Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/platform/uv/uv_nmi.c
26471 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* SGI NMI support routines
4
*
5
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
6
* Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
7
* Copyright (c) Mike Travis
8
*/
9
10
#include <linux/cpu.h>
11
#include <linux/delay.h>
12
#include <linux/kdb.h>
13
#include <linux/kexec.h>
14
#include <linux/kgdb.h>
15
#include <linux/moduleparam.h>
16
#include <linux/nmi.h>
17
#include <linux/sched.h>
18
#include <linux/sched/debug.h>
19
#include <linux/slab.h>
20
#include <linux/string.h>
21
#include <linux/clocksource.h>
22
23
#include <asm/apic.h>
24
#include <asm/current.h>
25
#include <asm/kdebug.h>
26
#include <asm/local64.h>
27
#include <asm/nmi.h>
28
#include <asm/reboot.h>
29
#include <asm/traps.h>
30
#include <asm/uv/uv.h>
31
#include <asm/uv/uv_hub.h>
32
#include <asm/uv/uv_mmrs.h>
33
34
/*
35
* UV handler for NMI
36
*
37
* Handle system-wide NMI events generated by the global 'power nmi' command.
38
*
39
* Basic operation is to field the NMI interrupt on each CPU and wait
40
* until all CPU's have arrived into the nmi handler. If some CPU's do not
41
* make it into the handler, try and force them in with the IPI(NMI) signal.
42
*
43
* We also have to lessen UV Hub MMR accesses as much as possible as this
44
* disrupts the UV Hub's primary mission of directing NumaLink traffic and
45
* can cause system problems to occur.
46
*
47
* To do this we register our primary NMI notifier on the NMI_UNKNOWN
48
* chain. This reduces the number of false NMI calls when the perf
49
* tools are running which generate an enormous number of NMIs per
50
* second (~4M/s for 1024 CPU threads). Our secondary NMI handler is
51
* very short as it only checks that if it has been "pinged" with the
52
* IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
53
*
54
*/
55
56
static struct uv_hub_nmi_s **uv_hub_nmi_list;
57
58
DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
59
60
/* Newer SMM NMI handler, not present in all systems */
61
static unsigned long uvh_nmi_mmrx; /* UVH_EVENT_OCCURRED0/1 */
62
static unsigned long uvh_nmi_mmrx_clear; /* UVH_EVENT_OCCURRED0/1_ALIAS */
63
static int uvh_nmi_mmrx_shift; /* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */
64
static char *uvh_nmi_mmrx_type; /* "EXTIO_INT0" */
65
66
/* Non-zero indicates newer SMM NMI handler present */
67
static unsigned long uvh_nmi_mmrx_supported; /* UVH_EXTIO_INT0_BROADCAST */
68
69
/* Indicates to BIOS that we want to use the newer SMM NMI handler */
70
static unsigned long uvh_nmi_mmrx_req; /* UVH_BIOS_KERNEL_MMR_ALIAS_2 */
71
static int uvh_nmi_mmrx_req_shift; /* 62 */
72
73
/* UV hubless values */
74
#define NMI_CONTROL_PORT 0x70
75
#define NMI_DUMMY_PORT 0x71
76
#define PAD_OWN_GPP_D_0 0x2c
77
#define GPI_NMI_STS_GPP_D_0 0x164
78
#define GPI_NMI_ENA_GPP_D_0 0x174
79
#define STS_GPP_D_0_MASK 0x1
80
#define PAD_CFG_DW0_GPP_D_0 0x4c0
81
#define GPIROUTNMI (1ul << 17)
82
#define PCH_PCR_GPIO_1_BASE 0xfdae0000ul
83
#define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
84
85
static u64 *pch_base;
86
static unsigned long nmi_mmr;
87
static unsigned long nmi_mmr_clear;
88
static unsigned long nmi_mmr_pending;
89
90
static atomic_t uv_in_nmi;
91
static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
92
static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
93
static atomic_t uv_nmi_slave_continue;
94
static cpumask_var_t uv_nmi_cpu_mask;
95
96
static atomic_t uv_nmi_kexec_failed;
97
98
/* Values for uv_nmi_slave_continue */
99
#define SLAVE_CLEAR 0
100
#define SLAVE_CONTINUE 1
101
#define SLAVE_EXIT 2
102
103
/*
104
* Default is all stack dumps go to the console and buffer.
105
* Lower level to send to log buffer only.
106
*/
107
static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
108
module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
109
110
/*
111
* The following values show statistics on how perf events are affecting
112
* this system.
113
*/
114
static int param_get_local64(char *buffer, const struct kernel_param *kp)
115
{
116
return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
117
}
118
119
static int param_set_local64(const char *val, const struct kernel_param *kp)
120
{
121
/* Clear on any write */
122
local64_set((local64_t *)kp->arg, 0);
123
return 0;
124
}
125
126
static const struct kernel_param_ops param_ops_local64 = {
127
.get = param_get_local64,
128
.set = param_set_local64,
129
};
130
#define param_check_local64(name, p) __param_check(name, p, local64_t)
131
132
static local64_t uv_nmi_count;
133
module_param_named(nmi_count, uv_nmi_count, local64, 0644);
134
135
static local64_t uv_nmi_misses;
136
module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
137
138
static local64_t uv_nmi_ping_count;
139
module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
140
141
static local64_t uv_nmi_ping_misses;
142
module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
143
144
/*
145
* Following values allow tuning for large systems under heavy loading
146
*/
147
static int uv_nmi_initial_delay = 100;
148
module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
149
150
static int uv_nmi_slave_delay = 100;
151
module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
152
153
static int uv_nmi_loop_delay = 100;
154
module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
155
156
static int uv_nmi_trigger_delay = 10000;
157
module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
158
159
static int uv_nmi_wait_count = 100;
160
module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
161
162
static int uv_nmi_retry_count = 500;
163
module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
164
165
static bool uv_pch_intr_enable = true;
166
static bool uv_pch_intr_now_enabled;
167
module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
168
169
static bool uv_pch_init_enable = true;
170
module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
171
172
static int uv_nmi_debug;
173
module_param_named(debug, uv_nmi_debug, int, 0644);
174
175
#define nmi_debug(fmt, ...) \
176
do { \
177
if (uv_nmi_debug) \
178
pr_info(fmt, ##__VA_ARGS__); \
179
} while (0)
180
181
/* Valid NMI Actions */
182
enum action_t {
183
nmi_act_kdump,
184
nmi_act_dump,
185
nmi_act_ips,
186
nmi_act_kdb,
187
nmi_act_kgdb,
188
nmi_act_health,
189
nmi_act_max
190
};
191
192
static const char * const actions[nmi_act_max] = {
193
[nmi_act_kdump] = "kdump",
194
[nmi_act_dump] = "dump",
195
[nmi_act_ips] = "ips",
196
[nmi_act_kdb] = "kdb",
197
[nmi_act_kgdb] = "kgdb",
198
[nmi_act_health] = "health",
199
};
200
201
static const char * const actions_desc[nmi_act_max] = {
202
[nmi_act_kdump] = "do kernel crash dump",
203
[nmi_act_dump] = "dump process stack for each cpu",
204
[nmi_act_ips] = "dump Inst Ptr info for each cpu",
205
[nmi_act_kdb] = "enter KDB (needs kgdboc= assignment)",
206
[nmi_act_kgdb] = "enter KGDB (needs gdb target remote)",
207
[nmi_act_health] = "check if CPUs respond to NMI",
208
};
209
210
static enum action_t uv_nmi_action = nmi_act_dump;
211
212
static int param_get_action(char *buffer, const struct kernel_param *kp)
213
{
214
return sprintf(buffer, "%s\n", actions[uv_nmi_action]);
215
}
216
217
static int param_set_action(const char *val, const struct kernel_param *kp)
218
{
219
int i, n = ARRAY_SIZE(actions);
220
221
i = sysfs_match_string(actions, val);
222
if (i >= 0) {
223
uv_nmi_action = i;
224
pr_info("UV: New NMI action:%s\n", actions[i]);
225
return 0;
226
}
227
228
pr_err("UV: Invalid NMI action. Valid actions are:\n");
229
for (i = 0; i < n; i++)
230
pr_err("UV: %-8s - %s\n", actions[i], actions_desc[i]);
231
232
return -EINVAL;
233
}
234
235
static const struct kernel_param_ops param_ops_action = {
236
.get = param_get_action,
237
.set = param_set_action,
238
};
239
#define param_check_action(name, p) __param_check(name, p, enum action_t)
240
241
module_param_named(action, uv_nmi_action, action, 0644);
242
243
/* Setup which NMI support is present in system */
244
static void uv_nmi_setup_mmrs(void)
245
{
246
bool new_nmi_method_only = false;
247
248
/* First determine arch specific MMRs to handshake with BIOS */
249
if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) { /* UV2,3,4 setup */
250
uvh_nmi_mmrx = UVH_EVENT_OCCURRED0;
251
uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS;
252
uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT;
253
uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0";
254
255
uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
256
uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
257
uvh_nmi_mmrx_req_shift = 62;
258
259
} else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) { /* UV5+ setup */
260
uvh_nmi_mmrx = UVH_EVENT_OCCURRED1;
261
uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS;
262
uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT;
263
uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0";
264
265
new_nmi_method_only = true; /* Newer nmi always valid on UV5+ */
266
uvh_nmi_mmrx_req = 0; /* no request bit to clear */
267
268
} else {
269
pr_err("UV:%s:NMI support not available on this system\n", __func__);
270
return;
271
}
272
273
/* Then find out if new NMI is supported */
274
if (new_nmi_method_only || uv_read_local_mmr(uvh_nmi_mmrx_supported)) {
275
if (uvh_nmi_mmrx_req)
276
uv_write_local_mmr(uvh_nmi_mmrx_req,
277
1UL << uvh_nmi_mmrx_req_shift);
278
nmi_mmr = uvh_nmi_mmrx;
279
nmi_mmr_clear = uvh_nmi_mmrx_clear;
280
nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift;
281
pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type);
282
} else {
283
nmi_mmr = UVH_NMI_MMR;
284
nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
285
nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
286
pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
287
}
288
}
289
290
/* Read NMI MMR and check if NMI flag was set by BMC. */
291
static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
292
{
293
hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
294
atomic_inc(&hub_nmi->read_mmr_count);
295
return !!(hub_nmi->nmi_value & nmi_mmr_pending);
296
}
297
298
static inline void uv_local_mmr_clear_nmi(void)
299
{
300
uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
301
}
302
303
/*
304
* UV hubless NMI handler functions
305
*/
306
static inline void uv_reassert_nmi(void)
307
{
308
/* (from arch/x86/include/asm/mach_traps.h) */
309
outb(0x8f, NMI_CONTROL_PORT);
310
inb(NMI_DUMMY_PORT); /* dummy read */
311
outb(0x0f, NMI_CONTROL_PORT);
312
inb(NMI_DUMMY_PORT); /* dummy read */
313
}
314
315
static void uv_init_hubless_pch_io(int offset, int mask, int data)
316
{
317
int *addr = PCH_PCR_GPIO_ADDRESS(offset);
318
int readd = readl(addr);
319
320
if (mask) { /* OR in new data */
321
int writed = (readd & ~mask) | data;
322
323
nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
324
addr, readd, ~mask, data, writed);
325
writel(writed, addr);
326
} else if (readd & data) { /* clear status bit */
327
nmi_debug("UV:PCH: %p = %x\n", addr, data);
328
writel(data, addr);
329
}
330
331
(void)readl(addr); /* flush write data */
332
}
333
334
static void uv_nmi_setup_hubless_intr(void)
335
{
336
uv_pch_intr_now_enabled = uv_pch_intr_enable;
337
338
uv_init_hubless_pch_io(
339
PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
340
uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
341
342
nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
343
uv_pch_intr_now_enabled ? "enabled" : "disabled");
344
}
345
346
static struct init_nmi {
347
unsigned int offset;
348
unsigned int mask;
349
unsigned int data;
350
} init_nmi[] = {
351
{ /* HOSTSW_OWN_GPP_D_0 */
352
.offset = 0x84,
353
.mask = 0x1,
354
.data = 0x0, /* ACPI Mode */
355
},
356
357
/* Clear status: */
358
{ /* GPI_INT_STS_GPP_D_0 */
359
.offset = 0x104,
360
.mask = 0x0,
361
.data = 0x1, /* Clear Status */
362
},
363
{ /* GPI_GPE_STS_GPP_D_0 */
364
.offset = 0x124,
365
.mask = 0x0,
366
.data = 0x1, /* Clear Status */
367
},
368
{ /* GPI_SMI_STS_GPP_D_0 */
369
.offset = 0x144,
370
.mask = 0x0,
371
.data = 0x1, /* Clear Status */
372
},
373
{ /* GPI_NMI_STS_GPP_D_0 */
374
.offset = 0x164,
375
.mask = 0x0,
376
.data = 0x1, /* Clear Status */
377
},
378
379
/* Disable interrupts: */
380
{ /* GPI_INT_EN_GPP_D_0 */
381
.offset = 0x114,
382
.mask = 0x1,
383
.data = 0x0, /* Disable interrupt generation */
384
},
385
{ /* GPI_GPE_EN_GPP_D_0 */
386
.offset = 0x134,
387
.mask = 0x1,
388
.data = 0x0, /* Disable interrupt generation */
389
},
390
{ /* GPI_SMI_EN_GPP_D_0 */
391
.offset = 0x154,
392
.mask = 0x1,
393
.data = 0x0, /* Disable interrupt generation */
394
},
395
{ /* GPI_NMI_EN_GPP_D_0 */
396
.offset = 0x174,
397
.mask = 0x1,
398
.data = 0x0, /* Disable interrupt generation */
399
},
400
401
/* Setup GPP_D_0 Pad Config: */
402
{ /* PAD_CFG_DW0_GPP_D_0 */
403
.offset = 0x4c0,
404
.mask = 0xffffffff,
405
.data = 0x82020100,
406
/*
407
* 31:30 Pad Reset Config (PADRSTCFG): = 2h # PLTRST# (default)
408
*
409
* 29 RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
410
* from RX buffer (default)
411
*
412
* 28 RX Raw Override to '1' (RXRAW1): = 0 # No Override
413
*
414
* 26:25 RX Level/Edge Configuration (RXEVCFG):
415
* = 0h # Level
416
* = 1h # Edge
417
*
418
* 23 RX Invert (RXINV): = 0 # No Inversion (signal active high)
419
*
420
* 20 GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
421
* = 0 # Routing does not cause peripheral IRQ...
422
* # (we want an NMI not an IRQ)
423
*
424
* 19 GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
425
* 18 GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
426
* 17 GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
427
*
428
* 11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
429
* 9 GPIO RX Disable (GPIORXDIS):
430
* = 0 # Enable the input buffer (active low enable)
431
*
432
* 8 GPIO TX Disable (GPIOTXDIS):
433
* = 1 # Disable the output buffer; i.e. Hi-Z
434
*
435
* 1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
436
* 0 GPIO TX State (GPIOTXSTATE):
437
* = 0 # (Leave at default)
438
*/
439
},
440
441
/* Pad Config DW1 */
442
{ /* PAD_CFG_DW1_GPP_D_0 */
443
.offset = 0x4c4,
444
.mask = 0x3c00,
445
.data = 0, /* Termination = none (default) */
446
},
447
};
448
449
static void uv_init_hubless_pch_d0(void)
450
{
451
int i, read;
452
453
read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
454
if (read != 0) {
455
pr_info("UV: Hubless NMI already configured\n");
456
return;
457
}
458
459
nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
460
for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
461
uv_init_hubless_pch_io(init_nmi[i].offset,
462
init_nmi[i].mask,
463
init_nmi[i].data);
464
}
465
}
466
467
static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
468
{
469
int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
470
int status = *pstat;
471
472
hub_nmi->nmi_value = status;
473
atomic_inc(&hub_nmi->read_mmr_count);
474
475
if (!(status & STS_GPP_D_0_MASK)) /* Not a UV external NMI */
476
return 0;
477
478
*pstat = STS_GPP_D_0_MASK; /* Is a UV NMI: clear GPP_D_0 status */
479
(void)*pstat; /* Flush write */
480
481
return 1;
482
}
483
484
static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
485
{
486
if (hub_nmi->hub_present)
487
return uv_nmi_test_mmr(hub_nmi);
488
489
if (hub_nmi->pch_owner) /* Only PCH owner can check status */
490
return uv_nmi_test_hubless(hub_nmi);
491
492
return -1;
493
}
494
495
/*
496
* If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
497
* return true. If first CPU in on the system, set global "in_nmi" flag.
498
*/
499
static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
500
{
501
int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
502
503
if (first) {
504
atomic_set(&hub_nmi->cpu_owner, cpu);
505
if (atomic_add_unless(&uv_in_nmi, 1, 1))
506
atomic_set(&uv_nmi_cpu, cpu);
507
508
atomic_inc(&hub_nmi->nmi_count);
509
}
510
return first;
511
}
512
513
/* Check if this is a system NMI event */
514
static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
515
{
516
int cpu = smp_processor_id();
517
int nmi = 0;
518
int nmi_detected = 0;
519
520
local64_inc(&uv_nmi_count);
521
this_cpu_inc(uv_cpu_nmi.queries);
522
523
do {
524
nmi = atomic_read(&hub_nmi->in_nmi);
525
if (nmi)
526
break;
527
528
if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
529
nmi_detected = uv_test_nmi(hub_nmi);
530
531
/* Check flag for UV external NMI */
532
if (nmi_detected > 0) {
533
uv_set_in_nmi(cpu, hub_nmi);
534
nmi = 1;
535
break;
536
}
537
538
/* A non-PCH node in a hubless system waits for NMI */
539
else if (nmi_detected < 0)
540
goto slave_wait;
541
542
/* MMR/PCH NMI flag is clear */
543
raw_spin_unlock(&hub_nmi->nmi_lock);
544
545
} else {
546
547
/* Wait a moment for the HUB NMI locker to set flag */
548
slave_wait: cpu_relax();
549
udelay(uv_nmi_slave_delay);
550
551
/* Re-check hub in_nmi flag */
552
nmi = atomic_read(&hub_nmi->in_nmi);
553
if (nmi)
554
break;
555
}
556
557
/*
558
* Check if this BMC missed setting the MMR NMI flag (or)
559
* UV hubless system where only PCH owner can check flag
560
*/
561
if (!nmi) {
562
nmi = atomic_read(&uv_in_nmi);
563
if (nmi)
564
uv_set_in_nmi(cpu, hub_nmi);
565
}
566
567
/* If we're holding the hub lock, release it now */
568
if (nmi_detected < 0)
569
raw_spin_unlock(&hub_nmi->nmi_lock);
570
571
} while (0);
572
573
if (!nmi)
574
local64_inc(&uv_nmi_misses);
575
576
return nmi;
577
}
578
579
/* Need to reset the NMI MMR register, but only once per hub. */
580
static inline void uv_clear_nmi(int cpu)
581
{
582
struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
583
584
if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
585
atomic_set(&hub_nmi->cpu_owner, -1);
586
atomic_set(&hub_nmi->in_nmi, 0);
587
if (hub_nmi->hub_present)
588
uv_local_mmr_clear_nmi();
589
else
590
uv_reassert_nmi();
591
raw_spin_unlock(&hub_nmi->nmi_lock);
592
}
593
}
594
595
/* Ping non-responding CPU's attempting to force them into the NMI handler */
596
static void uv_nmi_nr_cpus_ping(void)
597
{
598
int cpu;
599
600
for_each_cpu(cpu, uv_nmi_cpu_mask)
601
uv_cpu_nmi_per(cpu).pinging = 1;
602
603
__apic_send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
604
}
605
606
/* Clean up flags for CPU's that ignored both NMI and ping */
607
static void uv_nmi_cleanup_mask(void)
608
{
609
int cpu;
610
611
for_each_cpu(cpu, uv_nmi_cpu_mask) {
612
uv_cpu_nmi_per(cpu).pinging = 0;
613
uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
614
cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
615
}
616
}
617
618
/* Loop waiting as CPU's enter NMI handler */
619
static int uv_nmi_wait_cpus(int first)
620
{
621
int i, j, k, n = num_online_cpus();
622
int last_k = 0, waiting = 0;
623
int cpu = smp_processor_id();
624
625
if (first) {
626
cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
627
k = 0;
628
} else {
629
k = n - cpumask_weight(uv_nmi_cpu_mask);
630
}
631
632
/* PCH NMI causes only one CPU to respond */
633
if (first && uv_pch_intr_now_enabled) {
634
cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
635
return n - k - 1;
636
}
637
638
udelay(uv_nmi_initial_delay);
639
for (i = 0; i < uv_nmi_retry_count; i++) {
640
int loop_delay = uv_nmi_loop_delay;
641
642
for_each_cpu(j, uv_nmi_cpu_mask) {
643
if (uv_cpu_nmi_per(j).state) {
644
cpumask_clear_cpu(j, uv_nmi_cpu_mask);
645
if (++k >= n)
646
break;
647
}
648
}
649
if (k >= n) { /* all in? */
650
k = n;
651
break;
652
}
653
if (last_k != k) { /* abort if no new CPU's coming in */
654
last_k = k;
655
waiting = 0;
656
} else if (++waiting > uv_nmi_wait_count)
657
break;
658
659
/* Extend delay if waiting only for CPU 0: */
660
if (waiting && (n - k) == 1 &&
661
cpumask_test_cpu(0, uv_nmi_cpu_mask))
662
loop_delay *= 100;
663
664
udelay(loop_delay);
665
}
666
atomic_set(&uv_nmi_cpus_in_nmi, k);
667
return n - k;
668
}
669
670
/* Wait until all slave CPU's have entered UV NMI handler */
671
static void uv_nmi_wait(int master)
672
{
673
/* Indicate this CPU is in: */
674
this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
675
676
/* If not the first CPU in (the master), then we are a slave CPU */
677
if (!master)
678
return;
679
680
do {
681
/* Wait for all other CPU's to gather here */
682
if (!uv_nmi_wait_cpus(1))
683
break;
684
685
/* If not all made it in, send IPI NMI to them */
686
pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
687
cpumask_weight(uv_nmi_cpu_mask),
688
cpumask_pr_args(uv_nmi_cpu_mask));
689
690
uv_nmi_nr_cpus_ping();
691
692
/* If all CPU's are in, then done */
693
if (!uv_nmi_wait_cpus(0))
694
break;
695
696
pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
697
cpumask_weight(uv_nmi_cpu_mask),
698
cpumask_pr_args(uv_nmi_cpu_mask));
699
} while (0);
700
701
pr_alert("UV: %d of %d CPUs in NMI\n",
702
atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
703
}
704
705
/* Dump Instruction Pointer header */
706
static void uv_nmi_dump_cpu_ip_hdr(void)
707
{
708
pr_info("\nUV: %4s %6s %-32s %s (Note: PID 0 not listed)\n",
709
"CPU", "PID", "COMMAND", "IP");
710
}
711
712
/* Dump Instruction Pointer info */
713
static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
714
{
715
pr_info("UV: %4d %6d %-32.32s %pS",
716
cpu, current->pid, current->comm, (void *)regs->ip);
717
}
718
719
/*
720
* Dump this CPU's state. If action was set to "kdump" and the crash_kexec
721
* failed, then we provide "dump" as an alternate action. Action "dump" now
722
* also includes the show "ips" (instruction pointers) action whereas the
723
* action "ips" only displays instruction pointers for the non-idle CPU's.
724
* This is an abbreviated form of the "ps" command.
725
*/
726
static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
727
{
728
const char *dots = " ................................. ";
729
730
if (cpu == 0)
731
uv_nmi_dump_cpu_ip_hdr();
732
733
if (current->pid != 0 || uv_nmi_action != nmi_act_ips)
734
uv_nmi_dump_cpu_ip(cpu, regs);
735
736
if (uv_nmi_action == nmi_act_dump) {
737
pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
738
show_regs(regs);
739
}
740
741
this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
742
}
743
744
/* Trigger a slave CPU to dump its state */
745
static void uv_nmi_trigger_dump(int cpu)
746
{
747
int retry = uv_nmi_trigger_delay;
748
749
if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
750
return;
751
752
uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
753
do {
754
cpu_relax();
755
udelay(10);
756
if (uv_cpu_nmi_per(cpu).state
757
!= UV_NMI_STATE_DUMP)
758
return;
759
} while (--retry > 0);
760
761
pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
762
uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
763
}
764
765
/* Wait until all CPU's ready to exit */
766
static void uv_nmi_sync_exit(int master)
767
{
768
atomic_dec(&uv_nmi_cpus_in_nmi);
769
if (master) {
770
while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
771
cpu_relax();
772
atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
773
} else {
774
while (atomic_read(&uv_nmi_slave_continue))
775
cpu_relax();
776
}
777
}
778
779
/* Current "health" check is to check which CPU's are responsive */
780
static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
781
{
782
if (master) {
783
int in = atomic_read(&uv_nmi_cpus_in_nmi);
784
int out = num_online_cpus() - in;
785
786
pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
787
atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
788
} else {
789
while (!atomic_read(&uv_nmi_slave_continue))
790
cpu_relax();
791
}
792
uv_nmi_sync_exit(master);
793
}
794
795
/* Walk through CPU list and dump state of each */
796
static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
797
{
798
if (master) {
799
int tcpu;
800
int ignored = 0;
801
int saved_console_loglevel = console_loglevel;
802
803
pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
804
uv_nmi_action == nmi_act_ips ? "IPs" : "processes",
805
atomic_read(&uv_nmi_cpus_in_nmi), cpu);
806
807
console_loglevel = uv_nmi_loglevel;
808
atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
809
for_each_online_cpu(tcpu) {
810
if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
811
ignored++;
812
else if (tcpu == cpu)
813
uv_nmi_dump_state_cpu(tcpu, regs);
814
else
815
uv_nmi_trigger_dump(tcpu);
816
}
817
if (ignored)
818
pr_alert("UV: %d CPUs ignored NMI\n", ignored);
819
820
console_loglevel = saved_console_loglevel;
821
pr_alert("UV: process trace complete\n");
822
} else {
823
while (!atomic_read(&uv_nmi_slave_continue))
824
cpu_relax();
825
while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
826
cpu_relax();
827
uv_nmi_dump_state_cpu(cpu, regs);
828
}
829
uv_nmi_sync_exit(master);
830
}
831
832
static void uv_nmi_touch_watchdogs(void)
833
{
834
touch_softlockup_watchdog_sync();
835
clocksource_touch_watchdog();
836
rcu_cpu_stall_reset();
837
touch_nmi_watchdog();
838
}
839
840
static void uv_nmi_kdump(int cpu, int main, struct pt_regs *regs)
841
{
842
/* Check if kdump kernel loaded for both main and secondary CPUs */
843
if (!kexec_crash_image) {
844
if (main)
845
pr_err("UV: NMI error: kdump kernel not loaded\n");
846
return;
847
}
848
849
/* Call crash to dump system state */
850
if (main) {
851
pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
852
crash_kexec(regs);
853
854
pr_emerg("UV: crash_kexec unexpectedly returned\n");
855
atomic_set(&uv_nmi_kexec_failed, 1);
856
857
} else { /* secondary */
858
859
/* If kdump kernel fails, secondaries will exit this loop */
860
while (atomic_read(&uv_nmi_kexec_failed) == 0) {
861
862
/* Once shootdown cpus starts, they do not return */
863
run_crash_ipi_callback(regs);
864
865
mdelay(10);
866
}
867
}
868
}
869
870
#ifdef CONFIG_KGDB
871
#ifdef CONFIG_KGDB_KDB
872
static inline int uv_nmi_kdb_reason(void)
873
{
874
return KDB_REASON_SYSTEM_NMI;
875
}
876
#else /* !CONFIG_KGDB_KDB */
877
static inline int uv_nmi_kdb_reason(void)
878
{
879
/* Ensure user is expecting to attach gdb remote */
880
if (uv_nmi_action == nmi_act_kgdb)
881
return 0;
882
883
pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
884
return -1;
885
}
886
#endif /* CONFIG_KGDB_KDB */
887
888
/*
889
* Call KGDB/KDB from NMI handler
890
*
891
* Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
892
* 'kdb' has no affect on which is used. See the KGDB documentation for further
893
* information.
894
*/
895
static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
896
{
897
if (master) {
898
int reason = uv_nmi_kdb_reason();
899
int ret;
900
901
if (reason < 0)
902
return;
903
904
/* Call KGDB NMI handler as MASTER */
905
ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
906
&uv_nmi_slave_continue);
907
if (ret) {
908
pr_alert("KGDB returned error, is kgdboc set?\n");
909
atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
910
}
911
} else {
912
/* Wait for KGDB signal that it's ready for slaves to enter */
913
int sig;
914
915
do {
916
cpu_relax();
917
sig = atomic_read(&uv_nmi_slave_continue);
918
} while (!sig);
919
920
/* Call KGDB as slave */
921
if (sig == SLAVE_CONTINUE)
922
kgdb_nmicallback(cpu, regs);
923
}
924
uv_nmi_sync_exit(master);
925
}
926
927
#else /* !CONFIG_KGDB */
928
static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
929
{
930
pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
931
}
932
#endif /* !CONFIG_KGDB */
933
934
/*
935
* UV NMI handler
936
*/
937
static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
938
{
939
struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
940
int cpu = smp_processor_id();
941
int master = 0;
942
unsigned long flags;
943
944
local_irq_save(flags);
945
946
/* If not a UV System NMI, ignore */
947
if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
948
local_irq_restore(flags);
949
return NMI_DONE;
950
}
951
952
/* Indicate we are the first CPU into the NMI handler */
953
master = (atomic_read(&uv_nmi_cpu) == cpu);
954
955
/* If NMI action is "kdump", then attempt to do it */
956
if (uv_nmi_action == nmi_act_kdump) {
957
uv_nmi_kdump(cpu, master, regs);
958
959
/* Unexpected return, revert action to "dump" */
960
if (master)
961
uv_nmi_action = nmi_act_dump;
962
}
963
964
/* Pause as all CPU's enter the NMI handler */
965
uv_nmi_wait(master);
966
967
/* Process actions other than "kdump": */
968
switch (uv_nmi_action) {
969
case nmi_act_health:
970
uv_nmi_action_health(cpu, regs, master);
971
break;
972
case nmi_act_ips:
973
case nmi_act_dump:
974
uv_nmi_dump_state(cpu, regs, master);
975
break;
976
case nmi_act_kdb:
977
case nmi_act_kgdb:
978
uv_call_kgdb_kdb(cpu, regs, master);
979
break;
980
default:
981
if (master)
982
pr_alert("UV: unknown NMI action: %d\n", uv_nmi_action);
983
uv_nmi_sync_exit(master);
984
break;
985
}
986
987
/* Clear per_cpu "in_nmi" flag */
988
this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
989
990
/* Clear MMR NMI flag on each hub */
991
uv_clear_nmi(cpu);
992
993
/* Clear global flags */
994
if (master) {
995
if (!cpumask_empty(uv_nmi_cpu_mask))
996
uv_nmi_cleanup_mask();
997
atomic_set(&uv_nmi_cpus_in_nmi, -1);
998
atomic_set(&uv_nmi_cpu, -1);
999
atomic_set(&uv_in_nmi, 0);
1000
atomic_set(&uv_nmi_kexec_failed, 0);
1001
atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
1002
}
1003
1004
uv_nmi_touch_watchdogs();
1005
local_irq_restore(flags);
1006
1007
return NMI_HANDLED;
1008
}
1009
1010
/*
1011
* NMI handler for pulling in CPU's when perf events are grabbing our NMI
1012
*/
1013
static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
1014
{
1015
int ret;
1016
1017
this_cpu_inc(uv_cpu_nmi.queries);
1018
if (!this_cpu_read(uv_cpu_nmi.pinging)) {
1019
local64_inc(&uv_nmi_ping_misses);
1020
return NMI_DONE;
1021
}
1022
1023
this_cpu_inc(uv_cpu_nmi.pings);
1024
local64_inc(&uv_nmi_ping_count);
1025
ret = uv_handle_nmi(reason, regs);
1026
this_cpu_write(uv_cpu_nmi.pinging, 0);
1027
return ret;
1028
}
1029
1030
static void uv_register_nmi_notifier(void)
1031
{
1032
if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
1033
pr_warn("UV: NMI handler failed to register\n");
1034
1035
if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
1036
pr_warn("UV: PING NMI handler failed to register\n");
1037
}
1038
1039
void uv_nmi_init(void)
1040
{
1041
unsigned int value;
1042
1043
/*
1044
* Unmask NMI on all CPU's
1045
*/
1046
value = apic_read(APIC_LVT1) | APIC_DM_NMI;
1047
value &= ~APIC_LVT_MASKED;
1048
apic_write(APIC_LVT1, value);
1049
}
1050
1051
/* Setup HUB NMI info */
1052
static void __init uv_nmi_setup_common(bool hubbed)
1053
{
1054
int size = sizeof(void *) * (1 << NODES_SHIFT);
1055
int cpu;
1056
1057
uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1058
nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1059
BUG_ON(!uv_hub_nmi_list);
1060
size = sizeof(struct uv_hub_nmi_s);
1061
for_each_present_cpu(cpu) {
1062
int nid = cpu_to_node(cpu);
1063
if (uv_hub_nmi_list[nid] == NULL) {
1064
uv_hub_nmi_list[nid] = kzalloc_node(size,
1065
GFP_KERNEL, nid);
1066
BUG_ON(!uv_hub_nmi_list[nid]);
1067
raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1068
atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1069
uv_hub_nmi_list[nid]->hub_present = hubbed;
1070
uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1071
}
1072
uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1073
}
1074
BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1075
}
1076
1077
/* Setup for UV Hub systems */
1078
void __init uv_nmi_setup(void)
1079
{
1080
uv_nmi_setup_mmrs();
1081
uv_nmi_setup_common(true);
1082
uv_register_nmi_notifier();
1083
pr_info("UV: Hub NMI enabled\n");
1084
}
1085
1086
/* Setup for UV Hubless systems */
1087
void __init uv_nmi_setup_hubless(void)
1088
{
1089
uv_nmi_setup_common(false);
1090
pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1091
nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1092
pch_base, PCH_PCR_GPIO_1_BASE);
1093
if (uv_pch_init_enable)
1094
uv_init_hubless_pch_d0();
1095
uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1096
STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1097
uv_nmi_setup_hubless_intr();
1098
/* Ensure NMI enabled in Processor Interface Reg: */
1099
uv_reassert_nmi();
1100
uv_register_nmi_notifier();
1101
pr_info("UV: PCH NMI enabled\n");
1102
}
1103
1104