Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/platform/efi/efi.c
26471 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Common EFI (Extensible Firmware Interface) support functions
4
* Based on Extensible Firmware Interface Specification version 1.0
5
*
6
* Copyright (C) 1999 VA Linux Systems
7
* Copyright (C) 1999 Walt Drummond <[email protected]>
8
* Copyright (C) 1999-2002 Hewlett-Packard Co.
9
* David Mosberger-Tang <[email protected]>
10
* Stephane Eranian <[email protected]>
11
* Copyright (C) 2005-2008 Intel Co.
12
* Fenghua Yu <[email protected]>
13
* Bibo Mao <[email protected]>
14
* Chandramouli Narayanan <[email protected]>
15
* Huang Ying <[email protected]>
16
* Copyright (C) 2013 SuSE Labs
17
* Borislav Petkov <[email protected]> - runtime services VA mapping
18
*
19
* Copied from efi_32.c to eliminate the duplicated code between EFI
20
* 32/64 support code. --ying 2007-10-26
21
*
22
* All EFI Runtime Services are not implemented yet as EFI only
23
* supports physical mode addressing on SoftSDV. This is to be fixed
24
* in a future version. --drummond 1999-07-20
25
*
26
* Implemented EFI runtime services and virtual mode calls. --davidm
27
*
28
* Goutham Rao: <[email protected]>
29
* Skip non-WB memory and ignore empty memory ranges.
30
*/
31
32
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34
#include <linux/kernel.h>
35
#include <linux/init.h>
36
#include <linux/efi.h>
37
#include <linux/efi-bgrt.h>
38
#include <linux/export.h>
39
#include <linux/memblock.h>
40
#include <linux/slab.h>
41
#include <linux/spinlock.h>
42
#include <linux/uaccess.h>
43
#include <linux/time.h>
44
#include <linux/io.h>
45
#include <linux/reboot.h>
46
#include <linux/bcd.h>
47
48
#include <asm/setup.h>
49
#include <asm/efi.h>
50
#include <asm/e820/api.h>
51
#include <asm/time.h>
52
#include <asm/tlbflush.h>
53
#include <asm/x86_init.h>
54
#include <asm/uv/uv.h>
55
56
static unsigned long efi_systab_phys __initdata;
57
static unsigned long efi_runtime, efi_nr_tables;
58
59
unsigned long efi_fw_vendor, efi_config_table;
60
61
static const efi_config_table_type_t arch_tables[] __initconst = {
62
#ifdef CONFIG_X86_UV
63
{UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" },
64
#endif
65
{},
66
};
67
68
static const unsigned long * const efi_tables[] = {
69
&efi.acpi,
70
&efi.acpi20,
71
&efi.smbios,
72
&efi.smbios3,
73
#ifdef CONFIG_X86_UV
74
&uv_systab_phys,
75
#endif
76
&efi_fw_vendor,
77
&efi_runtime,
78
&efi_config_table,
79
&efi.esrt,
80
&efi_mem_attr_table,
81
#ifdef CONFIG_EFI_RCI2_TABLE
82
&rci2_table_phys,
83
#endif
84
&efi.tpm_log,
85
&efi.tpm_final_log,
86
&efi_rng_seed,
87
#ifdef CONFIG_LOAD_UEFI_KEYS
88
&efi.mokvar_table,
89
#endif
90
#ifdef CONFIG_EFI_COCO_SECRET
91
&efi.coco_secret,
92
#endif
93
#ifdef CONFIG_UNACCEPTED_MEMORY
94
&efi.unaccepted,
95
#endif
96
};
97
98
u64 efi_setup; /* efi setup_data physical address */
99
100
static int add_efi_memmap __initdata;
101
static int __init setup_add_efi_memmap(char *arg)
102
{
103
add_efi_memmap = 1;
104
return 0;
105
}
106
early_param("add_efi_memmap", setup_add_efi_memmap);
107
108
/*
109
* Tell the kernel about the EFI memory map. This might include
110
* more than the max 128 entries that can fit in the passed in e820
111
* legacy (zeropage) memory map, but the kernel's e820 table can hold
112
* E820_MAX_ENTRIES.
113
*/
114
115
static void __init do_add_efi_memmap(void)
116
{
117
efi_memory_desc_t *md;
118
119
if (!efi_enabled(EFI_MEMMAP))
120
return;
121
122
for_each_efi_memory_desc(md) {
123
unsigned long long start = md->phys_addr;
124
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
125
int e820_type;
126
127
switch (md->type) {
128
case EFI_LOADER_CODE:
129
case EFI_LOADER_DATA:
130
case EFI_BOOT_SERVICES_CODE:
131
case EFI_BOOT_SERVICES_DATA:
132
case EFI_CONVENTIONAL_MEMORY:
133
if (efi_soft_reserve_enabled()
134
&& (md->attribute & EFI_MEMORY_SP))
135
e820_type = E820_TYPE_SOFT_RESERVED;
136
else if (md->attribute & EFI_MEMORY_WB)
137
e820_type = E820_TYPE_RAM;
138
else
139
e820_type = E820_TYPE_RESERVED;
140
break;
141
case EFI_ACPI_RECLAIM_MEMORY:
142
e820_type = E820_TYPE_ACPI;
143
break;
144
case EFI_ACPI_MEMORY_NVS:
145
e820_type = E820_TYPE_NVS;
146
break;
147
case EFI_UNUSABLE_MEMORY:
148
e820_type = E820_TYPE_UNUSABLE;
149
break;
150
case EFI_PERSISTENT_MEMORY:
151
e820_type = E820_TYPE_PMEM;
152
break;
153
default:
154
/*
155
* EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
156
* EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
157
* EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
158
*/
159
e820_type = E820_TYPE_RESERVED;
160
break;
161
}
162
163
e820__range_add(start, size, e820_type);
164
}
165
e820__update_table(e820_table);
166
}
167
168
/*
169
* Given add_efi_memmap defaults to 0 and there is no alternative
170
* e820 mechanism for soft-reserved memory, import the full EFI memory
171
* map if soft reservations are present and enabled. Otherwise, the
172
* mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
173
* the efi=nosoftreserve option.
174
*/
175
static bool do_efi_soft_reserve(void)
176
{
177
efi_memory_desc_t *md;
178
179
if (!efi_enabled(EFI_MEMMAP))
180
return false;
181
182
if (!efi_soft_reserve_enabled())
183
return false;
184
185
for_each_efi_memory_desc(md)
186
if (md->type == EFI_CONVENTIONAL_MEMORY &&
187
(md->attribute & EFI_MEMORY_SP))
188
return true;
189
return false;
190
}
191
192
int __init efi_memblock_x86_reserve_range(void)
193
{
194
struct efi_info *e = &boot_params.efi_info;
195
struct efi_memory_map_data data;
196
phys_addr_t pmap;
197
int rv;
198
199
if (efi_enabled(EFI_PARAVIRT))
200
return 0;
201
202
/* Can't handle firmware tables above 4GB on i386 */
203
if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
204
pr_err("Memory map is above 4GB, disabling EFI.\n");
205
return -EINVAL;
206
}
207
pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
208
209
data.phys_map = pmap;
210
data.size = e->efi_memmap_size;
211
data.desc_size = e->efi_memdesc_size;
212
data.desc_version = e->efi_memdesc_version;
213
214
if (!efi_enabled(EFI_PARAVIRT)) {
215
rv = efi_memmap_init_early(&data);
216
if (rv)
217
return rv;
218
}
219
220
if (add_efi_memmap || do_efi_soft_reserve())
221
do_add_efi_memmap();
222
223
WARN(efi.memmap.desc_version != 1,
224
"Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
225
efi.memmap.desc_version);
226
227
memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
228
set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
229
230
return 0;
231
}
232
233
#define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
234
#define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
235
#define U64_HIGH_BIT (~(U64_MAX >> 1))
236
237
static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
238
{
239
u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
240
u64 end_hi = 0;
241
char buf[64];
242
243
if (md->num_pages == 0) {
244
end = 0;
245
} else if (md->num_pages > EFI_PAGES_MAX ||
246
EFI_PAGES_MAX - md->num_pages <
247
(md->phys_addr >> EFI_PAGE_SHIFT)) {
248
end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
249
>> OVERFLOW_ADDR_SHIFT;
250
251
if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
252
end_hi += 1;
253
} else {
254
return true;
255
}
256
257
pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
258
259
if (end_hi) {
260
pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
261
i, efi_md_typeattr_format(buf, sizeof(buf), md),
262
md->phys_addr, end_hi, end);
263
} else {
264
pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
265
i, efi_md_typeattr_format(buf, sizeof(buf), md),
266
md->phys_addr, end);
267
}
268
return false;
269
}
270
271
static void __init efi_clean_memmap(void)
272
{
273
efi_memory_desc_t *out = efi.memmap.map;
274
const efi_memory_desc_t *in = out;
275
const efi_memory_desc_t *end = efi.memmap.map_end;
276
int i, n_removal;
277
278
for (i = n_removal = 0; in < end; i++) {
279
if (efi_memmap_entry_valid(in, i)) {
280
if (out != in)
281
memcpy(out, in, efi.memmap.desc_size);
282
out = (void *)out + efi.memmap.desc_size;
283
} else {
284
n_removal++;
285
}
286
in = (void *)in + efi.memmap.desc_size;
287
}
288
289
if (n_removal > 0) {
290
struct efi_memory_map_data data = {
291
.phys_map = efi.memmap.phys_map,
292
.desc_version = efi.memmap.desc_version,
293
.desc_size = efi.memmap.desc_size,
294
.size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
295
.flags = 0,
296
};
297
298
pr_warn("Removing %d invalid memory map entries.\n", n_removal);
299
efi_memmap_install(&data);
300
}
301
}
302
303
/*
304
* Firmware can use EfiMemoryMappedIO to request that MMIO regions be
305
* mapped by the OS so they can be accessed by EFI runtime services, but
306
* should have no other significance to the OS (UEFI r2.10, sec 7.2).
307
* However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
308
* regions to E820_TYPE_RESERVED entries, which prevent Linux from
309
* allocating space from them (see remove_e820_regions()).
310
*
311
* Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
312
* PCI host bridge windows, which means Linux can't allocate BAR space for
313
* hot-added devices.
314
*
315
* Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
316
* problem.
317
*
318
* Retain small EfiMemoryMappedIO regions because on some platforms, these
319
* describe non-window space that's included in host bridge _CRS. If we
320
* assign that space to PCI devices, they don't work.
321
*/
322
static void __init efi_remove_e820_mmio(void)
323
{
324
efi_memory_desc_t *md;
325
u64 size, start, end;
326
int i = 0;
327
328
for_each_efi_memory_desc(md) {
329
if (md->type == EFI_MEMORY_MAPPED_IO) {
330
size = md->num_pages << EFI_PAGE_SHIFT;
331
start = md->phys_addr;
332
end = start + size - 1;
333
if (size >= 256*1024) {
334
pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
335
i, start, end, size >> 20);
336
e820__range_remove(start, size,
337
E820_TYPE_RESERVED, 1);
338
} else {
339
pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
340
i, start, end, size >> 10);
341
}
342
}
343
i++;
344
}
345
}
346
347
void __init efi_print_memmap(void)
348
{
349
efi_memory_desc_t *md;
350
int i = 0;
351
352
for_each_efi_memory_desc(md) {
353
char buf[64];
354
355
pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
356
i++, efi_md_typeattr_format(buf, sizeof(buf), md),
357
md->phys_addr,
358
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
359
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
360
}
361
}
362
363
static int __init efi_systab_init(unsigned long phys)
364
{
365
int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
366
: sizeof(efi_system_table_32_t);
367
const efi_table_hdr_t *hdr;
368
bool over4g = false;
369
void *p;
370
int ret;
371
372
hdr = p = early_memremap_ro(phys, size);
373
if (p == NULL) {
374
pr_err("Couldn't map the system table!\n");
375
return -ENOMEM;
376
}
377
378
ret = efi_systab_check_header(hdr);
379
if (ret) {
380
early_memunmap(p, size);
381
return ret;
382
}
383
384
if (efi_enabled(EFI_64BIT)) {
385
const efi_system_table_64_t *systab64 = p;
386
387
efi_runtime = systab64->runtime;
388
over4g = systab64->runtime > U32_MAX;
389
390
if (efi_setup) {
391
struct efi_setup_data *data;
392
393
data = early_memremap_ro(efi_setup, sizeof(*data));
394
if (!data) {
395
early_memunmap(p, size);
396
return -ENOMEM;
397
}
398
399
efi_fw_vendor = (unsigned long)data->fw_vendor;
400
efi_config_table = (unsigned long)data->tables;
401
402
over4g |= data->fw_vendor > U32_MAX ||
403
data->tables > U32_MAX;
404
405
early_memunmap(data, sizeof(*data));
406
} else {
407
efi_fw_vendor = systab64->fw_vendor;
408
efi_config_table = systab64->tables;
409
410
over4g |= systab64->fw_vendor > U32_MAX ||
411
systab64->tables > U32_MAX;
412
}
413
efi_nr_tables = systab64->nr_tables;
414
} else {
415
const efi_system_table_32_t *systab32 = p;
416
417
efi_fw_vendor = systab32->fw_vendor;
418
efi_runtime = systab32->runtime;
419
efi_config_table = systab32->tables;
420
efi_nr_tables = systab32->nr_tables;
421
}
422
423
efi.runtime_version = hdr->revision;
424
425
efi_systab_report_header(hdr, efi_fw_vendor);
426
early_memunmap(p, size);
427
428
if (IS_ENABLED(CONFIG_X86_32) && over4g) {
429
pr_err("EFI data located above 4GB, disabling EFI.\n");
430
return -EINVAL;
431
}
432
433
return 0;
434
}
435
436
static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
437
{
438
void *config_tables;
439
int sz, ret;
440
441
if (efi_nr_tables == 0)
442
return 0;
443
444
if (efi_enabled(EFI_64BIT))
445
sz = sizeof(efi_config_table_64_t);
446
else
447
sz = sizeof(efi_config_table_32_t);
448
449
/*
450
* Let's see what config tables the firmware passed to us.
451
*/
452
config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
453
if (config_tables == NULL) {
454
pr_err("Could not map Configuration table!\n");
455
return -ENOMEM;
456
}
457
458
ret = efi_config_parse_tables(config_tables, efi_nr_tables,
459
arch_tables);
460
461
early_memunmap(config_tables, efi_nr_tables * sz);
462
return ret;
463
}
464
465
void __init efi_init(void)
466
{
467
if (IS_ENABLED(CONFIG_X86_32) &&
468
(boot_params.efi_info.efi_systab_hi ||
469
boot_params.efi_info.efi_memmap_hi)) {
470
pr_info("Table located above 4GB, disabling EFI.\n");
471
return;
472
}
473
474
efi_systab_phys = boot_params.efi_info.efi_systab |
475
((__u64)boot_params.efi_info.efi_systab_hi << 32);
476
477
if (efi_systab_init(efi_systab_phys))
478
return;
479
480
if (efi_reuse_config(efi_config_table, efi_nr_tables))
481
return;
482
483
if (efi_config_init(arch_tables))
484
return;
485
486
/*
487
* Note: We currently don't support runtime services on an EFI
488
* that doesn't match the kernel 32/64-bit mode.
489
*/
490
491
if (!efi_runtime_supported())
492
pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
493
494
if (!efi_runtime_supported() || efi_runtime_disabled()) {
495
efi_memmap_unmap();
496
return;
497
}
498
499
set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
500
efi_clean_memmap();
501
502
efi_remove_e820_mmio();
503
504
if (efi_enabled(EFI_DBG))
505
efi_print_memmap();
506
}
507
508
/* Merge contiguous regions of the same type and attribute */
509
static void __init efi_merge_regions(void)
510
{
511
efi_memory_desc_t *md, *prev_md = NULL;
512
513
for_each_efi_memory_desc(md) {
514
u64 prev_size;
515
516
if (!prev_md) {
517
prev_md = md;
518
continue;
519
}
520
521
if (prev_md->type != md->type ||
522
prev_md->attribute != md->attribute) {
523
prev_md = md;
524
continue;
525
}
526
527
prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
528
529
if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
530
prev_md->num_pages += md->num_pages;
531
md->type = EFI_RESERVED_TYPE;
532
md->attribute = 0;
533
continue;
534
}
535
prev_md = md;
536
}
537
}
538
539
static void *realloc_pages(void *old_memmap, int old_shift)
540
{
541
void *ret;
542
543
ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
544
if (!ret)
545
goto out;
546
547
/*
548
* A first-time allocation doesn't have anything to copy.
549
*/
550
if (!old_memmap)
551
return ret;
552
553
memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
554
555
out:
556
free_pages((unsigned long)old_memmap, old_shift);
557
return ret;
558
}
559
560
/*
561
* Iterate the EFI memory map in reverse order because the regions
562
* will be mapped top-down. The end result is the same as if we had
563
* mapped things forward, but doesn't require us to change the
564
* existing implementation of efi_map_region().
565
*/
566
static inline void *efi_map_next_entry_reverse(void *entry)
567
{
568
/* Initial call */
569
if (!entry)
570
return efi.memmap.map_end - efi.memmap.desc_size;
571
572
entry -= efi.memmap.desc_size;
573
if (entry < efi.memmap.map)
574
return NULL;
575
576
return entry;
577
}
578
579
/*
580
* efi_map_next_entry - Return the next EFI memory map descriptor
581
* @entry: Previous EFI memory map descriptor
582
*
583
* This is a helper function to iterate over the EFI memory map, which
584
* we do in different orders depending on the current configuration.
585
*
586
* To begin traversing the memory map @entry must be %NULL.
587
*
588
* Returns %NULL when we reach the end of the memory map.
589
*/
590
static void *efi_map_next_entry(void *entry)
591
{
592
if (efi_enabled(EFI_64BIT)) {
593
/*
594
* Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
595
* config table feature requires us to map all entries
596
* in the same order as they appear in the EFI memory
597
* map. That is to say, entry N must have a lower
598
* virtual address than entry N+1. This is because the
599
* firmware toolchain leaves relative references in
600
* the code/data sections, which are split and become
601
* separate EFI memory regions. Mapping things
602
* out-of-order leads to the firmware accessing
603
* unmapped addresses.
604
*
605
* Since we need to map things this way whether or not
606
* the kernel actually makes use of
607
* EFI_PROPERTIES_TABLE, let's just switch to this
608
* scheme by default for 64-bit.
609
*/
610
return efi_map_next_entry_reverse(entry);
611
}
612
613
/* Initial call */
614
if (!entry)
615
return efi.memmap.map;
616
617
entry += efi.memmap.desc_size;
618
if (entry >= efi.memmap.map_end)
619
return NULL;
620
621
return entry;
622
}
623
624
static bool should_map_region(efi_memory_desc_t *md)
625
{
626
/*
627
* Runtime regions always require runtime mappings (obviously).
628
*/
629
if (md->attribute & EFI_MEMORY_RUNTIME)
630
return true;
631
632
/*
633
* 32-bit EFI doesn't suffer from the bug that requires us to
634
* reserve boot services regions, and mixed mode support
635
* doesn't exist for 32-bit kernels.
636
*/
637
if (IS_ENABLED(CONFIG_X86_32))
638
return false;
639
640
/*
641
* EFI specific purpose memory may be reserved by default
642
* depending on kernel config and boot options.
643
*/
644
if (md->type == EFI_CONVENTIONAL_MEMORY &&
645
efi_soft_reserve_enabled() &&
646
(md->attribute & EFI_MEMORY_SP))
647
return false;
648
649
/*
650
* Map all of RAM so that we can access arguments in the 1:1
651
* mapping when making EFI runtime calls.
652
*/
653
if (efi_is_mixed()) {
654
if (md->type == EFI_CONVENTIONAL_MEMORY ||
655
md->type == EFI_LOADER_DATA ||
656
md->type == EFI_LOADER_CODE)
657
return true;
658
}
659
660
/*
661
* Map boot services regions as a workaround for buggy
662
* firmware that accesses them even when they shouldn't.
663
*
664
* See efi_{reserve,free}_boot_services().
665
*/
666
if (md->type == EFI_BOOT_SERVICES_CODE ||
667
md->type == EFI_BOOT_SERVICES_DATA)
668
return true;
669
670
return false;
671
}
672
673
/*
674
* Map the efi memory ranges of the runtime services and update new_mmap with
675
* virtual addresses.
676
*/
677
static void * __init efi_map_regions(int *count, int *pg_shift)
678
{
679
void *p, *new_memmap = NULL;
680
unsigned long left = 0;
681
unsigned long desc_size;
682
efi_memory_desc_t *md;
683
684
desc_size = efi.memmap.desc_size;
685
686
p = NULL;
687
while ((p = efi_map_next_entry(p))) {
688
md = p;
689
690
if (!should_map_region(md))
691
continue;
692
693
efi_map_region(md);
694
695
if (left < desc_size) {
696
new_memmap = realloc_pages(new_memmap, *pg_shift);
697
if (!new_memmap)
698
return NULL;
699
700
left += PAGE_SIZE << *pg_shift;
701
(*pg_shift)++;
702
}
703
704
memcpy(new_memmap + (*count * desc_size), md, desc_size);
705
706
left -= desc_size;
707
(*count)++;
708
}
709
710
return new_memmap;
711
}
712
713
static void __init kexec_enter_virtual_mode(void)
714
{
715
#ifdef CONFIG_KEXEC_CORE
716
efi_memory_desc_t *md;
717
unsigned int num_pages;
718
719
/*
720
* We don't do virtual mode, since we don't do runtime services, on
721
* non-native EFI.
722
*/
723
if (efi_is_mixed()) {
724
efi_memmap_unmap();
725
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
726
return;
727
}
728
729
if (efi_alloc_page_tables()) {
730
pr_err("Failed to allocate EFI page tables\n");
731
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
732
return;
733
}
734
735
/*
736
* Map efi regions which were passed via setup_data. The virt_addr is a
737
* fixed addr which was used in first kernel of a kexec boot.
738
*/
739
for_each_efi_memory_desc(md)
740
efi_map_region_fixed(md); /* FIXME: add error handling */
741
742
/*
743
* Unregister the early EFI memmap from efi_init() and install
744
* the new EFI memory map.
745
*/
746
efi_memmap_unmap();
747
748
if (efi_memmap_init_late(efi.memmap.phys_map,
749
efi.memmap.desc_size * efi.memmap.nr_map)) {
750
pr_err("Failed to remap late EFI memory map\n");
751
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
752
return;
753
}
754
755
num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
756
num_pages >>= PAGE_SHIFT;
757
758
if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
759
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
760
return;
761
}
762
763
efi_sync_low_kernel_mappings();
764
efi_native_runtime_setup();
765
efi_runtime_update_mappings();
766
#endif
767
}
768
769
/*
770
* This function will switch the EFI runtime services to virtual mode.
771
* Essentially, we look through the EFI memmap and map every region that
772
* has the runtime attribute bit set in its memory descriptor into the
773
* efi_pgd page table.
774
*
775
* The new method does a pagetable switch in a preemption-safe manner
776
* so that we're in a different address space when calling a runtime
777
* function. For function arguments passing we do copy the PUDs of the
778
* kernel page table into efi_pgd prior to each call.
779
*
780
* Specially for kexec boot, efi runtime maps in previous kernel should
781
* be passed in via setup_data. In that case runtime ranges will be mapped
782
* to the same virtual addresses as the first kernel, see
783
* kexec_enter_virtual_mode().
784
*/
785
static void __init __efi_enter_virtual_mode(void)
786
{
787
int count = 0, pg_shift = 0;
788
void *new_memmap = NULL;
789
efi_status_t status;
790
unsigned long pa;
791
792
if (efi_alloc_page_tables()) {
793
pr_err("Failed to allocate EFI page tables\n");
794
goto err;
795
}
796
797
efi_merge_regions();
798
new_memmap = efi_map_regions(&count, &pg_shift);
799
if (!new_memmap) {
800
pr_err("Error reallocating memory, EFI runtime non-functional!\n");
801
goto err;
802
}
803
804
pa = __pa(new_memmap);
805
806
/*
807
* Unregister the early EFI memmap from efi_init() and install
808
* the new EFI memory map that we are about to pass to the
809
* firmware via SetVirtualAddressMap().
810
*/
811
efi_memmap_unmap();
812
813
if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
814
pr_err("Failed to remap late EFI memory map\n");
815
goto err;
816
}
817
818
if (efi_enabled(EFI_DBG)) {
819
pr_info("EFI runtime memory map:\n");
820
efi_print_memmap();
821
}
822
823
if (efi_setup_page_tables(pa, 1 << pg_shift))
824
goto err;
825
826
efi_sync_low_kernel_mappings();
827
828
status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
829
efi.memmap.desc_size,
830
efi.memmap.desc_version,
831
(efi_memory_desc_t *)pa,
832
efi_systab_phys);
833
if (status != EFI_SUCCESS) {
834
pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
835
status);
836
goto err;
837
}
838
839
efi_check_for_embedded_firmwares();
840
efi_free_boot_services();
841
842
if (!efi_is_mixed())
843
efi_native_runtime_setup();
844
else
845
efi_thunk_runtime_setup();
846
847
/*
848
* Apply more restrictive page table mapping attributes now that
849
* SVAM() has been called and the firmware has performed all
850
* necessary relocation fixups for the new virtual addresses.
851
*/
852
efi_runtime_update_mappings();
853
854
/* clean DUMMY object */
855
efi_delete_dummy_variable();
856
return;
857
858
err:
859
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
860
}
861
862
void __init efi_enter_virtual_mode(void)
863
{
864
if (efi_enabled(EFI_PARAVIRT))
865
return;
866
867
efi.runtime = (efi_runtime_services_t *)efi_runtime;
868
869
if (efi_setup)
870
kexec_enter_virtual_mode();
871
else
872
__efi_enter_virtual_mode();
873
874
efi_dump_pagetable();
875
}
876
877
bool efi_is_table_address(unsigned long phys_addr)
878
{
879
unsigned int i;
880
881
if (phys_addr == EFI_INVALID_TABLE_ADDR)
882
return false;
883
884
for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
885
if (*(efi_tables[i]) == phys_addr)
886
return true;
887
888
return false;
889
}
890
891
#define EFI_FIELD(var) efi_ ## var
892
893
#define EFI_ATTR_SHOW(name) \
894
static ssize_t name##_show(struct kobject *kobj, \
895
struct kobj_attribute *attr, char *buf) \
896
{ \
897
return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
898
}
899
900
EFI_ATTR_SHOW(fw_vendor);
901
EFI_ATTR_SHOW(runtime);
902
EFI_ATTR_SHOW(config_table);
903
904
struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
905
struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
906
struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
907
908
umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
909
{
910
if (attr == &efi_attr_fw_vendor.attr) {
911
if (efi_enabled(EFI_PARAVIRT) ||
912
efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
913
return 0;
914
} else if (attr == &efi_attr_runtime.attr) {
915
if (efi_runtime == EFI_INVALID_TABLE_ADDR)
916
return 0;
917
} else if (attr == &efi_attr_config_table.attr) {
918
if (efi_config_table == EFI_INVALID_TABLE_ADDR)
919
return 0;
920
}
921
return attr->mode;
922
}
923
924
enum efi_secureboot_mode __x86_ima_efi_boot_mode(void)
925
{
926
return boot_params.secure_boot;
927
}
928
929