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1790
1791
/* cmove r11, dst_reg; if so, set dst_reg to zero */
1792
/* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */
1793
maybe_emit_mod(&prog, AUX_REG, dst_reg, true);
1794
EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg));
1795
break;
1796
} else if (insn_is_mov_percpu_addr(insn)) {
1797
/* mov <dst>, <src> (if necessary) */
1798
EMIT_mov(dst_reg, src_reg);
1799
#ifdef CONFIG_SMP
1800
/* add <dst>, gs:[<off>] */
1801
EMIT2(0x65, add_1mod(0x48, dst_reg));
1802
EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25);
1803
EMIT((u32)(unsigned long)&this_cpu_off, 4);
1804
#endif
1805
break;
1806
}
1807
fallthrough;
1808
case BPF_ALU | BPF_MOV | BPF_X:
1809
if (insn->off == 0)
1810
emit_mov_reg(&prog,
1811
BPF_CLASS(insn->code) == BPF_ALU64,
1812
dst_reg, src_reg);
1813
else
1814
emit_movsx_reg(&prog, insn->off,
1815
BPF_CLASS(insn->code) == BPF_ALU64,
1816
dst_reg, src_reg);
1817
break;
1818
1819
/* neg dst */
1820
case BPF_ALU | BPF_NEG:
1821
case BPF_ALU64 | BPF_NEG:
1822
maybe_emit_1mod(&prog, dst_reg,
1823
BPF_CLASS(insn->code) == BPF_ALU64);
1824
EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1825
break;
1826
1827
case BPF_ALU | BPF_ADD | BPF_K:
1828
case BPF_ALU | BPF_SUB | BPF_K:
1829
case BPF_ALU | BPF_AND | BPF_K:
1830
case BPF_ALU | BPF_OR | BPF_K:
1831
case BPF_ALU | BPF_XOR | BPF_K:
1832
case BPF_ALU64 | BPF_ADD | BPF_K:
1833
case BPF_ALU64 | BPF_SUB | BPF_K:
1834
case BPF_ALU64 | BPF_AND | BPF_K:
1835
case BPF_ALU64 | BPF_OR | BPF_K:
1836
case BPF_ALU64 | BPF_XOR | BPF_K:
1837
maybe_emit_1mod(&prog, dst_reg,
1838
BPF_CLASS(insn->code) == BPF_ALU64);
1839
1840
/*
1841
* b3 holds 'normal' opcode, b2 short form only valid
1842
* in case dst is eax/rax.
1843
*/
1844
switch (BPF_OP(insn->code)) {
1845
case BPF_ADD:
1846
b3 = 0xC0;
1847
b2 = 0x05;
1848
break;
1849
case BPF_SUB:
1850
b3 = 0xE8;
1851
b2 = 0x2D;
1852
break;
1853
case BPF_AND:
1854
b3 = 0xE0;
1855
b2 = 0x25;
1856
break;
1857
case BPF_OR:
1858
b3 = 0xC8;
1859
b2 = 0x0D;
1860
break;
1861
case BPF_XOR:
1862
b3 = 0xF0;
1863
b2 = 0x35;
1864
break;
1865
}
1866
1867
if (is_imm8(imm32))
1868
EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1869
else if (is_axreg(dst_reg))
1870
EMIT1_off32(b2, imm32);
1871
else
1872
EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1873
break;
1874
1875
case BPF_ALU64 | BPF_MOV | BPF_K:
1876
case BPF_ALU | BPF_MOV | BPF_K:
1877
emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1878
dst_reg, imm32);
1879
break;
1880
1881
case BPF_LD | BPF_IMM | BPF_DW:
1882
emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1883
insn++;
1884
i++;
1885
break;
1886
1887
/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1888
case BPF_ALU | BPF_MOD | BPF_X:
1889
case BPF_ALU | BPF_DIV | BPF_X:
1890
case BPF_ALU | BPF_MOD | BPF_K:
1891
case BPF_ALU | BPF_DIV | BPF_K:
1892
case BPF_ALU64 | BPF_MOD | BPF_X:
1893
case BPF_ALU64 | BPF_DIV | BPF_X:
1894
case BPF_ALU64 | BPF_MOD | BPF_K:
1895
case BPF_ALU64 | BPF_DIV | BPF_K: {
1896
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1897
1898
if (dst_reg != BPF_REG_0)
1899
EMIT1(0x50); /* push rax */
1900
if (dst_reg != BPF_REG_3)
1901
EMIT1(0x52); /* push rdx */
1902
1903
if (BPF_SRC(insn->code) == BPF_X) {
1904
if (src_reg == BPF_REG_0 ||
1905
src_reg == BPF_REG_3) {
1906
/* mov r11, src_reg */
1907
EMIT_mov(AUX_REG, src_reg);
1908
src_reg = AUX_REG;
1909
}
1910
} else {
1911
/* mov r11, imm32 */
1912
EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1913
src_reg = AUX_REG;
1914
}
1915
1916
if (dst_reg != BPF_REG_0)
1917
/* mov rax, dst_reg */
1918
emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1919
1920
if (insn->off == 0) {
1921
/*
1922
* xor edx, edx
1923
* equivalent to 'xor rdx, rdx', but one byte less
1924
*/
1925
EMIT2(0x31, 0xd2);
1926
1927
/* div src_reg */
1928
maybe_emit_1mod(&prog, src_reg, is64);
1929
EMIT2(0xF7, add_1reg(0xF0, src_reg));
1930
} else {
1931
if (BPF_CLASS(insn->code) == BPF_ALU)
1932
EMIT1(0x99); /* cdq */
1933
else
1934
EMIT2(0x48, 0x99); /* cqo */
1935
1936
/* idiv src_reg */
1937
maybe_emit_1mod(&prog, src_reg, is64);
1938
EMIT2(0xF7, add_1reg(0xF8, src_reg));
1939
}
1940
1941
if (BPF_OP(insn->code) == BPF_MOD &&
1942
dst_reg != BPF_REG_3)
1943
/* mov dst_reg, rdx */
1944
emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1945
else if (BPF_OP(insn->code) == BPF_DIV &&
1946
dst_reg != BPF_REG_0)
1947
/* mov dst_reg, rax */
1948
emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1949
1950
if (dst_reg != BPF_REG_3)
1951
EMIT1(0x5A); /* pop rdx */
1952
if (dst_reg != BPF_REG_0)
1953
EMIT1(0x58); /* pop rax */
1954
break;
1955
}
1956
1957
case BPF_ALU | BPF_MUL | BPF_K:
1958
case BPF_ALU64 | BPF_MUL | BPF_K:
1959
maybe_emit_mod(&prog, dst_reg, dst_reg,
1960
BPF_CLASS(insn->code) == BPF_ALU64);
1961
1962
if (is_imm8(imm32))
1963
/* imul dst_reg, dst_reg, imm8 */
1964
EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1965
imm32);
1966
else
1967
/* imul dst_reg, dst_reg, imm32 */
1968
EMIT2_off32(0x69,
1969
add_2reg(0xC0, dst_reg, dst_reg),
1970
imm32);
1971
break;
1972
1973
case BPF_ALU | BPF_MUL | BPF_X:
1974
case BPF_ALU64 | BPF_MUL | BPF_X:
1975
maybe_emit_mod(&prog, src_reg, dst_reg,
1976
BPF_CLASS(insn->code) == BPF_ALU64);
1977
1978
/* imul dst_reg, src_reg */
1979
EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1980
break;
1981
1982
/* Shifts */
1983
case BPF_ALU | BPF_LSH | BPF_K:
1984
case BPF_ALU | BPF_RSH | BPF_K:
1985
case BPF_ALU | BPF_ARSH | BPF_K:
1986
case BPF_ALU64 | BPF_LSH | BPF_K:
1987
case BPF_ALU64 | BPF_RSH | BPF_K:
1988
case BPF_ALU64 | BPF_ARSH | BPF_K:
1989
maybe_emit_1mod(&prog, dst_reg,
1990
BPF_CLASS(insn->code) == BPF_ALU64);
1991
1992
b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1993
if (imm32 == 1)
1994
EMIT2(0xD1, add_1reg(b3, dst_reg));
1995
else
1996
EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1997
break;
1998
1999
case BPF_ALU | BPF_LSH | BPF_X:
2000
case BPF_ALU | BPF_RSH | BPF_X:
2001
case BPF_ALU | BPF_ARSH | BPF_X:
2002
case BPF_ALU64 | BPF_LSH | BPF_X:
2003
case BPF_ALU64 | BPF_RSH | BPF_X:
2004
case BPF_ALU64 | BPF_ARSH | BPF_X:
2005
/* BMI2 shifts aren't better when shift count is already in rcx */
2006
if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
2007
/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
2008
bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
2009
u8 op;
2010
2011
switch (BPF_OP(insn->code)) {
2012
case BPF_LSH:
2013
op = 1; /* prefix 0x66 */
2014
break;
2015
case BPF_RSH:
2016
op = 3; /* prefix 0xf2 */
2017
break;
2018
case BPF_ARSH:
2019
op = 2; /* prefix 0xf3 */
2020
break;
2021
}
2022
2023
emit_shiftx(&prog, dst_reg, src_reg, w, op);
2024
2025
break;
2026
}
2027
2028
if (src_reg != BPF_REG_4) { /* common case */
2029
/* Check for bad case when dst_reg == rcx */
2030
if (dst_reg == BPF_REG_4) {
2031
/* mov r11, dst_reg */
2032
EMIT_mov(AUX_REG, dst_reg);
2033
dst_reg = AUX_REG;
2034
} else {
2035
EMIT1(0x51); /* push rcx */
2036
}
2037
/* mov rcx, src_reg */
2038
EMIT_mov(BPF_REG_4, src_reg);
2039
}
2040
2041
/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
2042
maybe_emit_1mod(&prog, dst_reg,
2043
BPF_CLASS(insn->code) == BPF_ALU64);
2044
2045
b3 = simple_alu_opcodes[BPF_OP(insn->code)];
2046
EMIT2(0xD3, add_1reg(b3, dst_reg));
2047
2048
if (src_reg != BPF_REG_4) {
2049
if (insn->dst_reg == BPF_REG_4)
2050
/* mov dst_reg, r11 */
2051
EMIT_mov(insn->dst_reg, AUX_REG);
2052
else
2053
EMIT1(0x59); /* pop rcx */
2054
}
2055
2056
break;
2057
2058
case BPF_ALU | BPF_END | BPF_FROM_BE:
2059
case BPF_ALU64 | BPF_END | BPF_FROM_LE:
2060
switch (imm32) {
2061
case 16:
2062
/* Emit 'ror %ax, 8' to swap lower 2 bytes */
2063
EMIT1(0x66);
2064
if (is_ereg(dst_reg))
2065
EMIT1(0x41);
2066
EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
2067
2068
/* Emit 'movzwl eax, ax' */
2069
if (is_ereg(dst_reg))
2070
EMIT3(0x45, 0x0F, 0xB7);
2071
else
2072
EMIT2(0x0F, 0xB7);
2073
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
2074
break;
2075
case 32:
2076
/* Emit 'bswap eax' to swap lower 4 bytes */
2077
if (is_ereg(dst_reg))
2078
EMIT2(0x41, 0x0F);
2079
else
2080
EMIT1(0x0F);
2081
EMIT1(add_1reg(0xC8, dst_reg));
2082
break;
2083
case 64:
2084
/* Emit 'bswap rax' to swap 8 bytes */
2085
EMIT3(add_1mod(0x48, dst_reg), 0x0F,
2086
add_1reg(0xC8, dst_reg));
2087
break;
2088
}
2089
break;
2090
2091
case BPF_ALU | BPF_END | BPF_FROM_LE:
2092
switch (imm32) {
2093
case 16:
2094
/*
2095
* Emit 'movzwl eax, ax' to zero extend 16-bit
2096
* into 64 bit
2097
*/
2098
if (is_ereg(dst_reg))
2099
EMIT3(0x45, 0x0F, 0xB7);
2100
else
2101
EMIT2(0x0F, 0xB7);
2102
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
2103
break;
2104
case 32:
2105
/* Emit 'mov eax, eax' to clear upper 32-bits */
2106
if (is_ereg(dst_reg))
2107
EMIT1(0x45);
2108
EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
2109
break;
2110
case 64:
2111
/* nop */
2112
break;
2113
}
2114
break;
2115
2116
/* speculation barrier */
2117
case BPF_ST | BPF_NOSPEC:
2118
EMIT_LFENCE();
2119
break;
2120
2121
/* ST: *(u8*)(dst_reg + off) = imm */
2122
case BPF_ST | BPF_MEM | BPF_B:
2123
if (is_ereg(dst_reg))
2124
EMIT2(0x41, 0xC6);
2125
else
2126
EMIT1(0xC6);
2127
goto st;
2128
case BPF_ST | BPF_MEM | BPF_H:
2129
if (is_ereg(dst_reg))
2130
EMIT3(0x66, 0x41, 0xC7);
2131
else
2132
EMIT2(0x66, 0xC7);
2133
goto st;
2134
case BPF_ST | BPF_MEM | BPF_W:
2135
if (is_ereg(dst_reg))
2136
EMIT2(0x41, 0xC7);
2137
else
2138
EMIT1(0xC7);
2139
goto st;
2140
case BPF_ST | BPF_MEM | BPF_DW:
2141
EMIT2(add_1mod(0x48, dst_reg), 0xC7);
2142
2143
st: if (is_imm8(insn->off))
2144
EMIT2(add_1reg(0x40, dst_reg), insn->off);
2145
else
2146
EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
2147
2148
EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
2149
break;
2150
2151
/* STX: *(u8*)(dst_reg + off) = src_reg */
2152
case BPF_STX | BPF_MEM | BPF_B:
2153
case BPF_STX | BPF_MEM | BPF_H:
2154
case BPF_STX | BPF_MEM | BPF_W:
2155
case BPF_STX | BPF_MEM | BPF_DW:
2156
emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2157
break;
2158
2159
case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
2160
case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
2161
case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
2162
case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
2163
start_of_ldx = prog;
2164
emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm);
2165
goto populate_extable;
2166
2167
/* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */
2168
case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
2169
case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
2170
case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
2171
case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
2172
case BPF_LDX | BPF_PROBE_MEM32SX | BPF_B:
2173
case BPF_LDX | BPF_PROBE_MEM32SX | BPF_H:
2174
case BPF_LDX | BPF_PROBE_MEM32SX | BPF_W:
2175
case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
2176
case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
2177
case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
2178
case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
2179
start_of_ldx = prog;
2180
if (BPF_CLASS(insn->code) == BPF_LDX) {
2181
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32SX)
2182
emit_ldsx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2183
else
2184
emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2185
} else {
2186
emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2187
}
2188
populate_extable:
2189
{
2190
struct exception_table_entry *ex;
2191
u8 *_insn = image + proglen + (start_of_ldx - temp);
2192
u32 arena_reg, fixup_reg;
2193
s64 delta;
2194
2195
if (!bpf_prog->aux->extable)
2196
break;
2197
2198
if (excnt >= bpf_prog->aux->num_exentries) {
2199
pr_err("mem32 extable bug\n");
2200
return -EFAULT;
2201
}
2202
ex = &bpf_prog->aux->extable[excnt++];
2203
2204
delta = _insn - (u8 *)&ex->insn;
2205
/* switch ex to rw buffer for writes */
2206
ex = (void *)rw_image + ((void *)ex - (void *)image);
2207
2208
ex->insn = delta;
2209
2210
ex->data = EX_TYPE_BPF;
2211
2212
/*
2213
* src_reg/dst_reg holds the address in the arena region with upper
2214
* 32-bits being zero because of a preceding addr_space_cast(r<n>,
2215
* 0x0, 0x1) instruction. This address is adjusted with the addition
2216
* of arena_vm_start (see the implementation of BPF_PROBE_MEM32 and
2217
* BPF_PROBE_ATOMIC) before being used for the memory access. Pass
2218
* the reg holding the unmodified 32-bit address to
2219
* ex_handler_bpf().
2220
*/
2221
if (BPF_CLASS(insn->code) == BPF_LDX) {
2222
arena_reg = reg2pt_regs[src_reg];
2223
fixup_reg = reg2pt_regs[dst_reg];
2224
} else {
2225
arena_reg = reg2pt_regs[dst_reg];
2226
fixup_reg = DONT_CLEAR;
2227
}
2228
2229
ex->fixup = FIELD_PREP(FIXUP_INSN_LEN_MASK, prog - start_of_ldx) |
2230
FIELD_PREP(FIXUP_ARENA_REG_MASK, arena_reg) |
2231
FIELD_PREP(FIXUP_REG_MASK, fixup_reg);
2232
ex->fixup |= FIXUP_ARENA_ACCESS;
2233
2234
ex->data |= FIELD_PREP(DATA_ARENA_OFFSET_MASK, insn->off);
2235
}
2236
break;
2237
2238
/* LDX: dst_reg = *(u8*)(src_reg + off) */
2239
case BPF_LDX | BPF_MEM | BPF_B:
2240
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
2241
case BPF_LDX | BPF_MEM | BPF_H:
2242
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
2243
case BPF_LDX | BPF_MEM | BPF_W:
2244
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
2245
case BPF_LDX | BPF_MEM | BPF_DW:
2246
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
2247
/* LDXS: dst_reg = *(s8*)(src_reg + off) */
2248
case BPF_LDX | BPF_MEMSX | BPF_B:
2249
case BPF_LDX | BPF_MEMSX | BPF_H:
2250
case BPF_LDX | BPF_MEMSX | BPF_W:
2251
case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
2252
case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
2253
case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
2254
insn_off = insn->off;
2255
2256
if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2257
BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2258
/* Conservatively check that src_reg + insn->off is a kernel address:
2259
* src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
2260
* and
2261
* src_reg + insn->off < VSYSCALL_ADDR
2262
*/
2263
2264
u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
2265
u8 *end_of_jmp;
2266
2267
/* movabsq r10, VSYSCALL_ADDR */
2268
emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
2269
(u32)(long)VSYSCALL_ADDR);
2270
2271
/* mov src_reg, r11 */
2272
EMIT_mov(AUX_REG, src_reg);
2273
2274
if (insn->off) {
2275
/* add r11, insn->off */
2276
maybe_emit_1mod(&prog, AUX_REG, true);
2277
EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
2278
}
2279
2280
/* sub r11, r10 */
2281
maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2282
EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2283
2284
/* movabsq r10, limit */
2285
emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
2286
(u32)(long)limit);
2287
2288
/* cmp r10, r11 */
2289
maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2290
EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2291
2292
/* if unsigned '>', goto load */
2293
EMIT2(X86_JA, 0);
2294
end_of_jmp = prog;
2295
2296
/* xor dst_reg, dst_reg */
2297
emit_mov_imm32(&prog, false, dst_reg, 0);
2298
/* jmp byte_after_ldx */
2299
EMIT2(0xEB, 0);
2300
2301
/* populate jmp_offset for JAE above to jump to start_of_ldx */
2302
start_of_ldx = prog;
2303
end_of_jmp[-1] = start_of_ldx - end_of_jmp;
2304
}
2305
if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
2306
BPF_MODE(insn->code) == BPF_MEMSX)
2307
emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2308
else
2309
emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2310
if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2311
BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2312
struct exception_table_entry *ex;
2313
u8 *_insn = image + proglen + (start_of_ldx - temp);
2314
s64 delta;
2315
2316
/* populate jmp_offset for JMP above */
2317
start_of_ldx[-1] = prog - start_of_ldx;
2318
2319
if (!bpf_prog->aux->extable)
2320
break;
2321
2322
if (excnt >= bpf_prog->aux->num_exentries) {
2323
pr_err("ex gen bug\n");
2324
return -EFAULT;
2325
}
2326
ex = &bpf_prog->aux->extable[excnt++];
2327
2328
delta = _insn - (u8 *)&ex->insn;
2329
if (!is_simm32(delta)) {
2330
pr_err("extable->insn doesn't fit into 32-bit\n");
2331
return -EFAULT;
2332
}
2333
/* switch ex to rw buffer for writes */
2334
ex = (void *)rw_image + ((void *)ex - (void *)image);
2335
2336
ex->insn = delta;
2337
2338
ex->data = EX_TYPE_BPF;
2339
2340
if (dst_reg > BPF_REG_9) {
2341
pr_err("verifier error\n");
2342
return -EFAULT;
2343
}
2344
/*
2345
* Compute size of x86 insn and its target dest x86 register.
2346
* ex_handler_bpf() will use lower 8 bits to adjust
2347
* pt_regs->ip to jump over this x86 instruction
2348
* and upper bits to figure out which pt_regs to zero out.
2349
* End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
2350
* of 4 bytes will be ignored and rbx will be zero inited.
2351
*/
2352
ex->fixup = FIELD_PREP(FIXUP_INSN_LEN_MASK, prog - start_of_ldx) |
2353
FIELD_PREP(FIXUP_REG_MASK, reg2pt_regs[dst_reg]);
2354
}
2355
break;
2356
2357
case BPF_STX | BPF_ATOMIC | BPF_B:
2358
case BPF_STX | BPF_ATOMIC | BPF_H:
2359
if (!bpf_atomic_is_load_store(insn)) {
2360
pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2361
return -EFAULT;
2362
}
2363
fallthrough;
2364
case BPF_STX | BPF_ATOMIC | BPF_W:
2365
case BPF_STX | BPF_ATOMIC | BPF_DW:
2366
if (insn->imm == (BPF_AND | BPF_FETCH) ||
2367
insn->imm == (BPF_OR | BPF_FETCH) ||
2368
insn->imm == (BPF_XOR | BPF_FETCH)) {
2369
bool is64 = BPF_SIZE(insn->code) == BPF_DW;
2370
u32 real_src_reg = src_reg;
2371
u32 real_dst_reg = dst_reg;
2372
u8 *branch_target;
2373
2374
/*
2375
* Can't be implemented with a single x86 insn.
2376
* Need to do a CMPXCHG loop.
2377
*/
2378
2379
/* Will need RAX as a CMPXCHG operand so save R0 */
2380
emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
2381
if (src_reg == BPF_REG_0)
2382
real_src_reg = BPF_REG_AX;
2383
if (dst_reg == BPF_REG_0)
2384
real_dst_reg = BPF_REG_AX;
2385
2386
branch_target = prog;
2387
/* Load old value */
2388
emit_ldx(&prog, BPF_SIZE(insn->code),
2389
BPF_REG_0, real_dst_reg, insn->off);
2390
/*
2391
* Perform the (commutative) operation locally,
2392
* put the result in the AUX_REG.
2393
*/
2394
emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
2395
maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
2396
EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
2397
add_2reg(0xC0, AUX_REG, real_src_reg));
2398
/* Attempt to swap in new value */
2399
err = emit_atomic_rmw(&prog, BPF_CMPXCHG,
2400
real_dst_reg, AUX_REG,
2401
insn->off,
2402
BPF_SIZE(insn->code));
2403
if (WARN_ON(err))
2404
return err;
2405
/*
2406
* ZF tells us whether we won the race. If it's
2407
* cleared we need to try again.
2408
*/
2409
EMIT2(X86_JNE, -(prog - branch_target) - 2);
2410
/* Return the pre-modification value */
2411
emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
2412
/* Restore R0 after clobbering RAX */
2413
emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
2414
break;
2415
}
2416
2417
if (bpf_atomic_is_load_store(insn))
2418
err = emit_atomic_ld_st(&prog, insn->imm, dst_reg, src_reg,
2419
insn->off, BPF_SIZE(insn->code));
2420
else
2421
err = emit_atomic_rmw(&prog, insn->imm, dst_reg, src_reg,
2422
insn->off, BPF_SIZE(insn->code));
2423
if (err)
2424
return err;
2425
break;
2426
2427
case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
2428
case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
2429
if (!bpf_atomic_is_load_store(insn)) {
2430
pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2431
return -EFAULT;
2432
}
2433
fallthrough;
2434
case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
2435
case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
2436
start_of_ldx = prog;
2437
2438
if (bpf_atomic_is_load_store(insn))
2439
err = emit_atomic_ld_st_index(&prog, insn->imm,
2440
BPF_SIZE(insn->code), dst_reg,
2441
src_reg, X86_REG_R12, insn->off);
2442
else
2443
err = emit_atomic_rmw_index(&prog, insn->imm, BPF_SIZE(insn->code),
2444
dst_reg, src_reg, X86_REG_R12,
2445
insn->off);
2446
if (err)
2447
return err;
2448
goto populate_extable;
2449
2450
/* call */
2451
case BPF_JMP | BPF_CALL: {
2452
u8 *ip = image + addrs[i - 1];
2453
2454
func = (u8 *) __bpf_call_base + imm32;
2455
if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) {
2456
LOAD_TAIL_CALL_CNT_PTR(stack_depth);
2457
ip += 7;
2458
}
2459
if (!imm32)
2460
return -EINVAL;
2461
if (priv_frame_ptr) {
2462
push_r9(&prog);
2463
ip += 2;
2464
}
2465
ip += x86_call_depth_emit_accounting(&prog, func, ip);
2466
if (emit_call(&prog, func, ip))
2467
return -EINVAL;
2468
if (priv_frame_ptr)
2469
pop_r9(&prog);
2470
break;
2471
}
2472
2473
case BPF_JMP | BPF_TAIL_CALL:
2474
if (imm32)
2475
emit_bpf_tail_call_direct(bpf_prog,
2476
&bpf_prog->aux->poke_tab[imm32 - 1],
2477
&prog, image + addrs[i - 1],
2478
callee_regs_used,
2479
stack_depth,
2480
ctx);
2481
else
2482
emit_bpf_tail_call_indirect(bpf_prog,
2483
&prog,
2484
callee_regs_used,
2485
stack_depth,
2486
image + addrs[i - 1],
2487
ctx);
2488
break;
2489
2490
/* cond jump */
2491
case BPF_JMP | BPF_JEQ | BPF_X:
2492
case BPF_JMP | BPF_JNE | BPF_X:
2493
case BPF_JMP | BPF_JGT | BPF_X:
2494
case BPF_JMP | BPF_JLT | BPF_X:
2495
case BPF_JMP | BPF_JGE | BPF_X:
2496
case BPF_JMP | BPF_JLE | BPF_X:
2497
case BPF_JMP | BPF_JSGT | BPF_X:
2498
case BPF_JMP | BPF_JSLT | BPF_X:
2499
case BPF_JMP | BPF_JSGE | BPF_X:
2500
case BPF_JMP | BPF_JSLE | BPF_X:
2501
case BPF_JMP32 | BPF_JEQ | BPF_X:
2502
case BPF_JMP32 | BPF_JNE | BPF_X:
2503
case BPF_JMP32 | BPF_JGT | BPF_X:
2504
case BPF_JMP32 | BPF_JLT | BPF_X:
2505
case BPF_JMP32 | BPF_JGE | BPF_X:
2506
case BPF_JMP32 | BPF_JLE | BPF_X:
2507
case BPF_JMP32 | BPF_JSGT | BPF_X:
2508
case BPF_JMP32 | BPF_JSLT | BPF_X:
2509
case BPF_JMP32 | BPF_JSGE | BPF_X:
2510
case BPF_JMP32 | BPF_JSLE | BPF_X:
2511
/* cmp dst_reg, src_reg */
2512
maybe_emit_mod(&prog, dst_reg, src_reg,
2513
BPF_CLASS(insn->code) == BPF_JMP);
2514
EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
2515
goto emit_cond_jmp;
2516
2517
case BPF_JMP | BPF_JSET | BPF_X:
2518
case BPF_JMP32 | BPF_JSET | BPF_X:
2519
/* test dst_reg, src_reg */
2520
maybe_emit_mod(&prog, dst_reg, src_reg,
2521
BPF_CLASS(insn->code) == BPF_JMP);
2522
EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
2523
goto emit_cond_jmp;
2524
2525
case BPF_JMP | BPF_JSET | BPF_K:
2526
case BPF_JMP32 | BPF_JSET | BPF_K:
2527
/* test dst_reg, imm32 */
2528
maybe_emit_1mod(&prog, dst_reg,
2529
BPF_CLASS(insn->code) == BPF_JMP);
2530
EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
2531
goto emit_cond_jmp;
2532
2533
case BPF_JMP | BPF_JEQ | BPF_K:
2534
case BPF_JMP | BPF_JNE | BPF_K:
2535
case BPF_JMP | BPF_JGT | BPF_K:
2536
case BPF_JMP | BPF_JLT | BPF_K:
2537
case BPF_JMP | BPF_JGE | BPF_K:
2538
case BPF_JMP | BPF_JLE | BPF_K:
2539
case BPF_JMP | BPF_JSGT | BPF_K:
2540
case BPF_JMP | BPF_JSLT | BPF_K:
2541
case BPF_JMP | BPF_JSGE | BPF_K:
2542
case BPF_JMP | BPF_JSLE | BPF_K:
2543
case BPF_JMP32 | BPF_JEQ | BPF_K:
2544
case BPF_JMP32 | BPF_JNE | BPF_K:
2545
case BPF_JMP32 | BPF_JGT | BPF_K:
2546
case BPF_JMP32 | BPF_JLT | BPF_K:
2547
case BPF_JMP32 | BPF_JGE | BPF_K:
2548
case BPF_JMP32 | BPF_JLE | BPF_K:
2549
case BPF_JMP32 | BPF_JSGT | BPF_K:
2550
case BPF_JMP32 | BPF_JSLT | BPF_K:
2551
case BPF_JMP32 | BPF_JSGE | BPF_K:
2552
case BPF_JMP32 | BPF_JSLE | BPF_K:
2553
/* test dst_reg, dst_reg to save one extra byte */
2554
if (imm32 == 0) {
2555
maybe_emit_mod(&prog, dst_reg, dst_reg,
2556
BPF_CLASS(insn->code) == BPF_JMP);
2557
EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
2558
goto emit_cond_jmp;
2559
}
2560
2561
/* cmp dst_reg, imm8/32 */
2562
maybe_emit_1mod(&prog, dst_reg,
2563
BPF_CLASS(insn->code) == BPF_JMP);
2564
2565
if (is_imm8(imm32))
2566
EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
2567
else
2568
EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
2569
2570
emit_cond_jmp: /* Convert BPF opcode to x86 */
2571
switch (BPF_OP(insn->code)) {
2572
case BPF_JEQ:
2573
jmp_cond = X86_JE;
2574
break;
2575
case BPF_JSET:
2576
case BPF_JNE:
2577
jmp_cond = X86_JNE;
2578
break;
2579
case BPF_JGT:
2580
/* GT is unsigned '>', JA in x86 */
2581
jmp_cond = X86_JA;
2582
break;
2583
case BPF_JLT:
2584
/* LT is unsigned '<', JB in x86 */
2585
jmp_cond = X86_JB;
2586
break;
2587
case BPF_JGE:
2588
/* GE is unsigned '>=', JAE in x86 */
2589
jmp_cond = X86_JAE;
2590
break;
2591
case BPF_JLE:
2592
/* LE is unsigned '<=', JBE in x86 */
2593
jmp_cond = X86_JBE;
2594
break;
2595
case BPF_JSGT:
2596
/* Signed '>', GT in x86 */
2597
jmp_cond = X86_JG;
2598
break;
2599
case BPF_JSLT:
2600
/* Signed '<', LT in x86 */
2601
jmp_cond = X86_JL;
2602
break;
2603
case BPF_JSGE:
2604
/* Signed '>=', GE in x86 */
2605
jmp_cond = X86_JGE;
2606
break;
2607
case BPF_JSLE:
2608
/* Signed '<=', LE in x86 */
2609
jmp_cond = X86_JLE;
2610
break;
2611
default: /* to silence GCC warning */
2612
return -EFAULT;
2613
}
2614
jmp_offset = addrs[i + insn->off] - addrs[i];
2615
if (is_imm8_jmp_offset(jmp_offset)) {
2616
if (jmp_padding) {
2617
/* To keep the jmp_offset valid, the extra bytes are
2618
* padded before the jump insn, so we subtract the
2619
* 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
2620
*
2621
* If the previous pass already emits an imm8
2622
* jmp_cond, then this BPF insn won't shrink, so
2623
* "nops" is 0.
2624
*
2625
* On the other hand, if the previous pass emits an
2626
* imm32 jmp_cond, the extra 4 bytes(*) is padded to
2627
* keep the image from shrinking further.
2628
*
2629
* (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
2630
* is 2 bytes, so the size difference is 4 bytes.
2631
*/
2632
nops = INSN_SZ_DIFF - 2;
2633
if (nops != 0 && nops != 4) {
2634
pr_err("unexpected jmp_cond padding: %d bytes\n",
2635
nops);
2636
return -EFAULT;
2637
}
2638
emit_nops(&prog, nops);
2639
}
2640
EMIT2(jmp_cond, jmp_offset);
2641
} else if (is_simm32(jmp_offset)) {
2642
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2643
} else {
2644
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2645
return -EFAULT;
2646
}
2647
2648
break;
2649
2650
case BPF_JMP | BPF_JA | BPF_X:
2651
emit_indirect_jump(&prog, insn->dst_reg, image + addrs[i - 1]);
2652
break;
2653
case BPF_JMP | BPF_JA:
2654
case BPF_JMP32 | BPF_JA:
2655
if (BPF_CLASS(insn->code) == BPF_JMP) {
2656
if (insn->off == -1)
2657
/* -1 jmp instructions will always jump
2658
* backwards two bytes. Explicitly handling
2659
* this case avoids wasting too many passes
2660
* when there are long sequences of replaced
2661
* dead code.
2662
*/
2663
jmp_offset = -2;
2664
else
2665
jmp_offset = addrs[i + insn->off] - addrs[i];
2666
} else {
2667
if (insn->imm == -1)
2668
jmp_offset = -2;
2669
else
2670
jmp_offset = addrs[i + insn->imm] - addrs[i];
2671
}
2672
2673
if (!jmp_offset) {
2674
/*
2675
* If jmp_padding is enabled, the extra nops will
2676
* be inserted. Otherwise, optimize out nop jumps.
2677
*/
2678
if (jmp_padding) {
2679
/* There are 3 possible conditions.
2680
* (1) This BPF_JA is already optimized out in
2681
* the previous run, so there is no need
2682
* to pad any extra byte (0 byte).
2683
* (2) The previous pass emits an imm8 jmp,
2684
* so we pad 2 bytes to match the previous
2685
* insn size.
2686
* (3) Similarly, the previous pass emits an
2687
* imm32 jmp, and 5 bytes is padded.
2688
*/
2689
nops = INSN_SZ_DIFF;
2690
if (nops != 0 && nops != 2 && nops != 5) {
2691
pr_err("unexpected nop jump padding: %d bytes\n",
2692
nops);
2693
return -EFAULT;
2694
}
2695
emit_nops(&prog, nops);
2696
}
2697
break;
2698
}
2699
emit_jmp:
2700
if (is_imm8_jmp_offset(jmp_offset)) {
2701
if (jmp_padding) {
2702
/* To avoid breaking jmp_offset, the extra bytes
2703
* are padded before the actual jmp insn, so
2704
* 2 bytes is subtracted from INSN_SZ_DIFF.
2705
*
2706
* If the previous pass already emits an imm8
2707
* jmp, there is nothing to pad (0 byte).
2708
*
2709
* If it emits an imm32 jmp (5 bytes) previously
2710
* and now an imm8 jmp (2 bytes), then we pad
2711
* (5 - 2 = 3) bytes to stop the image from
2712
* shrinking further.
2713
*/
2714
nops = INSN_SZ_DIFF - 2;
2715
if (nops != 0 && nops != 3) {
2716
pr_err("unexpected jump padding: %d bytes\n",
2717
nops);
2718
return -EFAULT;
2719
}
2720
emit_nops(&prog, INSN_SZ_DIFF - 2);
2721
}
2722
EMIT2(0xEB, jmp_offset);
2723
} else if (is_simm32(jmp_offset)) {
2724
EMIT1_off32(0xE9, jmp_offset);
2725
} else {
2726
pr_err("jmp gen bug %llx\n", jmp_offset);
2727
return -EFAULT;
2728
}
2729
break;
2730
2731
case BPF_JMP | BPF_EXIT:
2732
if (seen_exit) {
2733
jmp_offset = ctx->cleanup_addr - addrs[i];
2734
goto emit_jmp;
2735
}
2736
seen_exit = true;
2737
/* Update cleanup_addr */
2738
ctx->cleanup_addr = proglen;
2739
if (bpf_prog_was_classic(bpf_prog) &&
2740
!ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN)) {
2741
u8 *ip = image + addrs[i - 1];
2742
2743
if (emit_spectre_bhb_barrier(&prog, ip, bpf_prog))
2744
return -EINVAL;
2745
}
2746
if (bpf_prog->aux->exception_boundary) {
2747
pop_callee_regs(&prog, all_callee_regs_used);
2748
pop_r12(&prog);
2749
} else {
2750
pop_callee_regs(&prog, callee_regs_used);
2751
if (arena_vm_start)
2752
pop_r12(&prog);
2753
}
2754
EMIT1(0xC9); /* leave */
2755
bpf_prog->aux->ksym.fp_end = prog - temp;
2756
2757
emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2758
break;
2759
2760
default:
2761
/*
2762
* By design x86-64 JIT should support all BPF instructions.
2763
* This error will be seen if new instruction was added
2764
* to the interpreter, but not to the JIT, or if there is
2765
* junk in bpf_prog.
2766
*/
2767
pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2768
return -EINVAL;
2769
}
2770
2771
ilen = prog - temp;
2772
if (ilen > BPF_MAX_INSN_SIZE) {
2773
pr_err("bpf_jit: fatal insn size error\n");
2774
return -EFAULT;
2775
}
2776
2777
if (image) {
2778
/*
2779
* When populating the image, assert that:
2780
*
2781
* i) We do not write beyond the allocated space, and
2782
* ii) addrs[i] did not change from the prior run, in order
2783
* to validate assumptions made for computing branch
2784
* displacements.
2785
*/
2786
if (unlikely(proglen + ilen > oldproglen ||
2787
proglen + ilen != addrs[i])) {
2788
pr_err("bpf_jit: fatal error\n");
2789
return -EFAULT;
2790
}
2791
memcpy(rw_image + proglen, temp, ilen);
2792
}
2793
proglen += ilen;
2794
addrs[i] = proglen;
2795
prog = temp;
2796
}
2797
2798
if (image && excnt != bpf_prog->aux->num_exentries) {
2799
pr_err("extable is not populated\n");
2800
return -EFAULT;
2801
}
2802
return proglen;
2803
}
2804
2805
static void clean_stack_garbage(const struct btf_func_model *m,
2806
u8 **pprog, int nr_stack_slots,
2807
int stack_size)
2808
{
2809
int arg_size, off;
2810
u8 *prog;
2811
2812
/* Generally speaking, the compiler will pass the arguments
2813
* on-stack with "push" instruction, which will take 8-byte
2814
* on the stack. In this case, there won't be garbage values
2815
* while we copy the arguments from origin stack frame to current
2816
* in BPF_DW.
2817
*
2818
* However, sometimes the compiler will only allocate 4-byte on
2819
* the stack for the arguments. For now, this case will only
2820
* happen if there is only one argument on-stack and its size
2821
* not more than 4 byte. In this case, there will be garbage
2822
* values on the upper 4-byte where we store the argument on
2823
* current stack frame.
2824
*
2825
* arguments on origin stack:
2826
*
2827
* stack_arg_1(4-byte) xxx(4-byte)
2828
*
2829
* what we copy:
2830
*
2831
* stack_arg_1(8-byte): stack_arg_1(origin) xxx
2832
*
2833
* and the xxx is the garbage values which we should clean here.
2834
*/
2835
if (nr_stack_slots != 1)
2836
return;
2837
2838
/* the size of the last argument */
2839
arg_size = m->arg_size[m->nr_args - 1];
2840
if (arg_size <= 4) {
2841
off = -(stack_size - 4);
2842
prog = *pprog;
2843
/* mov DWORD PTR [rbp + off], 0 */
2844
if (!is_imm8(off))
2845
EMIT2_off32(0xC7, 0x85, off);
2846
else
2847
EMIT3(0xC7, 0x45, off);
2848
EMIT(0, 4);
2849
*pprog = prog;
2850
}
2851
}
2852
2853
/* get the count of the regs that are used to pass arguments */
2854
static int get_nr_used_regs(const struct btf_func_model *m)
2855
{
2856
int i, arg_regs, nr_used_regs = 0;
2857
2858
for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2859
arg_regs = (m->arg_size[i] + 7) / 8;
2860
if (nr_used_regs + arg_regs <= 6)
2861
nr_used_regs += arg_regs;
2862
2863
if (nr_used_regs >= 6)
2864
break;
2865
}
2866
2867
return nr_used_regs;
2868
}
2869
2870
static void save_args(const struct btf_func_model *m, u8 **prog,
2871
int stack_size, bool for_call_origin, u32 flags)
2872
{
2873
int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2874
bool use_jmp = bpf_trampoline_use_jmp(flags);
2875
int i, j;
2876
2877
/* Store function arguments to stack.
2878
* For a function that accepts two pointers the sequence will be:
2879
* mov QWORD PTR [rbp-0x10],rdi
2880
* mov QWORD PTR [rbp-0x8],rsi
2881
*/
2882
for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2883
arg_regs = (m->arg_size[i] + 7) / 8;
2884
2885
/* According to the research of Yonghong, struct members
2886
* should be all in register or all on the stack.
2887
* Meanwhile, the compiler will pass the argument on regs
2888
* if the remaining regs can hold the argument.
2889
*
2890
* Disorder of the args can happen. For example:
2891
*
2892
* struct foo_struct {
2893
* long a;
2894
* int b;
2895
* };
2896
* int foo(char, char, char, char, char, struct foo_struct,
2897
* char);
2898
*
2899
* the arg1-5,arg7 will be passed by regs, and arg6 will
2900
* by stack.
2901
*/
2902
if (nr_regs + arg_regs > 6) {
2903
/* copy function arguments from origin stack frame
2904
* into current stack frame.
2905
*
2906
* The starting address of the arguments on-stack
2907
* is:
2908
* rbp + 8(push rbp) +
2909
* 8(return addr of origin call) +
2910
* 8(return addr of the caller)
2911
* which means: rbp + 24
2912
*/
2913
for (j = 0; j < arg_regs; j++) {
2914
emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2915
nr_stack_slots * 8 + 16 + (!use_jmp) * 8);
2916
emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2917
-stack_size);
2918
2919
if (!nr_stack_slots)
2920
first_off = stack_size;
2921
stack_size -= 8;
2922
nr_stack_slots++;
2923
}
2924
} else {
2925
/* Only copy the arguments on-stack to current
2926
* 'stack_size' and ignore the regs, used to
2927
* prepare the arguments on-stack for origin call.
2928
*/
2929
if (for_call_origin) {
2930
nr_regs += arg_regs;
2931
continue;
2932
}
2933
2934
/* copy the arguments from regs into stack */
2935
for (j = 0; j < arg_regs; j++) {
2936
emit_stx(prog, BPF_DW, BPF_REG_FP,
2937
nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2938
-stack_size);
2939
stack_size -= 8;
2940
nr_regs++;
2941
}
2942
}
2943
}
2944
2945
clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2946
}
2947
2948
static void restore_regs(const struct btf_func_model *m, u8 **prog,
2949
int stack_size)
2950
{
2951
int i, j, arg_regs, nr_regs = 0;
2952
2953
/* Restore function arguments from stack.
2954
* For a function that accepts two pointers the sequence will be:
2955
* EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2956
* EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2957
*
2958
* The logic here is similar to what we do in save_args()
2959
*/
2960
for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2961
arg_regs = (m->arg_size[i] + 7) / 8;
2962
if (nr_regs + arg_regs <= 6) {
2963
for (j = 0; j < arg_regs; j++) {
2964
emit_ldx(prog, BPF_DW,
2965
nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2966
BPF_REG_FP,
2967
-stack_size);
2968
stack_size -= 8;
2969
nr_regs++;
2970
}
2971
} else {
2972
stack_size -= 8 * arg_regs;
2973
}
2974
2975
if (nr_regs >= 6)
2976
break;
2977
}
2978
}
2979
2980
static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2981
struct bpf_tramp_link *l, int stack_size,
2982
int run_ctx_off, bool save_ret,
2983
void *image, void *rw_image)
2984
{
2985
u8 *prog = *pprog;
2986
u8 *jmp_insn;
2987
int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2988
struct bpf_prog *p = l->link.prog;
2989
u64 cookie = l->cookie;
2990
2991
/* mov rdi, cookie */
2992
emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2993
2994
/* Prepare struct bpf_tramp_run_ctx.
2995
*
2996
* bpf_tramp_run_ctx is already preserved by
2997
* arch_prepare_bpf_trampoline().
2998
*
2999
* mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
3000
*/
3001
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
3002
3003
/* arg1: mov rdi, progs[i] */
3004
emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
3005
/* arg2: lea rsi, [rbp - ctx_cookie_off] */
3006
if (!is_imm8(-run_ctx_off))
3007
EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
3008
else
3009
EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
3010
3011
if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
3012
return -EINVAL;
3013
/* remember prog start time returned by __bpf_prog_enter */
3014
emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
3015
3016
/* if (__bpf_prog_enter*(prog) == 0)
3017
* goto skip_exec_of_prog;
3018
*/
3019
EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
3020
/* emit 2 nops that will be replaced with JE insn */
3021
jmp_insn = prog;
3022
emit_nops(&prog, 2);
3023
3024
/* arg1: lea rdi, [rbp - stack_size] */
3025
if (!is_imm8(-stack_size))
3026
EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
3027
else
3028
EMIT4(0x48, 0x8D, 0x7D, -stack_size);
3029
/* arg2: progs[i]->insnsi for interpreter */
3030
if (!p->jited)
3031
emit_mov_imm64(&prog, BPF_REG_2,
3032
(long) p->insnsi >> 32,
3033
(u32) (long) p->insnsi);
3034
/* call JITed bpf program or interpreter */
3035
if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
3036
return -EINVAL;
3037
3038
/*
3039
* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
3040
* of the previous call which is then passed on the stack to
3041
* the next BPF program.
3042
*
3043
* BPF_TRAMP_FENTRY trampoline may need to return the return
3044
* value of BPF_PROG_TYPE_STRUCT_OPS prog.
3045
*/
3046
if (save_ret)
3047
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3048
3049
/* replace 2 nops with JE insn, since jmp target is known */
3050
jmp_insn[0] = X86_JE;
3051
jmp_insn[1] = prog - jmp_insn - 2;
3052
3053
/* arg1: mov rdi, progs[i] */
3054
emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
3055
/* arg2: mov rsi, rbx <- start time in nsec */
3056
emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
3057
/* arg3: lea rdx, [rbp - run_ctx_off] */
3058
if (!is_imm8(-run_ctx_off))
3059
EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
3060
else
3061
EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
3062
if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
3063
return -EINVAL;
3064
3065
*pprog = prog;
3066
return 0;
3067
}
3068
3069
static void emit_align(u8 **pprog, u32 align)
3070
{
3071
u8 *target, *prog = *pprog;
3072
3073
target = PTR_ALIGN(prog, align);
3074
if (target != prog)
3075
emit_nops(&prog, target - prog);
3076
3077
*pprog = prog;
3078
}
3079
3080
static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
3081
{
3082
u8 *prog = *pprog;
3083
s64 offset;
3084
3085
offset = func - (ip + 2 + 4);
3086
if (!is_simm32(offset)) {
3087
pr_err("Target %p is out of range\n", func);
3088
return -EINVAL;
3089
}
3090
EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
3091
*pprog = prog;
3092
return 0;
3093
}
3094
3095
static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
3096
struct bpf_tramp_links *tl, int stack_size,
3097
int run_ctx_off, int func_meta_off, bool save_ret,
3098
void *image, void *rw_image, u64 func_meta,
3099
int cookie_off)
3100
{
3101
int i, cur_cookie = (cookie_off - stack_size) / 8;
3102
u8 *prog = *pprog;
3103
3104
for (i = 0; i < tl->nr_links; i++) {
3105
if (tl->links[i]->link.prog->call_session_cookie) {
3106
emit_store_stack_imm64(&prog, BPF_REG_0, -func_meta_off,
3107
func_meta | (cur_cookie << BPF_TRAMP_COOKIE_INDEX_SHIFT));
3108
cur_cookie--;
3109
}
3110
if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
3111
run_ctx_off, save_ret, image, rw_image))
3112
return -EINVAL;
3113
}
3114
*pprog = prog;
3115
return 0;
3116
}
3117
3118
static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
3119
struct bpf_tramp_links *tl, int stack_size,
3120
int run_ctx_off, u8 **branches,
3121
void *image, void *rw_image)
3122
{
3123
u8 *prog = *pprog;
3124
int i;
3125
3126
/* The first fmod_ret program will receive a garbage return value.
3127
* Set this to 0 to avoid confusing the program.
3128
*/
3129
emit_mov_imm32(&prog, false, BPF_REG_0, 0);
3130
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3131
for (i = 0; i < tl->nr_links; i++) {
3132
if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
3133
image, rw_image))
3134
return -EINVAL;
3135
3136
/* mod_ret prog stored return value into [rbp - 8]. Emit:
3137
* if (*(u64 *)(rbp - 8) != 0)
3138
* goto do_fexit;
3139
*/
3140
/* cmp QWORD PTR [rbp - 0x8], 0x0 */
3141
EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
3142
3143
/* Save the location of the branch and Generate 6 nops
3144
* (4 bytes for an offset and 2 bytes for the jump) These nops
3145
* are replaced with a conditional jump once do_fexit (i.e. the
3146
* start of the fexit invocation) is finalized.
3147
*/
3148
branches[i] = prog;
3149
emit_nops(&prog, 4 + 2);
3150
}
3151
3152
*pprog = prog;
3153
return 0;
3154
}
3155
3156
/* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
3157
#define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack) \
3158
__LOAD_TCC_PTR(-round_up(stack, 8) - 8)
3159
3160
/* Example:
3161
* __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
3162
* its 'struct btf_func_model' will be nr_args=2
3163
* The assembly code when eth_type_trans is executing after trampoline:
3164
*
3165
* push rbp
3166
* mov rbp, rsp
3167
* sub rsp, 16 // space for skb and dev
3168
* push rbx // temp regs to pass start time
3169
* mov qword ptr [rbp - 16], rdi // save skb pointer to stack
3170
* mov qword ptr [rbp - 8], rsi // save dev pointer to stack
3171
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
3172
* mov rbx, rax // remember start time in bpf stats are enabled
3173
* lea rdi, [rbp - 16] // R1==ctx of bpf prog
3174
* call addr_of_jited_FENTRY_prog
3175
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3176
* mov rsi, rbx // prog start time
3177
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3178
* mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
3179
* mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
3180
* pop rbx
3181
* leave
3182
* ret
3183
*
3184
* eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
3185
* replaced with 'call generated_bpf_trampoline'. When it returns
3186
* eth_type_trans will continue executing with original skb and dev pointers.
3187
*
3188
* The assembly code when eth_type_trans is called from trampoline:
3189
*
3190
* push rbp
3191
* mov rbp, rsp
3192
* sub rsp, 24 // space for skb, dev, return value
3193
* push rbx // temp regs to pass start time
3194
* mov qword ptr [rbp - 24], rdi // save skb pointer to stack
3195
* mov qword ptr [rbp - 16], rsi // save dev pointer to stack
3196
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
3197
* mov rbx, rax // remember start time if bpf stats are enabled
3198
* lea rdi, [rbp - 24] // R1==ctx of bpf prog
3199
* call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
3200
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3201
* mov rsi, rbx // prog start time
3202
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3203
* mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
3204
* mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
3205
* call eth_type_trans+5 // execute body of eth_type_trans
3206
* mov qword ptr [rbp - 8], rax // save return value
3207
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
3208
* mov rbx, rax // remember start time in bpf stats are enabled
3209
* lea rdi, [rbp - 24] // R1==ctx of bpf prog
3210
* call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
3211
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3212
* mov rsi, rbx // prog start time
3213
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3214
* mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
3215
* pop rbx
3216
* leave
3217
* add rsp, 8 // skip eth_type_trans's frame
3218
* ret // return to its caller
3219
*/
3220
static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
3221
void *rw_image_end, void *image,
3222
const struct btf_func_model *m, u32 flags,
3223
struct bpf_tramp_links *tlinks,
3224
void *func_addr)
3225
{
3226
int i, ret, nr_regs = m->nr_args, stack_size = 0;
3227
int regs_off, func_meta_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
3228
struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
3229
struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
3230
struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
3231
void *orig_call = func_addr;
3232
int cookie_off, cookie_cnt;
3233
u8 **branches = NULL;
3234
u64 func_meta;
3235
u8 *prog;
3236
bool save_ret;
3237
3238
/*
3239
* F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
3240
* explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
3241
* because @func_addr.
3242
*/
3243
WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
3244
(flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
3245
3246
/* extra registers for struct arguments */
3247
for (i = 0; i < m->nr_args; i++) {
3248
if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
3249
nr_regs += (m->arg_size[i] + 7) / 8 - 1;
3250
}
3251
3252
/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
3253
* are passed through regs, the remains are through stack.
3254
*/
3255
if (nr_regs > MAX_BPF_FUNC_ARGS)
3256
return -ENOTSUPP;
3257
3258
/* Generated trampoline stack layout:
3259
*
3260
* RBP + 8 [ return address ]
3261
* RBP + 0 [ RBP ]
3262
*
3263
* RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
3264
* BPF_TRAMP_F_RET_FENTRY_RET flags
3265
*
3266
* [ reg_argN ] always
3267
* [ ... ]
3268
* RBP - regs_off [ reg_arg1 ] program's ctx pointer
3269
*
3270
* RBP - func_meta_off [ regs count, etc ] always
3271
*
3272
* RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
3273
*
3274
* RBP - rbx_off [ rbx value ] always
3275
*
3276
* RBP - run_ctx_off [ bpf_tramp_run_ctx ]
3277
*
3278
* [ stack_argN ] BPF_TRAMP_F_CALL_ORIG
3279
* [ ... ]
3280
* [ stack_arg2 ]
3281
* RBP - arg_stack_off [ stack_arg1 ]
3282
* RSP [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX
3283
*/
3284
3285
/* room for return value of orig_call or fentry prog */
3286
save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
3287
if (save_ret)
3288
stack_size += 8;
3289
3290
stack_size += nr_regs * 8;
3291
regs_off = stack_size;
3292
3293
/* function matedata, such as regs count */
3294
stack_size += 8;
3295
func_meta_off = stack_size;
3296
3297
if (flags & BPF_TRAMP_F_IP_ARG)
3298
stack_size += 8; /* room for IP address argument */
3299
3300
ip_off = stack_size;
3301
3302
cookie_cnt = bpf_fsession_cookie_cnt(tlinks);
3303
/* room for session cookies */
3304
stack_size += cookie_cnt * 8;
3305
cookie_off = stack_size;
3306
3307
stack_size += 8;
3308
rbx_off = stack_size;
3309
3310
stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
3311
run_ctx_off = stack_size;
3312
3313
if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
3314
/* the space that used to pass arguments on-stack */
3315
stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
3316
/* make sure the stack pointer is 16-byte aligned if we
3317
* need pass arguments on stack, which means
3318
* [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
3319
* should be 16-byte aligned. Following code depend on
3320
* that stack_size is already 8-byte aligned.
3321
*/
3322
if (bpf_trampoline_use_jmp(flags)) {
3323
/* no rip in the "jmp" case */
3324
stack_size += (stack_size % 16) ? 8 : 0;
3325
} else {
3326
stack_size += (stack_size % 16) ? 0 : 8;
3327
}
3328
}
3329
3330
arg_stack_off = stack_size;
3331
3332
if (flags & BPF_TRAMP_F_CALL_ORIG) {
3333
/* skip patched call instruction and point orig_call to actual
3334
* body of the kernel function.
3335
*/
3336
if (is_endbr(orig_call))
3337
orig_call += ENDBR_INSN_SIZE;
3338
orig_call += X86_PATCH_SIZE;
3339
}
3340
3341
prog = rw_image;
3342
3343
if (flags & BPF_TRAMP_F_INDIRECT) {
3344
/*
3345
* Indirect call for bpf_struct_ops
3346
*/
3347
emit_cfi(&prog, image,
3348
cfi_get_func_hash(func_addr),
3349
cfi_get_func_arity(func_addr));
3350
} else {
3351
/*
3352
* Direct-call fentry stub, as such it needs accounting for the
3353
* __fentry__ call.
3354
*/
3355
x86_call_depth_emit_accounting(&prog, NULL, image);
3356
}
3357
EMIT1(0x55); /* push rbp */
3358
EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
3359
if (im)
3360
im->ksym.fp_start = prog - (u8 *)rw_image;
3361
3362
if (!is_imm8(stack_size)) {
3363
/* sub rsp, stack_size */
3364
EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
3365
} else {
3366
/* sub rsp, stack_size */
3367
EMIT4(0x48, 0x83, 0xEC, stack_size);
3368
}
3369
if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
3370
EMIT1(0x50); /* push rax */
3371
/* mov QWORD PTR [rbp - rbx_off], rbx */
3372
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
3373
3374
func_meta = nr_regs;
3375
/* Store number of argument registers of the traced function */
3376
emit_store_stack_imm64(&prog, BPF_REG_0, -func_meta_off, func_meta);
3377
3378
if (flags & BPF_TRAMP_F_IP_ARG) {
3379
/* Store IP address of the traced function */
3380
emit_store_stack_imm64(&prog, BPF_REG_0, -ip_off, (long)func_addr);
3381
}
3382
3383
save_args(m, &prog, regs_off, false, flags);
3384
3385
if (flags & BPF_TRAMP_F_CALL_ORIG) {
3386
/* arg1: mov rdi, im */
3387
emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3388
if (emit_rsb_call(&prog, __bpf_tramp_enter,
3389
image + (prog - (u8 *)rw_image))) {
3390
ret = -EINVAL;
3391
goto cleanup;
3392
}
3393
}
3394
3395
if (bpf_fsession_cnt(tlinks)) {
3396
/* clear all the session cookies' value */
3397
for (int i = 0; i < cookie_cnt; i++)
3398
emit_store_stack_imm64(&prog, BPF_REG_0, -cookie_off + 8 * i, 0);
3399
/* clear the return value to make sure fentry always get 0 */
3400
emit_store_stack_imm64(&prog, BPF_REG_0, -8, 0);
3401
}
3402
3403
if (fentry->nr_links) {
3404
if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off, func_meta_off,
3405
flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image,
3406
func_meta, cookie_off))
3407
return -EINVAL;
3408
}
3409
3410
if (fmod_ret->nr_links) {
3411
branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
3412
GFP_KERNEL);
3413
if (!branches)
3414
return -ENOMEM;
3415
3416
if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
3417
run_ctx_off, branches, image, rw_image)) {
3418
ret = -EINVAL;
3419
goto cleanup;
3420
}
3421
}
3422
3423
if (flags & BPF_TRAMP_F_CALL_ORIG) {
3424
restore_regs(m, &prog, regs_off);
3425
save_args(m, &prog, arg_stack_off, true, flags);
3426
3427
if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3428
/* Before calling the original function, load the
3429
* tail_call_cnt_ptr from stack to rax.
3430
*/
3431
LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3432
}
3433
3434
if (flags & BPF_TRAMP_F_ORIG_STACK) {
3435
emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
3436
EMIT2(0xff, 0xd3); /* call *rbx */
3437
} else {
3438
/* call original function */
3439
if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
3440
ret = -EINVAL;
3441
goto cleanup;
3442
}
3443
}
3444
/* remember return value in a stack for bpf prog to access */
3445
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3446
im->ip_after_call = image + (prog - (u8 *)rw_image);
3447
emit_nops(&prog, X86_PATCH_SIZE);
3448
}
3449
3450
if (fmod_ret->nr_links) {
3451
/* From Intel 64 and IA-32 Architectures Optimization
3452
* Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3453
* Coding Rule 11: All branch targets should be 16-byte
3454
* aligned.
3455
*/
3456
emit_align(&prog, 16);
3457
/* Update the branches saved in invoke_bpf_mod_ret with the
3458
* aligned address of do_fexit.
3459
*/
3460
for (i = 0; i < fmod_ret->nr_links; i++) {
3461
emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
3462
image + (branches[i] - (u8 *)rw_image), X86_JNE);
3463
}
3464
}
3465
3466
/* set the "is_return" flag for fsession */
3467
func_meta |= (1ULL << BPF_TRAMP_IS_RETURN_SHIFT);
3468
if (bpf_fsession_cnt(tlinks))
3469
emit_store_stack_imm64(&prog, BPF_REG_0, -func_meta_off, func_meta);
3470
3471
if (fexit->nr_links) {
3472
if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, func_meta_off,
3473
false, image, rw_image, func_meta, cookie_off)) {
3474
ret = -EINVAL;
3475
goto cleanup;
3476
}
3477
}
3478
3479
if (flags & BPF_TRAMP_F_RESTORE_REGS)
3480
restore_regs(m, &prog, regs_off);
3481
3482
/* This needs to be done regardless. If there were fmod_ret programs,
3483
* the return value is only updated on the stack and still needs to be
3484
* restored to R0.
3485
*/
3486
if (flags & BPF_TRAMP_F_CALL_ORIG) {
3487
im->ip_epilogue = image + (prog - (u8 *)rw_image);
3488
/* arg1: mov rdi, im */
3489
emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3490
if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
3491
ret = -EINVAL;
3492
goto cleanup;
3493
}
3494
} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3495
/* Before running the original function, load the
3496
* tail_call_cnt_ptr from stack to rax.
3497
*/
3498
LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3499
}
3500
3501
/* restore return value of orig_call or fentry prog back into RAX */
3502
if (save_ret)
3503
emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
3504
3505
emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
3506
3507
EMIT1(0xC9); /* leave */
3508
if (im)
3509
im->ksym.fp_end = prog - (u8 *)rw_image;
3510
3511
if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3512
/* skip our return address and return to parent */
3513
EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
3514
}
3515
emit_return(&prog, image + (prog - (u8 *)rw_image));
3516
/* Make sure the trampoline generation logic doesn't overflow */
3517
if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
3518
ret = -EFAULT;
3519
goto cleanup;
3520
}
3521
ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
3522
3523
cleanup:
3524
kfree(branches);
3525
return ret;
3526
}
3527
3528
void *arch_alloc_bpf_trampoline(unsigned int size)
3529
{
3530
return bpf_prog_pack_alloc(size, jit_fill_hole);
3531
}
3532
3533
void arch_free_bpf_trampoline(void *image, unsigned int size)
3534
{
3535
bpf_prog_pack_free(image, size);
3536
}
3537
3538
int arch_protect_bpf_trampoline(void *image, unsigned int size)
3539
{
3540
return 0;
3541
}
3542
3543
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
3544
const struct btf_func_model *m, u32 flags,
3545
struct bpf_tramp_links *tlinks,
3546
void *func_addr)
3547
{
3548
void *rw_image, *tmp;
3549
int ret;
3550
u32 size = image_end - image;
3551
3552
/* rw_image doesn't need to be in module memory range, so we can
3553
* use kvmalloc.
3554
*/
3555
rw_image = kvmalloc(size, GFP_KERNEL);
3556
if (!rw_image)
3557
return -ENOMEM;
3558
3559
ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
3560
flags, tlinks, func_addr);
3561
if (ret < 0)
3562
goto out;
3563
3564
tmp = bpf_arch_text_copy(image, rw_image, size);
3565
if (IS_ERR(tmp))
3566
ret = PTR_ERR(tmp);
3567
out:
3568
kvfree(rw_image);
3569
return ret;
3570
}
3571
3572
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
3573
struct bpf_tramp_links *tlinks, void *func_addr)
3574
{
3575
struct bpf_tramp_image im;
3576
void *image;
3577
int ret;
3578
3579
/* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
3580
* This will NOT cause fragmentation in direct map, as we do not
3581
* call set_memory_*() on this buffer.
3582
*
3583
* We cannot use kvmalloc here, because we need image to be in
3584
* module memory range.
3585
*/
3586
image = bpf_jit_alloc_exec(PAGE_SIZE);
3587
if (!image)
3588
return -ENOMEM;
3589
3590
ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
3591
m, flags, tlinks, func_addr);
3592
bpf_jit_free_exec(image);
3593
return ret;
3594
}
3595
3596
static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
3597
{
3598
u8 *jg_reloc, *prog = *pprog;
3599
int pivot, err, jg_bytes = 1;
3600
s64 jg_offset;
3601
3602
if (a == b) {
3603
/* Leaf node of recursion, i.e. not a range of indices
3604
* anymore.
3605
*/
3606
EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
3607
if (!is_simm32(progs[a]))
3608
return -1;
3609
EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
3610
progs[a]);
3611
err = emit_cond_near_jump(&prog, /* je func */
3612
(void *)progs[a], image + (prog - buf),
3613
X86_JE);
3614
if (err)
3615
return err;
3616
3617
emit_indirect_jump(&prog, BPF_REG_3 /* R3 -> rdx */, image + (prog - buf));
3618
3619
*pprog = prog;
3620
return 0;
3621
}
3622
3623
/* Not a leaf node, so we pivot, and recursively descend into
3624
* the lower and upper ranges.
3625
*/
3626
pivot = (b - a) / 2;
3627
EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
3628
if (!is_simm32(progs[a + pivot]))
3629
return -1;
3630
EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
3631
3632
if (pivot > 2) { /* jg upper_part */
3633
/* Require near jump. */
3634
jg_bytes = 4;
3635
EMIT2_off32(0x0F, X86_JG + 0x10, 0);
3636
} else {
3637
EMIT2(X86_JG, 0);
3638
}
3639
jg_reloc = prog;
3640
3641
err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
3642
progs, image, buf);
3643
if (err)
3644
return err;
3645
3646
/* From Intel 64 and IA-32 Architectures Optimization
3647
* Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3648
* Coding Rule 11: All branch targets should be 16-byte
3649
* aligned.
3650
*/
3651
emit_align(&prog, 16);
3652
jg_offset = prog - jg_reloc;
3653
emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
3654
3655
err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
3656
b, progs, image, buf);
3657
if (err)
3658
return err;
3659
3660
*pprog = prog;
3661
return 0;
3662
}
3663
3664
static int cmp_ips(const void *a, const void *b)
3665
{
3666
const s64 *ipa = a;
3667
const s64 *ipb = b;
3668
3669
if (*ipa > *ipb)
3670
return 1;
3671
if (*ipa < *ipb)
3672
return -1;
3673
return 0;
3674
}
3675
3676
int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
3677
{
3678
u8 *prog = buf;
3679
3680
sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
3681
return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
3682
}
3683
3684
static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
3685
{
3686
int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3687
u64 *stack_ptr;
3688
3689
for_each_possible_cpu(cpu) {
3690
stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3691
stack_ptr[0] = PRIV_STACK_GUARD_VAL;
3692
stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
3693
}
3694
}
3695
3696
static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
3697
struct bpf_prog *prog)
3698
{
3699
int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3700
u64 *stack_ptr;
3701
3702
for_each_possible_cpu(cpu) {
3703
stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3704
if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
3705
stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) {
3706
pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
3707
bpf_jit_get_prog_name(prog));
3708
break;
3709
}
3710
}
3711
}
3712
3713
struct x64_jit_data {
3714
struct bpf_binary_header *rw_header;
3715
struct bpf_binary_header *header;
3716
int *addrs;
3717
u8 *image;
3718
int proglen;
3719
struct jit_context ctx;
3720
};
3721
3722
#define MAX_PASSES 20
3723
#define PADDING_PASSES (MAX_PASSES - 5)
3724
3725
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
3726
{
3727
struct bpf_binary_header *rw_header = NULL;
3728
struct bpf_binary_header *header = NULL;
3729
struct bpf_prog *tmp, *orig_prog = prog;
3730
void __percpu *priv_stack_ptr = NULL;
3731
struct x64_jit_data *jit_data;
3732
int priv_stack_alloc_sz;
3733
int proglen, oldproglen = 0;
3734
struct jit_context ctx = {};
3735
bool tmp_blinded = false;
3736
bool extra_pass = false;
3737
bool padding = false;
3738
u8 *rw_image = NULL;
3739
u8 *image = NULL;
3740
int *addrs;
3741
int pass;
3742
int i;
3743
3744
if (!prog->jit_requested)
3745
return orig_prog;
3746
3747
tmp = bpf_jit_blind_constants(prog);
3748
/*
3749
* If blinding was requested and we failed during blinding,
3750
* we must fall back to the interpreter.
3751
*/
3752
if (IS_ERR(tmp))
3753
return orig_prog;
3754
if (tmp != prog) {
3755
tmp_blinded = true;
3756
prog = tmp;
3757
}
3758
3759
jit_data = prog->aux->jit_data;
3760
if (!jit_data) {
3761
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
3762
if (!jit_data) {
3763
prog = orig_prog;
3764
goto out;
3765
}
3766
prog->aux->jit_data = jit_data;
3767
}
3768
priv_stack_ptr = prog->aux->priv_stack_ptr;
3769
if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
3770
/* Allocate actual private stack size with verifier-calculated
3771
* stack size plus two memory guards to protect overflow and
3772
* underflow.
3773
*/
3774
priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3775
2 * PRIV_STACK_GUARD_SZ;
3776
priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL);
3777
if (!priv_stack_ptr) {
3778
prog = orig_prog;
3779
goto out_priv_stack;
3780
}
3781
3782
priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
3783
prog->aux->priv_stack_ptr = priv_stack_ptr;
3784
}
3785
addrs = jit_data->addrs;
3786
if (addrs) {
3787
ctx = jit_data->ctx;
3788
oldproglen = jit_data->proglen;
3789
image = jit_data->image;
3790
header = jit_data->header;
3791
rw_header = jit_data->rw_header;
3792
rw_image = (void *)rw_header + ((void *)image - (void *)header);
3793
extra_pass = true;
3794
padding = true;
3795
goto skip_init_addrs;
3796
}
3797
addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3798
if (!addrs) {
3799
prog = orig_prog;
3800
goto out_addrs;
3801
}
3802
3803
/*
3804
* Before first pass, make a rough estimation of addrs[]
3805
* each BPF instruction is translated to less than 64 bytes
3806
*/
3807
for (proglen = 0, i = 0; i <= prog->len; i++) {
3808
proglen += 64;
3809
addrs[i] = proglen;
3810
}
3811
ctx.cleanup_addr = proglen;
3812
skip_init_addrs:
3813
3814
/*
3815
* JITed image shrinks with every pass and the loop iterates
3816
* until the image stops shrinking. Very large BPF programs
3817
* may converge on the last pass. In such case do one more
3818
* pass to emit the final image.
3819
*/
3820
for (pass = 0; pass < MAX_PASSES || image; pass++) {
3821
if (!padding && pass >= PADDING_PASSES)
3822
padding = true;
3823
proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3824
if (proglen <= 0) {
3825
out_image:
3826
image = NULL;
3827
if (header) {
3828
bpf_arch_text_copy(&header->size, &rw_header->size,
3829
sizeof(rw_header->size));
3830
bpf_jit_binary_pack_free(header, rw_header);
3831
}
3832
/* Fall back to interpreter mode */
3833
prog = orig_prog;
3834
if (extra_pass) {
3835
prog->bpf_func = NULL;
3836
prog->jited = 0;
3837
prog->jited_len = 0;
3838
}
3839
goto out_addrs;
3840
}
3841
if (image) {
3842
if (proglen != oldproglen) {
3843
pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3844
proglen, oldproglen);
3845
goto out_image;
3846
}
3847
break;
3848
}
3849
if (proglen == oldproglen) {
3850
/*
3851
* The number of entries in extable is the number of BPF_LDX
3852
* insns that access kernel memory via "pointer to BTF type".
3853
* The verifier changed their opcode from LDX|MEM|size
3854
* to LDX|PROBE_MEM|size to make JITing easier.
3855
*/
3856
u32 align = __alignof__(struct exception_table_entry);
3857
u32 extable_size = prog->aux->num_exentries *
3858
sizeof(struct exception_table_entry);
3859
3860
/* allocate module memory for x86 insns and extable */
3861
header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3862
&image, align, &rw_header, &rw_image,
3863
jit_fill_hole);
3864
if (!header) {
3865
prog = orig_prog;
3866
goto out_addrs;
3867
}
3868
prog->aux->extable = (void *) image + roundup(proglen, align);
3869
}
3870
oldproglen = proglen;
3871
cond_resched();
3872
}
3873
3874
if (bpf_jit_enable > 1)
3875
bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3876
3877
if (image) {
3878
if (!prog->is_func || extra_pass) {
3879
/*
3880
* bpf_jit_binary_pack_finalize fails in two scenarios:
3881
* 1) header is not pointing to proper module memory;
3882
* 2) the arch doesn't support bpf_arch_text_copy().
3883
*
3884
* Both cases are serious bugs and justify WARN_ON.
3885
*/
3886
if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) {
3887
/* header has been freed */
3888
header = NULL;
3889
goto out_image;
3890
}
3891
3892
bpf_tail_call_direct_fixup(prog);
3893
} else {
3894
jit_data->addrs = addrs;
3895
jit_data->ctx = ctx;
3896
jit_data->proglen = proglen;
3897
jit_data->image = image;
3898
jit_data->header = header;
3899
jit_data->rw_header = rw_header;
3900
}
3901
3902
/*
3903
* The bpf_prog_update_insn_ptrs function expects addrs to
3904
* point to the first byte of the jitted instruction (unlike
3905
* the bpf_prog_fill_jited_linfo below, which, for historical
3906
* reasons, expects to point to the next instruction)
3907
*/
3908
bpf_prog_update_insn_ptrs(prog, addrs, image);
3909
3910
/*
3911
* ctx.prog_offset is used when CFI preambles put code *before*
3912
* the function. See emit_cfi(). For FineIBT specifically this code
3913
* can also be executed and bpf_prog_kallsyms_add() will
3914
* generate an additional symbol to cover this, hence also
3915
* decrement proglen.
3916
*/
3917
prog->bpf_func = (void *)image + cfi_get_offset();
3918
prog->jited = 1;
3919
prog->jited_len = proglen - cfi_get_offset();
3920
} else {
3921
prog = orig_prog;
3922
}
3923
3924
if (!image || !prog->is_func || extra_pass) {
3925
if (image)
3926
bpf_prog_fill_jited_linfo(prog, addrs + 1);
3927
out_addrs:
3928
kvfree(addrs);
3929
if (!image && priv_stack_ptr) {
3930
free_percpu(priv_stack_ptr);
3931
prog->aux->priv_stack_ptr = NULL;
3932
}
3933
out_priv_stack:
3934
kfree(jit_data);
3935
prog->aux->jit_data = NULL;
3936
}
3937
out:
3938
if (tmp_blinded)
3939
bpf_jit_prog_release_other(prog, prog == orig_prog ?
3940
tmp : orig_prog);
3941
return prog;
3942
}
3943
3944
bool bpf_jit_supports_kfunc_call(void)
3945
{
3946
return true;
3947
}
3948
3949
void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3950
{
3951
if (text_poke_copy(dst, src, len) == NULL)
3952
return ERR_PTR(-EINVAL);
3953
return dst;
3954
}
3955
3956
/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3957
bool bpf_jit_supports_subprog_tailcalls(void)
3958
{
3959
return true;
3960
}
3961
3962
bool bpf_jit_supports_percpu_insn(void)
3963
{
3964
return true;
3965
}
3966
3967
void bpf_jit_free(struct bpf_prog *prog)
3968
{
3969
if (prog->jited) {
3970
struct x64_jit_data *jit_data = prog->aux->jit_data;
3971
struct bpf_binary_header *hdr;
3972
void __percpu *priv_stack_ptr;
3973
int priv_stack_alloc_sz;
3974
3975
/*
3976
* If we fail the final pass of JIT (from jit_subprogs),
3977
* the program may not be finalized yet. Call finalize here
3978
* before freeing it.
3979
*/
3980
if (jit_data) {
3981
bpf_jit_binary_pack_finalize(jit_data->header,
3982
jit_data->rw_header);
3983
kvfree(jit_data->addrs);
3984
kfree(jit_data);
3985
}
3986
prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3987
hdr = bpf_jit_binary_pack_hdr(prog);
3988
bpf_jit_binary_pack_free(hdr, NULL);
3989
priv_stack_ptr = prog->aux->priv_stack_ptr;
3990
if (priv_stack_ptr) {
3991
priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3992
2 * PRIV_STACK_GUARD_SZ;
3993
priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3994
free_percpu(prog->aux->priv_stack_ptr);
3995
}
3996
WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3997
}
3998
3999
bpf_prog_unlock_free(prog);
4000
}
4001
4002
bool bpf_jit_supports_exceptions(void)
4003
{
4004
/* We unwind through both kernel frames (starting from within bpf_throw
4005
* call) and BPF frames. Therefore we require ORC unwinder to be enabled
4006
* to walk kernel frames and reach BPF frames in the stack trace.
4007
*/
4008
return IS_ENABLED(CONFIG_UNWINDER_ORC);
4009
}
4010
4011
bool bpf_jit_supports_private_stack(void)
4012
{
4013
return true;
4014
}
4015
4016
void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
4017
{
4018
#if defined(CONFIG_UNWINDER_ORC)
4019
struct unwind_state state;
4020
unsigned long addr;
4021
4022
for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
4023
unwind_next_frame(&state)) {
4024
addr = unwind_get_return_address(&state);
4025
if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
4026
break;
4027
}
4028
return;
4029
#endif
4030
}
4031
4032
void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
4033
struct bpf_prog *new, struct bpf_prog *old)
4034
{
4035
u8 *old_addr, *new_addr, *old_bypass_addr;
4036
enum bpf_text_poke_type t;
4037
int ret;
4038
4039
old_bypass_addr = old ? NULL : poke->bypass_addr;
4040
old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
4041
new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
4042
4043
/*
4044
* On program loading or teardown, the program's kallsym entry
4045
* might not be in place, so we use __bpf_arch_text_poke to skip
4046
* the kallsyms check.
4047
*/
4048
if (new) {
4049
t = old_addr ? BPF_MOD_JUMP : BPF_MOD_NOP;
4050
ret = __bpf_arch_text_poke(poke->tailcall_target,
4051
t, BPF_MOD_JUMP,
4052
old_addr, new_addr);
4053
BUG_ON(ret < 0);
4054
if (!old) {
4055
ret = __bpf_arch_text_poke(poke->tailcall_bypass,
4056
BPF_MOD_JUMP, BPF_MOD_NOP,
4057
poke->bypass_addr,
4058
NULL);
4059
BUG_ON(ret < 0);
4060
}
4061
} else {
4062
t = old_bypass_addr ? BPF_MOD_JUMP : BPF_MOD_NOP;
4063
ret = __bpf_arch_text_poke(poke->tailcall_bypass,
4064
t, BPF_MOD_JUMP, old_bypass_addr,
4065
poke->bypass_addr);
4066
BUG_ON(ret < 0);
4067
/* let other CPUs finish the execution of program
4068
* so that it will not possible to expose them
4069
* to invalid nop, stack unwind, nop state
4070
*/
4071
if (!ret)
4072
synchronize_rcu();
4073
t = old_addr ? BPF_MOD_JUMP : BPF_MOD_NOP;
4074
ret = __bpf_arch_text_poke(poke->tailcall_target,
4075
t, BPF_MOD_NOP, old_addr, NULL);
4076
BUG_ON(ret < 0);
4077
}
4078
}
4079
4080
bool bpf_jit_supports_arena(void)
4081
{
4082
return true;
4083
}
4084
4085
bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
4086
{
4087
if (!in_arena)
4088
return true;
4089
switch (insn->code) {
4090
case BPF_STX | BPF_ATOMIC | BPF_W:
4091
case BPF_STX | BPF_ATOMIC | BPF_DW:
4092
if (insn->imm == (BPF_AND | BPF_FETCH) ||
4093
insn->imm == (BPF_OR | BPF_FETCH) ||
4094
insn->imm == (BPF_XOR | BPF_FETCH))
4095
return false;
4096
}
4097
return true;
4098
}
4099
4100
bool bpf_jit_supports_ptr_xchg(void)
4101
{
4102
return true;
4103
}
4104
4105
/* x86-64 JIT emits its own code to filter user addresses so return 0 here */
4106
u64 bpf_arch_uaddress_limit(void)
4107
{
4108
return 0;
4109
}
4110
4111
bool bpf_jit_supports_timed_may_goto(void)
4112
{
4113
return true;
4114
}
4115
4116
bool bpf_jit_supports_fsession(void)
4117
{
4118
return true;
4119
}
4120
4121