Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/power/cpu.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Suspend support specific for i386/x86-64.
4
*
5
* Copyright (c) 2007 Rafael J. Wysocki <[email protected]>
6
* Copyright (c) 2002 Pavel Machek <[email protected]>
7
* Copyright (c) 2001 Patrick Mochel <[email protected]>
8
*/
9
10
#include <linux/suspend.h>
11
#include <linux/export.h>
12
#include <linux/smp.h>
13
#include <linux/perf_event.h>
14
#include <linux/tboot.h>
15
#include <linux/dmi.h>
16
#include <linux/pgtable.h>
17
18
#include <asm/proto.h>
19
#include <asm/mtrr.h>
20
#include <asm/page.h>
21
#include <asm/mce.h>
22
#include <asm/suspend.h>
23
#include <asm/fpu/api.h>
24
#include <asm/debugreg.h>
25
#include <asm/cpu.h>
26
#include <asm/cacheinfo.h>
27
#include <asm/mmu_context.h>
28
#include <asm/cpu_device_id.h>
29
#include <asm/microcode.h>
30
#include <asm/msr.h>
31
#include <asm/fred.h>
32
33
#ifdef CONFIG_X86_32
34
__visible unsigned long saved_context_ebx;
35
__visible unsigned long saved_context_esp, saved_context_ebp;
36
__visible unsigned long saved_context_esi, saved_context_edi;
37
__visible unsigned long saved_context_eflags;
38
#endif
39
struct saved_context saved_context;
40
41
static void msr_save_context(struct saved_context *ctxt)
42
{
43
struct saved_msr *msr = ctxt->saved_msrs.array;
44
struct saved_msr *end = msr + ctxt->saved_msrs.num;
45
46
while (msr < end) {
47
if (msr->valid)
48
rdmsrq(msr->info.msr_no, msr->info.reg.q);
49
msr++;
50
}
51
}
52
53
static void msr_restore_context(struct saved_context *ctxt)
54
{
55
struct saved_msr *msr = ctxt->saved_msrs.array;
56
struct saved_msr *end = msr + ctxt->saved_msrs.num;
57
58
while (msr < end) {
59
if (msr->valid)
60
wrmsrq(msr->info.msr_no, msr->info.reg.q);
61
msr++;
62
}
63
}
64
65
/**
66
* __save_processor_state() - Save CPU registers before creating a
67
* hibernation image and before restoring
68
* the memory state from it
69
* @ctxt: Structure to store the registers contents in.
70
*
71
* NOTE: If there is a CPU register the modification of which by the
72
* boot kernel (ie. the kernel used for loading the hibernation image)
73
* might affect the operations of the restored target kernel (ie. the one
74
* saved in the hibernation image), then its contents must be saved by this
75
* function. In other words, if kernel A is hibernated and different
76
* kernel B is used for loading the hibernation image into memory, the
77
* kernel A's __save_processor_state() function must save all registers
78
* needed by kernel A, so that it can operate correctly after the resume
79
* regardless of what kernel B does in the meantime.
80
*/
81
static void __save_processor_state(struct saved_context *ctxt)
82
{
83
#ifdef CONFIG_X86_32
84
mtrr_save_fixed_ranges(NULL);
85
#endif
86
kernel_fpu_begin();
87
88
/*
89
* descriptor tables
90
*/
91
store_idt(&ctxt->idt);
92
93
/*
94
* We save it here, but restore it only in the hibernate case.
95
* For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
96
* mode in "secondary_startup_64". In 32-bit mode it is done via
97
* 'pmode_gdt' in wakeup_start.
98
*/
99
ctxt->gdt_desc.size = GDT_SIZE - 1;
100
ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
101
102
store_tr(ctxt->tr);
103
104
/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
105
/*
106
* segment registers
107
*/
108
savesegment(gs, ctxt->gs);
109
#ifdef CONFIG_X86_64
110
savesegment(fs, ctxt->fs);
111
savesegment(ds, ctxt->ds);
112
savesegment(es, ctxt->es);
113
114
rdmsrq(MSR_FS_BASE, ctxt->fs_base);
115
rdmsrq(MSR_GS_BASE, ctxt->kernelmode_gs_base);
116
rdmsrq(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
117
mtrr_save_fixed_ranges(NULL);
118
119
rdmsrq(MSR_EFER, ctxt->efer);
120
#endif
121
122
/*
123
* control registers
124
*/
125
ctxt->cr0 = read_cr0();
126
ctxt->cr2 = read_cr2();
127
ctxt->cr3 = __read_cr3();
128
ctxt->cr4 = __read_cr4();
129
ctxt->misc_enable_saved = !rdmsrq_safe(MSR_IA32_MISC_ENABLE,
130
&ctxt->misc_enable);
131
msr_save_context(ctxt);
132
}
133
134
/* Needed by apm.c */
135
void save_processor_state(void)
136
{
137
__save_processor_state(&saved_context);
138
x86_platform.save_sched_clock_state();
139
}
140
#ifdef CONFIG_X86_32
141
EXPORT_SYMBOL(save_processor_state);
142
#endif
143
144
static void do_fpu_end(void)
145
{
146
/*
147
* Restore FPU regs if necessary.
148
*/
149
kernel_fpu_end();
150
}
151
152
static void fix_processor_context(void)
153
{
154
int cpu = smp_processor_id();
155
#ifdef CONFIG_X86_64
156
struct desc_struct *desc = get_cpu_gdt_rw(cpu);
157
tss_desc tss;
158
#endif
159
160
/*
161
* We need to reload TR, which requires that we change the
162
* GDT entry to indicate "available" first.
163
*
164
* XXX: This could probably all be replaced by a call to
165
* force_reload_TR().
166
*/
167
set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
168
169
#ifdef CONFIG_X86_64
170
memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
171
tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
172
write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
173
174
syscall_init(); /* This sets MSR_*STAR and related */
175
#else
176
if (boot_cpu_has(X86_FEATURE_SEP))
177
enable_sep_cpu();
178
#endif
179
load_TR_desc(); /* This does ltr */
180
load_mm_ldt(current->active_mm); /* This does lldt */
181
initialize_tlbstate_and_flush();
182
183
fpu__resume_cpu();
184
185
/* The processor is back on the direct GDT, load back the fixmap */
186
load_fixmap_gdt(cpu);
187
}
188
189
/**
190
* __restore_processor_state() - Restore the contents of CPU registers saved
191
* by __save_processor_state()
192
* @ctxt: Structure to load the registers contents from.
193
*
194
* The asm code that gets us here will have restored a usable GDT, although
195
* it will be pointing to the wrong alias.
196
*/
197
static void notrace __restore_processor_state(struct saved_context *ctxt)
198
{
199
struct cpuinfo_x86 *c;
200
201
if (ctxt->misc_enable_saved)
202
wrmsrq(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
203
/*
204
* control registers
205
*/
206
/* cr4 was introduced in the Pentium CPU */
207
#ifdef CONFIG_X86_32
208
if (ctxt->cr4)
209
__write_cr4(ctxt->cr4);
210
#else
211
/* CONFIG X86_64 */
212
wrmsrq(MSR_EFER, ctxt->efer);
213
__write_cr4(ctxt->cr4);
214
#endif
215
write_cr3(ctxt->cr3);
216
write_cr2(ctxt->cr2);
217
write_cr0(ctxt->cr0);
218
219
/* Restore the IDT. */
220
load_idt(&ctxt->idt);
221
222
/*
223
* Just in case the asm code got us here with the SS, DS, or ES
224
* out of sync with the GDT, update them.
225
*/
226
loadsegment(ss, __KERNEL_DS);
227
loadsegment(ds, __USER_DS);
228
loadsegment(es, __USER_DS);
229
230
/*
231
* Restore percpu access. Percpu access can happen in exception
232
* handlers or in complicated helpers like load_gs_index().
233
*/
234
#ifdef CONFIG_X86_64
235
wrmsrq(MSR_GS_BASE, ctxt->kernelmode_gs_base);
236
237
/*
238
* Reinitialize FRED to ensure the FRED MSRs contain the same values
239
* as before hibernation.
240
*
241
* Note, the setup of FRED RSPs requires access to percpu data
242
* structures. Therefore, FRED reinitialization can only occur after
243
* the percpu access pointer (i.e., MSR_GS_BASE) is restored.
244
*/
245
if (ctxt->cr4 & X86_CR4_FRED) {
246
cpu_init_fred_exceptions();
247
cpu_init_fred_rsps();
248
}
249
#else
250
loadsegment(fs, __KERNEL_PERCPU);
251
#endif
252
253
/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
254
fix_processor_context();
255
256
/*
257
* Now that we have descriptor tables fully restored and working
258
* exception handling, restore the usermode segments.
259
*/
260
#ifdef CONFIG_X86_64
261
loadsegment(ds, ctxt->es);
262
loadsegment(es, ctxt->es);
263
loadsegment(fs, ctxt->fs);
264
load_gs_index(ctxt->gs);
265
266
/*
267
* Restore FSBASE and GSBASE after restoring the selectors, since
268
* restoring the selectors clobbers the bases. Keep in mind
269
* that MSR_KERNEL_GS_BASE is horribly misnamed.
270
*/
271
wrmsrq(MSR_FS_BASE, ctxt->fs_base);
272
wrmsrq(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
273
#else
274
loadsegment(gs, ctxt->gs);
275
#endif
276
277
do_fpu_end();
278
tsc_verify_tsc_adjust(true);
279
x86_platform.restore_sched_clock_state();
280
cache_bp_restore();
281
perf_restore_debug_store();
282
283
c = &cpu_data(smp_processor_id());
284
if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
285
init_ia32_feat_ctl(c);
286
287
microcode_bsp_resume();
288
289
/*
290
* This needs to happen after the microcode has been updated upon resume
291
* because some of the MSRs are "emulated" in microcode.
292
*/
293
msr_restore_context(ctxt);
294
}
295
296
/* Needed by apm.c */
297
void notrace restore_processor_state(void)
298
{
299
__restore_processor_state(&saved_context);
300
}
301
#ifdef CONFIG_X86_32
302
EXPORT_SYMBOL(restore_processor_state);
303
#endif
304
305
#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
306
static void __noreturn resume_play_dead(void)
307
{
308
play_dead_common();
309
tboot_shutdown(TB_SHUTDOWN_WFS);
310
hlt_play_dead();
311
}
312
313
int hibernate_resume_nonboot_cpu_disable(void)
314
{
315
void (*play_dead)(void) = smp_ops.play_dead;
316
int ret;
317
318
/*
319
* Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
320
* during hibernate image restoration, because it is likely that the
321
* monitored address will be actually written to at that time and then
322
* the "dead" CPU will attempt to execute instructions again, but the
323
* address in its instruction pointer may not be possible to resolve
324
* any more at that point (the page tables used by it previously may
325
* have been overwritten by hibernate image data).
326
*
327
* First, make sure that we wake up all the potentially disabled SMT
328
* threads which have been initially brought up and then put into
329
* mwait/cpuidle sleep.
330
* Those will be put to proper (not interfering with hibernation
331
* resume) sleep afterwards, and the resumed kernel will decide itself
332
* what to do with them.
333
*/
334
ret = cpuhp_smt_enable();
335
if (ret)
336
return ret;
337
smp_ops.play_dead = resume_play_dead;
338
ret = freeze_secondary_cpus(0);
339
smp_ops.play_dead = play_dead;
340
return ret;
341
}
342
#endif
343
344
/*
345
* When bsp_check() is called in hibernate and suspend, cpu hotplug
346
* is disabled already. So it's unnecessary to handle race condition between
347
* cpumask query and cpu hotplug.
348
*/
349
static int bsp_check(void)
350
{
351
if (cpumask_first(cpu_online_mask) != 0) {
352
pr_warn("CPU0 is offline.\n");
353
return -ENODEV;
354
}
355
356
return 0;
357
}
358
359
static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
360
void *ptr)
361
{
362
int ret = 0;
363
364
switch (action) {
365
case PM_SUSPEND_PREPARE:
366
case PM_HIBERNATION_PREPARE:
367
ret = bsp_check();
368
break;
369
default:
370
break;
371
}
372
return notifier_from_errno(ret);
373
}
374
375
static int __init bsp_pm_check_init(void)
376
{
377
/*
378
* Set this bsp_pm_callback as lower priority than
379
* cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
380
* earlier to disable cpu hotplug before bsp online check.
381
*/
382
pm_notifier(bsp_pm_callback, -INT_MAX);
383
return 0;
384
}
385
386
core_initcall(bsp_pm_check_init);
387
388
static int msr_build_context(const u32 *msr_id, const int num)
389
{
390
struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
391
struct saved_msr *msr_array;
392
int total_num;
393
int i, j;
394
395
total_num = saved_msrs->num + num;
396
397
msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
398
if (!msr_array) {
399
pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
400
return -ENOMEM;
401
}
402
403
if (saved_msrs->array) {
404
/*
405
* Multiple callbacks can invoke this function, so copy any
406
* MSR save requests from previous invocations.
407
*/
408
memcpy(msr_array, saved_msrs->array,
409
sizeof(struct saved_msr) * saved_msrs->num);
410
411
kfree(saved_msrs->array);
412
}
413
414
for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
415
u64 dummy;
416
417
msr_array[i].info.msr_no = msr_id[j];
418
msr_array[i].valid = !rdmsrq_safe(msr_id[j], &dummy);
419
msr_array[i].info.reg.q = 0;
420
}
421
saved_msrs->num = total_num;
422
saved_msrs->array = msr_array;
423
424
return 0;
425
}
426
427
/*
428
* The following sections are a quirk framework for problematic BIOSen:
429
* Sometimes MSRs are modified by the BIOSen after suspended to
430
* RAM, this might cause unexpected behavior after wakeup.
431
* Thus we save/restore these specified MSRs across suspend/resume
432
* in order to work around it.
433
*
434
* For any further problematic BIOSen/platforms,
435
* please add your own function similar to msr_initialize_bdw.
436
*/
437
static int msr_initialize_bdw(const struct dmi_system_id *d)
438
{
439
/* Add any extra MSR ids into this array. */
440
u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
441
442
pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
443
return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
444
}
445
446
static const struct dmi_system_id msr_save_dmi_table[] = {
447
{
448
.callback = msr_initialize_bdw,
449
.ident = "BROADWELL BDX_EP",
450
.matches = {
451
DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
452
DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
453
},
454
},
455
{}
456
};
457
458
static int msr_save_cpuid_features(const struct x86_cpu_id *c)
459
{
460
u32 cpuid_msr_id[] = {
461
MSR_AMD64_CPUID_FN_1,
462
};
463
464
pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
465
c->family);
466
467
return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
468
}
469
470
static const struct x86_cpu_id msr_save_cpu_table[] = {
471
X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
472
X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
473
{}
474
};
475
476
typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
477
static int pm_cpu_check(const struct x86_cpu_id *c)
478
{
479
const struct x86_cpu_id *m;
480
int ret = 0;
481
482
m = x86_match_cpu(msr_save_cpu_table);
483
if (m) {
484
pm_cpu_match_t fn;
485
486
fn = (pm_cpu_match_t)m->driver_data;
487
ret = fn(m);
488
}
489
490
return ret;
491
}
492
493
static void pm_save_spec_msr(void)
494
{
495
struct msr_enumeration {
496
u32 msr_no;
497
u32 feature;
498
} msr_enum[] = {
499
{ MSR_IA32_SPEC_CTRL, X86_FEATURE_MSR_SPEC_CTRL },
500
{ MSR_IA32_TSX_CTRL, X86_FEATURE_MSR_TSX_CTRL },
501
{ MSR_TSX_FORCE_ABORT, X86_FEATURE_TSX_FORCE_ABORT },
502
{ MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL },
503
{ MSR_AMD64_LS_CFG, X86_FEATURE_LS_CFG_SSBD },
504
{ MSR_AMD64_DE_CFG, X86_FEATURE_LFENCE_RDTSC },
505
};
506
int i;
507
508
for (i = 0; i < ARRAY_SIZE(msr_enum); i++) {
509
if (boot_cpu_has(msr_enum[i].feature))
510
msr_build_context(&msr_enum[i].msr_no, 1);
511
}
512
}
513
514
static int pm_check_save_msr(void)
515
{
516
dmi_check_system(msr_save_dmi_table);
517
pm_cpu_check(msr_save_cpu_table);
518
pm_save_spec_msr();
519
520
return 0;
521
}
522
523
device_initcall(pm_check_save_msr);
524
525