Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/pci/olpc.c
26442 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Low-level PCI config space access for OLPC systems who lack the VSA
4
* PCI virtualization software.
5
*
6
* Copyright © 2006 Advanced Micro Devices, Inc.
7
*
8
* The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device)
9
* has some I/O functions (display, southbridge, sound, USB HCIs, etc)
10
* that more or less behave like PCI devices, but the hardware doesn't
11
* directly implement the PCI configuration space headers. AMD provides
12
* "VSA" (Virtual System Architecture) software that emulates PCI config
13
* space for these devices, by trapping I/O accesses to PCI config register
14
* (CF8/CFC) and running some code in System Management Mode interrupt state.
15
* On the OLPC platform, we don't want to use that VSA code because
16
* (a) it slows down suspend/resume, and (b) recompiling it requires special
17
* compilers that are hard to get. So instead of letting the complex VSA
18
* code simulate the PCI config registers for the on-chip devices, we
19
* just simulate them the easy way, by inserting the code into the
20
* pci_write_config and pci_read_config path. Most of the config registers
21
* are read-only anyway, so the bulk of the simulation is just table lookup.
22
*/
23
24
#include <linux/pci.h>
25
#include <linux/init.h>
26
#include <asm/olpc.h>
27
#include <asm/geode.h>
28
#include <asm/pci_x86.h>
29
30
/*
31
* In the tables below, the first two line (8 longwords) are the
32
* size masks that are used when the higher level PCI code determines
33
* the size of the region by writing ~0 to a base address register
34
* and reading back the result.
35
*
36
* The following lines are the values that are read during normal
37
* PCI config access cycles, i.e. not after just having written
38
* ~0 to a base address register.
39
*/
40
41
static const uint32_t lxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */
42
0x0, 0x0, 0x0, 0x0,
43
0x0, 0x0, 0x0, 0x0,
44
45
0x281022, 0x2200005, 0x6000021, 0x80f808, /* AMD Vendor ID */
46
0x0, 0x0, 0x0, 0x0, /* No virtual registers, hence no BAR */
47
0x0, 0x0, 0x0, 0x28100b,
48
0x0, 0x0, 0x0, 0x0,
49
0x0, 0x0, 0x0, 0x0,
50
0x0, 0x0, 0x0, 0x0,
51
0x0, 0x0, 0x0, 0x0,
52
};
53
54
static const uint32_t gxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */
55
0xfffffffd, 0x0, 0x0, 0x0,
56
0x0, 0x0, 0x0, 0x0,
57
58
0x28100b, 0x2200005, 0x6000021, 0x80f808, /* NSC Vendor ID */
59
0xac1d, 0x0, 0x0, 0x0, /* I/O BAR - base of virtual registers */
60
0x0, 0x0, 0x0, 0x28100b,
61
0x0, 0x0, 0x0, 0x0,
62
0x0, 0x0, 0x0, 0x0,
63
0x0, 0x0, 0x0, 0x0,
64
0x0, 0x0, 0x0, 0x0,
65
};
66
67
static const uint32_t lxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */
68
0xff000008, 0xffffc000, 0xffffc000, 0xffffc000,
69
0xffffc000, 0x0, 0x0, 0x0,
70
71
0x20811022, 0x2200003, 0x3000000, 0x0, /* AMD Vendor ID */
72
0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
73
0xfe00c000, 0x0, 0x0, 0x30100b, /* VIP */
74
0x0, 0x0, 0x0, 0x10e, /* INTA, IRQ14 for graphics accel */
75
0x0, 0x0, 0x0, 0x0,
76
0x3d0, 0x3c0, 0xa0000, 0x0, /* VG IO, VG IO, EGA FB, MONO FB */
77
0x0, 0x0, 0x0, 0x0,
78
};
79
80
static const uint32_t gxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */
81
0xff800008, 0xffffc000, 0xffffc000, 0xffffc000,
82
0x0, 0x0, 0x0, 0x0,
83
84
0x30100b, 0x2200003, 0x3000000, 0x0, /* NSC Vendor ID */
85
0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
86
0x0, 0x0, 0x0, 0x30100b,
87
0x0, 0x0, 0x0, 0x0,
88
0x0, 0x0, 0x0, 0x0,
89
0x3d0, 0x3c0, 0xa0000, 0x0, /* VG IO, VG IO, EGA FB, MONO FB */
90
0x0, 0x0, 0x0, 0x0,
91
};
92
93
static const uint32_t aes_hdr[] = { /* dev 1 function 2 - devfn = 0xa */
94
0xffffc000, 0x0, 0x0, 0x0,
95
0x0, 0x0, 0x0, 0x0,
96
97
0x20821022, 0x2a00006, 0x10100000, 0x8, /* NSC Vendor ID */
98
0xfe010000, 0x0, 0x0, 0x0, /* AES registers */
99
0x0, 0x0, 0x0, 0x20821022,
100
0x0, 0x0, 0x0, 0x0,
101
0x0, 0x0, 0x0, 0x0,
102
0x0, 0x0, 0x0, 0x0,
103
0x0, 0x0, 0x0, 0x0,
104
};
105
106
107
static const uint32_t isa_hdr[] = { /* dev f function 0 - devfn = 78 */
108
0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1,
109
0xffffff81, 0xffffffc1, 0x0, 0x0,
110
111
0x20901022, 0x2a00049, 0x6010003, 0x802000,
112
0x18b1, 0x1001, 0x1801, 0x1881, /* SMB-8 GPIO-256 MFGPT-64 IRQ-32 */
113
0x1401, 0x1841, 0x0, 0x20901022, /* PMS-128 ACPI-64 */
114
0x0, 0x0, 0x0, 0x0,
115
0x0, 0x0, 0x0, 0x0,
116
0x0, 0x0, 0x0, 0xaa5b, /* IRQ steering */
117
0x0, 0x0, 0x0, 0x0,
118
};
119
120
static const uint32_t ac97_hdr[] = { /* dev f function 3 - devfn = 7b */
121
0xffffff81, 0x0, 0x0, 0x0,
122
0x0, 0x0, 0x0, 0x0,
123
124
0x20931022, 0x2a00041, 0x4010001, 0x0,
125
0x1481, 0x0, 0x0, 0x0, /* I/O BAR-128 */
126
0x0, 0x0, 0x0, 0x20931022,
127
0x0, 0x0, 0x0, 0x205, /* IntB, IRQ5 */
128
0x0, 0x0, 0x0, 0x0,
129
0x0, 0x0, 0x0, 0x0,
130
0x0, 0x0, 0x0, 0x0,
131
};
132
133
static const uint32_t ohci_hdr[] = { /* dev f function 4 - devfn = 7c */
134
0xfffff000, 0x0, 0x0, 0x0,
135
0x0, 0x0, 0x0, 0x0,
136
137
0x20941022, 0x2300006, 0xc031002, 0x0,
138
0xfe01a000, 0x0, 0x0, 0x0, /* MEMBAR-1000 */
139
0x0, 0x0, 0x0, 0x20941022,
140
0x0, 0x40, 0x0, 0x40a, /* CapPtr INT-D, IRQA */
141
0xc8020001, 0x0, 0x0, 0x0, /* Capabilities - 40 is R/O,
142
44 is mask 8103 (power control) */
143
0x0, 0x0, 0x0, 0x0,
144
0x0, 0x0, 0x0, 0x0,
145
};
146
147
static const uint32_t ehci_hdr[] = { /* dev f function 4 - devfn = 7d */
148
0xfffff000, 0x0, 0x0, 0x0,
149
0x0, 0x0, 0x0, 0x0,
150
151
0x20951022, 0x2300006, 0xc032002, 0x0,
152
0xfe01b000, 0x0, 0x0, 0x0, /* MEMBAR-1000 */
153
0x0, 0x0, 0x0, 0x20951022,
154
0x0, 0x40, 0x0, 0x40a, /* CapPtr INT-D, IRQA */
155
0xc8020001, 0x0, 0x0, 0x0, /* Capabilities - 40 is R/O, 44 is
156
mask 8103 (power control) */
157
0x01000001, 0x0, 0x0, 0x0, /* EECP - see EHCI spec section 2.1.7 */
158
0x2020, 0x0, 0x0, 0x0, /* (EHCI page 8) 60 SBRN (R/O),
159
61 FLADJ (R/W), PORTWAKECAP */
160
};
161
162
static uint32_t ff_loc = ~0;
163
static uint32_t zero_loc;
164
static int bar_probing; /* Set after a write of ~0 to a BAR */
165
static int is_lx;
166
167
#define NB_SLOT 0x1 /* Northbridge - GX chip - Device 1 */
168
#define SB_SLOT 0xf /* Southbridge - CS5536 chip - Device F */
169
170
static int is_simulated(unsigned int bus, unsigned int devfn)
171
{
172
return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) ||
173
(PCI_SLOT(devfn) == SB_SLOT)));
174
}
175
176
static uint32_t *hdr_addr(const uint32_t *hdr, int reg)
177
{
178
uint32_t addr;
179
180
/*
181
* This is a little bit tricky. The header maps consist of
182
* 0x20 bytes of size masks, followed by 0x70 bytes of header data.
183
* In the normal case, when not probing a BAR's size, we want
184
* to access the header data, so we add 0x20 to the reg offset,
185
* thus skipping the size mask area.
186
* In the BAR probing case, we want to access the size mask for
187
* the BAR, so we subtract 0x10 (the config header offset for
188
* BAR0), and don't skip the size mask area.
189
*/
190
191
addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20);
192
193
bar_probing = 0;
194
return (uint32_t *)addr;
195
}
196
197
static int pci_olpc_read(unsigned int seg, unsigned int bus,
198
unsigned int devfn, int reg, int len, uint32_t *value)
199
{
200
uint32_t *addr;
201
202
WARN_ON(seg);
203
204
/* Use the hardware mechanism for non-simulated devices */
205
if (!is_simulated(bus, devfn))
206
return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
207
208
/*
209
* No device has config registers past 0x70, so we save table space
210
* by not storing entries for the nonexistent registers
211
*/
212
if (reg >= 0x70)
213
addr = &zero_loc;
214
else {
215
switch (devfn) {
216
case 0x8:
217
addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg);
218
break;
219
case 0x9:
220
addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg);
221
break;
222
case 0xa:
223
addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc;
224
break;
225
case 0x78:
226
addr = hdr_addr(isa_hdr, reg);
227
break;
228
case 0x7b:
229
addr = hdr_addr(ac97_hdr, reg);
230
break;
231
case 0x7c:
232
addr = hdr_addr(ohci_hdr, reg);
233
break;
234
case 0x7d:
235
addr = hdr_addr(ehci_hdr, reg);
236
break;
237
default:
238
addr = &ff_loc;
239
break;
240
}
241
}
242
switch (len) {
243
case 1:
244
*value = *(uint8_t *)addr;
245
break;
246
case 2:
247
*value = *(uint16_t *)addr;
248
break;
249
case 4:
250
*value = *addr;
251
break;
252
default:
253
BUG();
254
}
255
256
return 0;
257
}
258
259
static int pci_olpc_write(unsigned int seg, unsigned int bus,
260
unsigned int devfn, int reg, int len, uint32_t value)
261
{
262
WARN_ON(seg);
263
264
/* Use the hardware mechanism for non-simulated devices */
265
if (!is_simulated(bus, devfn))
266
return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
267
268
/* XXX we may want to extend this to simulate EHCI power management */
269
270
/*
271
* Mostly we just discard writes, but if the write is a size probe
272
* (i.e. writing ~0 to a BAR), we remember it and arrange to return
273
* the appropriate size mask on the next read. This is cheating
274
* to some extent, because it depends on the fact that the next
275
* access after such a write will always be a read to the same BAR.
276
*/
277
278
if ((reg >= 0x10) && (reg < 0x2c)) {
279
/* write is to a BAR */
280
if (value == ~0)
281
bar_probing = 1;
282
} else {
283
/*
284
* No warning on writes to ROM BAR, CMD, LATENCY_TIMER,
285
* CACHE_LINE_SIZE, or PM registers.
286
*/
287
if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) &&
288
(reg != PCI_LATENCY_TIMER) &&
289
(reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44))
290
printk(KERN_WARNING "OLPC PCI: Config write to devfn"
291
" %x reg %x value %x\n", devfn, reg, value);
292
}
293
294
return 0;
295
}
296
297
static const struct pci_raw_ops pci_olpc_conf = {
298
.read = pci_olpc_read,
299
.write = pci_olpc_write,
300
};
301
302
int __init pci_olpc_init(void)
303
{
304
printk(KERN_INFO "PCI: Using configuration type OLPC XO-1\n");
305
raw_pci_ops = &pci_olpc_conf;
306
is_lx = is_geode_lx();
307
return 0;
308
}
309
310