Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/platform/uv/uv_time.c
26471 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* SGI RTC clock/timer routines.
4
*
5
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
6
* Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved.
7
* Copyright (c) Dimitri Sivanich
8
*/
9
#include <linux/clockchips.h>
10
#include <linux/slab.h>
11
12
#include <asm/uv/uv_mmrs.h>
13
#include <asm/uv/uv_hub.h>
14
#include <asm/uv/bios.h>
15
#include <asm/uv/uv.h>
16
#include <asm/apic.h>
17
#include <asm/cpu.h>
18
19
#define RTC_NAME "sgi_rtc"
20
21
static u64 uv_read_rtc(struct clocksource *cs);
22
static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
23
static int uv_rtc_shutdown(struct clock_event_device *evt);
24
25
static struct clocksource clocksource_uv = {
26
.name = RTC_NAME,
27
.rating = 299,
28
.read = uv_read_rtc,
29
.mask = (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
30
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
31
};
32
33
static struct clock_event_device clock_event_device_uv = {
34
.name = RTC_NAME,
35
.features = CLOCK_EVT_FEAT_ONESHOT,
36
.shift = 20,
37
.rating = 400,
38
.irq = -1,
39
.set_next_event = uv_rtc_next_event,
40
.set_state_shutdown = uv_rtc_shutdown,
41
.event_handler = NULL,
42
};
43
44
static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
45
46
/* There is one of these allocated per node */
47
struct uv_rtc_timer_head {
48
spinlock_t lock;
49
/* next cpu waiting for timer, local node relative: */
50
int next_cpu;
51
/* number of cpus on this node: */
52
int ncpus;
53
struct {
54
int lcpu; /* systemwide logical cpu number */
55
u64 expires; /* next timer expiration for this cpu */
56
} cpu[] __counted_by(ncpus);
57
};
58
59
/*
60
* Access to uv_rtc_timer_head via blade id.
61
*/
62
static struct uv_rtc_timer_head **blade_info __read_mostly;
63
64
static int uv_rtc_evt_enable;
65
66
/*
67
* Hardware interface routines
68
*/
69
70
/* Send IPIs to another node */
71
static void uv_rtc_send_IPI(int cpu)
72
{
73
unsigned long apicid, val;
74
int pnode;
75
76
apicid = cpu_physical_id(cpu);
77
pnode = uv_apicid_to_pnode(apicid);
78
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
79
(apicid << UVH_IPI_INT_APIC_ID_SHFT) |
80
(X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
81
82
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
83
}
84
85
/* Check for an RTC interrupt pending */
86
static int uv_intr_pending(int pnode)
87
{
88
return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED2) &
89
UVH_EVENT_OCCURRED2_RTC_1_MASK;
90
}
91
92
/* Setup interrupt and return non-zero if early expiration occurred. */
93
static int uv_setup_intr(int cpu, u64 expires)
94
{
95
u64 val;
96
unsigned long apicid = cpu_physical_id(cpu);
97
int pnode = uv_cpu_to_pnode(cpu);
98
99
uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
100
UVH_RTC1_INT_CONFIG_M_MASK);
101
uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
102
103
uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED2_ALIAS,
104
UVH_EVENT_OCCURRED2_RTC_1_MASK);
105
106
val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
107
((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
108
109
/* Set configuration */
110
uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
111
/* Initialize comparator value */
112
uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
113
114
if (uv_read_rtc(NULL) <= expires)
115
return 0;
116
117
return !uv_intr_pending(pnode);
118
}
119
120
/*
121
* Per-cpu timer tracking routines
122
*/
123
124
static __init void uv_rtc_deallocate_timers(void)
125
{
126
int bid;
127
128
for_each_possible_blade(bid) {
129
kfree(blade_info[bid]);
130
}
131
kfree(blade_info);
132
}
133
134
/* Allocate per-node list of cpu timer expiration times. */
135
static __init int uv_rtc_allocate_timers(void)
136
{
137
int cpu;
138
139
blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
140
if (!blade_info)
141
return -ENOMEM;
142
143
for_each_present_cpu(cpu) {
144
int nid = cpu_to_node(cpu);
145
int bid = uv_cpu_to_blade_id(cpu);
146
int bcpu = uv_cpu_blade_processor_id(cpu);
147
struct uv_rtc_timer_head *head = blade_info[bid];
148
149
if (!head) {
150
head = kmalloc_node(struct_size(head, cpu,
151
uv_blade_nr_possible_cpus(bid)),
152
GFP_KERNEL, nid);
153
if (!head) {
154
uv_rtc_deallocate_timers();
155
return -ENOMEM;
156
}
157
spin_lock_init(&head->lock);
158
head->ncpus = uv_blade_nr_possible_cpus(bid);
159
head->next_cpu = -1;
160
blade_info[bid] = head;
161
}
162
163
head->cpu[bcpu].lcpu = cpu;
164
head->cpu[bcpu].expires = ULLONG_MAX;
165
}
166
167
return 0;
168
}
169
170
/* Find and set the next expiring timer. */
171
static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
172
{
173
u64 lowest = ULLONG_MAX;
174
int c, bcpu = -1;
175
176
head->next_cpu = -1;
177
for (c = 0; c < head->ncpus; c++) {
178
u64 exp = head->cpu[c].expires;
179
if (exp < lowest) {
180
bcpu = c;
181
lowest = exp;
182
}
183
}
184
if (bcpu >= 0) {
185
head->next_cpu = bcpu;
186
c = head->cpu[bcpu].lcpu;
187
if (uv_setup_intr(c, lowest))
188
/* If we didn't set it up in time, trigger */
189
uv_rtc_send_IPI(c);
190
} else {
191
uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
192
UVH_RTC1_INT_CONFIG_M_MASK);
193
}
194
}
195
196
/*
197
* Set expiration time for current cpu.
198
*
199
* Returns 1 if we missed the expiration time.
200
*/
201
static int uv_rtc_set_timer(int cpu, u64 expires)
202
{
203
int pnode = uv_cpu_to_pnode(cpu);
204
int bid = uv_cpu_to_blade_id(cpu);
205
struct uv_rtc_timer_head *head = blade_info[bid];
206
int bcpu = uv_cpu_blade_processor_id(cpu);
207
u64 *t = &head->cpu[bcpu].expires;
208
unsigned long flags;
209
int next_cpu;
210
211
spin_lock_irqsave(&head->lock, flags);
212
213
next_cpu = head->next_cpu;
214
*t = expires;
215
216
/* Will this one be next to go off? */
217
if (next_cpu < 0 || bcpu == next_cpu ||
218
expires < head->cpu[next_cpu].expires) {
219
head->next_cpu = bcpu;
220
if (uv_setup_intr(cpu, expires)) {
221
*t = ULLONG_MAX;
222
uv_rtc_find_next_timer(head, pnode);
223
spin_unlock_irqrestore(&head->lock, flags);
224
return -ETIME;
225
}
226
}
227
228
spin_unlock_irqrestore(&head->lock, flags);
229
return 0;
230
}
231
232
/*
233
* Unset expiration time for current cpu.
234
*
235
* Returns 1 if this timer was pending.
236
*/
237
static int uv_rtc_unset_timer(int cpu, int force)
238
{
239
int pnode = uv_cpu_to_pnode(cpu);
240
int bid = uv_cpu_to_blade_id(cpu);
241
struct uv_rtc_timer_head *head = blade_info[bid];
242
int bcpu = uv_cpu_blade_processor_id(cpu);
243
u64 *t = &head->cpu[bcpu].expires;
244
unsigned long flags;
245
int rc = 0;
246
247
spin_lock_irqsave(&head->lock, flags);
248
249
if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
250
rc = 1;
251
252
if (rc) {
253
*t = ULLONG_MAX;
254
/* Was the hardware setup for this timer? */
255
if (head->next_cpu == bcpu)
256
uv_rtc_find_next_timer(head, pnode);
257
}
258
259
spin_unlock_irqrestore(&head->lock, flags);
260
261
return rc;
262
}
263
264
265
/*
266
* Kernel interface routines.
267
*/
268
269
/*
270
* Read the RTC.
271
*
272
* Starting with HUB rev 2.0, the UV RTC register is replicated across all
273
* cachelines of its own page. This allows faster simultaneous reads
274
* from a given socket.
275
*/
276
static u64 uv_read_rtc(struct clocksource *cs)
277
{
278
unsigned long offset;
279
280
if (uv_get_min_hub_revision_id() == 1)
281
offset = 0;
282
else
283
offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
284
285
return (u64)uv_read_local_mmr(UVH_RTC | offset);
286
}
287
288
/*
289
* Program the next event, relative to now
290
*/
291
static int uv_rtc_next_event(unsigned long delta,
292
struct clock_event_device *ced)
293
{
294
int ced_cpu = cpumask_first(ced->cpumask);
295
296
return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
297
}
298
299
/*
300
* Shutdown the RTC timer
301
*/
302
static int uv_rtc_shutdown(struct clock_event_device *evt)
303
{
304
int ced_cpu = cpumask_first(evt->cpumask);
305
306
uv_rtc_unset_timer(ced_cpu, 1);
307
return 0;
308
}
309
310
static void uv_rtc_interrupt(void)
311
{
312
int cpu = smp_processor_id();
313
struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
314
315
if (!ced || !ced->event_handler)
316
return;
317
318
if (uv_rtc_unset_timer(cpu, 0) != 1)
319
return;
320
321
ced->event_handler(ced);
322
}
323
324
static int __init uv_enable_evt_rtc(char *str)
325
{
326
uv_rtc_evt_enable = 1;
327
328
return 1;
329
}
330
__setup("uvrtcevt", uv_enable_evt_rtc);
331
332
static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
333
{
334
struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
335
336
*ced = clock_event_device_uv;
337
ced->cpumask = cpumask_of(smp_processor_id());
338
clockevents_register_device(ced);
339
}
340
341
static __init int uv_rtc_setup_clock(void)
342
{
343
int rc;
344
345
if (!is_uv_system())
346
return -ENODEV;
347
348
rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
349
if (rc)
350
printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
351
else
352
printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
353
sn_rtc_cycles_per_second/(unsigned long)1E6);
354
355
if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
356
return rc;
357
358
/* Setup and register clockevents */
359
rc = uv_rtc_allocate_timers();
360
if (rc)
361
goto error;
362
363
x86_platform_ipi_callback = uv_rtc_interrupt;
364
365
clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
366
NSEC_PER_SEC, clock_event_device_uv.shift);
367
368
clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
369
sn_rtc_cycles_per_second;
370
clock_event_device_uv.min_delta_ticks = 1;
371
372
clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
373
(NSEC_PER_SEC / sn_rtc_cycles_per_second);
374
clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
375
376
rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
377
if (rc) {
378
x86_platform_ipi_callback = NULL;
379
uv_rtc_deallocate_timers();
380
goto error;
381
}
382
383
printk(KERN_INFO "UV RTC clockevents registered\n");
384
385
return 0;
386
387
error:
388
clocksource_unregister(&clocksource_uv);
389
printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
390
391
return rc;
392
}
393
arch_initcall(uv_rtc_setup_clock);
394
395