Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/platform/efi/efi.c
50951 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Common EFI (Extensible Firmware Interface) support functions
4
* Based on Extensible Firmware Interface Specification version 1.0
5
*
6
* Copyright (C) 1999 VA Linux Systems
7
* Copyright (C) 1999 Walt Drummond <[email protected]>
8
* Copyright (C) 1999-2002 Hewlett-Packard Co.
9
* David Mosberger-Tang <[email protected]>
10
* Stephane Eranian <[email protected]>
11
* Copyright (C) 2005-2008 Intel Co.
12
* Fenghua Yu <[email protected]>
13
* Bibo Mao <[email protected]>
14
* Chandramouli Narayanan <[email protected]>
15
* Huang Ying <[email protected]>
16
* Copyright (C) 2013 SuSE Labs
17
* Borislav Petkov <[email protected]> - runtime services VA mapping
18
*
19
* Copied from efi_32.c to eliminate the duplicated code between EFI
20
* 32/64 support code. --ying 2007-10-26
21
*
22
* All EFI Runtime Services are not implemented yet as EFI only
23
* supports physical mode addressing on SoftSDV. This is to be fixed
24
* in a future version. --drummond 1999-07-20
25
*
26
* Implemented EFI runtime services and virtual mode calls. --davidm
27
*
28
* Goutham Rao: <[email protected]>
29
* Skip non-WB memory and ignore empty memory ranges.
30
*/
31
32
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34
#include <linux/kernel.h>
35
#include <linux/init.h>
36
#include <linux/efi.h>
37
#include <linux/efi-bgrt.h>
38
#include <linux/export.h>
39
#include <linux/memblock.h>
40
#include <linux/slab.h>
41
#include <linux/spinlock.h>
42
#include <linux/uaccess.h>
43
#include <linux/time.h>
44
#include <linux/io.h>
45
#include <linux/reboot.h>
46
#include <linux/bcd.h>
47
48
#include <asm/setup.h>
49
#include <asm/efi.h>
50
#include <asm/e820/api.h>
51
#include <asm/time.h>
52
#include <asm/tlbflush.h>
53
#include <asm/x86_init.h>
54
#include <asm/uv/uv.h>
55
56
static unsigned long efi_systab_phys __initdata;
57
static unsigned long efi_runtime, efi_nr_tables;
58
59
unsigned long efi_fw_vendor, efi_config_table;
60
61
static const efi_config_table_type_t arch_tables[] __initconst = {
62
#ifdef CONFIG_X86_UV
63
{UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" },
64
#endif
65
{},
66
};
67
68
static const unsigned long * const efi_tables[] = {
69
&efi.acpi,
70
&efi.acpi20,
71
&efi.smbios,
72
&efi.smbios3,
73
#ifdef CONFIG_X86_UV
74
&uv_systab_phys,
75
#endif
76
&efi_fw_vendor,
77
&efi_runtime,
78
&efi_config_table,
79
&efi.esrt,
80
&efi_mem_attr_table,
81
#ifdef CONFIG_EFI_RCI2_TABLE
82
&rci2_table_phys,
83
#endif
84
&efi.tpm_log,
85
&efi.tpm_final_log,
86
&efi_rng_seed,
87
#ifdef CONFIG_LOAD_UEFI_KEYS
88
&efi.mokvar_table,
89
#endif
90
#ifdef CONFIG_EFI_COCO_SECRET
91
&efi.coco_secret,
92
#endif
93
#ifdef CONFIG_UNACCEPTED_MEMORY
94
&efi.unaccepted,
95
#endif
96
};
97
98
u64 efi_setup; /* efi setup_data physical address */
99
100
static int add_efi_memmap __initdata;
101
static int __init setup_add_efi_memmap(char *arg)
102
{
103
add_efi_memmap = 1;
104
return 0;
105
}
106
early_param("add_efi_memmap", setup_add_efi_memmap);
107
108
/*
109
* Tell the kernel about the EFI memory map. This might include
110
* more than the max 128 entries that can fit in the passed in e820
111
* legacy (zeropage) memory map, but the kernel's e820 table can hold
112
* E820_MAX_ENTRIES.
113
*/
114
115
static void __init do_add_efi_memmap(void)
116
{
117
efi_memory_desc_t *md;
118
119
if (!efi_enabled(EFI_MEMMAP))
120
return;
121
122
for_each_efi_memory_desc(md) {
123
unsigned long long start = md->phys_addr;
124
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
125
int e820_type;
126
127
switch (md->type) {
128
case EFI_LOADER_CODE:
129
case EFI_LOADER_DATA:
130
case EFI_BOOT_SERVICES_CODE:
131
case EFI_BOOT_SERVICES_DATA:
132
case EFI_CONVENTIONAL_MEMORY:
133
if (efi_soft_reserve_enabled()
134
&& (md->attribute & EFI_MEMORY_SP))
135
e820_type = E820_TYPE_SOFT_RESERVED;
136
else if (md->attribute & EFI_MEMORY_WB)
137
e820_type = E820_TYPE_RAM;
138
else
139
e820_type = E820_TYPE_RESERVED;
140
break;
141
case EFI_ACPI_RECLAIM_MEMORY:
142
e820_type = E820_TYPE_ACPI;
143
break;
144
case EFI_ACPI_MEMORY_NVS:
145
e820_type = E820_TYPE_NVS;
146
break;
147
case EFI_UNUSABLE_MEMORY:
148
e820_type = E820_TYPE_UNUSABLE;
149
break;
150
case EFI_PERSISTENT_MEMORY:
151
e820_type = E820_TYPE_PMEM;
152
break;
153
default:
154
/*
155
* EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
156
* EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
157
* EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
158
*/
159
e820_type = E820_TYPE_RESERVED;
160
break;
161
}
162
163
e820__range_add(start, size, e820_type);
164
}
165
e820__update_table(e820_table);
166
}
167
168
/*
169
* Given add_efi_memmap defaults to 0 and there is no alternative
170
* e820 mechanism for soft-reserved memory, import the full EFI memory
171
* map if soft reservations are present and enabled. Otherwise, the
172
* mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
173
* the efi=nosoftreserve option.
174
*/
175
static bool do_efi_soft_reserve(void)
176
{
177
efi_memory_desc_t *md;
178
179
if (!efi_enabled(EFI_MEMMAP))
180
return false;
181
182
if (!efi_soft_reserve_enabled())
183
return false;
184
185
for_each_efi_memory_desc(md)
186
if (md->type == EFI_CONVENTIONAL_MEMORY &&
187
(md->attribute & EFI_MEMORY_SP))
188
return true;
189
return false;
190
}
191
192
int __init efi_memblock_x86_reserve_range(void)
193
{
194
struct efi_info *e = &boot_params.efi_info;
195
struct efi_memory_map_data data;
196
phys_addr_t pmap;
197
int rv;
198
199
if (efi_enabled(EFI_PARAVIRT))
200
return 0;
201
202
/* Can't handle firmware tables above 4GB on i386 */
203
if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
204
pr_err("Memory map is above 4GB, disabling EFI.\n");
205
return -EINVAL;
206
}
207
pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
208
209
data.phys_map = pmap;
210
data.size = e->efi_memmap_size;
211
data.desc_size = e->efi_memdesc_size;
212
data.desc_version = e->efi_memdesc_version;
213
214
if (!efi_enabled(EFI_PARAVIRT)) {
215
rv = efi_memmap_init_early(&data);
216
if (rv)
217
return rv;
218
}
219
220
if (add_efi_memmap || do_efi_soft_reserve())
221
do_add_efi_memmap();
222
223
WARN(efi.memmap.desc_version != 1,
224
"Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
225
efi.memmap.desc_version);
226
227
memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
228
set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
229
230
return 0;
231
}
232
233
#define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
234
#define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
235
#define U64_HIGH_BIT (~(U64_MAX >> 1))
236
237
static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
238
{
239
u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
240
u64 end_hi = 0;
241
char buf[64];
242
243
if (md->num_pages == 0) {
244
end = 0;
245
} else if (md->num_pages > EFI_PAGES_MAX ||
246
EFI_PAGES_MAX - md->num_pages <
247
(md->phys_addr >> EFI_PAGE_SHIFT)) {
248
end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
249
>> OVERFLOW_ADDR_SHIFT;
250
251
if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
252
end_hi += 1;
253
} else {
254
return true;
255
}
256
257
pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
258
259
if (end_hi) {
260
pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
261
i, efi_md_typeattr_format(buf, sizeof(buf), md),
262
md->phys_addr, end_hi, end);
263
} else {
264
pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
265
i, efi_md_typeattr_format(buf, sizeof(buf), md),
266
md->phys_addr, end);
267
}
268
return false;
269
}
270
271
static void __init efi_clean_memmap(void)
272
{
273
efi_memory_desc_t *out = efi.memmap.map;
274
const efi_memory_desc_t *in = out;
275
const efi_memory_desc_t *end = efi.memmap.map_end;
276
int i, n_removal;
277
278
for (i = n_removal = 0; in < end; i++) {
279
if (efi_memmap_entry_valid(in, i)) {
280
if (out != in)
281
memcpy(out, in, efi.memmap.desc_size);
282
out = (void *)out + efi.memmap.desc_size;
283
} else {
284
n_removal++;
285
}
286
in = (void *)in + efi.memmap.desc_size;
287
}
288
289
if (n_removal > 0) {
290
struct efi_memory_map_data data = {
291
.phys_map = efi.memmap.phys_map,
292
.desc_version = efi.memmap.desc_version,
293
.desc_size = efi.memmap.desc_size,
294
.size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
295
.flags = 0,
296
};
297
298
pr_warn("Removing %d invalid memory map entries.\n", n_removal);
299
efi_memmap_install(&data);
300
}
301
}
302
303
/*
304
* Firmware can use EfiMemoryMappedIO to request that MMIO regions be
305
* mapped by the OS so they can be accessed by EFI runtime services, but
306
* should have no other significance to the OS (UEFI r2.10, sec 7.2).
307
* However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
308
* regions to E820_TYPE_RESERVED entries, which prevent Linux from
309
* allocating space from them (see remove_e820_regions()).
310
*
311
* Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
312
* PCI host bridge windows, which means Linux can't allocate BAR space for
313
* hot-added devices.
314
*
315
* Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
316
* problem.
317
*
318
* Retain small EfiMemoryMappedIO regions because on some platforms, these
319
* describe non-window space that's included in host bridge _CRS. If we
320
* assign that space to PCI devices, they don't work.
321
*/
322
static void __init efi_remove_e820_mmio(void)
323
{
324
efi_memory_desc_t *md;
325
u64 size, start, end;
326
int i = 0;
327
328
for_each_efi_memory_desc(md) {
329
if (md->type == EFI_MEMORY_MAPPED_IO) {
330
size = md->num_pages << EFI_PAGE_SHIFT;
331
start = md->phys_addr;
332
end = start + size - 1;
333
if (size >= 256*1024) {
334
pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
335
i, start, end, size >> 20);
336
e820__range_remove(start, size, E820_TYPE_RESERVED);
337
} else {
338
pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
339
i, start, end, size >> 10);
340
}
341
}
342
i++;
343
}
344
}
345
346
void __init efi_print_memmap(void)
347
{
348
efi_memory_desc_t *md;
349
int i = 0;
350
351
for_each_efi_memory_desc(md) {
352
char buf[64];
353
354
pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
355
i++, efi_md_typeattr_format(buf, sizeof(buf), md),
356
md->phys_addr,
357
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
358
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
359
}
360
}
361
362
static int __init efi_systab_init(unsigned long phys)
363
{
364
int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
365
: sizeof(efi_system_table_32_t);
366
const efi_table_hdr_t *hdr;
367
bool over4g = false;
368
void *p;
369
int ret;
370
371
hdr = p = early_memremap_ro(phys, size);
372
if (p == NULL) {
373
pr_err("Couldn't map the system table!\n");
374
return -ENOMEM;
375
}
376
377
ret = efi_systab_check_header(hdr);
378
if (ret) {
379
early_memunmap(p, size);
380
return ret;
381
}
382
383
if (efi_enabled(EFI_64BIT)) {
384
const efi_system_table_64_t *systab64 = p;
385
386
efi_runtime = systab64->runtime;
387
over4g = systab64->runtime > U32_MAX;
388
389
if (efi_setup) {
390
struct efi_setup_data *data;
391
392
data = early_memremap_ro(efi_setup, sizeof(*data));
393
if (!data) {
394
early_memunmap(p, size);
395
return -ENOMEM;
396
}
397
398
efi_fw_vendor = (unsigned long)data->fw_vendor;
399
efi_config_table = (unsigned long)data->tables;
400
401
over4g |= data->fw_vendor > U32_MAX ||
402
data->tables > U32_MAX;
403
404
early_memunmap(data, sizeof(*data));
405
} else {
406
efi_fw_vendor = systab64->fw_vendor;
407
efi_config_table = systab64->tables;
408
409
over4g |= systab64->fw_vendor > U32_MAX ||
410
systab64->tables > U32_MAX;
411
}
412
efi_nr_tables = systab64->nr_tables;
413
} else {
414
const efi_system_table_32_t *systab32 = p;
415
416
efi_fw_vendor = systab32->fw_vendor;
417
efi_runtime = systab32->runtime;
418
efi_config_table = systab32->tables;
419
efi_nr_tables = systab32->nr_tables;
420
}
421
422
efi.runtime_version = hdr->revision;
423
424
efi_systab_report_header(hdr, efi_fw_vendor);
425
early_memunmap(p, size);
426
427
if (IS_ENABLED(CONFIG_X86_32) && over4g) {
428
pr_err("EFI data located above 4GB, disabling EFI.\n");
429
return -EINVAL;
430
}
431
432
return 0;
433
}
434
435
static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
436
{
437
void *config_tables;
438
int sz, ret;
439
440
if (efi_nr_tables == 0)
441
return 0;
442
443
if (efi_enabled(EFI_64BIT))
444
sz = sizeof(efi_config_table_64_t);
445
else
446
sz = sizeof(efi_config_table_32_t);
447
448
/*
449
* Let's see what config tables the firmware passed to us.
450
*/
451
config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
452
if (config_tables == NULL) {
453
pr_err("Could not map Configuration table!\n");
454
return -ENOMEM;
455
}
456
457
ret = efi_config_parse_tables(config_tables, efi_nr_tables,
458
arch_tables);
459
460
early_memunmap(config_tables, efi_nr_tables * sz);
461
return ret;
462
}
463
464
void __init efi_init(void)
465
{
466
if (IS_ENABLED(CONFIG_X86_32) &&
467
(boot_params.efi_info.efi_systab_hi ||
468
boot_params.efi_info.efi_memmap_hi)) {
469
pr_info("Table located above 4GB, disabling EFI.\n");
470
return;
471
}
472
473
efi_systab_phys = boot_params.efi_info.efi_systab |
474
((__u64)boot_params.efi_info.efi_systab_hi << 32);
475
476
if (efi_systab_init(efi_systab_phys))
477
return;
478
479
if (efi_reuse_config(efi_config_table, efi_nr_tables))
480
return;
481
482
if (efi_config_init(arch_tables))
483
return;
484
485
/*
486
* Note: We currently don't support runtime services on an EFI
487
* that doesn't match the kernel 32/64-bit mode.
488
*/
489
490
if (!efi_runtime_supported())
491
pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
492
493
if (!efi_runtime_supported() || efi_runtime_disabled()) {
494
efi_memmap_unmap();
495
return;
496
}
497
498
set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
499
efi_clean_memmap();
500
501
efi_remove_e820_mmio();
502
503
if (efi_enabled(EFI_DBG))
504
efi_print_memmap();
505
}
506
507
/* Merge contiguous regions of the same type and attribute */
508
static void __init efi_merge_regions(void)
509
{
510
efi_memory_desc_t *md, *prev_md = NULL;
511
512
for_each_efi_memory_desc(md) {
513
u64 prev_size;
514
515
if (!prev_md) {
516
prev_md = md;
517
continue;
518
}
519
520
if (prev_md->type != md->type ||
521
prev_md->attribute != md->attribute) {
522
prev_md = md;
523
continue;
524
}
525
526
prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
527
528
if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
529
prev_md->num_pages += md->num_pages;
530
md->type = EFI_RESERVED_TYPE;
531
md->attribute = 0;
532
continue;
533
}
534
prev_md = md;
535
}
536
}
537
538
static void *realloc_pages(void *old_memmap, int old_shift)
539
{
540
void *ret;
541
542
ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
543
if (!ret)
544
goto out;
545
546
/*
547
* A first-time allocation doesn't have anything to copy.
548
*/
549
if (!old_memmap)
550
return ret;
551
552
memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
553
554
out:
555
free_pages((unsigned long)old_memmap, old_shift);
556
return ret;
557
}
558
559
/*
560
* Iterate the EFI memory map in reverse order because the regions
561
* will be mapped top-down. The end result is the same as if we had
562
* mapped things forward, but doesn't require us to change the
563
* existing implementation of efi_map_region().
564
*/
565
static inline void *efi_map_next_entry_reverse(void *entry)
566
{
567
/* Initial call */
568
if (!entry)
569
return efi.memmap.map_end - efi.memmap.desc_size;
570
571
entry -= efi.memmap.desc_size;
572
if (entry < efi.memmap.map)
573
return NULL;
574
575
return entry;
576
}
577
578
/*
579
* efi_map_next_entry - Return the next EFI memory map descriptor
580
* @entry: Previous EFI memory map descriptor
581
*
582
* This is a helper function to iterate over the EFI memory map, which
583
* we do in different orders depending on the current configuration.
584
*
585
* To begin traversing the memory map @entry must be %NULL.
586
*
587
* Returns %NULL when we reach the end of the memory map.
588
*/
589
static void *efi_map_next_entry(void *entry)
590
{
591
if (efi_enabled(EFI_64BIT)) {
592
/*
593
* Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
594
* config table feature requires us to map all entries
595
* in the same order as they appear in the EFI memory
596
* map. That is to say, entry N must have a lower
597
* virtual address than entry N+1. This is because the
598
* firmware toolchain leaves relative references in
599
* the code/data sections, which are split and become
600
* separate EFI memory regions. Mapping things
601
* out-of-order leads to the firmware accessing
602
* unmapped addresses.
603
*
604
* Since we need to map things this way whether or not
605
* the kernel actually makes use of
606
* EFI_PROPERTIES_TABLE, let's just switch to this
607
* scheme by default for 64-bit.
608
*/
609
return efi_map_next_entry_reverse(entry);
610
}
611
612
/* Initial call */
613
if (!entry)
614
return efi.memmap.map;
615
616
entry += efi.memmap.desc_size;
617
if (entry >= efi.memmap.map_end)
618
return NULL;
619
620
return entry;
621
}
622
623
static bool should_map_region(efi_memory_desc_t *md)
624
{
625
/*
626
* Runtime regions always require runtime mappings (obviously).
627
*/
628
if (md->attribute & EFI_MEMORY_RUNTIME)
629
return true;
630
631
/*
632
* 32-bit EFI doesn't suffer from the bug that requires us to
633
* reserve boot services regions, and mixed mode support
634
* doesn't exist for 32-bit kernels.
635
*/
636
if (IS_ENABLED(CONFIG_X86_32))
637
return false;
638
639
/*
640
* EFI specific purpose memory may be reserved by default
641
* depending on kernel config and boot options.
642
*/
643
if (md->type == EFI_CONVENTIONAL_MEMORY &&
644
efi_soft_reserve_enabled() &&
645
(md->attribute & EFI_MEMORY_SP))
646
return false;
647
648
/*
649
* Map all of RAM so that we can access arguments in the 1:1
650
* mapping when making EFI runtime calls.
651
*/
652
if (efi_is_mixed()) {
653
if (md->type == EFI_CONVENTIONAL_MEMORY ||
654
md->type == EFI_LOADER_DATA ||
655
md->type == EFI_LOADER_CODE)
656
return true;
657
}
658
659
/*
660
* Map boot services regions as a workaround for buggy
661
* firmware that accesses them even when they shouldn't.
662
*
663
* See efi_{reserve,free}_boot_services().
664
*/
665
if (md->type == EFI_BOOT_SERVICES_CODE ||
666
md->type == EFI_BOOT_SERVICES_DATA)
667
return true;
668
669
return false;
670
}
671
672
/*
673
* Map the efi memory ranges of the runtime services and update new_mmap with
674
* virtual addresses.
675
*/
676
static void * __init efi_map_regions(int *count, int *pg_shift)
677
{
678
void *p, *new_memmap = NULL;
679
unsigned long left = 0;
680
unsigned long desc_size;
681
efi_memory_desc_t *md;
682
683
desc_size = efi.memmap.desc_size;
684
685
p = NULL;
686
while ((p = efi_map_next_entry(p))) {
687
md = p;
688
689
if (!should_map_region(md))
690
continue;
691
692
efi_map_region(md);
693
694
if (left < desc_size) {
695
new_memmap = realloc_pages(new_memmap, *pg_shift);
696
if (!new_memmap)
697
return NULL;
698
699
left += PAGE_SIZE << *pg_shift;
700
(*pg_shift)++;
701
}
702
703
memcpy(new_memmap + (*count * desc_size), md, desc_size);
704
705
left -= desc_size;
706
(*count)++;
707
}
708
709
return new_memmap;
710
}
711
712
static void __init kexec_enter_virtual_mode(void)
713
{
714
#ifdef CONFIG_KEXEC_CORE
715
efi_memory_desc_t *md;
716
unsigned int num_pages;
717
718
/*
719
* We don't do virtual mode, since we don't do runtime services, on
720
* non-native EFI.
721
*/
722
if (efi_is_mixed()) {
723
efi_memmap_unmap();
724
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
725
return;
726
}
727
728
if (efi_alloc_page_tables()) {
729
pr_err("Failed to allocate EFI page tables\n");
730
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
731
return;
732
}
733
734
/*
735
* Map efi regions which were passed via setup_data. The virt_addr is a
736
* fixed addr which was used in first kernel of a kexec boot.
737
*/
738
for_each_efi_memory_desc(md)
739
efi_map_region_fixed(md); /* FIXME: add error handling */
740
741
/*
742
* Unregister the early EFI memmap from efi_init() and install
743
* the new EFI memory map.
744
*/
745
efi_memmap_unmap();
746
747
if (efi_memmap_init_late(efi.memmap.phys_map,
748
efi.memmap.desc_size * efi.memmap.nr_map)) {
749
pr_err("Failed to remap late EFI memory map\n");
750
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
751
return;
752
}
753
754
num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
755
num_pages >>= PAGE_SHIFT;
756
757
if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
758
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
759
return;
760
}
761
762
efi_sync_low_kernel_mappings();
763
efi_native_runtime_setup();
764
efi_runtime_update_mappings();
765
#endif
766
}
767
768
/*
769
* This function will switch the EFI runtime services to virtual mode.
770
* Essentially, we look through the EFI memmap and map every region that
771
* has the runtime attribute bit set in its memory descriptor into the
772
* efi_pgd page table.
773
*
774
* The new method does a pagetable switch in a preemption-safe manner
775
* so that we're in a different address space when calling a runtime
776
* function. For function arguments passing we do copy the PUDs of the
777
* kernel page table into efi_pgd prior to each call.
778
*
779
* Specially for kexec boot, efi runtime maps in previous kernel should
780
* be passed in via setup_data. In that case runtime ranges will be mapped
781
* to the same virtual addresses as the first kernel, see
782
* kexec_enter_virtual_mode().
783
*/
784
static void __init __efi_enter_virtual_mode(void)
785
{
786
int count = 0, pg_shift = 0;
787
void *new_memmap = NULL;
788
efi_status_t status;
789
unsigned long pa;
790
791
if (efi_alloc_page_tables()) {
792
pr_err("Failed to allocate EFI page tables\n");
793
goto err;
794
}
795
796
efi_merge_regions();
797
new_memmap = efi_map_regions(&count, &pg_shift);
798
if (!new_memmap) {
799
pr_err("Error reallocating memory, EFI runtime non-functional!\n");
800
goto err;
801
}
802
803
pa = __pa(new_memmap);
804
805
/*
806
* Unregister the early EFI memmap from efi_init() and install
807
* the new EFI memory map that we are about to pass to the
808
* firmware via SetVirtualAddressMap().
809
*/
810
efi_memmap_unmap();
811
812
if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
813
pr_err("Failed to remap late EFI memory map\n");
814
goto err;
815
}
816
817
if (efi_enabled(EFI_DBG)) {
818
pr_info("EFI runtime memory map:\n");
819
efi_print_memmap();
820
}
821
822
if (efi_setup_page_tables(pa, 1 << pg_shift))
823
goto err;
824
825
efi_sync_low_kernel_mappings();
826
827
status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
828
efi.memmap.desc_size,
829
efi.memmap.desc_version,
830
(efi_memory_desc_t *)pa,
831
efi_systab_phys);
832
if (status != EFI_SUCCESS) {
833
pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
834
status);
835
goto err;
836
}
837
838
efi_check_for_embedded_firmwares();
839
efi_free_boot_services();
840
841
if (!efi_is_mixed())
842
efi_native_runtime_setup();
843
else
844
efi_thunk_runtime_setup();
845
846
/*
847
* Apply more restrictive page table mapping attributes now that
848
* SVAM() has been called and the firmware has performed all
849
* necessary relocation fixups for the new virtual addresses.
850
*/
851
efi_runtime_update_mappings();
852
853
/* clean DUMMY object */
854
efi_delete_dummy_variable();
855
return;
856
857
err:
858
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
859
}
860
861
void __init efi_enter_virtual_mode(void)
862
{
863
if (efi_enabled(EFI_PARAVIRT))
864
return;
865
866
efi.runtime = (efi_runtime_services_t *)efi_runtime;
867
868
if (efi_setup)
869
kexec_enter_virtual_mode();
870
else
871
__efi_enter_virtual_mode();
872
873
efi_dump_pagetable();
874
}
875
876
bool efi_is_table_address(unsigned long phys_addr)
877
{
878
unsigned int i;
879
880
if (phys_addr == EFI_INVALID_TABLE_ADDR)
881
return false;
882
883
for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
884
if (*(efi_tables[i]) == phys_addr)
885
return true;
886
887
return false;
888
}
889
890
#define EFI_FIELD(var) efi_ ## var
891
892
#define EFI_ATTR_SHOW(name) \
893
static ssize_t name##_show(struct kobject *kobj, \
894
struct kobj_attribute *attr, char *buf) \
895
{ \
896
return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
897
}
898
899
EFI_ATTR_SHOW(fw_vendor);
900
EFI_ATTR_SHOW(runtime);
901
EFI_ATTR_SHOW(config_table);
902
903
struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
904
struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
905
struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
906
907
umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
908
{
909
if (attr == &efi_attr_fw_vendor.attr) {
910
if (efi_enabled(EFI_PARAVIRT) ||
911
efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
912
return 0;
913
} else if (attr == &efi_attr_runtime.attr) {
914
if (efi_runtime == EFI_INVALID_TABLE_ADDR)
915
return 0;
916
} else if (attr == &efi_attr_config_table.attr) {
917
if (efi_config_table == EFI_INVALID_TABLE_ADDR)
918
return 0;
919
}
920
return attr->mode;
921
}
922
923
enum efi_secureboot_mode __x86_ima_efi_boot_mode(void)
924
{
925
return boot_params.secure_boot;
926
}
927
928