Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/net/bpf_jit_comp.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* BPF JIT compiler
4
*
5
* Copyright (C) 2011-2013 Eric Dumazet ([email protected])
6
* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7
*/
8
#include <linux/netdevice.h>
9
#include <linux/filter.h>
10
#include <linux/if_vlan.h>
11
#include <linux/bpf.h>
12
#include <linux/memory.h>
13
#include <linux/sort.h>
14
#include <asm/extable.h>
15
#include <asm/ftrace.h>
16
#include <asm/set_memory.h>
17
#include <asm/nospec-branch.h>
18
#include <asm/text-patching.h>
19
#include <asm/unwind.h>
20
#include <asm/cfi.h>
21
22
static bool all_callee_regs_used[4] = {true, true, true, true};
23
24
static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
25
{
26
if (len == 1)
27
*ptr = bytes;
28
else if (len == 2)
29
*(u16 *)ptr = bytes;
30
else {
31
*(u32 *)ptr = bytes;
32
barrier();
33
}
34
return ptr + len;
35
}
36
37
#define EMIT(bytes, len) \
38
do { prog = emit_code(prog, bytes, len); } while (0)
39
40
#define EMIT1(b1) EMIT(b1, 1)
41
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
42
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
43
#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
44
#define EMIT5(b1, b2, b3, b4, b5) \
45
do { EMIT1(b1); EMIT4(b2, b3, b4, b5); } while (0)
46
47
#define EMIT1_off32(b1, off) \
48
do { EMIT1(b1); EMIT(off, 4); } while (0)
49
#define EMIT2_off32(b1, b2, off) \
50
do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
51
#define EMIT3_off32(b1, b2, b3, off) \
52
do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
53
#define EMIT4_off32(b1, b2, b3, b4, off) \
54
do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
55
56
#ifdef CONFIG_X86_KERNEL_IBT
57
#define EMIT_ENDBR() EMIT(gen_endbr(), 4)
58
#define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4)
59
#else
60
#define EMIT_ENDBR()
61
#define EMIT_ENDBR_POISON()
62
#endif
63
64
static bool is_imm8(int value)
65
{
66
return value <= 127 && value >= -128;
67
}
68
69
/*
70
* Let us limit the positive offset to be <= 123.
71
* This is to ensure eventual jit convergence For the following patterns:
72
* ...
73
* pass4, final_proglen=4391:
74
* ...
75
* 20e: 48 85 ff test rdi,rdi
76
* 211: 74 7d je 0x290
77
* 213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
78
* ...
79
* 289: 48 85 ff test rdi,rdi
80
* 28c: 74 17 je 0x2a5
81
* 28e: e9 7f ff ff ff jmp 0x212
82
* 293: bf 03 00 00 00 mov edi,0x3
83
* Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
84
* and insn at 0x28e is 5-byte jmp insn with offset -129.
85
*
86
* pass5, final_proglen=4392:
87
* ...
88
* 20e: 48 85 ff test rdi,rdi
89
* 211: 0f 84 80 00 00 00 je 0x297
90
* 217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
91
* ...
92
* 28d: 48 85 ff test rdi,rdi
93
* 290: 74 1a je 0x2ac
94
* 292: eb 84 jmp 0x218
95
* 294: bf 03 00 00 00 mov edi,0x3
96
* Note that insn at 0x211 is 6-byte cond jump insn now since its offset
97
* becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
98
* At the same time, insn at 0x292 is a 2-byte insn since its offset is
99
* -124.
100
*
101
* pass6 will repeat the same code as in pass4 and this will prevent
102
* eventual convergence.
103
*
104
* To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
105
* cycle in the above. In the above example je offset <= 0x7c should work.
106
*
107
* For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
108
* issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
109
* avoid no convergence issue.
110
*
111
* Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
112
* to maximum 123 (0x7b). This way, the jit pass can eventually converge.
113
*/
114
static bool is_imm8_jmp_offset(int value)
115
{
116
return value <= 123 && value >= -128;
117
}
118
119
static bool is_simm32(s64 value)
120
{
121
return value == (s64)(s32)value;
122
}
123
124
static bool is_uimm32(u64 value)
125
{
126
return value == (u64)(u32)value;
127
}
128
129
/* mov dst, src */
130
#define EMIT_mov(DST, SRC) \
131
do { \
132
if (DST != SRC) \
133
EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
134
} while (0)
135
136
static int bpf_size_to_x86_bytes(int bpf_size)
137
{
138
if (bpf_size == BPF_W)
139
return 4;
140
else if (bpf_size == BPF_H)
141
return 2;
142
else if (bpf_size == BPF_B)
143
return 1;
144
else if (bpf_size == BPF_DW)
145
return 4; /* imm32 */
146
else
147
return 0;
148
}
149
150
/*
151
* List of x86 cond jumps opcodes (. + s8)
152
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
153
*/
154
#define X86_JB 0x72
155
#define X86_JAE 0x73
156
#define X86_JE 0x74
157
#define X86_JNE 0x75
158
#define X86_JBE 0x76
159
#define X86_JA 0x77
160
#define X86_JL 0x7C
161
#define X86_JGE 0x7D
162
#define X86_JLE 0x7E
163
#define X86_JG 0x7F
164
165
/* Pick a register outside of BPF range for JIT internal work */
166
#define AUX_REG (MAX_BPF_JIT_REG + 1)
167
#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
168
#define X86_REG_R12 (MAX_BPF_JIT_REG + 3)
169
170
/*
171
* The following table maps BPF registers to x86-64 registers.
172
*
173
* x86-64 register R12 is unused, since if used as base address
174
* register in load/store instructions, it always needs an
175
* extra byte of encoding and is callee saved.
176
*
177
* x86-64 register R9 is not used by BPF programs, but can be used by BPF
178
* trampoline. x86-64 register R10 is used for blinding (if enabled).
179
*/
180
static const int reg2hex[] = {
181
[BPF_REG_0] = 0, /* RAX */
182
[BPF_REG_1] = 7, /* RDI */
183
[BPF_REG_2] = 6, /* RSI */
184
[BPF_REG_3] = 2, /* RDX */
185
[BPF_REG_4] = 1, /* RCX */
186
[BPF_REG_5] = 0, /* R8 */
187
[BPF_REG_6] = 3, /* RBX callee saved */
188
[BPF_REG_7] = 5, /* R13 callee saved */
189
[BPF_REG_8] = 6, /* R14 callee saved */
190
[BPF_REG_9] = 7, /* R15 callee saved */
191
[BPF_REG_FP] = 5, /* RBP readonly */
192
[BPF_REG_AX] = 2, /* R10 temp register */
193
[AUX_REG] = 3, /* R11 temp register */
194
[X86_REG_R9] = 1, /* R9 register, 6th function argument */
195
[X86_REG_R12] = 4, /* R12 callee saved */
196
};
197
198
static const int reg2pt_regs[] = {
199
[BPF_REG_0] = offsetof(struct pt_regs, ax),
200
[BPF_REG_1] = offsetof(struct pt_regs, di),
201
[BPF_REG_2] = offsetof(struct pt_regs, si),
202
[BPF_REG_3] = offsetof(struct pt_regs, dx),
203
[BPF_REG_4] = offsetof(struct pt_regs, cx),
204
[BPF_REG_5] = offsetof(struct pt_regs, r8),
205
[BPF_REG_6] = offsetof(struct pt_regs, bx),
206
[BPF_REG_7] = offsetof(struct pt_regs, r13),
207
[BPF_REG_8] = offsetof(struct pt_regs, r14),
208
[BPF_REG_9] = offsetof(struct pt_regs, r15),
209
};
210
211
/*
212
* is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
213
* which need extra byte of encoding.
214
* rax,rcx,...,rbp have simpler encoding
215
*/
216
static bool is_ereg(u32 reg)
217
{
218
return (1 << reg) & (BIT(BPF_REG_5) |
219
BIT(AUX_REG) |
220
BIT(BPF_REG_7) |
221
BIT(BPF_REG_8) |
222
BIT(BPF_REG_9) |
223
BIT(X86_REG_R9) |
224
BIT(X86_REG_R12) |
225
BIT(BPF_REG_AX));
226
}
227
228
/*
229
* is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
230
* lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
231
* of encoding. al,cl,dl,bl have simpler encoding.
232
*/
233
static bool is_ereg_8l(u32 reg)
234
{
235
return is_ereg(reg) ||
236
(1 << reg) & (BIT(BPF_REG_1) |
237
BIT(BPF_REG_2) |
238
BIT(BPF_REG_FP));
239
}
240
241
static bool is_axreg(u32 reg)
242
{
243
return reg == BPF_REG_0;
244
}
245
246
/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
247
static u8 add_1mod(u8 byte, u32 reg)
248
{
249
if (is_ereg(reg))
250
byte |= 1;
251
return byte;
252
}
253
254
static u8 add_2mod(u8 byte, u32 r1, u32 r2)
255
{
256
if (is_ereg(r1))
257
byte |= 1;
258
if (is_ereg(r2))
259
byte |= 4;
260
return byte;
261
}
262
263
static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index)
264
{
265
if (is_ereg(r1))
266
byte |= 1;
267
if (is_ereg(index))
268
byte |= 2;
269
if (is_ereg(r2))
270
byte |= 4;
271
return byte;
272
}
273
274
/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
275
static u8 add_1reg(u8 byte, u32 dst_reg)
276
{
277
return byte + reg2hex[dst_reg];
278
}
279
280
/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
281
static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
282
{
283
return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
284
}
285
286
/* Some 1-byte opcodes for binary ALU operations */
287
static u8 simple_alu_opcodes[] = {
288
[BPF_ADD] = 0x01,
289
[BPF_SUB] = 0x29,
290
[BPF_AND] = 0x21,
291
[BPF_OR] = 0x09,
292
[BPF_XOR] = 0x31,
293
[BPF_LSH] = 0xE0,
294
[BPF_RSH] = 0xE8,
295
[BPF_ARSH] = 0xF8,
296
};
297
298
static void jit_fill_hole(void *area, unsigned int size)
299
{
300
/* Fill whole space with INT3 instructions */
301
memset(area, 0xcc, size);
302
}
303
304
int bpf_arch_text_invalidate(void *dst, size_t len)
305
{
306
return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
307
}
308
309
struct jit_context {
310
int cleanup_addr; /* Epilogue code offset */
311
312
/*
313
* Program specific offsets of labels in the code; these rely on the
314
* JIT doing at least 2 passes, recording the position on the first
315
* pass, only to generate the correct offset on the second pass.
316
*/
317
int tail_call_direct_label;
318
int tail_call_indirect_label;
319
};
320
321
/* Maximum number of bytes emitted while JITing one eBPF insn */
322
#define BPF_MAX_INSN_SIZE 128
323
#define BPF_INSN_SAFETY 64
324
325
/* Number of bytes emit_patch() needs to generate instructions */
326
#define X86_PATCH_SIZE 5
327
/* Number of bytes that will be skipped on tailcall */
328
#define X86_TAIL_CALL_OFFSET (12 + ENDBR_INSN_SIZE)
329
330
static void push_r9(u8 **pprog)
331
{
332
u8 *prog = *pprog;
333
334
EMIT2(0x41, 0x51); /* push r9 */
335
*pprog = prog;
336
}
337
338
static void pop_r9(u8 **pprog)
339
{
340
u8 *prog = *pprog;
341
342
EMIT2(0x41, 0x59); /* pop r9 */
343
*pprog = prog;
344
}
345
346
static void push_r12(u8 **pprog)
347
{
348
u8 *prog = *pprog;
349
350
EMIT2(0x41, 0x54); /* push r12 */
351
*pprog = prog;
352
}
353
354
static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
355
{
356
u8 *prog = *pprog;
357
358
if (callee_regs_used[0])
359
EMIT1(0x53); /* push rbx */
360
if (callee_regs_used[1])
361
EMIT2(0x41, 0x55); /* push r13 */
362
if (callee_regs_used[2])
363
EMIT2(0x41, 0x56); /* push r14 */
364
if (callee_regs_used[3])
365
EMIT2(0x41, 0x57); /* push r15 */
366
*pprog = prog;
367
}
368
369
static void pop_r12(u8 **pprog)
370
{
371
u8 *prog = *pprog;
372
373
EMIT2(0x41, 0x5C); /* pop r12 */
374
*pprog = prog;
375
}
376
377
static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
378
{
379
u8 *prog = *pprog;
380
381
if (callee_regs_used[3])
382
EMIT2(0x41, 0x5F); /* pop r15 */
383
if (callee_regs_used[2])
384
EMIT2(0x41, 0x5E); /* pop r14 */
385
if (callee_regs_used[1])
386
EMIT2(0x41, 0x5D); /* pop r13 */
387
if (callee_regs_used[0])
388
EMIT1(0x5B); /* pop rbx */
389
*pprog = prog;
390
}
391
392
static void emit_nops(u8 **pprog, int len)
393
{
394
u8 *prog = *pprog;
395
int i, noplen;
396
397
while (len > 0) {
398
noplen = len;
399
400
if (noplen > ASM_NOP_MAX)
401
noplen = ASM_NOP_MAX;
402
403
for (i = 0; i < noplen; i++)
404
EMIT1(x86_nops[noplen][i]);
405
len -= noplen;
406
}
407
408
*pprog = prog;
409
}
410
411
/*
412
* Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
413
* in arch/x86/kernel/alternative.c
414
*/
415
static int emit_call(u8 **prog, void *func, void *ip);
416
417
static void emit_fineibt(u8 **pprog, u8 *ip, u32 hash, int arity)
418
{
419
u8 *prog = *pprog;
420
421
EMIT_ENDBR();
422
EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */
423
if (cfi_bhi) {
424
emit_call(&prog, __bhi_args[arity], ip + 11);
425
} else {
426
EMIT2(0x75, 0xf9); /* jne.d8 .-7 */
427
EMIT3(0x0f, 0x1f, 0x00); /* nop3 */
428
}
429
EMIT_ENDBR_POISON();
430
431
*pprog = prog;
432
}
433
434
static void emit_kcfi(u8 **pprog, u32 hash)
435
{
436
u8 *prog = *pprog;
437
438
EMIT1_off32(0xb8, hash); /* movl $hash, %eax */
439
#ifdef CONFIG_CALL_PADDING
440
EMIT1(0x90);
441
EMIT1(0x90);
442
EMIT1(0x90);
443
EMIT1(0x90);
444
EMIT1(0x90);
445
EMIT1(0x90);
446
EMIT1(0x90);
447
EMIT1(0x90);
448
EMIT1(0x90);
449
EMIT1(0x90);
450
EMIT1(0x90);
451
#endif
452
EMIT_ENDBR();
453
454
*pprog = prog;
455
}
456
457
static void emit_cfi(u8 **pprog, u8 *ip, u32 hash, int arity)
458
{
459
u8 *prog = *pprog;
460
461
switch (cfi_mode) {
462
case CFI_FINEIBT:
463
emit_fineibt(&prog, ip, hash, arity);
464
break;
465
466
case CFI_KCFI:
467
emit_kcfi(&prog, hash);
468
break;
469
470
default:
471
EMIT_ENDBR();
472
break;
473
}
474
475
*pprog = prog;
476
}
477
478
static void emit_prologue_tail_call(u8 **pprog, bool is_subprog)
479
{
480
u8 *prog = *pprog;
481
482
if (!is_subprog) {
483
/* cmp rax, MAX_TAIL_CALL_CNT */
484
EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT);
485
EMIT2(X86_JA, 6); /* ja 6 */
486
/* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT.
487
* case1: entry of main prog.
488
* case2: tail callee of main prog.
489
*/
490
EMIT1(0x50); /* push rax */
491
/* Make rax as tail_call_cnt_ptr. */
492
EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */
493
EMIT2(0xEB, 1); /* jmp 1 */
494
/* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT.
495
* case: tail callee of subprog.
496
*/
497
EMIT1(0x50); /* push rax */
498
/* push tail_call_cnt_ptr */
499
EMIT1(0x50); /* push rax */
500
} else { /* is_subprog */
501
/* rax is tail_call_cnt_ptr. */
502
EMIT1(0x50); /* push rax */
503
EMIT1(0x50); /* push rax */
504
}
505
506
*pprog = prog;
507
}
508
509
/*
510
* Emit x86-64 prologue code for BPF program.
511
* bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
512
* while jumping to another program
513
*/
514
static void emit_prologue(u8 **pprog, u8 *ip, u32 stack_depth, bool ebpf_from_cbpf,
515
bool tail_call_reachable, bool is_subprog,
516
bool is_exception_cb)
517
{
518
u8 *prog = *pprog;
519
520
if (is_subprog) {
521
emit_cfi(&prog, ip, cfi_bpf_subprog_hash, 5);
522
} else {
523
emit_cfi(&prog, ip, cfi_bpf_hash, 1);
524
}
525
/* BPF trampoline can be made to work without these nops,
526
* but let's waste 5 bytes for now and optimize later
527
*/
528
emit_nops(&prog, X86_PATCH_SIZE);
529
if (!ebpf_from_cbpf) {
530
if (tail_call_reachable && !is_subprog)
531
/* When it's the entry of the whole tailcall context,
532
* zeroing rax means initialising tail_call_cnt.
533
*/
534
EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */
535
else
536
/* Keep the same instruction layout. */
537
emit_nops(&prog, 3); /* nop3 */
538
}
539
/* Exception callback receives FP as third parameter */
540
if (is_exception_cb) {
541
EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
542
EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
543
/* The main frame must have exception_boundary as true, so we
544
* first restore those callee-saved regs from stack, before
545
* reusing the stack frame.
546
*/
547
pop_callee_regs(&prog, all_callee_regs_used);
548
pop_r12(&prog);
549
/* Reset the stack frame. */
550
EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
551
} else {
552
EMIT1(0x55); /* push rbp */
553
EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
554
}
555
556
/* X86_TAIL_CALL_OFFSET is here */
557
EMIT_ENDBR();
558
559
/* sub rsp, rounded_stack_depth */
560
if (stack_depth)
561
EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
562
if (tail_call_reachable)
563
emit_prologue_tail_call(&prog, is_subprog);
564
*pprog = prog;
565
}
566
567
static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
568
{
569
u8 *prog = *pprog;
570
s64 offset;
571
572
offset = func - (ip + X86_PATCH_SIZE);
573
if (!is_simm32(offset)) {
574
pr_err("Target call %p is out of range\n", func);
575
return -ERANGE;
576
}
577
EMIT1_off32(opcode, offset);
578
*pprog = prog;
579
return 0;
580
}
581
582
static int emit_call(u8 **pprog, void *func, void *ip)
583
{
584
return emit_patch(pprog, func, ip, 0xE8);
585
}
586
587
static int emit_rsb_call(u8 **pprog, void *func, void *ip)
588
{
589
OPTIMIZER_HIDE_VAR(func);
590
ip += x86_call_depth_emit_accounting(pprog, func, ip);
591
return emit_patch(pprog, func, ip, 0xE8);
592
}
593
594
static int emit_jump(u8 **pprog, void *func, void *ip)
595
{
596
return emit_patch(pprog, func, ip, 0xE9);
597
}
598
599
static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
600
void *old_addr, void *new_addr)
601
{
602
const u8 *nop_insn = x86_nops[5];
603
u8 old_insn[X86_PATCH_SIZE];
604
u8 new_insn[X86_PATCH_SIZE];
605
u8 *prog;
606
int ret;
607
608
memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
609
if (old_addr) {
610
prog = old_insn;
611
ret = t == BPF_MOD_CALL ?
612
emit_call(&prog, old_addr, ip) :
613
emit_jump(&prog, old_addr, ip);
614
if (ret)
615
return ret;
616
}
617
618
memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
619
if (new_addr) {
620
prog = new_insn;
621
ret = t == BPF_MOD_CALL ?
622
emit_call(&prog, new_addr, ip) :
623
emit_jump(&prog, new_addr, ip);
624
if (ret)
625
return ret;
626
}
627
628
ret = -EBUSY;
629
mutex_lock(&text_mutex);
630
if (memcmp(ip, old_insn, X86_PATCH_SIZE))
631
goto out;
632
ret = 1;
633
if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
634
smp_text_poke_single(ip, new_insn, X86_PATCH_SIZE, NULL);
635
ret = 0;
636
}
637
out:
638
mutex_unlock(&text_mutex);
639
return ret;
640
}
641
642
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
643
void *old_addr, void *new_addr)
644
{
645
if (!is_kernel_text((long)ip) &&
646
!is_bpf_text_address((long)ip))
647
/* BPF poking in modules is not supported */
648
return -EINVAL;
649
650
/*
651
* See emit_prologue(), for IBT builds the trampoline hook is preceded
652
* with an ENDBR instruction.
653
*/
654
if (is_endbr(ip))
655
ip += ENDBR_INSN_SIZE;
656
657
return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
658
}
659
660
#define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
661
662
static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
663
{
664
u8 *prog = *pprog;
665
666
if (cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) {
667
OPTIMIZER_HIDE_VAR(reg);
668
emit_jump(&prog, its_static_thunk(reg), ip);
669
} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
670
EMIT_LFENCE();
671
EMIT2(0xFF, 0xE0 + reg);
672
} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
673
OPTIMIZER_HIDE_VAR(reg);
674
if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
675
emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
676
else
677
emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
678
} else {
679
EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
680
if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
681
EMIT1(0xCC); /* int3 */
682
}
683
684
*pprog = prog;
685
}
686
687
static void emit_return(u8 **pprog, u8 *ip)
688
{
689
u8 *prog = *pprog;
690
691
if (cpu_wants_rethunk()) {
692
emit_jump(&prog, x86_return_thunk, ip);
693
} else {
694
EMIT1(0xC3); /* ret */
695
if (IS_ENABLED(CONFIG_MITIGATION_SLS))
696
EMIT1(0xCC); /* int3 */
697
}
698
699
*pprog = prog;
700
}
701
702
#define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack) (-16 - round_up(stack, 8))
703
704
/*
705
* Generate the following code:
706
*
707
* ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
708
* if (index >= array->map.max_entries)
709
* goto out;
710
* if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
711
* goto out;
712
* prog = array->ptrs[index];
713
* if (prog == NULL)
714
* goto out;
715
* goto *(prog->bpf_func + prologue_size);
716
* out:
717
*/
718
static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
719
u8 **pprog, bool *callee_regs_used,
720
u32 stack_depth, u8 *ip,
721
struct jit_context *ctx)
722
{
723
int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
724
u8 *prog = *pprog, *start = *pprog;
725
int offset;
726
727
/*
728
* rdi - pointer to ctx
729
* rsi - pointer to bpf_array
730
* rdx - index in bpf_array
731
*/
732
733
/*
734
* if (index >= array->map.max_entries)
735
* goto out;
736
*/
737
EMIT2(0x89, 0xD2); /* mov edx, edx */
738
EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
739
offsetof(struct bpf_array, map.max_entries));
740
741
offset = ctx->tail_call_indirect_label - (prog + 2 - start);
742
EMIT2(X86_JBE, offset); /* jbe out */
743
744
/*
745
* if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
746
* goto out;
747
*/
748
EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
749
EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
750
751
offset = ctx->tail_call_indirect_label - (prog + 2 - start);
752
EMIT2(X86_JAE, offset); /* jae out */
753
754
/* prog = array->ptrs[index]; */
755
EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
756
offsetof(struct bpf_array, ptrs));
757
758
/*
759
* if (prog == NULL)
760
* goto out;
761
*/
762
EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
763
764
offset = ctx->tail_call_indirect_label - (prog + 2 - start);
765
EMIT2(X86_JE, offset); /* je out */
766
767
/* Inc tail_call_cnt if the slot is populated. */
768
EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */
769
770
if (bpf_prog->aux->exception_boundary) {
771
pop_callee_regs(&prog, all_callee_regs_used);
772
pop_r12(&prog);
773
} else {
774
pop_callee_regs(&prog, callee_regs_used);
775
if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
776
pop_r12(&prog);
777
}
778
779
/* Pop tail_call_cnt_ptr. */
780
EMIT1(0x58); /* pop rax */
781
/* Pop tail_call_cnt, if it's main prog.
782
* Pop tail_call_cnt_ptr, if it's subprog.
783
*/
784
EMIT1(0x58); /* pop rax */
785
if (stack_depth)
786
EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
787
round_up(stack_depth, 8));
788
789
/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
790
EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
791
offsetof(struct bpf_prog, bpf_func));
792
EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
793
X86_TAIL_CALL_OFFSET);
794
/*
795
* Now we're ready to jump into next BPF program
796
* rdi == ctx (1st arg)
797
* rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
798
*/
799
emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
800
801
/* out: */
802
ctx->tail_call_indirect_label = prog - start;
803
*pprog = prog;
804
}
805
806
static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
807
struct bpf_jit_poke_descriptor *poke,
808
u8 **pprog, u8 *ip,
809
bool *callee_regs_used, u32 stack_depth,
810
struct jit_context *ctx)
811
{
812
int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
813
u8 *prog = *pprog, *start = *pprog;
814
int offset;
815
816
/*
817
* if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
818
* goto out;
819
*/
820
EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
821
EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
822
823
offset = ctx->tail_call_direct_label - (prog + 2 - start);
824
EMIT2(X86_JAE, offset); /* jae out */
825
826
poke->tailcall_bypass = ip + (prog - start);
827
poke->adj_off = X86_TAIL_CALL_OFFSET;
828
poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
829
poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
830
831
emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
832
poke->tailcall_bypass);
833
834
/* Inc tail_call_cnt if the slot is populated. */
835
EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */
836
837
if (bpf_prog->aux->exception_boundary) {
838
pop_callee_regs(&prog, all_callee_regs_used);
839
pop_r12(&prog);
840
} else {
841
pop_callee_regs(&prog, callee_regs_used);
842
if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
843
pop_r12(&prog);
844
}
845
846
/* Pop tail_call_cnt_ptr. */
847
EMIT1(0x58); /* pop rax */
848
/* Pop tail_call_cnt, if it's main prog.
849
* Pop tail_call_cnt_ptr, if it's subprog.
850
*/
851
EMIT1(0x58); /* pop rax */
852
if (stack_depth)
853
EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
854
855
emit_nops(&prog, X86_PATCH_SIZE);
856
857
/* out: */
858
ctx->tail_call_direct_label = prog - start;
859
860
*pprog = prog;
861
}
862
863
static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
864
{
865
struct bpf_jit_poke_descriptor *poke;
866
struct bpf_array *array;
867
struct bpf_prog *target;
868
int i, ret;
869
870
for (i = 0; i < prog->aux->size_poke_tab; i++) {
871
poke = &prog->aux->poke_tab[i];
872
if (poke->aux && poke->aux != prog->aux)
873
continue;
874
875
WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
876
877
if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
878
continue;
879
880
array = container_of(poke->tail_call.map, struct bpf_array, map);
881
mutex_lock(&array->aux->poke_mutex);
882
target = array->ptrs[poke->tail_call.key];
883
if (target) {
884
ret = __bpf_arch_text_poke(poke->tailcall_target,
885
BPF_MOD_JUMP, NULL,
886
(u8 *)target->bpf_func +
887
poke->adj_off);
888
BUG_ON(ret < 0);
889
ret = __bpf_arch_text_poke(poke->tailcall_bypass,
890
BPF_MOD_JUMP,
891
(u8 *)poke->tailcall_target +
892
X86_PATCH_SIZE, NULL);
893
BUG_ON(ret < 0);
894
}
895
WRITE_ONCE(poke->tailcall_target_stable, true);
896
mutex_unlock(&array->aux->poke_mutex);
897
}
898
}
899
900
static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
901
u32 dst_reg, const u32 imm32)
902
{
903
u8 *prog = *pprog;
904
u8 b1, b2, b3;
905
906
/*
907
* Optimization: if imm32 is positive, use 'mov %eax, imm32'
908
* (which zero-extends imm32) to save 2 bytes.
909
*/
910
if (sign_propagate && (s32)imm32 < 0) {
911
/* 'mov %rax, imm32' sign extends imm32 */
912
b1 = add_1mod(0x48, dst_reg);
913
b2 = 0xC7;
914
b3 = 0xC0;
915
EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
916
goto done;
917
}
918
919
/*
920
* Optimization: if imm32 is zero, use 'xor %eax, %eax'
921
* to save 3 bytes.
922
*/
923
if (imm32 == 0) {
924
if (is_ereg(dst_reg))
925
EMIT1(add_2mod(0x40, dst_reg, dst_reg));
926
b2 = 0x31; /* xor */
927
b3 = 0xC0;
928
EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
929
goto done;
930
}
931
932
/* mov %eax, imm32 */
933
if (is_ereg(dst_reg))
934
EMIT1(add_1mod(0x40, dst_reg));
935
EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
936
done:
937
*pprog = prog;
938
}
939
940
static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
941
const u32 imm32_hi, const u32 imm32_lo)
942
{
943
u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo;
944
u8 *prog = *pprog;
945
946
if (is_uimm32(imm64)) {
947
/*
948
* For emitting plain u32, where sign bit must not be
949
* propagated LLVM tends to load imm64 over mov32
950
* directly, so save couple of bytes by just doing
951
* 'mov %eax, imm32' instead.
952
*/
953
emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
954
} else if (is_simm32(imm64)) {
955
emit_mov_imm32(&prog, true, dst_reg, imm32_lo);
956
} else {
957
/* movabsq rax, imm64 */
958
EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
959
EMIT(imm32_lo, 4);
960
EMIT(imm32_hi, 4);
961
}
962
963
*pprog = prog;
964
}
965
966
static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
967
{
968
u8 *prog = *pprog;
969
970
if (is64) {
971
/* mov dst, src */
972
EMIT_mov(dst_reg, src_reg);
973
} else {
974
/* mov32 dst, src */
975
if (is_ereg(dst_reg) || is_ereg(src_reg))
976
EMIT1(add_2mod(0x40, dst_reg, src_reg));
977
EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
978
}
979
980
*pprog = prog;
981
}
982
983
static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
984
u32 src_reg)
985
{
986
u8 *prog = *pprog;
987
988
if (is64) {
989
/* movs[b,w,l]q dst, src */
990
if (num_bits == 8)
991
EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
992
add_2reg(0xC0, src_reg, dst_reg));
993
else if (num_bits == 16)
994
EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
995
add_2reg(0xC0, src_reg, dst_reg));
996
else if (num_bits == 32)
997
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
998
add_2reg(0xC0, src_reg, dst_reg));
999
} else {
1000
/* movs[b,w]l dst, src */
1001
if (num_bits == 8) {
1002
EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
1003
add_2reg(0xC0, src_reg, dst_reg));
1004
} else if (num_bits == 16) {
1005
if (is_ereg(dst_reg) || is_ereg(src_reg))
1006
EMIT1(add_2mod(0x40, src_reg, dst_reg));
1007
EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
1008
add_2reg(0xC0, src_reg, dst_reg));
1009
}
1010
}
1011
1012
*pprog = prog;
1013
}
1014
1015
/* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
1016
static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
1017
{
1018
u8 *prog = *pprog;
1019
1020
if (is_imm8(off)) {
1021
/* 1-byte signed displacement.
1022
*
1023
* If off == 0 we could skip this and save one extra byte, but
1024
* special case of x86 R13 which always needs an offset is not
1025
* worth the hassle
1026
*/
1027
EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
1028
} else {
1029
/* 4-byte signed displacement */
1030
EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
1031
}
1032
*pprog = prog;
1033
}
1034
1035
static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off)
1036
{
1037
u8 *prog = *pprog;
1038
1039
if (is_imm8(off)) {
1040
EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1041
} else {
1042
EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1043
}
1044
*pprog = prog;
1045
}
1046
1047
/*
1048
* Emit a REX byte if it will be necessary to address these registers
1049
*/
1050
static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
1051
{
1052
u8 *prog = *pprog;
1053
1054
if (is64)
1055
EMIT1(add_2mod(0x48, dst_reg, src_reg));
1056
else if (is_ereg(dst_reg) || is_ereg(src_reg))
1057
EMIT1(add_2mod(0x40, dst_reg, src_reg));
1058
*pprog = prog;
1059
}
1060
1061
/*
1062
* Similar version of maybe_emit_mod() for a single register
1063
*/
1064
static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
1065
{
1066
u8 *prog = *pprog;
1067
1068
if (is64)
1069
EMIT1(add_1mod(0x48, reg));
1070
else if (is_ereg(reg))
1071
EMIT1(add_1mod(0x40, reg));
1072
*pprog = prog;
1073
}
1074
1075
/* LDX: dst_reg = *(u8*)(src_reg + off) */
1076
static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1077
{
1078
u8 *prog = *pprog;
1079
1080
switch (size) {
1081
case BPF_B:
1082
/* Emit 'movzx rax, byte ptr [rax + off]' */
1083
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
1084
break;
1085
case BPF_H:
1086
/* Emit 'movzx rax, word ptr [rax + off]' */
1087
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
1088
break;
1089
case BPF_W:
1090
/* Emit 'mov eax, dword ptr [rax+0x14]' */
1091
if (is_ereg(dst_reg) || is_ereg(src_reg))
1092
EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
1093
else
1094
EMIT1(0x8B);
1095
break;
1096
case BPF_DW:
1097
/* Emit 'mov rax, qword ptr [rax+0x14]' */
1098
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
1099
break;
1100
}
1101
emit_insn_suffix(&prog, src_reg, dst_reg, off);
1102
*pprog = prog;
1103
}
1104
1105
/* LDSX: dst_reg = *(s8*)(src_reg + off) */
1106
static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1107
{
1108
u8 *prog = *pprog;
1109
1110
switch (size) {
1111
case BPF_B:
1112
/* Emit 'movsx rax, byte ptr [rax + off]' */
1113
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
1114
break;
1115
case BPF_H:
1116
/* Emit 'movsx rax, word ptr [rax + off]' */
1117
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
1118
break;
1119
case BPF_W:
1120
/* Emit 'movsx rax, dword ptr [rax+0x14]' */
1121
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
1122
break;
1123
}
1124
emit_insn_suffix(&prog, src_reg, dst_reg, off);
1125
*pprog = prog;
1126
}
1127
1128
static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1129
{
1130
u8 *prog = *pprog;
1131
1132
switch (size) {
1133
case BPF_B:
1134
/* movzx rax, byte ptr [rax + r12 + off] */
1135
EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6);
1136
break;
1137
case BPF_H:
1138
/* movzx rax, word ptr [rax + r12 + off] */
1139
EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7);
1140
break;
1141
case BPF_W:
1142
/* mov eax, dword ptr [rax + r12 + off] */
1143
EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B);
1144
break;
1145
case BPF_DW:
1146
/* mov rax, qword ptr [rax + r12 + off] */
1147
EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B);
1148
break;
1149
}
1150
emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1151
*pprog = prog;
1152
}
1153
1154
static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1155
{
1156
emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1157
}
1158
1159
/* STX: *(u8*)(dst_reg + off) = src_reg */
1160
static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1161
{
1162
u8 *prog = *pprog;
1163
1164
switch (size) {
1165
case BPF_B:
1166
/* Emit 'mov byte ptr [rax + off], al' */
1167
if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
1168
/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
1169
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
1170
else
1171
EMIT1(0x88);
1172
break;
1173
case BPF_H:
1174
if (is_ereg(dst_reg) || is_ereg(src_reg))
1175
EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
1176
else
1177
EMIT2(0x66, 0x89);
1178
break;
1179
case BPF_W:
1180
if (is_ereg(dst_reg) || is_ereg(src_reg))
1181
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
1182
else
1183
EMIT1(0x89);
1184
break;
1185
case BPF_DW:
1186
EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
1187
break;
1188
}
1189
emit_insn_suffix(&prog, dst_reg, src_reg, off);
1190
*pprog = prog;
1191
}
1192
1193
/* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */
1194
static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1195
{
1196
u8 *prog = *pprog;
1197
1198
switch (size) {
1199
case BPF_B:
1200
/* mov byte ptr [rax + r12 + off], al */
1201
EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88);
1202
break;
1203
case BPF_H:
1204
/* mov word ptr [rax + r12 + off], ax */
1205
EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1206
break;
1207
case BPF_W:
1208
/* mov dword ptr [rax + r12 + 1], eax */
1209
EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1210
break;
1211
case BPF_DW:
1212
/* mov qword ptr [rax + r12 + 1], rax */
1213
EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89);
1214
break;
1215
}
1216
emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1217
*pprog = prog;
1218
}
1219
1220
static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1221
{
1222
emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1223
}
1224
1225
/* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */
1226
static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm)
1227
{
1228
u8 *prog = *pprog;
1229
1230
switch (size) {
1231
case BPF_B:
1232
/* mov byte ptr [rax + r12 + off], imm8 */
1233
EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6);
1234
break;
1235
case BPF_H:
1236
/* mov word ptr [rax + r12 + off], imm16 */
1237
EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1238
break;
1239
case BPF_W:
1240
/* mov dword ptr [rax + r12 + 1], imm32 */
1241
EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1242
break;
1243
case BPF_DW:
1244
/* mov qword ptr [rax + r12 + 1], imm32 */
1245
EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7);
1246
break;
1247
}
1248
emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off);
1249
EMIT(imm, bpf_size_to_x86_bytes(size));
1250
*pprog = prog;
1251
}
1252
1253
static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm)
1254
{
1255
emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm);
1256
}
1257
1258
static int emit_atomic_rmw(u8 **pprog, u32 atomic_op,
1259
u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1260
{
1261
u8 *prog = *pprog;
1262
1263
EMIT1(0xF0); /* lock prefix */
1264
1265
maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1266
1267
/* emit opcode */
1268
switch (atomic_op) {
1269
case BPF_ADD:
1270
case BPF_AND:
1271
case BPF_OR:
1272
case BPF_XOR:
1273
/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1274
EMIT1(simple_alu_opcodes[atomic_op]);
1275
break;
1276
case BPF_ADD | BPF_FETCH:
1277
/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1278
EMIT2(0x0F, 0xC1);
1279
break;
1280
case BPF_XCHG:
1281
/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1282
EMIT1(0x87);
1283
break;
1284
case BPF_CMPXCHG:
1285
/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1286
EMIT2(0x0F, 0xB1);
1287
break;
1288
default:
1289
pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1290
return -EFAULT;
1291
}
1292
1293
emit_insn_suffix(&prog, dst_reg, src_reg, off);
1294
1295
*pprog = prog;
1296
return 0;
1297
}
1298
1299
static int emit_atomic_rmw_index(u8 **pprog, u32 atomic_op, u32 size,
1300
u32 dst_reg, u32 src_reg, u32 index_reg,
1301
int off)
1302
{
1303
u8 *prog = *pprog;
1304
1305
EMIT1(0xF0); /* lock prefix */
1306
switch (size) {
1307
case BPF_W:
1308
EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg));
1309
break;
1310
case BPF_DW:
1311
EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg));
1312
break;
1313
default:
1314
pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
1315
return -EFAULT;
1316
}
1317
1318
/* emit opcode */
1319
switch (atomic_op) {
1320
case BPF_ADD:
1321
case BPF_AND:
1322
case BPF_OR:
1323
case BPF_XOR:
1324
/* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */
1325
EMIT1(simple_alu_opcodes[atomic_op]);
1326
break;
1327
case BPF_ADD | BPF_FETCH:
1328
/* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */
1329
EMIT2(0x0F, 0xC1);
1330
break;
1331
case BPF_XCHG:
1332
/* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */
1333
EMIT1(0x87);
1334
break;
1335
case BPF_CMPXCHG:
1336
/* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */
1337
EMIT2(0x0F, 0xB1);
1338
break;
1339
default:
1340
pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1341
return -EFAULT;
1342
}
1343
emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1344
*pprog = prog;
1345
return 0;
1346
}
1347
1348
static int emit_atomic_ld_st(u8 **pprog, u32 atomic_op, u32 dst_reg,
1349
u32 src_reg, s16 off, u8 bpf_size)
1350
{
1351
switch (atomic_op) {
1352
case BPF_LOAD_ACQ:
1353
/* dst_reg = smp_load_acquire(src_reg + off16) */
1354
emit_ldx(pprog, bpf_size, dst_reg, src_reg, off);
1355
break;
1356
case BPF_STORE_REL:
1357
/* smp_store_release(dst_reg + off16, src_reg) */
1358
emit_stx(pprog, bpf_size, dst_reg, src_reg, off);
1359
break;
1360
default:
1361
pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1362
atomic_op);
1363
return -EFAULT;
1364
}
1365
1366
return 0;
1367
}
1368
1369
static int emit_atomic_ld_st_index(u8 **pprog, u32 atomic_op, u32 size,
1370
u32 dst_reg, u32 src_reg, u32 index_reg,
1371
int off)
1372
{
1373
switch (atomic_op) {
1374
case BPF_LOAD_ACQ:
1375
/* dst_reg = smp_load_acquire(src_reg + idx_reg + off16) */
1376
emit_ldx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1377
break;
1378
case BPF_STORE_REL:
1379
/* smp_store_release(dst_reg + idx_reg + off16, src_reg) */
1380
emit_stx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1381
break;
1382
default:
1383
pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1384
atomic_op);
1385
return -EFAULT;
1386
}
1387
1388
return 0;
1389
}
1390
1391
#define DONT_CLEAR 1
1392
1393
bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1394
{
1395
u32 reg = x->fixup >> 8;
1396
1397
/* jump over faulting load and clear dest register */
1398
if (reg != DONT_CLEAR)
1399
*(unsigned long *)((void *)regs + reg) = 0;
1400
regs->ip += x->fixup & 0xff;
1401
return true;
1402
}
1403
1404
static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1405
bool *regs_used)
1406
{
1407
int i;
1408
1409
for (i = 1; i <= insn_cnt; i++, insn++) {
1410
if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1411
regs_used[0] = true;
1412
if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1413
regs_used[1] = true;
1414
if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1415
regs_used[2] = true;
1416
if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1417
regs_used[3] = true;
1418
}
1419
}
1420
1421
/* emit the 3-byte VEX prefix
1422
*
1423
* r: same as rex.r, extra bit for ModRM reg field
1424
* x: same as rex.x, extra bit for SIB index field
1425
* b: same as rex.b, extra bit for ModRM r/m, or SIB base
1426
* m: opcode map select, encoding escape bytes e.g. 0x0f38
1427
* w: same as rex.w (32 bit or 64 bit) or opcode specific
1428
* src_reg2: additional source reg (encoded as BPF reg)
1429
* l: vector length (128 bit or 256 bit) or reserved
1430
* pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1431
*/
1432
static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1433
bool w, u8 src_reg2, bool l, u8 pp)
1434
{
1435
u8 *prog = *pprog;
1436
const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1437
u8 b1, b2;
1438
u8 vvvv = reg2hex[src_reg2];
1439
1440
/* reg2hex gives only the lower 3 bit of vvvv */
1441
if (is_ereg(src_reg2))
1442
vvvv |= 1 << 3;
1443
1444
/*
1445
* 2nd byte of 3-byte VEX prefix
1446
* ~ means bit inverted encoding
1447
*
1448
* 7 0
1449
* +---+---+---+---+---+---+---+---+
1450
* |~R |~X |~B | m |
1451
* +---+---+---+---+---+---+---+---+
1452
*/
1453
b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1454
/*
1455
* 3rd byte of 3-byte VEX prefix
1456
*
1457
* 7 0
1458
* +---+---+---+---+---+---+---+---+
1459
* | W | ~vvvv | L | pp |
1460
* +---+---+---+---+---+---+---+---+
1461
*/
1462
b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1463
1464
EMIT3(b0, b1, b2);
1465
*pprog = prog;
1466
}
1467
1468
/* emit BMI2 shift instruction */
1469
static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1470
{
1471
u8 *prog = *pprog;
1472
bool r = is_ereg(dst_reg);
1473
u8 m = 2; /* escape code 0f38 */
1474
1475
emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1476
EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1477
*pprog = prog;
1478
}
1479
1480
static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr)
1481
{
1482
u8 *prog = *pprog;
1483
1484
/* movabs r9, priv_frame_ptr */
1485
emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32,
1486
(u32) (__force long) priv_frame_ptr);
1487
1488
#ifdef CONFIG_SMP
1489
/* add <r9>, gs:[<off>] */
1490
EMIT2(0x65, 0x4c);
1491
EMIT3(0x03, 0x0c, 0x25);
1492
EMIT((u32)(unsigned long)&this_cpu_off, 4);
1493
#endif
1494
1495
*pprog = prog;
1496
}
1497
1498
#define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1499
1500
#define __LOAD_TCC_PTR(off) \
1501
EMIT3_off32(0x48, 0x8B, 0x85, off)
1502
/* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */
1503
#define LOAD_TAIL_CALL_CNT_PTR(stack) \
1504
__LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack))
1505
1506
/* Memory size/value to protect private stack overflow/underflow */
1507
#define PRIV_STACK_GUARD_SZ 8
1508
#define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL
1509
1510
static int emit_spectre_bhb_barrier(u8 **pprog, u8 *ip,
1511
struct bpf_prog *bpf_prog)
1512
{
1513
u8 *prog = *pprog;
1514
u8 *func;
1515
1516
if (cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP)) {
1517
/* The clearing sequence clobbers eax and ecx. */
1518
EMIT1(0x50); /* push rax */
1519
EMIT1(0x51); /* push rcx */
1520
ip += 2;
1521
1522
func = (u8 *)clear_bhb_loop;
1523
ip += x86_call_depth_emit_accounting(&prog, func, ip);
1524
1525
if (emit_call(&prog, func, ip))
1526
return -EINVAL;
1527
EMIT1(0x59); /* pop rcx */
1528
EMIT1(0x58); /* pop rax */
1529
}
1530
/* Insert IBHF instruction */
1531
if ((cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP) &&
1532
cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) ||
1533
cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_HW)) {
1534
/*
1535
* Add an Indirect Branch History Fence (IBHF). IBHF acts as a
1536
* fence preventing branch history from before the fence from
1537
* affecting indirect branches after the fence. This is
1538
* specifically used in cBPF jitted code to prevent Intra-mode
1539
* BHI attacks. The IBHF instruction is designed to be a NOP on
1540
* hardware that doesn't need or support it. The REP and REX.W
1541
* prefixes are required by the microcode, and they also ensure
1542
* that the NOP is unlikely to be used in existing code.
1543
*
1544
* IBHF is not a valid instruction in 32-bit mode.
1545
*/
1546
EMIT5(0xF3, 0x48, 0x0F, 0x1E, 0xF8); /* ibhf */
1547
}
1548
*pprog = prog;
1549
return 0;
1550
}
1551
1552
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1553
int oldproglen, struct jit_context *ctx, bool jmp_padding)
1554
{
1555
bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1556
struct bpf_insn *insn = bpf_prog->insnsi;
1557
bool callee_regs_used[4] = {};
1558
int insn_cnt = bpf_prog->len;
1559
bool seen_exit = false;
1560
u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1561
void __percpu *priv_frame_ptr = NULL;
1562
u64 arena_vm_start, user_vm_start;
1563
void __percpu *priv_stack_ptr;
1564
int i, excnt = 0;
1565
int ilen, proglen = 0;
1566
u8 *prog = temp;
1567
u32 stack_depth;
1568
int err;
1569
1570
stack_depth = bpf_prog->aux->stack_depth;
1571
priv_stack_ptr = bpf_prog->aux->priv_stack_ptr;
1572
if (priv_stack_ptr) {
1573
priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8);
1574
stack_depth = 0;
1575
}
1576
1577
arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena);
1578
user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena);
1579
1580
detect_reg_usage(insn, insn_cnt, callee_regs_used);
1581
1582
emit_prologue(&prog, image, stack_depth,
1583
bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1584
bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1585
/* Exception callback will clobber callee regs for its own use, and
1586
* restore the original callee regs from main prog's stack frame.
1587
*/
1588
if (bpf_prog->aux->exception_boundary) {
1589
/* We also need to save r12, which is not mapped to any BPF
1590
* register, as we throw after entry into the kernel, which may
1591
* overwrite r12.
1592
*/
1593
push_r12(&prog);
1594
push_callee_regs(&prog, all_callee_regs_used);
1595
} else {
1596
if (arena_vm_start)
1597
push_r12(&prog);
1598
push_callee_regs(&prog, callee_regs_used);
1599
}
1600
if (arena_vm_start)
1601
emit_mov_imm64(&prog, X86_REG_R12,
1602
arena_vm_start >> 32, (u32) arena_vm_start);
1603
1604
if (priv_frame_ptr)
1605
emit_priv_frame_ptr(&prog, priv_frame_ptr);
1606
1607
ilen = prog - temp;
1608
if (rw_image)
1609
memcpy(rw_image + proglen, temp, ilen);
1610
proglen += ilen;
1611
addrs[0] = proglen;
1612
prog = temp;
1613
1614
for (i = 1; i <= insn_cnt; i++, insn++) {
1615
const s32 imm32 = insn->imm;
1616
u32 dst_reg = insn->dst_reg;
1617
u32 src_reg = insn->src_reg;
1618
u8 b2 = 0, b3 = 0;
1619
u8 *start_of_ldx;
1620
s64 jmp_offset;
1621
s16 insn_off;
1622
u8 jmp_cond;
1623
u8 *func;
1624
int nops;
1625
1626
if (priv_frame_ptr) {
1627
if (src_reg == BPF_REG_FP)
1628
src_reg = X86_REG_R9;
1629
1630
if (dst_reg == BPF_REG_FP)
1631
dst_reg = X86_REG_R9;
1632
}
1633
1634
switch (insn->code) {
1635
/* ALU */
1636
case BPF_ALU | BPF_ADD | BPF_X:
1637
case BPF_ALU | BPF_SUB | BPF_X:
1638
case BPF_ALU | BPF_AND | BPF_X:
1639
case BPF_ALU | BPF_OR | BPF_X:
1640
case BPF_ALU | BPF_XOR | BPF_X:
1641
case BPF_ALU64 | BPF_ADD | BPF_X:
1642
case BPF_ALU64 | BPF_SUB | BPF_X:
1643
case BPF_ALU64 | BPF_AND | BPF_X:
1644
case BPF_ALU64 | BPF_OR | BPF_X:
1645
case BPF_ALU64 | BPF_XOR | BPF_X:
1646
maybe_emit_mod(&prog, dst_reg, src_reg,
1647
BPF_CLASS(insn->code) == BPF_ALU64);
1648
b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1649
EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1650
break;
1651
1652
case BPF_ALU64 | BPF_MOV | BPF_X:
1653
if (insn_is_cast_user(insn)) {
1654
if (dst_reg != src_reg)
1655
/* 32-bit mov */
1656
emit_mov_reg(&prog, false, dst_reg, src_reg);
1657
/* shl dst_reg, 32 */
1658
maybe_emit_1mod(&prog, dst_reg, true);
1659
EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32);
1660
1661
/* or dst_reg, user_vm_start */
1662
maybe_emit_1mod(&prog, dst_reg, true);
1663
if (is_axreg(dst_reg))
1664
EMIT1_off32(0x0D, user_vm_start >> 32);
1665
else
1666
EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32);
1667
1668
/* rol dst_reg, 32 */
1669
maybe_emit_1mod(&prog, dst_reg, true);
1670
EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32);
1671
1672
/* xor r11, r11 */
1673
EMIT3(0x4D, 0x31, 0xDB);
1674
1675
/* test dst_reg32, dst_reg32; check if lower 32-bit are zero */
1676
maybe_emit_mod(&prog, dst_reg, dst_reg, false);
1677
EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1678
1679
/* cmove r11, dst_reg; if so, set dst_reg to zero */
1680
/* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */
1681
maybe_emit_mod(&prog, AUX_REG, dst_reg, true);
1682
EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg));
1683
break;
1684
} else if (insn_is_mov_percpu_addr(insn)) {
1685
/* mov <dst>, <src> (if necessary) */
1686
EMIT_mov(dst_reg, src_reg);
1687
#ifdef CONFIG_SMP
1688
/* add <dst>, gs:[<off>] */
1689
EMIT2(0x65, add_1mod(0x48, dst_reg));
1690
EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25);
1691
EMIT((u32)(unsigned long)&this_cpu_off, 4);
1692
#endif
1693
break;
1694
}
1695
fallthrough;
1696
case BPF_ALU | BPF_MOV | BPF_X:
1697
if (insn->off == 0)
1698
emit_mov_reg(&prog,
1699
BPF_CLASS(insn->code) == BPF_ALU64,
1700
dst_reg, src_reg);
1701
else
1702
emit_movsx_reg(&prog, insn->off,
1703
BPF_CLASS(insn->code) == BPF_ALU64,
1704
dst_reg, src_reg);
1705
break;
1706
1707
/* neg dst */
1708
case BPF_ALU | BPF_NEG:
1709
case BPF_ALU64 | BPF_NEG:
1710
maybe_emit_1mod(&prog, dst_reg,
1711
BPF_CLASS(insn->code) == BPF_ALU64);
1712
EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1713
break;
1714
1715
case BPF_ALU | BPF_ADD | BPF_K:
1716
case BPF_ALU | BPF_SUB | BPF_K:
1717
case BPF_ALU | BPF_AND | BPF_K:
1718
case BPF_ALU | BPF_OR | BPF_K:
1719
case BPF_ALU | BPF_XOR | BPF_K:
1720
case BPF_ALU64 | BPF_ADD | BPF_K:
1721
case BPF_ALU64 | BPF_SUB | BPF_K:
1722
case BPF_ALU64 | BPF_AND | BPF_K:
1723
case BPF_ALU64 | BPF_OR | BPF_K:
1724
case BPF_ALU64 | BPF_XOR | BPF_K:
1725
maybe_emit_1mod(&prog, dst_reg,
1726
BPF_CLASS(insn->code) == BPF_ALU64);
1727
1728
/*
1729
* b3 holds 'normal' opcode, b2 short form only valid
1730
* in case dst is eax/rax.
1731
*/
1732
switch (BPF_OP(insn->code)) {
1733
case BPF_ADD:
1734
b3 = 0xC0;
1735
b2 = 0x05;
1736
break;
1737
case BPF_SUB:
1738
b3 = 0xE8;
1739
b2 = 0x2D;
1740
break;
1741
case BPF_AND:
1742
b3 = 0xE0;
1743
b2 = 0x25;
1744
break;
1745
case BPF_OR:
1746
b3 = 0xC8;
1747
b2 = 0x0D;
1748
break;
1749
case BPF_XOR:
1750
b3 = 0xF0;
1751
b2 = 0x35;
1752
break;
1753
}
1754
1755
if (is_imm8(imm32))
1756
EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1757
else if (is_axreg(dst_reg))
1758
EMIT1_off32(b2, imm32);
1759
else
1760
EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1761
break;
1762
1763
case BPF_ALU64 | BPF_MOV | BPF_K:
1764
case BPF_ALU | BPF_MOV | BPF_K:
1765
emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1766
dst_reg, imm32);
1767
break;
1768
1769
case BPF_LD | BPF_IMM | BPF_DW:
1770
emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1771
insn++;
1772
i++;
1773
break;
1774
1775
/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1776
case BPF_ALU | BPF_MOD | BPF_X:
1777
case BPF_ALU | BPF_DIV | BPF_X:
1778
case BPF_ALU | BPF_MOD | BPF_K:
1779
case BPF_ALU | BPF_DIV | BPF_K:
1780
case BPF_ALU64 | BPF_MOD | BPF_X:
1781
case BPF_ALU64 | BPF_DIV | BPF_X:
1782
case BPF_ALU64 | BPF_MOD | BPF_K:
1783
case BPF_ALU64 | BPF_DIV | BPF_K: {
1784
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1785
1786
if (dst_reg != BPF_REG_0)
1787
EMIT1(0x50); /* push rax */
1788
if (dst_reg != BPF_REG_3)
1789
EMIT1(0x52); /* push rdx */
1790
1791
if (BPF_SRC(insn->code) == BPF_X) {
1792
if (src_reg == BPF_REG_0 ||
1793
src_reg == BPF_REG_3) {
1794
/* mov r11, src_reg */
1795
EMIT_mov(AUX_REG, src_reg);
1796
src_reg = AUX_REG;
1797
}
1798
} else {
1799
/* mov r11, imm32 */
1800
EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1801
src_reg = AUX_REG;
1802
}
1803
1804
if (dst_reg != BPF_REG_0)
1805
/* mov rax, dst_reg */
1806
emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1807
1808
if (insn->off == 0) {
1809
/*
1810
* xor edx, edx
1811
* equivalent to 'xor rdx, rdx', but one byte less
1812
*/
1813
EMIT2(0x31, 0xd2);
1814
1815
/* div src_reg */
1816
maybe_emit_1mod(&prog, src_reg, is64);
1817
EMIT2(0xF7, add_1reg(0xF0, src_reg));
1818
} else {
1819
if (BPF_CLASS(insn->code) == BPF_ALU)
1820
EMIT1(0x99); /* cdq */
1821
else
1822
EMIT2(0x48, 0x99); /* cqo */
1823
1824
/* idiv src_reg */
1825
maybe_emit_1mod(&prog, src_reg, is64);
1826
EMIT2(0xF7, add_1reg(0xF8, src_reg));
1827
}
1828
1829
if (BPF_OP(insn->code) == BPF_MOD &&
1830
dst_reg != BPF_REG_3)
1831
/* mov dst_reg, rdx */
1832
emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1833
else if (BPF_OP(insn->code) == BPF_DIV &&
1834
dst_reg != BPF_REG_0)
1835
/* mov dst_reg, rax */
1836
emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1837
1838
if (dst_reg != BPF_REG_3)
1839
EMIT1(0x5A); /* pop rdx */
1840
if (dst_reg != BPF_REG_0)
1841
EMIT1(0x58); /* pop rax */
1842
break;
1843
}
1844
1845
case BPF_ALU | BPF_MUL | BPF_K:
1846
case BPF_ALU64 | BPF_MUL | BPF_K:
1847
maybe_emit_mod(&prog, dst_reg, dst_reg,
1848
BPF_CLASS(insn->code) == BPF_ALU64);
1849
1850
if (is_imm8(imm32))
1851
/* imul dst_reg, dst_reg, imm8 */
1852
EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1853
imm32);
1854
else
1855
/* imul dst_reg, dst_reg, imm32 */
1856
EMIT2_off32(0x69,
1857
add_2reg(0xC0, dst_reg, dst_reg),
1858
imm32);
1859
break;
1860
1861
case BPF_ALU | BPF_MUL | BPF_X:
1862
case BPF_ALU64 | BPF_MUL | BPF_X:
1863
maybe_emit_mod(&prog, src_reg, dst_reg,
1864
BPF_CLASS(insn->code) == BPF_ALU64);
1865
1866
/* imul dst_reg, src_reg */
1867
EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1868
break;
1869
1870
/* Shifts */
1871
case BPF_ALU | BPF_LSH | BPF_K:
1872
case BPF_ALU | BPF_RSH | BPF_K:
1873
case BPF_ALU | BPF_ARSH | BPF_K:
1874
case BPF_ALU64 | BPF_LSH | BPF_K:
1875
case BPF_ALU64 | BPF_RSH | BPF_K:
1876
case BPF_ALU64 | BPF_ARSH | BPF_K:
1877
maybe_emit_1mod(&prog, dst_reg,
1878
BPF_CLASS(insn->code) == BPF_ALU64);
1879
1880
b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1881
if (imm32 == 1)
1882
EMIT2(0xD1, add_1reg(b3, dst_reg));
1883
else
1884
EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1885
break;
1886
1887
case BPF_ALU | BPF_LSH | BPF_X:
1888
case BPF_ALU | BPF_RSH | BPF_X:
1889
case BPF_ALU | BPF_ARSH | BPF_X:
1890
case BPF_ALU64 | BPF_LSH | BPF_X:
1891
case BPF_ALU64 | BPF_RSH | BPF_X:
1892
case BPF_ALU64 | BPF_ARSH | BPF_X:
1893
/* BMI2 shifts aren't better when shift count is already in rcx */
1894
if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1895
/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1896
bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1897
u8 op;
1898
1899
switch (BPF_OP(insn->code)) {
1900
case BPF_LSH:
1901
op = 1; /* prefix 0x66 */
1902
break;
1903
case BPF_RSH:
1904
op = 3; /* prefix 0xf2 */
1905
break;
1906
case BPF_ARSH:
1907
op = 2; /* prefix 0xf3 */
1908
break;
1909
}
1910
1911
emit_shiftx(&prog, dst_reg, src_reg, w, op);
1912
1913
break;
1914
}
1915
1916
if (src_reg != BPF_REG_4) { /* common case */
1917
/* Check for bad case when dst_reg == rcx */
1918
if (dst_reg == BPF_REG_4) {
1919
/* mov r11, dst_reg */
1920
EMIT_mov(AUX_REG, dst_reg);
1921
dst_reg = AUX_REG;
1922
} else {
1923
EMIT1(0x51); /* push rcx */
1924
}
1925
/* mov rcx, src_reg */
1926
EMIT_mov(BPF_REG_4, src_reg);
1927
}
1928
1929
/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1930
maybe_emit_1mod(&prog, dst_reg,
1931
BPF_CLASS(insn->code) == BPF_ALU64);
1932
1933
b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1934
EMIT2(0xD3, add_1reg(b3, dst_reg));
1935
1936
if (src_reg != BPF_REG_4) {
1937
if (insn->dst_reg == BPF_REG_4)
1938
/* mov dst_reg, r11 */
1939
EMIT_mov(insn->dst_reg, AUX_REG);
1940
else
1941
EMIT1(0x59); /* pop rcx */
1942
}
1943
1944
break;
1945
1946
case BPF_ALU | BPF_END | BPF_FROM_BE:
1947
case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1948
switch (imm32) {
1949
case 16:
1950
/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1951
EMIT1(0x66);
1952
if (is_ereg(dst_reg))
1953
EMIT1(0x41);
1954
EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1955
1956
/* Emit 'movzwl eax, ax' */
1957
if (is_ereg(dst_reg))
1958
EMIT3(0x45, 0x0F, 0xB7);
1959
else
1960
EMIT2(0x0F, 0xB7);
1961
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1962
break;
1963
case 32:
1964
/* Emit 'bswap eax' to swap lower 4 bytes */
1965
if (is_ereg(dst_reg))
1966
EMIT2(0x41, 0x0F);
1967
else
1968
EMIT1(0x0F);
1969
EMIT1(add_1reg(0xC8, dst_reg));
1970
break;
1971
case 64:
1972
/* Emit 'bswap rax' to swap 8 bytes */
1973
EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1974
add_1reg(0xC8, dst_reg));
1975
break;
1976
}
1977
break;
1978
1979
case BPF_ALU | BPF_END | BPF_FROM_LE:
1980
switch (imm32) {
1981
case 16:
1982
/*
1983
* Emit 'movzwl eax, ax' to zero extend 16-bit
1984
* into 64 bit
1985
*/
1986
if (is_ereg(dst_reg))
1987
EMIT3(0x45, 0x0F, 0xB7);
1988
else
1989
EMIT2(0x0F, 0xB7);
1990
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1991
break;
1992
case 32:
1993
/* Emit 'mov eax, eax' to clear upper 32-bits */
1994
if (is_ereg(dst_reg))
1995
EMIT1(0x45);
1996
EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1997
break;
1998
case 64:
1999
/* nop */
2000
break;
2001
}
2002
break;
2003
2004
/* speculation barrier */
2005
case BPF_ST | BPF_NOSPEC:
2006
EMIT_LFENCE();
2007
break;
2008
2009
/* ST: *(u8*)(dst_reg + off) = imm */
2010
case BPF_ST | BPF_MEM | BPF_B:
2011
if (is_ereg(dst_reg))
2012
EMIT2(0x41, 0xC6);
2013
else
2014
EMIT1(0xC6);
2015
goto st;
2016
case BPF_ST | BPF_MEM | BPF_H:
2017
if (is_ereg(dst_reg))
2018
EMIT3(0x66, 0x41, 0xC7);
2019
else
2020
EMIT2(0x66, 0xC7);
2021
goto st;
2022
case BPF_ST | BPF_MEM | BPF_W:
2023
if (is_ereg(dst_reg))
2024
EMIT2(0x41, 0xC7);
2025
else
2026
EMIT1(0xC7);
2027
goto st;
2028
case BPF_ST | BPF_MEM | BPF_DW:
2029
EMIT2(add_1mod(0x48, dst_reg), 0xC7);
2030
2031
st: if (is_imm8(insn->off))
2032
EMIT2(add_1reg(0x40, dst_reg), insn->off);
2033
else
2034
EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
2035
2036
EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
2037
break;
2038
2039
/* STX: *(u8*)(dst_reg + off) = src_reg */
2040
case BPF_STX | BPF_MEM | BPF_B:
2041
case BPF_STX | BPF_MEM | BPF_H:
2042
case BPF_STX | BPF_MEM | BPF_W:
2043
case BPF_STX | BPF_MEM | BPF_DW:
2044
emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2045
break;
2046
2047
case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
2048
case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
2049
case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
2050
case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
2051
start_of_ldx = prog;
2052
emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm);
2053
goto populate_extable;
2054
2055
/* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */
2056
case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
2057
case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
2058
case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
2059
case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
2060
case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
2061
case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
2062
case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
2063
case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
2064
start_of_ldx = prog;
2065
if (BPF_CLASS(insn->code) == BPF_LDX)
2066
emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2067
else
2068
emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2069
populate_extable:
2070
{
2071
struct exception_table_entry *ex;
2072
u8 *_insn = image + proglen + (start_of_ldx - temp);
2073
s64 delta;
2074
2075
if (!bpf_prog->aux->extable)
2076
break;
2077
2078
if (excnt >= bpf_prog->aux->num_exentries) {
2079
pr_err("mem32 extable bug\n");
2080
return -EFAULT;
2081
}
2082
ex = &bpf_prog->aux->extable[excnt++];
2083
2084
delta = _insn - (u8 *)&ex->insn;
2085
/* switch ex to rw buffer for writes */
2086
ex = (void *)rw_image + ((void *)ex - (void *)image);
2087
2088
ex->insn = delta;
2089
2090
ex->data = EX_TYPE_BPF;
2091
2092
ex->fixup = (prog - start_of_ldx) |
2093
((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8);
2094
}
2095
break;
2096
2097
/* LDX: dst_reg = *(u8*)(src_reg + off) */
2098
case BPF_LDX | BPF_MEM | BPF_B:
2099
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
2100
case BPF_LDX | BPF_MEM | BPF_H:
2101
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
2102
case BPF_LDX | BPF_MEM | BPF_W:
2103
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
2104
case BPF_LDX | BPF_MEM | BPF_DW:
2105
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
2106
/* LDXS: dst_reg = *(s8*)(src_reg + off) */
2107
case BPF_LDX | BPF_MEMSX | BPF_B:
2108
case BPF_LDX | BPF_MEMSX | BPF_H:
2109
case BPF_LDX | BPF_MEMSX | BPF_W:
2110
case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
2111
case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
2112
case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
2113
insn_off = insn->off;
2114
2115
if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2116
BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2117
/* Conservatively check that src_reg + insn->off is a kernel address:
2118
* src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
2119
* and
2120
* src_reg + insn->off < VSYSCALL_ADDR
2121
*/
2122
2123
u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
2124
u8 *end_of_jmp;
2125
2126
/* movabsq r10, VSYSCALL_ADDR */
2127
emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
2128
(u32)(long)VSYSCALL_ADDR);
2129
2130
/* mov src_reg, r11 */
2131
EMIT_mov(AUX_REG, src_reg);
2132
2133
if (insn->off) {
2134
/* add r11, insn->off */
2135
maybe_emit_1mod(&prog, AUX_REG, true);
2136
EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
2137
}
2138
2139
/* sub r11, r10 */
2140
maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2141
EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2142
2143
/* movabsq r10, limit */
2144
emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
2145
(u32)(long)limit);
2146
2147
/* cmp r10, r11 */
2148
maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2149
EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2150
2151
/* if unsigned '>', goto load */
2152
EMIT2(X86_JA, 0);
2153
end_of_jmp = prog;
2154
2155
/* xor dst_reg, dst_reg */
2156
emit_mov_imm32(&prog, false, dst_reg, 0);
2157
/* jmp byte_after_ldx */
2158
EMIT2(0xEB, 0);
2159
2160
/* populate jmp_offset for JAE above to jump to start_of_ldx */
2161
start_of_ldx = prog;
2162
end_of_jmp[-1] = start_of_ldx - end_of_jmp;
2163
}
2164
if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
2165
BPF_MODE(insn->code) == BPF_MEMSX)
2166
emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2167
else
2168
emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2169
if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2170
BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2171
struct exception_table_entry *ex;
2172
u8 *_insn = image + proglen + (start_of_ldx - temp);
2173
s64 delta;
2174
2175
/* populate jmp_offset for JMP above */
2176
start_of_ldx[-1] = prog - start_of_ldx;
2177
2178
if (!bpf_prog->aux->extable)
2179
break;
2180
2181
if (excnt >= bpf_prog->aux->num_exentries) {
2182
pr_err("ex gen bug\n");
2183
return -EFAULT;
2184
}
2185
ex = &bpf_prog->aux->extable[excnt++];
2186
2187
delta = _insn - (u8 *)&ex->insn;
2188
if (!is_simm32(delta)) {
2189
pr_err("extable->insn doesn't fit into 32-bit\n");
2190
return -EFAULT;
2191
}
2192
/* switch ex to rw buffer for writes */
2193
ex = (void *)rw_image + ((void *)ex - (void *)image);
2194
2195
ex->insn = delta;
2196
2197
ex->data = EX_TYPE_BPF;
2198
2199
if (dst_reg > BPF_REG_9) {
2200
pr_err("verifier error\n");
2201
return -EFAULT;
2202
}
2203
/*
2204
* Compute size of x86 insn and its target dest x86 register.
2205
* ex_handler_bpf() will use lower 8 bits to adjust
2206
* pt_regs->ip to jump over this x86 instruction
2207
* and upper bits to figure out which pt_regs to zero out.
2208
* End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
2209
* of 4 bytes will be ignored and rbx will be zero inited.
2210
*/
2211
ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
2212
}
2213
break;
2214
2215
case BPF_STX | BPF_ATOMIC | BPF_B:
2216
case BPF_STX | BPF_ATOMIC | BPF_H:
2217
if (!bpf_atomic_is_load_store(insn)) {
2218
pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2219
return -EFAULT;
2220
}
2221
fallthrough;
2222
case BPF_STX | BPF_ATOMIC | BPF_W:
2223
case BPF_STX | BPF_ATOMIC | BPF_DW:
2224
if (insn->imm == (BPF_AND | BPF_FETCH) ||
2225
insn->imm == (BPF_OR | BPF_FETCH) ||
2226
insn->imm == (BPF_XOR | BPF_FETCH)) {
2227
bool is64 = BPF_SIZE(insn->code) == BPF_DW;
2228
u32 real_src_reg = src_reg;
2229
u32 real_dst_reg = dst_reg;
2230
u8 *branch_target;
2231
2232
/*
2233
* Can't be implemented with a single x86 insn.
2234
* Need to do a CMPXCHG loop.
2235
*/
2236
2237
/* Will need RAX as a CMPXCHG operand so save R0 */
2238
emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
2239
if (src_reg == BPF_REG_0)
2240
real_src_reg = BPF_REG_AX;
2241
if (dst_reg == BPF_REG_0)
2242
real_dst_reg = BPF_REG_AX;
2243
2244
branch_target = prog;
2245
/* Load old value */
2246
emit_ldx(&prog, BPF_SIZE(insn->code),
2247
BPF_REG_0, real_dst_reg, insn->off);
2248
/*
2249
* Perform the (commutative) operation locally,
2250
* put the result in the AUX_REG.
2251
*/
2252
emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
2253
maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
2254
EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
2255
add_2reg(0xC0, AUX_REG, real_src_reg));
2256
/* Attempt to swap in new value */
2257
err = emit_atomic_rmw(&prog, BPF_CMPXCHG,
2258
real_dst_reg, AUX_REG,
2259
insn->off,
2260
BPF_SIZE(insn->code));
2261
if (WARN_ON(err))
2262
return err;
2263
/*
2264
* ZF tells us whether we won the race. If it's
2265
* cleared we need to try again.
2266
*/
2267
EMIT2(X86_JNE, -(prog - branch_target) - 2);
2268
/* Return the pre-modification value */
2269
emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
2270
/* Restore R0 after clobbering RAX */
2271
emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
2272
break;
2273
}
2274
2275
if (bpf_atomic_is_load_store(insn))
2276
err = emit_atomic_ld_st(&prog, insn->imm, dst_reg, src_reg,
2277
insn->off, BPF_SIZE(insn->code));
2278
else
2279
err = emit_atomic_rmw(&prog, insn->imm, dst_reg, src_reg,
2280
insn->off, BPF_SIZE(insn->code));
2281
if (err)
2282
return err;
2283
break;
2284
2285
case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
2286
case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
2287
if (!bpf_atomic_is_load_store(insn)) {
2288
pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2289
return -EFAULT;
2290
}
2291
fallthrough;
2292
case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
2293
case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
2294
start_of_ldx = prog;
2295
2296
if (bpf_atomic_is_load_store(insn))
2297
err = emit_atomic_ld_st_index(&prog, insn->imm,
2298
BPF_SIZE(insn->code), dst_reg,
2299
src_reg, X86_REG_R12, insn->off);
2300
else
2301
err = emit_atomic_rmw_index(&prog, insn->imm, BPF_SIZE(insn->code),
2302
dst_reg, src_reg, X86_REG_R12,
2303
insn->off);
2304
if (err)
2305
return err;
2306
goto populate_extable;
2307
2308
/* call */
2309
case BPF_JMP | BPF_CALL: {
2310
u8 *ip = image + addrs[i - 1];
2311
2312
func = (u8 *) __bpf_call_base + imm32;
2313
if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) {
2314
LOAD_TAIL_CALL_CNT_PTR(stack_depth);
2315
ip += 7;
2316
}
2317
if (!imm32)
2318
return -EINVAL;
2319
if (priv_frame_ptr) {
2320
push_r9(&prog);
2321
ip += 2;
2322
}
2323
ip += x86_call_depth_emit_accounting(&prog, func, ip);
2324
if (emit_call(&prog, func, ip))
2325
return -EINVAL;
2326
if (priv_frame_ptr)
2327
pop_r9(&prog);
2328
break;
2329
}
2330
2331
case BPF_JMP | BPF_TAIL_CALL:
2332
if (imm32)
2333
emit_bpf_tail_call_direct(bpf_prog,
2334
&bpf_prog->aux->poke_tab[imm32 - 1],
2335
&prog, image + addrs[i - 1],
2336
callee_regs_used,
2337
stack_depth,
2338
ctx);
2339
else
2340
emit_bpf_tail_call_indirect(bpf_prog,
2341
&prog,
2342
callee_regs_used,
2343
stack_depth,
2344
image + addrs[i - 1],
2345
ctx);
2346
break;
2347
2348
/* cond jump */
2349
case BPF_JMP | BPF_JEQ | BPF_X:
2350
case BPF_JMP | BPF_JNE | BPF_X:
2351
case BPF_JMP | BPF_JGT | BPF_X:
2352
case BPF_JMP | BPF_JLT | BPF_X:
2353
case BPF_JMP | BPF_JGE | BPF_X:
2354
case BPF_JMP | BPF_JLE | BPF_X:
2355
case BPF_JMP | BPF_JSGT | BPF_X:
2356
case BPF_JMP | BPF_JSLT | BPF_X:
2357
case BPF_JMP | BPF_JSGE | BPF_X:
2358
case BPF_JMP | BPF_JSLE | BPF_X:
2359
case BPF_JMP32 | BPF_JEQ | BPF_X:
2360
case BPF_JMP32 | BPF_JNE | BPF_X:
2361
case BPF_JMP32 | BPF_JGT | BPF_X:
2362
case BPF_JMP32 | BPF_JLT | BPF_X:
2363
case BPF_JMP32 | BPF_JGE | BPF_X:
2364
case BPF_JMP32 | BPF_JLE | BPF_X:
2365
case BPF_JMP32 | BPF_JSGT | BPF_X:
2366
case BPF_JMP32 | BPF_JSLT | BPF_X:
2367
case BPF_JMP32 | BPF_JSGE | BPF_X:
2368
case BPF_JMP32 | BPF_JSLE | BPF_X:
2369
/* cmp dst_reg, src_reg */
2370
maybe_emit_mod(&prog, dst_reg, src_reg,
2371
BPF_CLASS(insn->code) == BPF_JMP);
2372
EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
2373
goto emit_cond_jmp;
2374
2375
case BPF_JMP | BPF_JSET | BPF_X:
2376
case BPF_JMP32 | BPF_JSET | BPF_X:
2377
/* test dst_reg, src_reg */
2378
maybe_emit_mod(&prog, dst_reg, src_reg,
2379
BPF_CLASS(insn->code) == BPF_JMP);
2380
EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
2381
goto emit_cond_jmp;
2382
2383
case BPF_JMP | BPF_JSET | BPF_K:
2384
case BPF_JMP32 | BPF_JSET | BPF_K:
2385
/* test dst_reg, imm32 */
2386
maybe_emit_1mod(&prog, dst_reg,
2387
BPF_CLASS(insn->code) == BPF_JMP);
2388
EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
2389
goto emit_cond_jmp;
2390
2391
case BPF_JMP | BPF_JEQ | BPF_K:
2392
case BPF_JMP | BPF_JNE | BPF_K:
2393
case BPF_JMP | BPF_JGT | BPF_K:
2394
case BPF_JMP | BPF_JLT | BPF_K:
2395
case BPF_JMP | BPF_JGE | BPF_K:
2396
case BPF_JMP | BPF_JLE | BPF_K:
2397
case BPF_JMP | BPF_JSGT | BPF_K:
2398
case BPF_JMP | BPF_JSLT | BPF_K:
2399
case BPF_JMP | BPF_JSGE | BPF_K:
2400
case BPF_JMP | BPF_JSLE | BPF_K:
2401
case BPF_JMP32 | BPF_JEQ | BPF_K:
2402
case BPF_JMP32 | BPF_JNE | BPF_K:
2403
case BPF_JMP32 | BPF_JGT | BPF_K:
2404
case BPF_JMP32 | BPF_JLT | BPF_K:
2405
case BPF_JMP32 | BPF_JGE | BPF_K:
2406
case BPF_JMP32 | BPF_JLE | BPF_K:
2407
case BPF_JMP32 | BPF_JSGT | BPF_K:
2408
case BPF_JMP32 | BPF_JSLT | BPF_K:
2409
case BPF_JMP32 | BPF_JSGE | BPF_K:
2410
case BPF_JMP32 | BPF_JSLE | BPF_K:
2411
/* test dst_reg, dst_reg to save one extra byte */
2412
if (imm32 == 0) {
2413
maybe_emit_mod(&prog, dst_reg, dst_reg,
2414
BPF_CLASS(insn->code) == BPF_JMP);
2415
EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
2416
goto emit_cond_jmp;
2417
}
2418
2419
/* cmp dst_reg, imm8/32 */
2420
maybe_emit_1mod(&prog, dst_reg,
2421
BPF_CLASS(insn->code) == BPF_JMP);
2422
2423
if (is_imm8(imm32))
2424
EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
2425
else
2426
EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
2427
2428
emit_cond_jmp: /* Convert BPF opcode to x86 */
2429
switch (BPF_OP(insn->code)) {
2430
case BPF_JEQ:
2431
jmp_cond = X86_JE;
2432
break;
2433
case BPF_JSET:
2434
case BPF_JNE:
2435
jmp_cond = X86_JNE;
2436
break;
2437
case BPF_JGT:
2438
/* GT is unsigned '>', JA in x86 */
2439
jmp_cond = X86_JA;
2440
break;
2441
case BPF_JLT:
2442
/* LT is unsigned '<', JB in x86 */
2443
jmp_cond = X86_JB;
2444
break;
2445
case BPF_JGE:
2446
/* GE is unsigned '>=', JAE in x86 */
2447
jmp_cond = X86_JAE;
2448
break;
2449
case BPF_JLE:
2450
/* LE is unsigned '<=', JBE in x86 */
2451
jmp_cond = X86_JBE;
2452
break;
2453
case BPF_JSGT:
2454
/* Signed '>', GT in x86 */
2455
jmp_cond = X86_JG;
2456
break;
2457
case BPF_JSLT:
2458
/* Signed '<', LT in x86 */
2459
jmp_cond = X86_JL;
2460
break;
2461
case BPF_JSGE:
2462
/* Signed '>=', GE in x86 */
2463
jmp_cond = X86_JGE;
2464
break;
2465
case BPF_JSLE:
2466
/* Signed '<=', LE in x86 */
2467
jmp_cond = X86_JLE;
2468
break;
2469
default: /* to silence GCC warning */
2470
return -EFAULT;
2471
}
2472
jmp_offset = addrs[i + insn->off] - addrs[i];
2473
if (is_imm8_jmp_offset(jmp_offset)) {
2474
if (jmp_padding) {
2475
/* To keep the jmp_offset valid, the extra bytes are
2476
* padded before the jump insn, so we subtract the
2477
* 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
2478
*
2479
* If the previous pass already emits an imm8
2480
* jmp_cond, then this BPF insn won't shrink, so
2481
* "nops" is 0.
2482
*
2483
* On the other hand, if the previous pass emits an
2484
* imm32 jmp_cond, the extra 4 bytes(*) is padded to
2485
* keep the image from shrinking further.
2486
*
2487
* (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
2488
* is 2 bytes, so the size difference is 4 bytes.
2489
*/
2490
nops = INSN_SZ_DIFF - 2;
2491
if (nops != 0 && nops != 4) {
2492
pr_err("unexpected jmp_cond padding: %d bytes\n",
2493
nops);
2494
return -EFAULT;
2495
}
2496
emit_nops(&prog, nops);
2497
}
2498
EMIT2(jmp_cond, jmp_offset);
2499
} else if (is_simm32(jmp_offset)) {
2500
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2501
} else {
2502
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2503
return -EFAULT;
2504
}
2505
2506
break;
2507
2508
case BPF_JMP | BPF_JA:
2509
case BPF_JMP32 | BPF_JA:
2510
if (BPF_CLASS(insn->code) == BPF_JMP) {
2511
if (insn->off == -1)
2512
/* -1 jmp instructions will always jump
2513
* backwards two bytes. Explicitly handling
2514
* this case avoids wasting too many passes
2515
* when there are long sequences of replaced
2516
* dead code.
2517
*/
2518
jmp_offset = -2;
2519
else
2520
jmp_offset = addrs[i + insn->off] - addrs[i];
2521
} else {
2522
if (insn->imm == -1)
2523
jmp_offset = -2;
2524
else
2525
jmp_offset = addrs[i + insn->imm] - addrs[i];
2526
}
2527
2528
if (!jmp_offset) {
2529
/*
2530
* If jmp_padding is enabled, the extra nops will
2531
* be inserted. Otherwise, optimize out nop jumps.
2532
*/
2533
if (jmp_padding) {
2534
/* There are 3 possible conditions.
2535
* (1) This BPF_JA is already optimized out in
2536
* the previous run, so there is no need
2537
* to pad any extra byte (0 byte).
2538
* (2) The previous pass emits an imm8 jmp,
2539
* so we pad 2 bytes to match the previous
2540
* insn size.
2541
* (3) Similarly, the previous pass emits an
2542
* imm32 jmp, and 5 bytes is padded.
2543
*/
2544
nops = INSN_SZ_DIFF;
2545
if (nops != 0 && nops != 2 && nops != 5) {
2546
pr_err("unexpected nop jump padding: %d bytes\n",
2547
nops);
2548
return -EFAULT;
2549
}
2550
emit_nops(&prog, nops);
2551
}
2552
break;
2553
}
2554
emit_jmp:
2555
if (is_imm8_jmp_offset(jmp_offset)) {
2556
if (jmp_padding) {
2557
/* To avoid breaking jmp_offset, the extra bytes
2558
* are padded before the actual jmp insn, so
2559
* 2 bytes is subtracted from INSN_SZ_DIFF.
2560
*
2561
* If the previous pass already emits an imm8
2562
* jmp, there is nothing to pad (0 byte).
2563
*
2564
* If it emits an imm32 jmp (5 bytes) previously
2565
* and now an imm8 jmp (2 bytes), then we pad
2566
* (5 - 2 = 3) bytes to stop the image from
2567
* shrinking further.
2568
*/
2569
nops = INSN_SZ_DIFF - 2;
2570
if (nops != 0 && nops != 3) {
2571
pr_err("unexpected jump padding: %d bytes\n",
2572
nops);
2573
return -EFAULT;
2574
}
2575
emit_nops(&prog, INSN_SZ_DIFF - 2);
2576
}
2577
EMIT2(0xEB, jmp_offset);
2578
} else if (is_simm32(jmp_offset)) {
2579
EMIT1_off32(0xE9, jmp_offset);
2580
} else {
2581
pr_err("jmp gen bug %llx\n", jmp_offset);
2582
return -EFAULT;
2583
}
2584
break;
2585
2586
case BPF_JMP | BPF_EXIT:
2587
if (seen_exit) {
2588
jmp_offset = ctx->cleanup_addr - addrs[i];
2589
goto emit_jmp;
2590
}
2591
seen_exit = true;
2592
/* Update cleanup_addr */
2593
ctx->cleanup_addr = proglen;
2594
if (bpf_prog_was_classic(bpf_prog) &&
2595
!capable(CAP_SYS_ADMIN)) {
2596
u8 *ip = image + addrs[i - 1];
2597
2598
if (emit_spectre_bhb_barrier(&prog, ip, bpf_prog))
2599
return -EINVAL;
2600
}
2601
if (bpf_prog->aux->exception_boundary) {
2602
pop_callee_regs(&prog, all_callee_regs_used);
2603
pop_r12(&prog);
2604
} else {
2605
pop_callee_regs(&prog, callee_regs_used);
2606
if (arena_vm_start)
2607
pop_r12(&prog);
2608
}
2609
EMIT1(0xC9); /* leave */
2610
emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2611
break;
2612
2613
default:
2614
/*
2615
* By design x86-64 JIT should support all BPF instructions.
2616
* This error will be seen if new instruction was added
2617
* to the interpreter, but not to the JIT, or if there is
2618
* junk in bpf_prog.
2619
*/
2620
pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2621
return -EINVAL;
2622
}
2623
2624
ilen = prog - temp;
2625
if (ilen > BPF_MAX_INSN_SIZE) {
2626
pr_err("bpf_jit: fatal insn size error\n");
2627
return -EFAULT;
2628
}
2629
2630
if (image) {
2631
/*
2632
* When populating the image, assert that:
2633
*
2634
* i) We do not write beyond the allocated space, and
2635
* ii) addrs[i] did not change from the prior run, in order
2636
* to validate assumptions made for computing branch
2637
* displacements.
2638
*/
2639
if (unlikely(proglen + ilen > oldproglen ||
2640
proglen + ilen != addrs[i])) {
2641
pr_err("bpf_jit: fatal error\n");
2642
return -EFAULT;
2643
}
2644
memcpy(rw_image + proglen, temp, ilen);
2645
}
2646
proglen += ilen;
2647
addrs[i] = proglen;
2648
prog = temp;
2649
}
2650
2651
if (image && excnt != bpf_prog->aux->num_exentries) {
2652
pr_err("extable is not populated\n");
2653
return -EFAULT;
2654
}
2655
return proglen;
2656
}
2657
2658
static void clean_stack_garbage(const struct btf_func_model *m,
2659
u8 **pprog, int nr_stack_slots,
2660
int stack_size)
2661
{
2662
int arg_size, off;
2663
u8 *prog;
2664
2665
/* Generally speaking, the compiler will pass the arguments
2666
* on-stack with "push" instruction, which will take 8-byte
2667
* on the stack. In this case, there won't be garbage values
2668
* while we copy the arguments from origin stack frame to current
2669
* in BPF_DW.
2670
*
2671
* However, sometimes the compiler will only allocate 4-byte on
2672
* the stack for the arguments. For now, this case will only
2673
* happen if there is only one argument on-stack and its size
2674
* not more than 4 byte. In this case, there will be garbage
2675
* values on the upper 4-byte where we store the argument on
2676
* current stack frame.
2677
*
2678
* arguments on origin stack:
2679
*
2680
* stack_arg_1(4-byte) xxx(4-byte)
2681
*
2682
* what we copy:
2683
*
2684
* stack_arg_1(8-byte): stack_arg_1(origin) xxx
2685
*
2686
* and the xxx is the garbage values which we should clean here.
2687
*/
2688
if (nr_stack_slots != 1)
2689
return;
2690
2691
/* the size of the last argument */
2692
arg_size = m->arg_size[m->nr_args - 1];
2693
if (arg_size <= 4) {
2694
off = -(stack_size - 4);
2695
prog = *pprog;
2696
/* mov DWORD PTR [rbp + off], 0 */
2697
if (!is_imm8(off))
2698
EMIT2_off32(0xC7, 0x85, off);
2699
else
2700
EMIT3(0xC7, 0x45, off);
2701
EMIT(0, 4);
2702
*pprog = prog;
2703
}
2704
}
2705
2706
/* get the count of the regs that are used to pass arguments */
2707
static int get_nr_used_regs(const struct btf_func_model *m)
2708
{
2709
int i, arg_regs, nr_used_regs = 0;
2710
2711
for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2712
arg_regs = (m->arg_size[i] + 7) / 8;
2713
if (nr_used_regs + arg_regs <= 6)
2714
nr_used_regs += arg_regs;
2715
2716
if (nr_used_regs >= 6)
2717
break;
2718
}
2719
2720
return nr_used_regs;
2721
}
2722
2723
static void save_args(const struct btf_func_model *m, u8 **prog,
2724
int stack_size, bool for_call_origin)
2725
{
2726
int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2727
int i, j;
2728
2729
/* Store function arguments to stack.
2730
* For a function that accepts two pointers the sequence will be:
2731
* mov QWORD PTR [rbp-0x10],rdi
2732
* mov QWORD PTR [rbp-0x8],rsi
2733
*/
2734
for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2735
arg_regs = (m->arg_size[i] + 7) / 8;
2736
2737
/* According to the research of Yonghong, struct members
2738
* should be all in register or all on the stack.
2739
* Meanwhile, the compiler will pass the argument on regs
2740
* if the remaining regs can hold the argument.
2741
*
2742
* Disorder of the args can happen. For example:
2743
*
2744
* struct foo_struct {
2745
* long a;
2746
* int b;
2747
* };
2748
* int foo(char, char, char, char, char, struct foo_struct,
2749
* char);
2750
*
2751
* the arg1-5,arg7 will be passed by regs, and arg6 will
2752
* by stack.
2753
*/
2754
if (nr_regs + arg_regs > 6) {
2755
/* copy function arguments from origin stack frame
2756
* into current stack frame.
2757
*
2758
* The starting address of the arguments on-stack
2759
* is:
2760
* rbp + 8(push rbp) +
2761
* 8(return addr of origin call) +
2762
* 8(return addr of the caller)
2763
* which means: rbp + 24
2764
*/
2765
for (j = 0; j < arg_regs; j++) {
2766
emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2767
nr_stack_slots * 8 + 0x18);
2768
emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2769
-stack_size);
2770
2771
if (!nr_stack_slots)
2772
first_off = stack_size;
2773
stack_size -= 8;
2774
nr_stack_slots++;
2775
}
2776
} else {
2777
/* Only copy the arguments on-stack to current
2778
* 'stack_size' and ignore the regs, used to
2779
* prepare the arguments on-stack for origin call.
2780
*/
2781
if (for_call_origin) {
2782
nr_regs += arg_regs;
2783
continue;
2784
}
2785
2786
/* copy the arguments from regs into stack */
2787
for (j = 0; j < arg_regs; j++) {
2788
emit_stx(prog, BPF_DW, BPF_REG_FP,
2789
nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2790
-stack_size);
2791
stack_size -= 8;
2792
nr_regs++;
2793
}
2794
}
2795
}
2796
2797
clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2798
}
2799
2800
static void restore_regs(const struct btf_func_model *m, u8 **prog,
2801
int stack_size)
2802
{
2803
int i, j, arg_regs, nr_regs = 0;
2804
2805
/* Restore function arguments from stack.
2806
* For a function that accepts two pointers the sequence will be:
2807
* EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2808
* EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2809
*
2810
* The logic here is similar to what we do in save_args()
2811
*/
2812
for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2813
arg_regs = (m->arg_size[i] + 7) / 8;
2814
if (nr_regs + arg_regs <= 6) {
2815
for (j = 0; j < arg_regs; j++) {
2816
emit_ldx(prog, BPF_DW,
2817
nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2818
BPF_REG_FP,
2819
-stack_size);
2820
stack_size -= 8;
2821
nr_regs++;
2822
}
2823
} else {
2824
stack_size -= 8 * arg_regs;
2825
}
2826
2827
if (nr_regs >= 6)
2828
break;
2829
}
2830
}
2831
2832
static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2833
struct bpf_tramp_link *l, int stack_size,
2834
int run_ctx_off, bool save_ret,
2835
void *image, void *rw_image)
2836
{
2837
u8 *prog = *pprog;
2838
u8 *jmp_insn;
2839
int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2840
struct bpf_prog *p = l->link.prog;
2841
u64 cookie = l->cookie;
2842
2843
/* mov rdi, cookie */
2844
emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2845
2846
/* Prepare struct bpf_tramp_run_ctx.
2847
*
2848
* bpf_tramp_run_ctx is already preserved by
2849
* arch_prepare_bpf_trampoline().
2850
*
2851
* mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2852
*/
2853
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2854
2855
/* arg1: mov rdi, progs[i] */
2856
emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2857
/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2858
if (!is_imm8(-run_ctx_off))
2859
EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2860
else
2861
EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2862
2863
if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2864
return -EINVAL;
2865
/* remember prog start time returned by __bpf_prog_enter */
2866
emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2867
2868
/* if (__bpf_prog_enter*(prog) == 0)
2869
* goto skip_exec_of_prog;
2870
*/
2871
EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
2872
/* emit 2 nops that will be replaced with JE insn */
2873
jmp_insn = prog;
2874
emit_nops(&prog, 2);
2875
2876
/* arg1: lea rdi, [rbp - stack_size] */
2877
if (!is_imm8(-stack_size))
2878
EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2879
else
2880
EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2881
/* arg2: progs[i]->insnsi for interpreter */
2882
if (!p->jited)
2883
emit_mov_imm64(&prog, BPF_REG_2,
2884
(long) p->insnsi >> 32,
2885
(u32) (long) p->insnsi);
2886
/* call JITed bpf program or interpreter */
2887
if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2888
return -EINVAL;
2889
2890
/*
2891
* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2892
* of the previous call which is then passed on the stack to
2893
* the next BPF program.
2894
*
2895
* BPF_TRAMP_FENTRY trampoline may need to return the return
2896
* value of BPF_PROG_TYPE_STRUCT_OPS prog.
2897
*/
2898
if (save_ret)
2899
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2900
2901
/* replace 2 nops with JE insn, since jmp target is known */
2902
jmp_insn[0] = X86_JE;
2903
jmp_insn[1] = prog - jmp_insn - 2;
2904
2905
/* arg1: mov rdi, progs[i] */
2906
emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2907
/* arg2: mov rsi, rbx <- start time in nsec */
2908
emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2909
/* arg3: lea rdx, [rbp - run_ctx_off] */
2910
if (!is_imm8(-run_ctx_off))
2911
EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2912
else
2913
EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2914
if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2915
return -EINVAL;
2916
2917
*pprog = prog;
2918
return 0;
2919
}
2920
2921
static void emit_align(u8 **pprog, u32 align)
2922
{
2923
u8 *target, *prog = *pprog;
2924
2925
target = PTR_ALIGN(prog, align);
2926
if (target != prog)
2927
emit_nops(&prog, target - prog);
2928
2929
*pprog = prog;
2930
}
2931
2932
static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2933
{
2934
u8 *prog = *pprog;
2935
s64 offset;
2936
2937
offset = func - (ip + 2 + 4);
2938
if (!is_simm32(offset)) {
2939
pr_err("Target %p is out of range\n", func);
2940
return -EINVAL;
2941
}
2942
EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2943
*pprog = prog;
2944
return 0;
2945
}
2946
2947
static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2948
struct bpf_tramp_links *tl, int stack_size,
2949
int run_ctx_off, bool save_ret,
2950
void *image, void *rw_image)
2951
{
2952
int i;
2953
u8 *prog = *pprog;
2954
2955
for (i = 0; i < tl->nr_links; i++) {
2956
if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2957
run_ctx_off, save_ret, image, rw_image))
2958
return -EINVAL;
2959
}
2960
*pprog = prog;
2961
return 0;
2962
}
2963
2964
static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2965
struct bpf_tramp_links *tl, int stack_size,
2966
int run_ctx_off, u8 **branches,
2967
void *image, void *rw_image)
2968
{
2969
u8 *prog = *pprog;
2970
int i;
2971
2972
/* The first fmod_ret program will receive a garbage return value.
2973
* Set this to 0 to avoid confusing the program.
2974
*/
2975
emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2976
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2977
for (i = 0; i < tl->nr_links; i++) {
2978
if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2979
image, rw_image))
2980
return -EINVAL;
2981
2982
/* mod_ret prog stored return value into [rbp - 8]. Emit:
2983
* if (*(u64 *)(rbp - 8) != 0)
2984
* goto do_fexit;
2985
*/
2986
/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2987
EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2988
2989
/* Save the location of the branch and Generate 6 nops
2990
* (4 bytes for an offset and 2 bytes for the jump) These nops
2991
* are replaced with a conditional jump once do_fexit (i.e. the
2992
* start of the fexit invocation) is finalized.
2993
*/
2994
branches[i] = prog;
2995
emit_nops(&prog, 4 + 2);
2996
}
2997
2998
*pprog = prog;
2999
return 0;
3000
}
3001
3002
/* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
3003
#define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack) \
3004
__LOAD_TCC_PTR(-round_up(stack, 8) - 8)
3005
3006
/* Example:
3007
* __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
3008
* its 'struct btf_func_model' will be nr_args=2
3009
* The assembly code when eth_type_trans is executing after trampoline:
3010
*
3011
* push rbp
3012
* mov rbp, rsp
3013
* sub rsp, 16 // space for skb and dev
3014
* push rbx // temp regs to pass start time
3015
* mov qword ptr [rbp - 16], rdi // save skb pointer to stack
3016
* mov qword ptr [rbp - 8], rsi // save dev pointer to stack
3017
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
3018
* mov rbx, rax // remember start time in bpf stats are enabled
3019
* lea rdi, [rbp - 16] // R1==ctx of bpf prog
3020
* call addr_of_jited_FENTRY_prog
3021
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3022
* mov rsi, rbx // prog start time
3023
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3024
* mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
3025
* mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
3026
* pop rbx
3027
* leave
3028
* ret
3029
*
3030
* eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
3031
* replaced with 'call generated_bpf_trampoline'. When it returns
3032
* eth_type_trans will continue executing with original skb and dev pointers.
3033
*
3034
* The assembly code when eth_type_trans is called from trampoline:
3035
*
3036
* push rbp
3037
* mov rbp, rsp
3038
* sub rsp, 24 // space for skb, dev, return value
3039
* push rbx // temp regs to pass start time
3040
* mov qword ptr [rbp - 24], rdi // save skb pointer to stack
3041
* mov qword ptr [rbp - 16], rsi // save dev pointer to stack
3042
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
3043
* mov rbx, rax // remember start time if bpf stats are enabled
3044
* lea rdi, [rbp - 24] // R1==ctx of bpf prog
3045
* call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
3046
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3047
* mov rsi, rbx // prog start time
3048
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3049
* mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
3050
* mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
3051
* call eth_type_trans+5 // execute body of eth_type_trans
3052
* mov qword ptr [rbp - 8], rax // save return value
3053
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
3054
* mov rbx, rax // remember start time in bpf stats are enabled
3055
* lea rdi, [rbp - 24] // R1==ctx of bpf prog
3056
* call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
3057
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3058
* mov rsi, rbx // prog start time
3059
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3060
* mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
3061
* pop rbx
3062
* leave
3063
* add rsp, 8 // skip eth_type_trans's frame
3064
* ret // return to its caller
3065
*/
3066
static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
3067
void *rw_image_end, void *image,
3068
const struct btf_func_model *m, u32 flags,
3069
struct bpf_tramp_links *tlinks,
3070
void *func_addr)
3071
{
3072
int i, ret, nr_regs = m->nr_args, stack_size = 0;
3073
int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
3074
struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
3075
struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
3076
struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
3077
void *orig_call = func_addr;
3078
u8 **branches = NULL;
3079
u8 *prog;
3080
bool save_ret;
3081
3082
/*
3083
* F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
3084
* explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
3085
* because @func_addr.
3086
*/
3087
WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
3088
(flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
3089
3090
/* extra registers for struct arguments */
3091
for (i = 0; i < m->nr_args; i++) {
3092
if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
3093
nr_regs += (m->arg_size[i] + 7) / 8 - 1;
3094
}
3095
3096
/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
3097
* are passed through regs, the remains are through stack.
3098
*/
3099
if (nr_regs > MAX_BPF_FUNC_ARGS)
3100
return -ENOTSUPP;
3101
3102
/* Generated trampoline stack layout:
3103
*
3104
* RBP + 8 [ return address ]
3105
* RBP + 0 [ RBP ]
3106
*
3107
* RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
3108
* BPF_TRAMP_F_RET_FENTRY_RET flags
3109
*
3110
* [ reg_argN ] always
3111
* [ ... ]
3112
* RBP - regs_off [ reg_arg1 ] program's ctx pointer
3113
*
3114
* RBP - nregs_off [ regs count ] always
3115
*
3116
* RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
3117
*
3118
* RBP - rbx_off [ rbx value ] always
3119
*
3120
* RBP - run_ctx_off [ bpf_tramp_run_ctx ]
3121
*
3122
* [ stack_argN ] BPF_TRAMP_F_CALL_ORIG
3123
* [ ... ]
3124
* [ stack_arg2 ]
3125
* RBP - arg_stack_off [ stack_arg1 ]
3126
* RSP [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX
3127
*/
3128
3129
/* room for return value of orig_call or fentry prog */
3130
save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
3131
if (save_ret)
3132
stack_size += 8;
3133
3134
stack_size += nr_regs * 8;
3135
regs_off = stack_size;
3136
3137
/* regs count */
3138
stack_size += 8;
3139
nregs_off = stack_size;
3140
3141
if (flags & BPF_TRAMP_F_IP_ARG)
3142
stack_size += 8; /* room for IP address argument */
3143
3144
ip_off = stack_size;
3145
3146
stack_size += 8;
3147
rbx_off = stack_size;
3148
3149
stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
3150
run_ctx_off = stack_size;
3151
3152
if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
3153
/* the space that used to pass arguments on-stack */
3154
stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
3155
/* make sure the stack pointer is 16-byte aligned if we
3156
* need pass arguments on stack, which means
3157
* [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
3158
* should be 16-byte aligned. Following code depend on
3159
* that stack_size is already 8-byte aligned.
3160
*/
3161
stack_size += (stack_size % 16) ? 0 : 8;
3162
}
3163
3164
arg_stack_off = stack_size;
3165
3166
if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3167
/* skip patched call instruction and point orig_call to actual
3168
* body of the kernel function.
3169
*/
3170
if (is_endbr(orig_call))
3171
orig_call += ENDBR_INSN_SIZE;
3172
orig_call += X86_PATCH_SIZE;
3173
}
3174
3175
prog = rw_image;
3176
3177
if (flags & BPF_TRAMP_F_INDIRECT) {
3178
/*
3179
* Indirect call for bpf_struct_ops
3180
*/
3181
emit_cfi(&prog, image,
3182
cfi_get_func_hash(func_addr),
3183
cfi_get_func_arity(func_addr));
3184
} else {
3185
/*
3186
* Direct-call fentry stub, as such it needs accounting for the
3187
* __fentry__ call.
3188
*/
3189
x86_call_depth_emit_accounting(&prog, NULL, image);
3190
}
3191
EMIT1(0x55); /* push rbp */
3192
EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
3193
if (!is_imm8(stack_size)) {
3194
/* sub rsp, stack_size */
3195
EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
3196
} else {
3197
/* sub rsp, stack_size */
3198
EMIT4(0x48, 0x83, 0xEC, stack_size);
3199
}
3200
if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
3201
EMIT1(0x50); /* push rax */
3202
/* mov QWORD PTR [rbp - rbx_off], rbx */
3203
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
3204
3205
/* Store number of argument registers of the traced function:
3206
* mov rax, nr_regs
3207
* mov QWORD PTR [rbp - nregs_off], rax
3208
*/
3209
emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
3210
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
3211
3212
if (flags & BPF_TRAMP_F_IP_ARG) {
3213
/* Store IP address of the traced function:
3214
* movabsq rax, func_addr
3215
* mov QWORD PTR [rbp - ip_off], rax
3216
*/
3217
emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
3218
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
3219
}
3220
3221
save_args(m, &prog, regs_off, false);
3222
3223
if (flags & BPF_TRAMP_F_CALL_ORIG) {
3224
/* arg1: mov rdi, im */
3225
emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3226
if (emit_rsb_call(&prog, __bpf_tramp_enter,
3227
image + (prog - (u8 *)rw_image))) {
3228
ret = -EINVAL;
3229
goto cleanup;
3230
}
3231
}
3232
3233
if (fentry->nr_links) {
3234
if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
3235
flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
3236
return -EINVAL;
3237
}
3238
3239
if (fmod_ret->nr_links) {
3240
branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
3241
GFP_KERNEL);
3242
if (!branches)
3243
return -ENOMEM;
3244
3245
if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
3246
run_ctx_off, branches, image, rw_image)) {
3247
ret = -EINVAL;
3248
goto cleanup;
3249
}
3250
}
3251
3252
if (flags & BPF_TRAMP_F_CALL_ORIG) {
3253
restore_regs(m, &prog, regs_off);
3254
save_args(m, &prog, arg_stack_off, true);
3255
3256
if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3257
/* Before calling the original function, load the
3258
* tail_call_cnt_ptr from stack to rax.
3259
*/
3260
LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3261
}
3262
3263
if (flags & BPF_TRAMP_F_ORIG_STACK) {
3264
emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
3265
EMIT2(0xff, 0xd3); /* call *rbx */
3266
} else {
3267
/* call original function */
3268
if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
3269
ret = -EINVAL;
3270
goto cleanup;
3271
}
3272
}
3273
/* remember return value in a stack for bpf prog to access */
3274
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3275
im->ip_after_call = image + (prog - (u8 *)rw_image);
3276
emit_nops(&prog, X86_PATCH_SIZE);
3277
}
3278
3279
if (fmod_ret->nr_links) {
3280
/* From Intel 64 and IA-32 Architectures Optimization
3281
* Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3282
* Coding Rule 11: All branch targets should be 16-byte
3283
* aligned.
3284
*/
3285
emit_align(&prog, 16);
3286
/* Update the branches saved in invoke_bpf_mod_ret with the
3287
* aligned address of do_fexit.
3288
*/
3289
for (i = 0; i < fmod_ret->nr_links; i++) {
3290
emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
3291
image + (branches[i] - (u8 *)rw_image), X86_JNE);
3292
}
3293
}
3294
3295
if (fexit->nr_links) {
3296
if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
3297
false, image, rw_image)) {
3298
ret = -EINVAL;
3299
goto cleanup;
3300
}
3301
}
3302
3303
if (flags & BPF_TRAMP_F_RESTORE_REGS)
3304
restore_regs(m, &prog, regs_off);
3305
3306
/* This needs to be done regardless. If there were fmod_ret programs,
3307
* the return value is only updated on the stack and still needs to be
3308
* restored to R0.
3309
*/
3310
if (flags & BPF_TRAMP_F_CALL_ORIG) {
3311
im->ip_epilogue = image + (prog - (u8 *)rw_image);
3312
/* arg1: mov rdi, im */
3313
emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3314
if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
3315
ret = -EINVAL;
3316
goto cleanup;
3317
}
3318
} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3319
/* Before running the original function, load the
3320
* tail_call_cnt_ptr from stack to rax.
3321
*/
3322
LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3323
}
3324
3325
/* restore return value of orig_call or fentry prog back into RAX */
3326
if (save_ret)
3327
emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
3328
3329
emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
3330
EMIT1(0xC9); /* leave */
3331
if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3332
/* skip our return address and return to parent */
3333
EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
3334
}
3335
emit_return(&prog, image + (prog - (u8 *)rw_image));
3336
/* Make sure the trampoline generation logic doesn't overflow */
3337
if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
3338
ret = -EFAULT;
3339
goto cleanup;
3340
}
3341
ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
3342
3343
cleanup:
3344
kfree(branches);
3345
return ret;
3346
}
3347
3348
void *arch_alloc_bpf_trampoline(unsigned int size)
3349
{
3350
return bpf_prog_pack_alloc(size, jit_fill_hole);
3351
}
3352
3353
void arch_free_bpf_trampoline(void *image, unsigned int size)
3354
{
3355
bpf_prog_pack_free(image, size);
3356
}
3357
3358
int arch_protect_bpf_trampoline(void *image, unsigned int size)
3359
{
3360
return 0;
3361
}
3362
3363
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
3364
const struct btf_func_model *m, u32 flags,
3365
struct bpf_tramp_links *tlinks,
3366
void *func_addr)
3367
{
3368
void *rw_image, *tmp;
3369
int ret;
3370
u32 size = image_end - image;
3371
3372
/* rw_image doesn't need to be in module memory range, so we can
3373
* use kvmalloc.
3374
*/
3375
rw_image = kvmalloc(size, GFP_KERNEL);
3376
if (!rw_image)
3377
return -ENOMEM;
3378
3379
ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
3380
flags, tlinks, func_addr);
3381
if (ret < 0)
3382
goto out;
3383
3384
tmp = bpf_arch_text_copy(image, rw_image, size);
3385
if (IS_ERR(tmp))
3386
ret = PTR_ERR(tmp);
3387
out:
3388
kvfree(rw_image);
3389
return ret;
3390
}
3391
3392
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
3393
struct bpf_tramp_links *tlinks, void *func_addr)
3394
{
3395
struct bpf_tramp_image im;
3396
void *image;
3397
int ret;
3398
3399
/* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
3400
* This will NOT cause fragmentation in direct map, as we do not
3401
* call set_memory_*() on this buffer.
3402
*
3403
* We cannot use kvmalloc here, because we need image to be in
3404
* module memory range.
3405
*/
3406
image = bpf_jit_alloc_exec(PAGE_SIZE);
3407
if (!image)
3408
return -ENOMEM;
3409
3410
ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
3411
m, flags, tlinks, func_addr);
3412
bpf_jit_free_exec(image);
3413
return ret;
3414
}
3415
3416
static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
3417
{
3418
u8 *jg_reloc, *prog = *pprog;
3419
int pivot, err, jg_bytes = 1;
3420
s64 jg_offset;
3421
3422
if (a == b) {
3423
/* Leaf node of recursion, i.e. not a range of indices
3424
* anymore.
3425
*/
3426
EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
3427
if (!is_simm32(progs[a]))
3428
return -1;
3429
EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
3430
progs[a]);
3431
err = emit_cond_near_jump(&prog, /* je func */
3432
(void *)progs[a], image + (prog - buf),
3433
X86_JE);
3434
if (err)
3435
return err;
3436
3437
emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
3438
3439
*pprog = prog;
3440
return 0;
3441
}
3442
3443
/* Not a leaf node, so we pivot, and recursively descend into
3444
* the lower and upper ranges.
3445
*/
3446
pivot = (b - a) / 2;
3447
EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
3448
if (!is_simm32(progs[a + pivot]))
3449
return -1;
3450
EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
3451
3452
if (pivot > 2) { /* jg upper_part */
3453
/* Require near jump. */
3454
jg_bytes = 4;
3455
EMIT2_off32(0x0F, X86_JG + 0x10, 0);
3456
} else {
3457
EMIT2(X86_JG, 0);
3458
}
3459
jg_reloc = prog;
3460
3461
err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
3462
progs, image, buf);
3463
if (err)
3464
return err;
3465
3466
/* From Intel 64 and IA-32 Architectures Optimization
3467
* Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3468
* Coding Rule 11: All branch targets should be 16-byte
3469
* aligned.
3470
*/
3471
emit_align(&prog, 16);
3472
jg_offset = prog - jg_reloc;
3473
emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
3474
3475
err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
3476
b, progs, image, buf);
3477
if (err)
3478
return err;
3479
3480
*pprog = prog;
3481
return 0;
3482
}
3483
3484
static int cmp_ips(const void *a, const void *b)
3485
{
3486
const s64 *ipa = a;
3487
const s64 *ipb = b;
3488
3489
if (*ipa > *ipb)
3490
return 1;
3491
if (*ipa < *ipb)
3492
return -1;
3493
return 0;
3494
}
3495
3496
int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
3497
{
3498
u8 *prog = buf;
3499
3500
sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
3501
return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
3502
}
3503
3504
static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
3505
{
3506
int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3507
u64 *stack_ptr;
3508
3509
for_each_possible_cpu(cpu) {
3510
stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3511
stack_ptr[0] = PRIV_STACK_GUARD_VAL;
3512
stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
3513
}
3514
}
3515
3516
static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
3517
struct bpf_prog *prog)
3518
{
3519
int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3520
u64 *stack_ptr;
3521
3522
for_each_possible_cpu(cpu) {
3523
stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3524
if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
3525
stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) {
3526
pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
3527
bpf_jit_get_prog_name(prog));
3528
break;
3529
}
3530
}
3531
}
3532
3533
struct x64_jit_data {
3534
struct bpf_binary_header *rw_header;
3535
struct bpf_binary_header *header;
3536
int *addrs;
3537
u8 *image;
3538
int proglen;
3539
struct jit_context ctx;
3540
};
3541
3542
#define MAX_PASSES 20
3543
#define PADDING_PASSES (MAX_PASSES - 5)
3544
3545
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
3546
{
3547
struct bpf_binary_header *rw_header = NULL;
3548
struct bpf_binary_header *header = NULL;
3549
struct bpf_prog *tmp, *orig_prog = prog;
3550
void __percpu *priv_stack_ptr = NULL;
3551
struct x64_jit_data *jit_data;
3552
int priv_stack_alloc_sz;
3553
int proglen, oldproglen = 0;
3554
struct jit_context ctx = {};
3555
bool tmp_blinded = false;
3556
bool extra_pass = false;
3557
bool padding = false;
3558
u8 *rw_image = NULL;
3559
u8 *image = NULL;
3560
int *addrs;
3561
int pass;
3562
int i;
3563
3564
if (!prog->jit_requested)
3565
return orig_prog;
3566
3567
tmp = bpf_jit_blind_constants(prog);
3568
/*
3569
* If blinding was requested and we failed during blinding,
3570
* we must fall back to the interpreter.
3571
*/
3572
if (IS_ERR(tmp))
3573
return orig_prog;
3574
if (tmp != prog) {
3575
tmp_blinded = true;
3576
prog = tmp;
3577
}
3578
3579
jit_data = prog->aux->jit_data;
3580
if (!jit_data) {
3581
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
3582
if (!jit_data) {
3583
prog = orig_prog;
3584
goto out;
3585
}
3586
prog->aux->jit_data = jit_data;
3587
}
3588
priv_stack_ptr = prog->aux->priv_stack_ptr;
3589
if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
3590
/* Allocate actual private stack size with verifier-calculated
3591
* stack size plus two memory guards to protect overflow and
3592
* underflow.
3593
*/
3594
priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3595
2 * PRIV_STACK_GUARD_SZ;
3596
priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL);
3597
if (!priv_stack_ptr) {
3598
prog = orig_prog;
3599
goto out_priv_stack;
3600
}
3601
3602
priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
3603
prog->aux->priv_stack_ptr = priv_stack_ptr;
3604
}
3605
addrs = jit_data->addrs;
3606
if (addrs) {
3607
ctx = jit_data->ctx;
3608
oldproglen = jit_data->proglen;
3609
image = jit_data->image;
3610
header = jit_data->header;
3611
rw_header = jit_data->rw_header;
3612
rw_image = (void *)rw_header + ((void *)image - (void *)header);
3613
extra_pass = true;
3614
padding = true;
3615
goto skip_init_addrs;
3616
}
3617
addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3618
if (!addrs) {
3619
prog = orig_prog;
3620
goto out_addrs;
3621
}
3622
3623
/*
3624
* Before first pass, make a rough estimation of addrs[]
3625
* each BPF instruction is translated to less than 64 bytes
3626
*/
3627
for (proglen = 0, i = 0; i <= prog->len; i++) {
3628
proglen += 64;
3629
addrs[i] = proglen;
3630
}
3631
ctx.cleanup_addr = proglen;
3632
skip_init_addrs:
3633
3634
/*
3635
* JITed image shrinks with every pass and the loop iterates
3636
* until the image stops shrinking. Very large BPF programs
3637
* may converge on the last pass. In such case do one more
3638
* pass to emit the final image.
3639
*/
3640
for (pass = 0; pass < MAX_PASSES || image; pass++) {
3641
if (!padding && pass >= PADDING_PASSES)
3642
padding = true;
3643
proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3644
if (proglen <= 0) {
3645
out_image:
3646
image = NULL;
3647
if (header) {
3648
bpf_arch_text_copy(&header->size, &rw_header->size,
3649
sizeof(rw_header->size));
3650
bpf_jit_binary_pack_free(header, rw_header);
3651
}
3652
/* Fall back to interpreter mode */
3653
prog = orig_prog;
3654
if (extra_pass) {
3655
prog->bpf_func = NULL;
3656
prog->jited = 0;
3657
prog->jited_len = 0;
3658
}
3659
goto out_addrs;
3660
}
3661
if (image) {
3662
if (proglen != oldproglen) {
3663
pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3664
proglen, oldproglen);
3665
goto out_image;
3666
}
3667
break;
3668
}
3669
if (proglen == oldproglen) {
3670
/*
3671
* The number of entries in extable is the number of BPF_LDX
3672
* insns that access kernel memory via "pointer to BTF type".
3673
* The verifier changed their opcode from LDX|MEM|size
3674
* to LDX|PROBE_MEM|size to make JITing easier.
3675
*/
3676
u32 align = __alignof__(struct exception_table_entry);
3677
u32 extable_size = prog->aux->num_exentries *
3678
sizeof(struct exception_table_entry);
3679
3680
/* allocate module memory for x86 insns and extable */
3681
header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3682
&image, align, &rw_header, &rw_image,
3683
jit_fill_hole);
3684
if (!header) {
3685
prog = orig_prog;
3686
goto out_addrs;
3687
}
3688
prog->aux->extable = (void *) image + roundup(proglen, align);
3689
}
3690
oldproglen = proglen;
3691
cond_resched();
3692
}
3693
3694
if (bpf_jit_enable > 1)
3695
bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3696
3697
if (image) {
3698
if (!prog->is_func || extra_pass) {
3699
/*
3700
* bpf_jit_binary_pack_finalize fails in two scenarios:
3701
* 1) header is not pointing to proper module memory;
3702
* 2) the arch doesn't support bpf_arch_text_copy().
3703
*
3704
* Both cases are serious bugs and justify WARN_ON.
3705
*/
3706
if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) {
3707
/* header has been freed */
3708
header = NULL;
3709
goto out_image;
3710
}
3711
3712
bpf_tail_call_direct_fixup(prog);
3713
} else {
3714
jit_data->addrs = addrs;
3715
jit_data->ctx = ctx;
3716
jit_data->proglen = proglen;
3717
jit_data->image = image;
3718
jit_data->header = header;
3719
jit_data->rw_header = rw_header;
3720
}
3721
/*
3722
* ctx.prog_offset is used when CFI preambles put code *before*
3723
* the function. See emit_cfi(). For FineIBT specifically this code
3724
* can also be executed and bpf_prog_kallsyms_add() will
3725
* generate an additional symbol to cover this, hence also
3726
* decrement proglen.
3727
*/
3728
prog->bpf_func = (void *)image + cfi_get_offset();
3729
prog->jited = 1;
3730
prog->jited_len = proglen - cfi_get_offset();
3731
} else {
3732
prog = orig_prog;
3733
}
3734
3735
if (!image || !prog->is_func || extra_pass) {
3736
if (image)
3737
bpf_prog_fill_jited_linfo(prog, addrs + 1);
3738
out_addrs:
3739
kvfree(addrs);
3740
if (!image && priv_stack_ptr) {
3741
free_percpu(priv_stack_ptr);
3742
prog->aux->priv_stack_ptr = NULL;
3743
}
3744
out_priv_stack:
3745
kfree(jit_data);
3746
prog->aux->jit_data = NULL;
3747
}
3748
out:
3749
if (tmp_blinded)
3750
bpf_jit_prog_release_other(prog, prog == orig_prog ?
3751
tmp : orig_prog);
3752
return prog;
3753
}
3754
3755
bool bpf_jit_supports_kfunc_call(void)
3756
{
3757
return true;
3758
}
3759
3760
void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3761
{
3762
if (text_poke_copy(dst, src, len) == NULL)
3763
return ERR_PTR(-EINVAL);
3764
return dst;
3765
}
3766
3767
/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3768
bool bpf_jit_supports_subprog_tailcalls(void)
3769
{
3770
return true;
3771
}
3772
3773
bool bpf_jit_supports_percpu_insn(void)
3774
{
3775
return true;
3776
}
3777
3778
void bpf_jit_free(struct bpf_prog *prog)
3779
{
3780
if (prog->jited) {
3781
struct x64_jit_data *jit_data = prog->aux->jit_data;
3782
struct bpf_binary_header *hdr;
3783
void __percpu *priv_stack_ptr;
3784
int priv_stack_alloc_sz;
3785
3786
/*
3787
* If we fail the final pass of JIT (from jit_subprogs),
3788
* the program may not be finalized yet. Call finalize here
3789
* before freeing it.
3790
*/
3791
if (jit_data) {
3792
bpf_jit_binary_pack_finalize(jit_data->header,
3793
jit_data->rw_header);
3794
kvfree(jit_data->addrs);
3795
kfree(jit_data);
3796
}
3797
prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3798
hdr = bpf_jit_binary_pack_hdr(prog);
3799
bpf_jit_binary_pack_free(hdr, NULL);
3800
priv_stack_ptr = prog->aux->priv_stack_ptr;
3801
if (priv_stack_ptr) {
3802
priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3803
2 * PRIV_STACK_GUARD_SZ;
3804
priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3805
free_percpu(prog->aux->priv_stack_ptr);
3806
}
3807
WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3808
}
3809
3810
bpf_prog_unlock_free(prog);
3811
}
3812
3813
bool bpf_jit_supports_exceptions(void)
3814
{
3815
/* We unwind through both kernel frames (starting from within bpf_throw
3816
* call) and BPF frames. Therefore we require ORC unwinder to be enabled
3817
* to walk kernel frames and reach BPF frames in the stack trace.
3818
*/
3819
return IS_ENABLED(CONFIG_UNWINDER_ORC);
3820
}
3821
3822
bool bpf_jit_supports_private_stack(void)
3823
{
3824
return true;
3825
}
3826
3827
void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3828
{
3829
#if defined(CONFIG_UNWINDER_ORC)
3830
struct unwind_state state;
3831
unsigned long addr;
3832
3833
for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3834
unwind_next_frame(&state)) {
3835
addr = unwind_get_return_address(&state);
3836
if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3837
break;
3838
}
3839
return;
3840
#endif
3841
}
3842
3843
void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3844
struct bpf_prog *new, struct bpf_prog *old)
3845
{
3846
u8 *old_addr, *new_addr, *old_bypass_addr;
3847
int ret;
3848
3849
old_bypass_addr = old ? NULL : poke->bypass_addr;
3850
old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3851
new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3852
3853
/*
3854
* On program loading or teardown, the program's kallsym entry
3855
* might not be in place, so we use __bpf_arch_text_poke to skip
3856
* the kallsyms check.
3857
*/
3858
if (new) {
3859
ret = __bpf_arch_text_poke(poke->tailcall_target,
3860
BPF_MOD_JUMP,
3861
old_addr, new_addr);
3862
BUG_ON(ret < 0);
3863
if (!old) {
3864
ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3865
BPF_MOD_JUMP,
3866
poke->bypass_addr,
3867
NULL);
3868
BUG_ON(ret < 0);
3869
}
3870
} else {
3871
ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3872
BPF_MOD_JUMP,
3873
old_bypass_addr,
3874
poke->bypass_addr);
3875
BUG_ON(ret < 0);
3876
/* let other CPUs finish the execution of program
3877
* so that it will not possible to expose them
3878
* to invalid nop, stack unwind, nop state
3879
*/
3880
if (!ret)
3881
synchronize_rcu();
3882
ret = __bpf_arch_text_poke(poke->tailcall_target,
3883
BPF_MOD_JUMP,
3884
old_addr, NULL);
3885
BUG_ON(ret < 0);
3886
}
3887
}
3888
3889
bool bpf_jit_supports_arena(void)
3890
{
3891
return true;
3892
}
3893
3894
bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3895
{
3896
if (!in_arena)
3897
return true;
3898
switch (insn->code) {
3899
case BPF_STX | BPF_ATOMIC | BPF_W:
3900
case BPF_STX | BPF_ATOMIC | BPF_DW:
3901
if (insn->imm == (BPF_AND | BPF_FETCH) ||
3902
insn->imm == (BPF_OR | BPF_FETCH) ||
3903
insn->imm == (BPF_XOR | BPF_FETCH))
3904
return false;
3905
}
3906
return true;
3907
}
3908
3909
bool bpf_jit_supports_ptr_xchg(void)
3910
{
3911
return true;
3912
}
3913
3914
/* x86-64 JIT emits its own code to filter user addresses so return 0 here */
3915
u64 bpf_arch_uaddress_limit(void)
3916
{
3917
return 0;
3918
}
3919
3920
bool bpf_jit_supports_timed_may_goto(void)
3921
{
3922
return true;
3923
}
3924
3925