Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/platform/efi/quirks.c
26471 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#define pr_fmt(fmt) "efi: " fmt
3
4
#include <linux/init.h>
5
#include <linux/kernel.h>
6
#include <linux/string.h>
7
#include <linux/time.h>
8
#include <linux/types.h>
9
#include <linux/efi.h>
10
#include <linux/slab.h>
11
#include <linux/memblock.h>
12
#include <linux/acpi.h>
13
#include <linux/dmi.h>
14
15
#include <asm/e820/api.h>
16
#include <asm/efi.h>
17
#include <asm/uv/uv.h>
18
#include <asm/cpu_device_id.h>
19
#include <asm/realmode.h>
20
#include <asm/reboot.h>
21
22
#define EFI_MIN_RESERVE 5120
23
24
#define EFI_DUMMY_GUID \
25
EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
26
27
#define QUARK_CSH_SIGNATURE 0x5f435348 /* _CSH */
28
#define QUARK_SECURITY_HEADER_SIZE 0x400
29
30
/*
31
* Header prepended to the standard EFI capsule on Quark systems the are based
32
* on Intel firmware BSP.
33
* @csh_signature: Unique identifier to sanity check signed module
34
* presence ("_CSH").
35
* @version: Current version of CSH used. Should be one for Quark A0.
36
* @modulesize: Size of the entire module including the module header
37
* and payload.
38
* @security_version_number_index: Index of SVN to use for validation of signed
39
* module.
40
* @security_version_number: Used to prevent against roll back of modules.
41
* @rsvd_module_id: Currently unused for Clanton (Quark).
42
* @rsvd_module_vendor: Vendor Identifier. For Intel products value is
43
* 0x00008086.
44
* @rsvd_date: BCD representation of build date as yyyymmdd, where
45
* yyyy=4 digit year, mm=1-12, dd=1-31.
46
* @headersize: Total length of the header including including any
47
* padding optionally added by the signing tool.
48
* @hash_algo: What Hash is used in the module signing.
49
* @cryp_algo: What Crypto is used in the module signing.
50
* @keysize: Total length of the key data including including any
51
* padding optionally added by the signing tool.
52
* @signaturesize: Total length of the signature including including any
53
* padding optionally added by the signing tool.
54
* @rsvd_next_header: 32-bit pointer to the next Secure Boot Module in the
55
* chain, if there is a next header.
56
* @rsvd: Reserved, padding structure to required size.
57
*
58
* See also QuartSecurityHeader_t in
59
* Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
60
* from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
61
*/
62
struct quark_security_header {
63
u32 csh_signature;
64
u32 version;
65
u32 modulesize;
66
u32 security_version_number_index;
67
u32 security_version_number;
68
u32 rsvd_module_id;
69
u32 rsvd_module_vendor;
70
u32 rsvd_date;
71
u32 headersize;
72
u32 hash_algo;
73
u32 cryp_algo;
74
u32 keysize;
75
u32 signaturesize;
76
u32 rsvd_next_header;
77
u32 rsvd[2];
78
};
79
80
static const efi_char16_t efi_dummy_name[] = L"DUMMY";
81
82
static bool efi_no_storage_paranoia;
83
84
/*
85
* Some firmware implementations refuse to boot if there's insufficient
86
* space in the variable store. The implementation of garbage collection
87
* in some FW versions causes stale (deleted) variables to take up space
88
* longer than intended and space is only freed once the store becomes
89
* almost completely full.
90
*
91
* Enabling this option disables the space checks in
92
* efi_query_variable_store() and forces garbage collection.
93
*
94
* Only enable this option if deleting EFI variables does not free up
95
* space in your variable store, e.g. if despite deleting variables
96
* you're unable to create new ones.
97
*/
98
static int __init setup_storage_paranoia(char *arg)
99
{
100
efi_no_storage_paranoia = true;
101
return 0;
102
}
103
early_param("efi_no_storage_paranoia", setup_storage_paranoia);
104
105
/*
106
* Deleting the dummy variable which kicks off garbage collection
107
*/
108
void efi_delete_dummy_variable(void)
109
{
110
efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name,
111
&EFI_DUMMY_GUID,
112
EFI_VARIABLE_NON_VOLATILE |
113
EFI_VARIABLE_BOOTSERVICE_ACCESS |
114
EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL);
115
}
116
117
u64 efivar_reserved_space(void)
118
{
119
if (efi_no_storage_paranoia)
120
return 0;
121
return EFI_MIN_RESERVE;
122
}
123
EXPORT_SYMBOL_GPL(efivar_reserved_space);
124
125
/*
126
* In the nonblocking case we do not attempt to perform garbage
127
* collection if we do not have enough free space. Rather, we do the
128
* bare minimum check and give up immediately if the available space
129
* is below EFI_MIN_RESERVE.
130
*
131
* This function is intended to be small and simple because it is
132
* invoked from crash handler paths.
133
*/
134
static efi_status_t
135
query_variable_store_nonblocking(u32 attributes, unsigned long size)
136
{
137
efi_status_t status;
138
u64 storage_size, remaining_size, max_size;
139
140
status = efi.query_variable_info_nonblocking(attributes, &storage_size,
141
&remaining_size,
142
&max_size);
143
if (status != EFI_SUCCESS)
144
return status;
145
146
if (remaining_size - size < EFI_MIN_RESERVE)
147
return EFI_OUT_OF_RESOURCES;
148
149
return EFI_SUCCESS;
150
}
151
152
/*
153
* Some firmware implementations refuse to boot if there's insufficient space
154
* in the variable store. Ensure that we never use more than a safe limit.
155
*
156
* Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
157
* store.
158
*/
159
efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
160
bool nonblocking)
161
{
162
efi_status_t status;
163
u64 storage_size, remaining_size, max_size;
164
165
if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
166
return 0;
167
168
if (nonblocking)
169
return query_variable_store_nonblocking(attributes, size);
170
171
status = efi.query_variable_info(attributes, &storage_size,
172
&remaining_size, &max_size);
173
if (status != EFI_SUCCESS)
174
return status;
175
176
/*
177
* We account for that by refusing the write if permitting it would
178
* reduce the available space to under 5KB. This figure was provided by
179
* Samsung, so should be safe.
180
*/
181
if ((remaining_size - size < EFI_MIN_RESERVE) &&
182
!efi_no_storage_paranoia) {
183
184
/*
185
* Triggering garbage collection may require that the firmware
186
* generate a real EFI_OUT_OF_RESOURCES error. We can force
187
* that by attempting to use more space than is available.
188
*/
189
unsigned long dummy_size = remaining_size + 1024;
190
void *dummy = kzalloc(dummy_size, GFP_KERNEL);
191
192
if (!dummy)
193
return EFI_OUT_OF_RESOURCES;
194
195
status = efi.set_variable((efi_char16_t *)efi_dummy_name,
196
&EFI_DUMMY_GUID,
197
EFI_VARIABLE_NON_VOLATILE |
198
EFI_VARIABLE_BOOTSERVICE_ACCESS |
199
EFI_VARIABLE_RUNTIME_ACCESS,
200
dummy_size, dummy);
201
202
if (status == EFI_SUCCESS) {
203
/*
204
* This should have failed, so if it didn't make sure
205
* that we delete it...
206
*/
207
efi_delete_dummy_variable();
208
}
209
210
kfree(dummy);
211
212
/*
213
* The runtime code may now have triggered a garbage collection
214
* run, so check the variable info again
215
*/
216
status = efi.query_variable_info(attributes, &storage_size,
217
&remaining_size, &max_size);
218
219
if (status != EFI_SUCCESS)
220
return status;
221
222
/*
223
* There still isn't enough room, so return an error
224
*/
225
if (remaining_size - size < EFI_MIN_RESERVE)
226
return EFI_OUT_OF_RESOURCES;
227
}
228
229
return EFI_SUCCESS;
230
}
231
EXPORT_SYMBOL_GPL(efi_query_variable_store);
232
233
/*
234
* The UEFI specification makes it clear that the operating system is
235
* free to do whatever it wants with boot services code after
236
* ExitBootServices() has been called. Ignoring this recommendation a
237
* significant bunch of EFI implementations continue calling into boot
238
* services code (SetVirtualAddressMap). In order to work around such
239
* buggy implementations we reserve boot services region during EFI
240
* init and make sure it stays executable. Then, after
241
* SetVirtualAddressMap(), it is discarded.
242
*
243
* However, some boot services regions contain data that is required
244
* by drivers, so we need to track which memory ranges can never be
245
* freed. This is done by tagging those regions with the
246
* EFI_MEMORY_RUNTIME attribute.
247
*
248
* Any driver that wants to mark a region as reserved must use
249
* efi_mem_reserve() which will insert a new EFI memory descriptor
250
* into efi.memmap (splitting existing regions if necessary) and tag
251
* it with EFI_MEMORY_RUNTIME.
252
*/
253
void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
254
{
255
struct efi_memory_map_data data = { 0 };
256
struct efi_mem_range mr;
257
efi_memory_desc_t md;
258
int num_entries;
259
void *new;
260
261
if (efi_mem_desc_lookup(addr, &md) ||
262
md.type != EFI_BOOT_SERVICES_DATA) {
263
pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
264
return;
265
}
266
267
if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
268
pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
269
return;
270
}
271
272
size += addr % EFI_PAGE_SIZE;
273
size = round_up(size, EFI_PAGE_SIZE);
274
addr = round_down(addr, EFI_PAGE_SIZE);
275
276
mr.range.start = addr;
277
mr.range.end = addr + size - 1;
278
mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
279
280
num_entries = efi_memmap_split_count(&md, &mr.range);
281
num_entries += efi.memmap.nr_map;
282
283
if (efi_memmap_alloc(num_entries, &data) != 0) {
284
pr_err("Could not allocate boot services memmap\n");
285
return;
286
}
287
288
new = early_memremap_prot(data.phys_map, data.size,
289
pgprot_val(pgprot_encrypted(FIXMAP_PAGE_NORMAL)));
290
if (!new) {
291
pr_err("Failed to map new boot services memmap\n");
292
return;
293
}
294
295
efi_memmap_insert(&efi.memmap, new, &mr);
296
early_memunmap(new, data.size);
297
298
efi_memmap_install(&data);
299
e820__range_update(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
300
e820__update_table(e820_table);
301
}
302
303
/*
304
* Helper function for efi_reserve_boot_services() to figure out if we
305
* can free regions in efi_free_boot_services().
306
*
307
* Use this function to ensure we do not free regions owned by somebody
308
* else. We must only reserve (and then free) regions:
309
*
310
* - Not within any part of the kernel
311
* - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
312
*/
313
static __init bool can_free_region(u64 start, u64 size)
314
{
315
if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
316
return false;
317
318
if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
319
return false;
320
321
return true;
322
}
323
324
void __init efi_reserve_boot_services(void)
325
{
326
efi_memory_desc_t *md;
327
328
if (!efi_enabled(EFI_MEMMAP))
329
return;
330
331
for_each_efi_memory_desc(md) {
332
u64 start = md->phys_addr;
333
u64 size = md->num_pages << EFI_PAGE_SHIFT;
334
bool already_reserved;
335
336
if (md->type != EFI_BOOT_SERVICES_CODE &&
337
md->type != EFI_BOOT_SERVICES_DATA)
338
continue;
339
340
already_reserved = memblock_is_region_reserved(start, size);
341
342
/*
343
* Because the following memblock_reserve() is paired
344
* with memblock_free_late() for this region in
345
* efi_free_boot_services(), we must be extremely
346
* careful not to reserve, and subsequently free,
347
* critical regions of memory (like the kernel image) or
348
* those regions that somebody else has already
349
* reserved.
350
*
351
* A good example of a critical region that must not be
352
* freed is page zero (first 4Kb of memory), which may
353
* contain boot services code/data but is marked
354
* E820_TYPE_RESERVED by trim_bios_range().
355
*/
356
if (!already_reserved) {
357
memblock_reserve(start, size);
358
359
/*
360
* If we are the first to reserve the region, no
361
* one else cares about it. We own it and can
362
* free it later.
363
*/
364
if (can_free_region(start, size))
365
continue;
366
}
367
368
/*
369
* We don't own the region. We must not free it.
370
*
371
* Setting this bit for a boot services region really
372
* doesn't make sense as far as the firmware is
373
* concerned, but it does provide us with a way to tag
374
* those regions that must not be paired with
375
* memblock_free_late().
376
*/
377
md->attribute |= EFI_MEMORY_RUNTIME;
378
}
379
}
380
381
/*
382
* Apart from having VA mappings for EFI boot services code/data regions,
383
* (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So,
384
* unmap both 1:1 and VA mappings.
385
*/
386
static void __init efi_unmap_pages(efi_memory_desc_t *md)
387
{
388
pgd_t *pgd = efi_mm.pgd;
389
u64 pa = md->phys_addr;
390
u64 va = md->virt_addr;
391
392
/*
393
* EFI mixed mode has all RAM mapped to access arguments while making
394
* EFI runtime calls, hence don't unmap EFI boot services code/data
395
* regions.
396
*/
397
if (efi_is_mixed())
398
return;
399
400
if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages))
401
pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa);
402
403
if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages))
404
pr_err("Failed to unmap VA mapping for 0x%llx\n", va);
405
}
406
407
void __init efi_free_boot_services(void)
408
{
409
struct efi_memory_map_data data = { 0 };
410
efi_memory_desc_t *md;
411
int num_entries = 0;
412
void *new, *new_md;
413
414
/* Keep all regions for /sys/kernel/debug/efi */
415
if (efi_enabled(EFI_DBG))
416
return;
417
418
for_each_efi_memory_desc(md) {
419
unsigned long long start = md->phys_addr;
420
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
421
size_t rm_size;
422
423
if (md->type != EFI_BOOT_SERVICES_CODE &&
424
md->type != EFI_BOOT_SERVICES_DATA) {
425
num_entries++;
426
continue;
427
}
428
429
/* Do not free, someone else owns it: */
430
if (md->attribute & EFI_MEMORY_RUNTIME) {
431
num_entries++;
432
continue;
433
}
434
435
/*
436
* Before calling set_virtual_address_map(), EFI boot services
437
* code/data regions were mapped as a quirk for buggy firmware.
438
* Unmap them from efi_pgd before freeing them up.
439
*/
440
efi_unmap_pages(md);
441
442
/*
443
* Nasty quirk: if all sub-1MB memory is used for boot
444
* services, we can get here without having allocated the
445
* real mode trampoline. It's too late to hand boot services
446
* memory back to the memblock allocator, so instead
447
* try to manually allocate the trampoline if needed.
448
*
449
* I've seen this on a Dell XPS 13 9350 with firmware
450
* 1.4.4 with SGX enabled booting Linux via Fedora 24's
451
* grub2-efi on a hard disk. (And no, I don't know why
452
* this happened, but Linux should still try to boot rather
453
* panicking early.)
454
*/
455
rm_size = real_mode_size_needed();
456
if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
457
set_real_mode_mem(start);
458
start += rm_size;
459
size -= rm_size;
460
}
461
462
/*
463
* Don't free memory under 1M for two reasons:
464
* - BIOS might clobber it
465
* - Crash kernel needs it to be reserved
466
*/
467
if (start + size < SZ_1M)
468
continue;
469
if (start < SZ_1M) {
470
size -= (SZ_1M - start);
471
start = SZ_1M;
472
}
473
474
memblock_free_late(start, size);
475
}
476
477
if (!num_entries)
478
return;
479
480
if (efi_memmap_alloc(num_entries, &data) != 0) {
481
pr_err("Failed to allocate new EFI memmap\n");
482
return;
483
}
484
485
new = memremap(data.phys_map, data.size, MEMREMAP_WB);
486
if (!new) {
487
pr_err("Failed to map new EFI memmap\n");
488
return;
489
}
490
491
/*
492
* Build a new EFI memmap that excludes any boot services
493
* regions that are not tagged EFI_MEMORY_RUNTIME, since those
494
* regions have now been freed.
495
*/
496
new_md = new;
497
for_each_efi_memory_desc(md) {
498
if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
499
(md->type == EFI_BOOT_SERVICES_CODE ||
500
md->type == EFI_BOOT_SERVICES_DATA))
501
continue;
502
503
memcpy(new_md, md, efi.memmap.desc_size);
504
new_md += efi.memmap.desc_size;
505
}
506
507
memunmap(new);
508
509
if (efi_memmap_install(&data) != 0) {
510
pr_err("Could not install new EFI memmap\n");
511
return;
512
}
513
}
514
515
/*
516
* A number of config table entries get remapped to virtual addresses
517
* after entering EFI virtual mode. However, the kexec kernel requires
518
* their physical addresses therefore we pass them via setup_data and
519
* correct those entries to their respective physical addresses here.
520
*
521
* Currently only handles smbios which is necessary for some firmware
522
* implementation.
523
*/
524
int __init efi_reuse_config(u64 tables, int nr_tables)
525
{
526
int i, sz, ret = 0;
527
void *p, *tablep;
528
struct efi_setup_data *data;
529
530
if (nr_tables == 0)
531
return 0;
532
533
if (!efi_setup)
534
return 0;
535
536
if (!efi_enabled(EFI_64BIT))
537
return 0;
538
539
data = early_memremap(efi_setup, sizeof(*data));
540
if (!data) {
541
ret = -ENOMEM;
542
goto out;
543
}
544
545
if (!data->smbios)
546
goto out_memremap;
547
548
sz = sizeof(efi_config_table_64_t);
549
550
p = tablep = early_memremap(tables, nr_tables * sz);
551
if (!p) {
552
pr_err("Could not map Configuration table!\n");
553
ret = -ENOMEM;
554
goto out_memremap;
555
}
556
557
for (i = 0; i < nr_tables; i++) {
558
efi_guid_t guid;
559
560
guid = ((efi_config_table_64_t *)p)->guid;
561
562
if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
563
((efi_config_table_64_t *)p)->table = data->smbios;
564
565
/* Do not bother to play with mem attr table across kexec */
566
if (!efi_guidcmp(guid, EFI_MEMORY_ATTRIBUTES_TABLE_GUID))
567
((efi_config_table_64_t *)p)->table = EFI_INVALID_TABLE_ADDR;
568
569
p += sz;
570
}
571
early_memunmap(tablep, nr_tables * sz);
572
573
out_memremap:
574
early_memunmap(data, sizeof(*data));
575
out:
576
return ret;
577
}
578
579
void __init efi_apply_memmap_quirks(void)
580
{
581
/*
582
* Once setup is done earlier, unmap the EFI memory map on mismatched
583
* firmware/kernel architectures since there is no support for runtime
584
* services.
585
*/
586
if (!efi_runtime_supported()) {
587
pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
588
efi_memmap_unmap();
589
}
590
}
591
592
/*
593
* For most modern platforms the preferred method of powering off is via
594
* ACPI. However, there are some that are known to require the use of
595
* EFI runtime services and for which ACPI does not work at all.
596
*
597
* Using EFI is a last resort, to be used only if no other option
598
* exists.
599
*/
600
bool efi_reboot_required(void)
601
{
602
if (!acpi_gbl_reduced_hardware)
603
return false;
604
605
efi_reboot_quirk_mode = EFI_RESET_WARM;
606
return true;
607
}
608
609
bool efi_poweroff_required(void)
610
{
611
return acpi_gbl_reduced_hardware || acpi_no_s5;
612
}
613
614
#ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
615
616
static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
617
size_t hdr_bytes)
618
{
619
struct quark_security_header *csh = *pkbuff;
620
621
/* Only process data block that is larger than the security header */
622
if (hdr_bytes < sizeof(struct quark_security_header))
623
return 0;
624
625
if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
626
csh->headersize != QUARK_SECURITY_HEADER_SIZE)
627
return 1;
628
629
/* Only process data block if EFI header is included */
630
if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
631
sizeof(efi_capsule_header_t))
632
return 0;
633
634
pr_debug("Quark security header detected\n");
635
636
if (csh->rsvd_next_header != 0) {
637
pr_err("multiple Quark security headers not supported\n");
638
return -EINVAL;
639
}
640
641
*pkbuff += csh->headersize;
642
cap_info->total_size = csh->headersize;
643
644
/*
645
* Update the first page pointer to skip over the CSH header.
646
*/
647
cap_info->phys[0] += csh->headersize;
648
649
/*
650
* cap_info->capsule should point at a virtual mapping of the entire
651
* capsule, starting at the capsule header. Our image has the Quark
652
* security header prepended, so we cannot rely on the default vmap()
653
* mapping created by the generic capsule code.
654
* Given that the Quark firmware does not appear to care about the
655
* virtual mapping, let's just point cap_info->capsule at our copy
656
* of the capsule header.
657
*/
658
cap_info->capsule = &cap_info->header;
659
660
return 1;
661
}
662
663
static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
664
X86_MATCH_VFM(INTEL_QUARK_X1000, &qrk_capsule_setup_info),
665
{ }
666
};
667
668
int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
669
size_t hdr_bytes)
670
{
671
int (*quirk_handler)(struct capsule_info *, void **, size_t);
672
const struct x86_cpu_id *id;
673
int ret;
674
675
if (hdr_bytes < sizeof(efi_capsule_header_t))
676
return 0;
677
678
cap_info->total_size = 0;
679
680
id = x86_match_cpu(efi_capsule_quirk_ids);
681
if (id) {
682
/*
683
* The quirk handler is supposed to return
684
* - a value > 0 if the setup should continue, after advancing
685
* kbuff as needed
686
* - 0 if not enough hdr_bytes are available yet
687
* - a negative error code otherwise
688
*/
689
quirk_handler = (typeof(quirk_handler))id->driver_data;
690
ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
691
if (ret <= 0)
692
return ret;
693
}
694
695
memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));
696
697
cap_info->total_size += cap_info->header.imagesize;
698
699
return __efi_capsule_setup_info(cap_info);
700
}
701
702
#endif
703
704
/*
705
* If any access by any efi runtime service causes a page fault, then,
706
* 1. If it's efi_reset_system(), reboot through BIOS.
707
* 2. If any other efi runtime service, then
708
* a. Return error status to the efi caller process.
709
* b. Disable EFI Runtime Services forever and
710
* c. Freeze efi_rts_wq and schedule new process.
711
*
712
* @return: Returns, if the page fault is not handled. This function
713
* will never return if the page fault is handled successfully.
714
*/
715
void efi_crash_gracefully_on_page_fault(unsigned long phys_addr)
716
{
717
if (!IS_ENABLED(CONFIG_X86_64))
718
return;
719
720
/*
721
* If we get an interrupt/NMI while processing an EFI runtime service
722
* then this is a regular OOPS, not an EFI failure.
723
*/
724
if (in_interrupt())
725
return;
726
727
/*
728
* Make sure that an efi runtime service caused the page fault.
729
* READ_ONCE() because we might be OOPSing in a different thread,
730
* and we don't want to trip KTSAN while trying to OOPS.
731
*/
732
if (READ_ONCE(efi_rts_work.efi_rts_id) == EFI_NONE ||
733
current_work() != &efi_rts_work.work)
734
return;
735
736
/*
737
* Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so
738
* page faulting on these addresses isn't expected.
739
*/
740
if (phys_addr <= 0x0fff)
741
return;
742
743
/*
744
* Print stack trace as it might be useful to know which EFI Runtime
745
* Service is buggy.
746
*/
747
WARN(1, FW_BUG "Page fault caused by firmware at PA: 0x%lx\n",
748
phys_addr);
749
750
/*
751
* Buggy efi_reset_system() is handled differently from other EFI
752
* Runtime Services as it doesn't use efi_rts_wq. Although,
753
* native_machine_emergency_restart() says that machine_real_restart()
754
* could fail, it's better not to complicate this fault handler
755
* because this case occurs *very* rarely and hence could be improved
756
* on a need by basis.
757
*/
758
if (efi_rts_work.efi_rts_id == EFI_RESET_SYSTEM) {
759
pr_info("efi_reset_system() buggy! Reboot through BIOS\n");
760
machine_real_restart(MRR_BIOS);
761
return;
762
}
763
764
/*
765
* Before calling EFI Runtime Service, the kernel has switched the
766
* calling process to efi_mm. Hence, switch back to task_mm.
767
*/
768
arch_efi_call_virt_teardown();
769
770
/* Signal error status to the efi caller process */
771
efi_rts_work.status = EFI_ABORTED;
772
complete(&efi_rts_work.efi_rts_comp);
773
774
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
775
pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n");
776
777
/*
778
* Call schedule() in an infinite loop, so that any spurious wake ups
779
* will never run efi_rts_wq again.
780
*/
781
for (;;) {
782
set_current_state(TASK_IDLE);
783
schedule();
784
}
785
}
786
787