Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/platform/intel-quark/imr.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* imr.c -- Intel Isolated Memory Region driver
4
*
5
* Copyright(c) 2013 Intel Corporation.
6
* Copyright(c) 2015 Bryan O'Donoghue <[email protected]>
7
*
8
* IMR registers define an isolated region of memory that can
9
* be masked to prohibit certain system agents from accessing memory.
10
* When a device behind a masked port performs an access - snooped or
11
* not, an IMR may optionally prevent that transaction from changing
12
* the state of memory or from getting correct data in response to the
13
* operation.
14
*
15
* Write data will be dropped and reads will return 0xFFFFFFFF, the
16
* system will reset and system BIOS will print out an error message to
17
* inform the user that an IMR has been violated.
18
*
19
* This code is based on the Linux MTRR code and reference code from
20
* Intel's Quark BSP EFI, Linux and grub code.
21
*
22
* See quark-x1000-datasheet.pdf for register definitions.
23
* http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
24
*/
25
26
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28
#include <asm-generic/sections.h>
29
#include <asm/cpu_device_id.h>
30
#include <asm/imr.h>
31
#include <asm/iosf_mbi.h>
32
#include <asm/io.h>
33
34
#include <linux/debugfs.h>
35
#include <linux/init.h>
36
#include <linux/mm.h>
37
#include <linux/types.h>
38
39
struct imr_device {
40
bool init;
41
struct mutex lock;
42
int max_imr;
43
int reg_base;
44
};
45
46
static struct imr_device imr_dev;
47
48
/*
49
* IMR read/write mask control registers.
50
* See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
51
* bit definitions.
52
*
53
* addr_hi
54
* 31 Lock bit
55
* 30:24 Reserved
56
* 23:2 1 KiB aligned lo address
57
* 1:0 Reserved
58
*
59
* addr_hi
60
* 31:24 Reserved
61
* 23:2 1 KiB aligned hi address
62
* 1:0 Reserved
63
*/
64
#define IMR_LOCK BIT(31)
65
66
struct imr_regs {
67
u32 addr_lo;
68
u32 addr_hi;
69
u32 rmask;
70
u32 wmask;
71
};
72
73
#define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32))
74
#define IMR_SHIFT 8
75
#define imr_to_phys(x) ((x) << IMR_SHIFT)
76
#define phys_to_imr(x) ((x) >> IMR_SHIFT)
77
78
/**
79
* imr_is_enabled - true if an IMR is enabled false otherwise.
80
*
81
* Determines if an IMR is enabled based on address range and read/write
82
* mask. An IMR set with an address range set to zero and a read/write
83
* access mask set to all is considered to be disabled. An IMR in any
84
* other state - for example set to zero but without read/write access
85
* all is considered to be enabled. This definition of disabled is how
86
* firmware switches off an IMR and is maintained in kernel for
87
* consistency.
88
*
89
* @imr: pointer to IMR descriptor.
90
* @return: true if IMR enabled false if disabled.
91
*/
92
static inline int imr_is_enabled(struct imr_regs *imr)
93
{
94
return !(imr->rmask == IMR_READ_ACCESS_ALL &&
95
imr->wmask == IMR_WRITE_ACCESS_ALL &&
96
imr_to_phys(imr->addr_lo) == 0 &&
97
imr_to_phys(imr->addr_hi) == 0);
98
}
99
100
/**
101
* imr_read - read an IMR at a given index.
102
*
103
* Requires caller to hold imr mutex.
104
*
105
* @idev: pointer to imr_device structure.
106
* @imr_id: IMR entry to read.
107
* @imr: IMR structure representing address and access masks.
108
* @return: 0 on success or error code passed from mbi_iosf on failure.
109
*/
110
static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
111
{
112
u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
113
int ret;
114
115
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
116
if (ret)
117
return ret;
118
119
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
120
if (ret)
121
return ret;
122
123
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
124
if (ret)
125
return ret;
126
127
return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
128
}
129
130
/**
131
* imr_write - write an IMR at a given index.
132
*
133
* Requires caller to hold imr mutex.
134
* Note lock bits need to be written independently of address bits.
135
*
136
* @idev: pointer to imr_device structure.
137
* @imr_id: IMR entry to write.
138
* @imr: IMR structure representing address and access masks.
139
* @return: 0 on success or error code passed from mbi_iosf on failure.
140
*/
141
static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
142
{
143
unsigned long flags;
144
u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
145
int ret;
146
147
local_irq_save(flags);
148
149
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
150
if (ret)
151
goto failed;
152
153
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
154
if (ret)
155
goto failed;
156
157
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
158
if (ret)
159
goto failed;
160
161
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
162
if (ret)
163
goto failed;
164
165
local_irq_restore(flags);
166
return 0;
167
failed:
168
/*
169
* If writing to the IOSF failed then we're in an unknown state,
170
* likely a very bad state. An IMR in an invalid state will almost
171
* certainly lead to a memory access violation.
172
*/
173
local_irq_restore(flags);
174
WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
175
imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
176
177
return ret;
178
}
179
180
/**
181
* imr_dbgfs_state_show - print state of IMR registers.
182
*
183
* @s: pointer to seq_file for output.
184
* @unused: unused parameter.
185
* @return: 0 on success or error code passed from mbi_iosf on failure.
186
*/
187
static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
188
{
189
phys_addr_t base;
190
phys_addr_t end;
191
int i;
192
struct imr_device *idev = s->private;
193
struct imr_regs imr;
194
size_t size;
195
int ret = -ENODEV;
196
197
mutex_lock(&idev->lock);
198
199
for (i = 0; i < idev->max_imr; i++) {
200
201
ret = imr_read(idev, i, &imr);
202
if (ret)
203
break;
204
205
/*
206
* Remember to add IMR_ALIGN bytes to size to indicate the
207
* inherent IMR_ALIGN size bytes contained in the masked away
208
* lower ten bits.
209
*/
210
if (imr_is_enabled(&imr)) {
211
base = imr_to_phys(imr.addr_lo);
212
end = imr_to_phys(imr.addr_hi) + IMR_MASK;
213
size = end - base + 1;
214
} else {
215
base = 0;
216
end = 0;
217
size = 0;
218
}
219
seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
220
"rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
221
&base, &end, size, imr.rmask, imr.wmask,
222
imr_is_enabled(&imr) ? "enabled " : "disabled",
223
imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
224
}
225
226
mutex_unlock(&idev->lock);
227
return ret;
228
}
229
DEFINE_SHOW_ATTRIBUTE(imr_dbgfs_state);
230
231
/**
232
* imr_debugfs_register - register debugfs hooks.
233
*
234
* @idev: pointer to imr_device structure.
235
*/
236
static void imr_debugfs_register(struct imr_device *idev)
237
{
238
debugfs_create_file("imr_state", 0444, NULL, idev,
239
&imr_dbgfs_state_fops);
240
}
241
242
/**
243
* imr_check_params - check passed address range IMR alignment and non-zero size
244
*
245
* @base: base address of intended IMR.
246
* @size: size of intended IMR.
247
* @return: zero on valid range -EINVAL on unaligned base/size.
248
*/
249
static int imr_check_params(phys_addr_t base, size_t size)
250
{
251
if ((base & IMR_MASK) || (size & IMR_MASK)) {
252
pr_err("base %pa size 0x%08zx must align to 1KiB\n",
253
&base, size);
254
return -EINVAL;
255
}
256
if (size == 0)
257
return -EINVAL;
258
259
return 0;
260
}
261
262
/**
263
* imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
264
*
265
* IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
266
* value in the register. We need to subtract IMR_ALIGN bytes from input sizes
267
* as a result.
268
*
269
* @size: input size bytes.
270
* @return: reduced size.
271
*/
272
static inline size_t imr_raw_size(size_t size)
273
{
274
return size - IMR_ALIGN;
275
}
276
277
/**
278
* imr_address_overlap - detects an address overlap.
279
*
280
* @addr: address to check against an existing IMR.
281
* @imr: imr being checked.
282
* @return: true for overlap false for no overlap.
283
*/
284
static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
285
{
286
return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
287
}
288
289
/**
290
* imr_add_range - add an Isolated Memory Region.
291
*
292
* @base: physical base address of region aligned to 1KiB.
293
* @size: physical size of region in bytes must be aligned to 1KiB.
294
* @read_mask: read access mask.
295
* @write_mask: write access mask.
296
* @return: zero on success or negative value indicating error.
297
*/
298
int imr_add_range(phys_addr_t base, size_t size,
299
unsigned int rmask, unsigned int wmask)
300
{
301
phys_addr_t end;
302
unsigned int i;
303
struct imr_device *idev = &imr_dev;
304
struct imr_regs imr;
305
size_t raw_size;
306
int reg;
307
int ret;
308
309
if (WARN_ONCE(idev->init == false, "driver not initialized"))
310
return -ENODEV;
311
312
ret = imr_check_params(base, size);
313
if (ret)
314
return ret;
315
316
/* Tweak the size value. */
317
raw_size = imr_raw_size(size);
318
end = base + raw_size;
319
320
/*
321
* Check for reserved IMR value common to firmware, kernel and grub
322
* indicating a disabled IMR.
323
*/
324
imr.addr_lo = phys_to_imr(base);
325
imr.addr_hi = phys_to_imr(end);
326
imr.rmask = rmask;
327
imr.wmask = wmask;
328
if (!imr_is_enabled(&imr))
329
return -ENOTSUPP;
330
331
mutex_lock(&idev->lock);
332
333
/*
334
* Find a free IMR while checking for an existing overlapping range.
335
* Note there's no restriction in silicon to prevent IMR overlaps.
336
* For the sake of simplicity and ease in defining/debugging an IMR
337
* memory map we exclude IMR overlaps.
338
*/
339
reg = -1;
340
for (i = 0; i < idev->max_imr; i++) {
341
ret = imr_read(idev, i, &imr);
342
if (ret)
343
goto failed;
344
345
/* Find overlap @ base or end of requested range. */
346
ret = -EINVAL;
347
if (imr_is_enabled(&imr)) {
348
if (imr_address_overlap(base, &imr))
349
goto failed;
350
if (imr_address_overlap(end, &imr))
351
goto failed;
352
} else {
353
reg = i;
354
}
355
}
356
357
/* Error out if we have no free IMR entries. */
358
if (reg == -1) {
359
ret = -ENOMEM;
360
goto failed;
361
}
362
363
pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
364
reg, &base, &end, raw_size, rmask, wmask);
365
366
/* Enable IMR at specified range and access mask. */
367
imr.addr_lo = phys_to_imr(base);
368
imr.addr_hi = phys_to_imr(end);
369
imr.rmask = rmask;
370
imr.wmask = wmask;
371
372
ret = imr_write(idev, reg, &imr);
373
if (ret < 0) {
374
/*
375
* In the highly unlikely event iosf_mbi_write failed
376
* attempt to rollback the IMR setup skipping the trapping
377
* of further IOSF write failures.
378
*/
379
imr.addr_lo = 0;
380
imr.addr_hi = 0;
381
imr.rmask = IMR_READ_ACCESS_ALL;
382
imr.wmask = IMR_WRITE_ACCESS_ALL;
383
imr_write(idev, reg, &imr);
384
}
385
failed:
386
mutex_unlock(&idev->lock);
387
return ret;
388
}
389
EXPORT_SYMBOL_GPL(imr_add_range);
390
391
/**
392
* __imr_remove_range - delete an Isolated Memory Region.
393
*
394
* This function allows you to delete an IMR by its index specified by reg or
395
* by address range specified by base and size respectively. If you specify an
396
* index on its own the base and size parameters are ignored.
397
* imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
398
* imr_remove_range(-1, base, size); delete IMR from base to base+size.
399
*
400
* @reg: imr index to remove.
401
* @base: physical base address of region aligned to 1 KiB.
402
* @size: physical size of region in bytes aligned to 1 KiB.
403
* @return: -EINVAL on invalid range or out or range id
404
* -ENODEV if reg is valid but no IMR exists or is locked
405
* 0 on success.
406
*/
407
static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
408
{
409
phys_addr_t end;
410
bool found = false;
411
unsigned int i;
412
struct imr_device *idev = &imr_dev;
413
struct imr_regs imr;
414
size_t raw_size;
415
int ret = 0;
416
417
if (WARN_ONCE(idev->init == false, "driver not initialized"))
418
return -ENODEV;
419
420
/*
421
* Validate address range if deleting by address, else we are
422
* deleting by index where base and size will be ignored.
423
*/
424
if (reg == -1) {
425
ret = imr_check_params(base, size);
426
if (ret)
427
return ret;
428
}
429
430
/* Tweak the size value. */
431
raw_size = imr_raw_size(size);
432
end = base + raw_size;
433
434
mutex_lock(&idev->lock);
435
436
if (reg >= 0) {
437
/* If a specific IMR is given try to use it. */
438
ret = imr_read(idev, reg, &imr);
439
if (ret)
440
goto failed;
441
442
if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
443
ret = -ENODEV;
444
goto failed;
445
}
446
found = true;
447
} else {
448
/* Search for match based on address range. */
449
for (i = 0; i < idev->max_imr; i++) {
450
ret = imr_read(idev, i, &imr);
451
if (ret)
452
goto failed;
453
454
if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
455
continue;
456
457
if ((imr_to_phys(imr.addr_lo) == base) &&
458
(imr_to_phys(imr.addr_hi) == end)) {
459
found = true;
460
reg = i;
461
break;
462
}
463
}
464
}
465
466
if (!found) {
467
ret = -ENODEV;
468
goto failed;
469
}
470
471
pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
472
473
/* Tear down the IMR. */
474
imr.addr_lo = 0;
475
imr.addr_hi = 0;
476
imr.rmask = IMR_READ_ACCESS_ALL;
477
imr.wmask = IMR_WRITE_ACCESS_ALL;
478
479
ret = imr_write(idev, reg, &imr);
480
481
failed:
482
mutex_unlock(&idev->lock);
483
return ret;
484
}
485
486
/**
487
* imr_remove_range - delete an Isolated Memory Region by address
488
*
489
* This function allows you to delete an IMR by an address range specified
490
* by base and size respectively.
491
* imr_remove_range(base, size); delete IMR from base to base+size.
492
*
493
* @base: physical base address of region aligned to 1 KiB.
494
* @size: physical size of region in bytes aligned to 1 KiB.
495
* @return: -EINVAL on invalid range or out or range id
496
* -ENODEV if reg is valid but no IMR exists or is locked
497
* 0 on success.
498
*/
499
int imr_remove_range(phys_addr_t base, size_t size)
500
{
501
return __imr_remove_range(-1, base, size);
502
}
503
EXPORT_SYMBOL_GPL(imr_remove_range);
504
505
/**
506
* imr_clear - delete an Isolated Memory Region by index
507
*
508
* This function allows you to delete an IMR by an address range specified
509
* by the index of the IMR. Useful for initial sanitization of the IMR
510
* address map.
511
* imr_ge(base, size); delete IMR from base to base+size.
512
*
513
* @reg: imr index to remove.
514
* @return: -EINVAL on invalid range or out or range id
515
* -ENODEV if reg is valid but no IMR exists or is locked
516
* 0 on success.
517
*/
518
static inline int imr_clear(int reg)
519
{
520
return __imr_remove_range(reg, 0, 0);
521
}
522
523
/**
524
* imr_fixup_memmap - Tear down IMRs used during bootup.
525
*
526
* BIOS and Grub both setup IMRs around compressed kernel, initrd memory
527
* that need to be removed before the kernel hands out one of the IMR
528
* encased addresses to a downstream DMA agent such as the SD or Ethernet.
529
* IMRs on Galileo are setup to immediately reset the system on violation.
530
* As a result if you're running a root filesystem from SD - you'll need
531
* the boot-time IMRs torn down or you'll find seemingly random resets when
532
* using your filesystem.
533
*
534
* @idev: pointer to imr_device structure.
535
* @return:
536
*/
537
static void __init imr_fixup_memmap(struct imr_device *idev)
538
{
539
phys_addr_t base = virt_to_phys(&_text);
540
size_t size = virt_to_phys(&__end_rodata) - base;
541
unsigned long start, end;
542
int i;
543
int ret;
544
545
/* Tear down all existing unlocked IMRs. */
546
for (i = 0; i < idev->max_imr; i++)
547
imr_clear(i);
548
549
start = (unsigned long)_text;
550
end = (unsigned long)__end_rodata - 1;
551
552
/*
553
* Setup an unlocked IMR around the physical extent of the kernel
554
* from the beginning of the .text section to the end of the
555
* .rodata section as one physically contiguous block.
556
*
557
* We don't round up @size since it is already PAGE_SIZE aligned.
558
* See vmlinux.lds.S for details.
559
*/
560
ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
561
if (ret < 0) {
562
pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
563
size / 1024, start, end);
564
} else {
565
pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
566
size / 1024, start, end);
567
}
568
569
}
570
571
static const struct x86_cpu_id imr_ids[] __initconst = {
572
X86_MATCH_VFM(INTEL_QUARK_X1000, NULL),
573
{}
574
};
575
576
/**
577
* imr_init - entry point for IMR driver.
578
*
579
* return: -ENODEV for no IMR support 0 if good to go.
580
*/
581
static int __init imr_init(void)
582
{
583
struct imr_device *idev = &imr_dev;
584
585
if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
586
return -ENODEV;
587
588
idev->max_imr = QUARK_X1000_IMR_MAX;
589
idev->reg_base = QUARK_X1000_IMR_REGBASE;
590
idev->init = true;
591
592
mutex_init(&idev->lock);
593
imr_debugfs_register(idev);
594
imr_fixup_memmap(idev);
595
return 0;
596
}
597
device_initcall(imr_init);
598
599