Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/platform/efi/memmap.c
26471 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Common EFI memory map functions.
4
*/
5
6
#define pr_fmt(fmt) "efi: " fmt
7
8
#include <linux/init.h>
9
#include <linux/kernel.h>
10
#include <linux/efi.h>
11
#include <linux/io.h>
12
#include <asm/early_ioremap.h>
13
#include <asm/efi.h>
14
#include <linux/memblock.h>
15
#include <linux/slab.h>
16
17
static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
18
{
19
return memblock_phys_alloc(size, SMP_CACHE_BYTES);
20
}
21
22
static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
23
{
24
unsigned int order = get_order(size);
25
struct page *p = alloc_pages(GFP_KERNEL, order);
26
27
if (!p)
28
return 0;
29
30
return PFN_PHYS(page_to_pfn(p));
31
}
32
33
static
34
void __init __efi_memmap_free(u64 phys, unsigned long size, unsigned long flags)
35
{
36
if (flags & EFI_MEMMAP_MEMBLOCK) {
37
if (slab_is_available())
38
memblock_free_late(phys, size);
39
else
40
memblock_phys_free(phys, size);
41
} else if (flags & EFI_MEMMAP_SLAB) {
42
struct page *p = pfn_to_page(PHYS_PFN(phys));
43
unsigned int order = get_order(size);
44
45
free_pages((unsigned long) page_address(p), order);
46
}
47
}
48
49
/**
50
* efi_memmap_alloc - Allocate memory for the EFI memory map
51
* @num_entries: Number of entries in the allocated map.
52
* @data: efi memmap installation parameters
53
*
54
* Depending on whether mm_init() has already been invoked or not,
55
* either memblock or "normal" page allocation is used.
56
*
57
* Returns zero on success, a negative error code on failure.
58
*/
59
int __init efi_memmap_alloc(unsigned int num_entries,
60
struct efi_memory_map_data *data)
61
{
62
/* Expect allocation parameters are zero initialized */
63
WARN_ON(data->phys_map || data->size);
64
65
data->size = num_entries * efi.memmap.desc_size;
66
data->desc_version = efi.memmap.desc_version;
67
data->desc_size = efi.memmap.desc_size;
68
data->flags &= ~(EFI_MEMMAP_SLAB | EFI_MEMMAP_MEMBLOCK);
69
data->flags |= efi.memmap.flags & EFI_MEMMAP_LATE;
70
71
if (slab_is_available()) {
72
data->flags |= EFI_MEMMAP_SLAB;
73
data->phys_map = __efi_memmap_alloc_late(data->size);
74
} else {
75
data->flags |= EFI_MEMMAP_MEMBLOCK;
76
data->phys_map = __efi_memmap_alloc_early(data->size);
77
}
78
79
if (!data->phys_map)
80
return -ENOMEM;
81
return 0;
82
}
83
84
/**
85
* efi_memmap_install - Install a new EFI memory map in efi.memmap
86
* @data: efi memmap installation parameters
87
*
88
* Unlike efi_memmap_init_*(), this function does not allow the caller
89
* to switch from early to late mappings. It simply uses the existing
90
* mapping function and installs the new memmap.
91
*
92
* Returns zero on success, a negative error code on failure.
93
*/
94
int __init efi_memmap_install(struct efi_memory_map_data *data)
95
{
96
unsigned long size = efi.memmap.desc_size * efi.memmap.nr_map;
97
unsigned long flags = efi.memmap.flags;
98
u64 phys = efi.memmap.phys_map;
99
int ret;
100
101
efi_memmap_unmap();
102
103
if (efi_enabled(EFI_PARAVIRT))
104
return 0;
105
106
ret = __efi_memmap_init(data);
107
if (ret)
108
return ret;
109
110
__efi_memmap_free(phys, size, flags);
111
return 0;
112
}
113
114
/**
115
* efi_memmap_split_count - Count number of additional EFI memmap entries
116
* @md: EFI memory descriptor to split
117
* @range: Address range (start, end) to split around
118
*
119
* Returns the number of additional EFI memmap entries required to
120
* accommodate @range.
121
*/
122
int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
123
{
124
u64 m_start, m_end;
125
u64 start, end;
126
int count = 0;
127
128
start = md->phys_addr;
129
end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
130
131
/* modifying range */
132
m_start = range->start;
133
m_end = range->end;
134
135
if (m_start <= start) {
136
/* split into 2 parts */
137
if (start < m_end && m_end < end)
138
count++;
139
}
140
141
if (start < m_start && m_start < end) {
142
/* split into 3 parts */
143
if (m_end < end)
144
count += 2;
145
/* split into 2 parts */
146
if (end <= m_end)
147
count++;
148
}
149
150
return count;
151
}
152
153
/**
154
* efi_memmap_insert - Insert a memory region in an EFI memmap
155
* @old_memmap: The existing EFI memory map structure
156
* @buf: Address of buffer to store new map
157
* @mem: Memory map entry to insert
158
*
159
* It is suggested that you call efi_memmap_split_count() first
160
* to see how large @buf needs to be.
161
*/
162
void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
163
struct efi_mem_range *mem)
164
{
165
u64 m_start, m_end, m_attr;
166
efi_memory_desc_t *md;
167
u64 start, end;
168
void *old, *new;
169
170
/* modifying range */
171
m_start = mem->range.start;
172
m_end = mem->range.end;
173
m_attr = mem->attribute;
174
175
/*
176
* The EFI memory map deals with regions in EFI_PAGE_SIZE
177
* units. Ensure that the region described by 'mem' is aligned
178
* correctly.
179
*/
180
if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
181
!IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
182
WARN_ON(1);
183
return;
184
}
185
186
for (old = old_memmap->map, new = buf;
187
old < old_memmap->map_end;
188
old += old_memmap->desc_size, new += old_memmap->desc_size) {
189
190
/* copy original EFI memory descriptor */
191
memcpy(new, old, old_memmap->desc_size);
192
md = new;
193
start = md->phys_addr;
194
end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
195
196
if (m_start <= start && end <= m_end)
197
md->attribute |= m_attr;
198
199
if (m_start <= start &&
200
(start < m_end && m_end < end)) {
201
/* first part */
202
md->attribute |= m_attr;
203
md->num_pages = (m_end - md->phys_addr + 1) >>
204
EFI_PAGE_SHIFT;
205
/* latter part */
206
new += old_memmap->desc_size;
207
memcpy(new, old, old_memmap->desc_size);
208
md = new;
209
md->phys_addr = m_end + 1;
210
md->num_pages = (end - md->phys_addr + 1) >>
211
EFI_PAGE_SHIFT;
212
}
213
214
if ((start < m_start && m_start < end) && m_end < end) {
215
/* first part */
216
md->num_pages = (m_start - md->phys_addr) >>
217
EFI_PAGE_SHIFT;
218
/* middle part */
219
new += old_memmap->desc_size;
220
memcpy(new, old, old_memmap->desc_size);
221
md = new;
222
md->attribute |= m_attr;
223
md->phys_addr = m_start;
224
md->num_pages = (m_end - m_start + 1) >>
225
EFI_PAGE_SHIFT;
226
/* last part */
227
new += old_memmap->desc_size;
228
memcpy(new, old, old_memmap->desc_size);
229
md = new;
230
md->phys_addr = m_end + 1;
231
md->num_pages = (end - m_end) >>
232
EFI_PAGE_SHIFT;
233
}
234
235
if ((start < m_start && m_start < end) &&
236
(end <= m_end)) {
237
/* first part */
238
md->num_pages = (m_start - md->phys_addr) >>
239
EFI_PAGE_SHIFT;
240
/* latter part */
241
new += old_memmap->desc_size;
242
memcpy(new, old, old_memmap->desc_size);
243
md = new;
244
md->phys_addr = m_start;
245
md->num_pages = (end - md->phys_addr + 1) >>
246
EFI_PAGE_SHIFT;
247
md->attribute |= m_attr;
248
}
249
}
250
}
251
252