Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/platform/efi/efi_64.c
26471 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* x86_64 specific EFI support functions
4
* Based on Extensible Firmware Interface Specification version 1.0
5
*
6
* Copyright (C) 2005-2008 Intel Co.
7
* Fenghua Yu <[email protected]>
8
* Bibo Mao <[email protected]>
9
* Chandramouli Narayanan <[email protected]>
10
* Huang Ying <[email protected]>
11
*
12
* Code to convert EFI to E820 map has been implemented in elilo bootloader
13
* based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14
* is setup appropriately for EFI runtime code.
15
* - mouli 06/14/2007.
16
*
17
*/
18
19
#define pr_fmt(fmt) "efi: " fmt
20
21
#include <linux/kernel.h>
22
#include <linux/init.h>
23
#include <linux/mm.h>
24
#include <linux/types.h>
25
#include <linux/spinlock.h>
26
#include <linux/memblock.h>
27
#include <linux/ioport.h>
28
#include <linux/mc146818rtc.h>
29
#include <linux/efi.h>
30
#include <linux/export.h>
31
#include <linux/uaccess.h>
32
#include <linux/io.h>
33
#include <linux/reboot.h>
34
#include <linux/slab.h>
35
#include <linux/ucs2_string.h>
36
#include <linux/cc_platform.h>
37
#include <linux/sched/task.h>
38
39
#include <asm/setup.h>
40
#include <asm/page.h>
41
#include <asm/e820/api.h>
42
#include <asm/tlbflush.h>
43
#include <asm/proto.h>
44
#include <asm/efi.h>
45
#include <asm/cacheflush.h>
46
#include <asm/fixmap.h>
47
#include <asm/realmode.h>
48
#include <asm/time.h>
49
#include <asm/pgalloc.h>
50
#include <asm/sev.h>
51
52
/*
53
* We allocate runtime services regions top-down, starting from -4G, i.e.
54
* 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55
*/
56
static u64 efi_va = EFI_VA_START;
57
static struct mm_struct *efi_prev_mm;
58
59
/*
60
* We need our own copy of the higher levels of the page tables
61
* because we want to avoid inserting EFI region mappings (EFI_VA_END
62
* to EFI_VA_START) into the standard kernel page tables. Everything
63
* else can be shared, see efi_sync_low_kernel_mappings().
64
*
65
* We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
66
* allocation.
67
*/
68
int __init efi_alloc_page_tables(void)
69
{
70
pgd_t *pgd, *efi_pgd;
71
p4d_t *p4d;
72
pud_t *pud;
73
gfp_t gfp_mask;
74
75
gfp_mask = GFP_KERNEL | __GFP_ZERO;
76
efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, pgd_allocation_order());
77
if (!efi_pgd)
78
goto fail;
79
80
pgd = efi_pgd + pgd_index(EFI_VA_END);
81
p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
82
if (!p4d)
83
goto free_pgd;
84
85
pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
86
if (!pud)
87
goto free_p4d;
88
89
efi_mm.pgd = efi_pgd;
90
mm_init_cpumask(&efi_mm);
91
init_new_context(NULL, &efi_mm);
92
set_notrack_mm(&efi_mm);
93
94
return 0;
95
96
free_p4d:
97
if (pgtable_l5_enabled())
98
free_page((unsigned long)pgd_page_vaddr(*pgd));
99
free_pgd:
100
free_pages((unsigned long)efi_pgd, pgd_allocation_order());
101
fail:
102
return -ENOMEM;
103
}
104
105
/*
106
* Add low kernel mappings for passing arguments to EFI functions.
107
*/
108
void efi_sync_low_kernel_mappings(void)
109
{
110
unsigned num_entries;
111
pgd_t *pgd_k, *pgd_efi;
112
p4d_t *p4d_k, *p4d_efi;
113
pud_t *pud_k, *pud_efi;
114
pgd_t *efi_pgd = efi_mm.pgd;
115
116
pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
117
pgd_k = pgd_offset_k(PAGE_OFFSET);
118
119
num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
120
memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
121
122
pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
123
pgd_k = pgd_offset_k(EFI_VA_END);
124
p4d_efi = p4d_offset(pgd_efi, 0);
125
p4d_k = p4d_offset(pgd_k, 0);
126
127
num_entries = p4d_index(EFI_VA_END);
128
memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
129
130
/*
131
* We share all the PUD entries apart from those that map the
132
* EFI regions. Copy around them.
133
*/
134
BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
135
BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
136
137
p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
138
p4d_k = p4d_offset(pgd_k, EFI_VA_END);
139
pud_efi = pud_offset(p4d_efi, 0);
140
pud_k = pud_offset(p4d_k, 0);
141
142
num_entries = pud_index(EFI_VA_END);
143
memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
144
145
pud_efi = pud_offset(p4d_efi, EFI_VA_START);
146
pud_k = pud_offset(p4d_k, EFI_VA_START);
147
148
num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
149
memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
150
}
151
152
/*
153
* Wrapper for slow_virt_to_phys() that handles NULL addresses.
154
*/
155
static inline phys_addr_t
156
virt_to_phys_or_null_size(void *va, unsigned long size)
157
{
158
phys_addr_t pa;
159
160
if (!va)
161
return 0;
162
163
if (virt_addr_valid(va))
164
return virt_to_phys(va);
165
166
pa = slow_virt_to_phys(va);
167
168
/* check if the object crosses a page boundary */
169
if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
170
return 0;
171
172
return pa;
173
}
174
175
#define virt_to_phys_or_null(addr) \
176
virt_to_phys_or_null_size((addr), sizeof(*(addr)))
177
178
int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
179
{
180
extern const u8 __efi64_thunk_ret_tramp[];
181
unsigned long pfn, text, pf, rodata, tramp;
182
struct page *page;
183
unsigned npages;
184
pgd_t *pgd = efi_mm.pgd;
185
186
/*
187
* It can happen that the physical address of new_memmap lands in memory
188
* which is not mapped in the EFI page table. Therefore we need to go
189
* and ident-map those pages containing the map before calling
190
* phys_efi_set_virtual_address_map().
191
*/
192
pfn = pa_memmap >> PAGE_SHIFT;
193
pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
194
if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
195
pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
196
return 1;
197
}
198
199
/*
200
* Certain firmware versions are way too sentimental and still believe
201
* they are exclusive and unquestionable owners of the first physical page,
202
* even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
203
* (but then write-access it later during SetVirtualAddressMap()).
204
*
205
* Create a 1:1 mapping for this page, to avoid triple faults during early
206
* boot with such firmware. We are free to hand this page to the BIOS,
207
* as trim_bios_range() will reserve the first page and isolate it away
208
* from memory allocators anyway.
209
*/
210
if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
211
pr_err("Failed to create 1:1 mapping for the first page!\n");
212
return 1;
213
}
214
215
/*
216
* When SEV-ES is active, the GHCB as set by the kernel will be used
217
* by firmware. Create a 1:1 unencrypted mapping for each GHCB.
218
*/
219
if (sev_es_efi_map_ghcbs_cas(pgd)) {
220
pr_err("Failed to create 1:1 mapping for the GHCBs and CAs!\n");
221
return 1;
222
}
223
224
/*
225
* When making calls to the firmware everything needs to be 1:1
226
* mapped and addressable with 32-bit pointers. Map the kernel
227
* text and allocate a new stack because we can't rely on the
228
* stack pointer being < 4GB.
229
*/
230
if (!efi_is_mixed())
231
return 0;
232
233
page = alloc_page(GFP_KERNEL|__GFP_DMA32);
234
if (!page) {
235
pr_err("Unable to allocate EFI runtime stack < 4GB\n");
236
return 1;
237
}
238
239
efi_mixed_mode_stack_pa = page_to_phys(page + 1); /* stack grows down */
240
241
npages = (_etext - _text) >> PAGE_SHIFT;
242
text = __pa(_text);
243
244
if (kernel_unmap_pages_in_pgd(pgd, text, npages)) {
245
pr_err("Failed to unmap kernel text 1:1 mapping\n");
246
return 1;
247
}
248
249
npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
250
rodata = __pa(__start_rodata);
251
pfn = rodata >> PAGE_SHIFT;
252
253
pf = _PAGE_NX | _PAGE_ENC;
254
if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
255
pr_err("Failed to map kernel rodata 1:1\n");
256
return 1;
257
}
258
259
tramp = __pa(__efi64_thunk_ret_tramp);
260
pfn = tramp >> PAGE_SHIFT;
261
262
pf = _PAGE_ENC;
263
if (kernel_map_pages_in_pgd(pgd, pfn, tramp, 1, pf)) {
264
pr_err("Failed to map mixed mode return trampoline\n");
265
return 1;
266
}
267
268
return 0;
269
}
270
271
static void __init __map_region(efi_memory_desc_t *md, u64 va)
272
{
273
unsigned long flags = _PAGE_RW;
274
unsigned long pfn;
275
pgd_t *pgd = efi_mm.pgd;
276
277
/*
278
* EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
279
* executable images in memory that consist of both R-X and
280
* RW- sections, so we cannot apply read-only or non-exec
281
* permissions just yet. However, modern EFI systems provide
282
* a memory attributes table that describes those sections
283
* with the appropriate restricted permissions, which are
284
* applied in efi_runtime_update_mappings() below. All other
285
* regions can be mapped non-executable at this point, with
286
* the exception of boot services code regions, but those will
287
* be unmapped again entirely in efi_free_boot_services().
288
*/
289
if (md->type != EFI_BOOT_SERVICES_CODE &&
290
md->type != EFI_RUNTIME_SERVICES_CODE)
291
flags |= _PAGE_NX;
292
293
if (!(md->attribute & EFI_MEMORY_WB))
294
flags |= _PAGE_PCD;
295
296
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) &&
297
md->type != EFI_MEMORY_MAPPED_IO)
298
flags |= _PAGE_ENC;
299
300
pfn = md->phys_addr >> PAGE_SHIFT;
301
if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
302
pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
303
md->phys_addr, va);
304
}
305
306
void __init efi_map_region(efi_memory_desc_t *md)
307
{
308
unsigned long size = md->num_pages << PAGE_SHIFT;
309
u64 pa = md->phys_addr;
310
311
/*
312
* Make sure the 1:1 mappings are present as a catch-all for b0rked
313
* firmware which doesn't update all internal pointers after switching
314
* to virtual mode and would otherwise crap on us.
315
*/
316
__map_region(md, md->phys_addr);
317
318
/*
319
* Enforce the 1:1 mapping as the default virtual address when
320
* booting in EFI mixed mode, because even though we may be
321
* running a 64-bit kernel, the firmware may only be 32-bit.
322
*/
323
if (efi_is_mixed()) {
324
md->virt_addr = md->phys_addr;
325
return;
326
}
327
328
efi_va -= size;
329
330
/* Is PA 2M-aligned? */
331
if (!(pa & (PMD_SIZE - 1))) {
332
efi_va &= PMD_MASK;
333
} else {
334
u64 pa_offset = pa & (PMD_SIZE - 1);
335
u64 prev_va = efi_va;
336
337
/* get us the same offset within this 2M page */
338
efi_va = (efi_va & PMD_MASK) + pa_offset;
339
340
if (efi_va > prev_va)
341
efi_va -= PMD_SIZE;
342
}
343
344
if (efi_va < EFI_VA_END) {
345
pr_warn(FW_WARN "VA address range overflow!\n");
346
return;
347
}
348
349
/* Do the VA map */
350
__map_region(md, efi_va);
351
md->virt_addr = efi_va;
352
}
353
354
/*
355
* kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
356
* md->virt_addr is the original virtual address which had been mapped in kexec
357
* 1st kernel.
358
*/
359
void __init efi_map_region_fixed(efi_memory_desc_t *md)
360
{
361
__map_region(md, md->phys_addr);
362
__map_region(md, md->virt_addr);
363
}
364
365
void __init parse_efi_setup(u64 phys_addr, u32 data_len)
366
{
367
efi_setup = phys_addr + sizeof(struct setup_data);
368
}
369
370
static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
371
{
372
unsigned long pfn;
373
pgd_t *pgd = efi_mm.pgd;
374
int err1, err2;
375
376
/* Update the 1:1 mapping */
377
pfn = md->phys_addr >> PAGE_SHIFT;
378
err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
379
if (err1) {
380
pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
381
md->phys_addr, md->virt_addr);
382
}
383
384
err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
385
if (err2) {
386
pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
387
md->phys_addr, md->virt_addr);
388
}
389
390
return err1 || err2;
391
}
392
393
bool efi_disable_ibt_for_runtime __ro_after_init = true;
394
395
static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md,
396
bool has_ibt)
397
{
398
unsigned long pf = 0;
399
400
efi_disable_ibt_for_runtime |= !has_ibt;
401
402
if (md->attribute & EFI_MEMORY_XP)
403
pf |= _PAGE_NX;
404
405
if (!(md->attribute & EFI_MEMORY_RO))
406
pf |= _PAGE_RW;
407
408
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
409
pf |= _PAGE_ENC;
410
411
return efi_update_mappings(md, pf);
412
}
413
414
void __init efi_runtime_update_mappings(void)
415
{
416
if (efi_enabled(EFI_MEM_ATTR)) {
417
efi_disable_ibt_for_runtime = false;
418
efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
419
}
420
}
421
422
void __init efi_dump_pagetable(void)
423
{
424
#ifdef CONFIG_EFI_PGT_DUMP
425
ptdump_walk_pgd_level(NULL, &efi_mm);
426
#endif
427
}
428
429
/*
430
* Makes the calling thread switch to/from efi_mm context. Can be used
431
* in a kernel thread and user context. Preemption needs to remain disabled
432
* while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
433
* can not change under us.
434
* It should be ensured that there are no concurrent calls to this function.
435
*/
436
static void efi_enter_mm(void)
437
{
438
efi_prev_mm = use_temporary_mm(&efi_mm);
439
}
440
441
static void efi_leave_mm(void)
442
{
443
unuse_temporary_mm(efi_prev_mm);
444
}
445
446
void arch_efi_call_virt_setup(void)
447
{
448
efi_sync_low_kernel_mappings();
449
efi_fpu_begin();
450
firmware_restrict_branch_speculation_start();
451
efi_enter_mm();
452
}
453
454
void arch_efi_call_virt_teardown(void)
455
{
456
efi_leave_mm();
457
firmware_restrict_branch_speculation_end();
458
efi_fpu_end();
459
}
460
461
static DEFINE_SPINLOCK(efi_runtime_lock);
462
463
/*
464
* DS and ES contain user values. We need to save them.
465
* The 32-bit EFI code needs a valid DS, ES, and SS. There's no
466
* need to save the old SS: __KERNEL_DS is always acceptable.
467
*/
468
#define __efi_thunk(func, ...) \
469
({ \
470
unsigned short __ds, __es; \
471
efi_status_t ____s; \
472
\
473
savesegment(ds, __ds); \
474
savesegment(es, __es); \
475
\
476
loadsegment(ss, __KERNEL_DS); \
477
loadsegment(ds, __KERNEL_DS); \
478
loadsegment(es, __KERNEL_DS); \
479
\
480
____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \
481
\
482
loadsegment(ds, __ds); \
483
loadsegment(es, __es); \
484
\
485
____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32; \
486
____s; \
487
})
488
489
/*
490
* Switch to the EFI page tables early so that we can access the 1:1
491
* runtime services mappings which are not mapped in any other page
492
* tables.
493
*
494
* Also, disable interrupts because the IDT points to 64-bit handlers,
495
* which aren't going to function correctly when we switch to 32-bit.
496
*/
497
#define efi_thunk(func...) \
498
({ \
499
efi_status_t __s; \
500
\
501
arch_efi_call_virt_setup(); \
502
\
503
__s = __efi_thunk(func); \
504
\
505
arch_efi_call_virt_teardown(); \
506
\
507
__s; \
508
})
509
510
static efi_status_t __init __no_sanitize_address
511
efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
512
unsigned long descriptor_size,
513
u32 descriptor_version,
514
efi_memory_desc_t *virtual_map)
515
{
516
efi_status_t status;
517
unsigned long flags;
518
519
efi_sync_low_kernel_mappings();
520
local_irq_save(flags);
521
522
efi_enter_mm();
523
524
status = __efi_thunk(set_virtual_address_map, memory_map_size,
525
descriptor_size, descriptor_version, virtual_map);
526
527
efi_leave_mm();
528
local_irq_restore(flags);
529
530
return status;
531
}
532
533
static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
534
{
535
return EFI_UNSUPPORTED;
536
}
537
538
static efi_status_t efi_thunk_set_time(efi_time_t *tm)
539
{
540
return EFI_UNSUPPORTED;
541
}
542
543
static efi_status_t
544
efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
545
efi_time_t *tm)
546
{
547
return EFI_UNSUPPORTED;
548
}
549
550
static efi_status_t
551
efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
552
{
553
return EFI_UNSUPPORTED;
554
}
555
556
static unsigned long efi_name_size(efi_char16_t *name)
557
{
558
return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
559
}
560
561
static efi_status_t
562
efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
563
u32 *attr, unsigned long *data_size, void *data)
564
{
565
u8 buf[24] __aligned(8);
566
efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
567
efi_status_t status;
568
u32 phys_name, phys_vendor, phys_attr;
569
u32 phys_data_size, phys_data;
570
unsigned long flags;
571
572
spin_lock_irqsave(&efi_runtime_lock, flags);
573
574
*vnd = *vendor;
575
576
phys_data_size = virt_to_phys_or_null(data_size);
577
phys_vendor = virt_to_phys_or_null(vnd);
578
phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
579
phys_attr = virt_to_phys_or_null(attr);
580
phys_data = virt_to_phys_or_null_size(data, *data_size);
581
582
if (!phys_name || (data && !phys_data))
583
status = EFI_INVALID_PARAMETER;
584
else
585
status = efi_thunk(get_variable, phys_name, phys_vendor,
586
phys_attr, phys_data_size, phys_data);
587
588
spin_unlock_irqrestore(&efi_runtime_lock, flags);
589
590
return status;
591
}
592
593
static efi_status_t
594
efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
595
u32 attr, unsigned long data_size, void *data)
596
{
597
u8 buf[24] __aligned(8);
598
efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
599
u32 phys_name, phys_vendor, phys_data;
600
efi_status_t status;
601
unsigned long flags;
602
603
spin_lock_irqsave(&efi_runtime_lock, flags);
604
605
*vnd = *vendor;
606
607
phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
608
phys_vendor = virt_to_phys_or_null(vnd);
609
phys_data = virt_to_phys_or_null_size(data, data_size);
610
611
if (!phys_name || (data && !phys_data))
612
status = EFI_INVALID_PARAMETER;
613
else
614
status = efi_thunk(set_variable, phys_name, phys_vendor,
615
attr, data_size, phys_data);
616
617
spin_unlock_irqrestore(&efi_runtime_lock, flags);
618
619
return status;
620
}
621
622
static efi_status_t
623
efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
624
u32 attr, unsigned long data_size,
625
void *data)
626
{
627
u8 buf[24] __aligned(8);
628
efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
629
u32 phys_name, phys_vendor, phys_data;
630
efi_status_t status;
631
unsigned long flags;
632
633
if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
634
return EFI_NOT_READY;
635
636
*vnd = *vendor;
637
638
phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
639
phys_vendor = virt_to_phys_or_null(vnd);
640
phys_data = virt_to_phys_or_null_size(data, data_size);
641
642
if (!phys_name || (data && !phys_data))
643
status = EFI_INVALID_PARAMETER;
644
else
645
status = efi_thunk(set_variable, phys_name, phys_vendor,
646
attr, data_size, phys_data);
647
648
spin_unlock_irqrestore(&efi_runtime_lock, flags);
649
650
return status;
651
}
652
653
static efi_status_t
654
efi_thunk_get_next_variable(unsigned long *name_size,
655
efi_char16_t *name,
656
efi_guid_t *vendor)
657
{
658
u8 buf[24] __aligned(8);
659
efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
660
efi_status_t status;
661
u32 phys_name_size, phys_name, phys_vendor;
662
unsigned long flags;
663
664
spin_lock_irqsave(&efi_runtime_lock, flags);
665
666
*vnd = *vendor;
667
668
phys_name_size = virt_to_phys_or_null(name_size);
669
phys_vendor = virt_to_phys_or_null(vnd);
670
phys_name = virt_to_phys_or_null_size(name, *name_size);
671
672
if (!phys_name)
673
status = EFI_INVALID_PARAMETER;
674
else
675
status = efi_thunk(get_next_variable, phys_name_size,
676
phys_name, phys_vendor);
677
678
spin_unlock_irqrestore(&efi_runtime_lock, flags);
679
680
*vendor = *vnd;
681
return status;
682
}
683
684
static efi_status_t
685
efi_thunk_get_next_high_mono_count(u32 *count)
686
{
687
return EFI_UNSUPPORTED;
688
}
689
690
static void
691
efi_thunk_reset_system(int reset_type, efi_status_t status,
692
unsigned long data_size, efi_char16_t *data)
693
{
694
u32 phys_data;
695
unsigned long flags;
696
697
spin_lock_irqsave(&efi_runtime_lock, flags);
698
699
phys_data = virt_to_phys_or_null_size(data, data_size);
700
701
efi_thunk(reset_system, reset_type, status, data_size, phys_data);
702
703
spin_unlock_irqrestore(&efi_runtime_lock, flags);
704
}
705
706
static efi_status_t
707
efi_thunk_update_capsule(efi_capsule_header_t **capsules,
708
unsigned long count, unsigned long sg_list)
709
{
710
/*
711
* To properly support this function we would need to repackage
712
* 'capsules' because the firmware doesn't understand 64-bit
713
* pointers.
714
*/
715
return EFI_UNSUPPORTED;
716
}
717
718
static efi_status_t
719
efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
720
u64 *remaining_space,
721
u64 *max_variable_size)
722
{
723
efi_status_t status;
724
u32 phys_storage, phys_remaining, phys_max;
725
unsigned long flags;
726
727
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
728
return EFI_UNSUPPORTED;
729
730
spin_lock_irqsave(&efi_runtime_lock, flags);
731
732
phys_storage = virt_to_phys_or_null(storage_space);
733
phys_remaining = virt_to_phys_or_null(remaining_space);
734
phys_max = virt_to_phys_or_null(max_variable_size);
735
736
status = efi_thunk(query_variable_info, attr, phys_storage,
737
phys_remaining, phys_max);
738
739
spin_unlock_irqrestore(&efi_runtime_lock, flags);
740
741
return status;
742
}
743
744
static efi_status_t
745
efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
746
u64 *remaining_space,
747
u64 *max_variable_size)
748
{
749
efi_status_t status;
750
u32 phys_storage, phys_remaining, phys_max;
751
unsigned long flags;
752
753
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
754
return EFI_UNSUPPORTED;
755
756
if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
757
return EFI_NOT_READY;
758
759
phys_storage = virt_to_phys_or_null(storage_space);
760
phys_remaining = virt_to_phys_or_null(remaining_space);
761
phys_max = virt_to_phys_or_null(max_variable_size);
762
763
status = efi_thunk(query_variable_info, attr, phys_storage,
764
phys_remaining, phys_max);
765
766
spin_unlock_irqrestore(&efi_runtime_lock, flags);
767
768
return status;
769
}
770
771
static efi_status_t
772
efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
773
unsigned long count, u64 *max_size,
774
int *reset_type)
775
{
776
/*
777
* To properly support this function we would need to repackage
778
* 'capsules' because the firmware doesn't understand 64-bit
779
* pointers.
780
*/
781
return EFI_UNSUPPORTED;
782
}
783
784
void __init efi_thunk_runtime_setup(void)
785
{
786
if (!IS_ENABLED(CONFIG_EFI_MIXED))
787
return;
788
789
efi.get_time = efi_thunk_get_time;
790
efi.set_time = efi_thunk_set_time;
791
efi.get_wakeup_time = efi_thunk_get_wakeup_time;
792
efi.set_wakeup_time = efi_thunk_set_wakeup_time;
793
efi.get_variable = efi_thunk_get_variable;
794
efi.get_next_variable = efi_thunk_get_next_variable;
795
efi.set_variable = efi_thunk_set_variable;
796
efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
797
efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
798
efi.reset_system = efi_thunk_reset_system;
799
efi.query_variable_info = efi_thunk_query_variable_info;
800
efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
801
efi.update_capsule = efi_thunk_update_capsule;
802
efi.query_capsule_caps = efi_thunk_query_capsule_caps;
803
}
804
805
efi_status_t __init __no_sanitize_address
806
efi_set_virtual_address_map(unsigned long memory_map_size,
807
unsigned long descriptor_size,
808
u32 descriptor_version,
809
efi_memory_desc_t *virtual_map,
810
unsigned long systab_phys)
811
{
812
const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
813
efi_status_t status;
814
unsigned long flags;
815
816
if (efi_is_mixed())
817
return efi_thunk_set_virtual_address_map(memory_map_size,
818
descriptor_size,
819
descriptor_version,
820
virtual_map);
821
efi_enter_mm();
822
823
efi_fpu_begin();
824
825
/* Disable interrupts around EFI calls: */
826
local_irq_save(flags);
827
status = arch_efi_call_virt(efi.runtime, set_virtual_address_map,
828
memory_map_size, descriptor_size,
829
descriptor_version, virtual_map);
830
local_irq_restore(flags);
831
832
efi_fpu_end();
833
834
/* grab the virtually remapped EFI runtime services table pointer */
835
efi.runtime = READ_ONCE(systab->runtime);
836
837
efi_leave_mm();
838
839
return status;
840
}
841
842