Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/xen/enlighten_pv.c
53176 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Core of Xen paravirt_ops implementation.
4
*
5
* This file contains the xen_paravirt_ops structure itself, and the
6
* implementations for:
7
* - privileged instructions
8
* - interrupt flags
9
* - segment operations
10
* - booting and setup
11
*
12
* Jeremy Fitzhardinge <[email protected]>, XenSource Inc, 2007
13
*/
14
15
#include <linux/cpu.h>
16
#include <linux/kernel.h>
17
#include <linux/init.h>
18
#include <linux/smp.h>
19
#include <linux/preempt.h>
20
#include <linux/hardirq.h>
21
#include <linux/percpu.h>
22
#include <linux/delay.h>
23
#include <linux/start_kernel.h>
24
#include <linux/sched.h>
25
#include <linux/kprobes.h>
26
#include <linux/kstrtox.h>
27
#include <linux/memblock.h>
28
#include <linux/export.h>
29
#include <linux/mm.h>
30
#include <linux/page-flags.h>
31
#include <linux/pci.h>
32
#include <linux/gfp.h>
33
#include <linux/edd.h>
34
#include <linux/reboot.h>
35
#include <linux/virtio_anchor.h>
36
#include <linux/stackprotector.h>
37
38
#include <xen/xen.h>
39
#include <xen/events.h>
40
#include <xen/interface/xen.h>
41
#include <xen/interface/version.h>
42
#include <xen/interface/physdev.h>
43
#include <xen/interface/vcpu.h>
44
#include <xen/interface/memory.h>
45
#include <xen/interface/nmi.h>
46
#include <xen/interface/xen-mca.h>
47
#include <xen/features.h>
48
#include <xen/page.h>
49
#include <xen/hvc-console.h>
50
#include <xen/acpi.h>
51
52
#include <asm/cpuid/api.h>
53
#include <asm/paravirt.h>
54
#include <asm/apic.h>
55
#include <asm/page.h>
56
#include <asm/xen/pci.h>
57
#include <asm/xen/hypercall.h>
58
#include <asm/xen/hypervisor.h>
59
#include <asm/xen/cpuid.h>
60
#include <asm/fixmap.h>
61
#include <asm/processor.h>
62
#include <asm/proto.h>
63
#include <asm/msr-index.h>
64
#include <asm/msr.h>
65
#include <asm/traps.h>
66
#include <asm/setup.h>
67
#include <asm/desc.h>
68
#include <asm/pgalloc.h>
69
#include <asm/tlbflush.h>
70
#include <asm/reboot.h>
71
#include <asm/hypervisor.h>
72
#include <asm/mach_traps.h>
73
#include <asm/mtrr.h>
74
#include <asm/mwait.h>
75
#include <asm/pci_x86.h>
76
#include <asm/cpu.h>
77
#include <asm/irq_stack.h>
78
#ifdef CONFIG_X86_IOPL_IOPERM
79
#include <asm/io_bitmap.h>
80
#endif
81
82
#ifdef CONFIG_ACPI
83
#include <linux/acpi.h>
84
#include <asm/acpi.h>
85
#include <acpi/proc_cap_intel.h>
86
#include <acpi/processor.h>
87
#include <xen/interface/platform.h>
88
#endif
89
90
#include "xen-ops.h"
91
92
#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
93
94
void *xen_initial_gdt;
95
96
static int xen_cpu_up_prepare_pv(unsigned int cpu);
97
static int xen_cpu_dead_pv(unsigned int cpu);
98
99
#ifndef CONFIG_PREEMPTION
100
/*
101
* Some hypercalls issued by the toolstack can take many 10s of
102
* seconds. Allow tasks running hypercalls via the privcmd driver to
103
* be voluntarily preempted even if full kernel preemption is
104
* disabled.
105
*
106
* Such preemptible hypercalls are bracketed by
107
* xen_preemptible_hcall_begin() and xen_preemptible_hcall_end()
108
* calls.
109
*/
110
DEFINE_PER_CPU(bool, xen_in_preemptible_hcall);
111
EXPORT_PER_CPU_SYMBOL_GPL(xen_in_preemptible_hcall);
112
113
/*
114
* In case of scheduling the flag must be cleared and restored after
115
* returning from schedule as the task might move to a different CPU.
116
*/
117
static __always_inline bool get_and_clear_inhcall(void)
118
{
119
bool inhcall = __this_cpu_read(xen_in_preemptible_hcall);
120
121
__this_cpu_write(xen_in_preemptible_hcall, false);
122
return inhcall;
123
}
124
125
static __always_inline void restore_inhcall(bool inhcall)
126
{
127
__this_cpu_write(xen_in_preemptible_hcall, inhcall);
128
}
129
130
#else
131
132
static __always_inline bool get_and_clear_inhcall(void) { return false; }
133
static __always_inline void restore_inhcall(bool inhcall) { }
134
135
#endif
136
137
struct tls_descs {
138
struct desc_struct desc[3];
139
};
140
141
DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
142
143
enum xen_lazy_mode xen_get_lazy_mode(void)
144
{
145
if (in_interrupt())
146
return XEN_LAZY_NONE;
147
148
return this_cpu_read(xen_lazy_mode);
149
}
150
151
/*
152
* Updating the 3 TLS descriptors in the GDT on every task switch is
153
* surprisingly expensive so we avoid updating them if they haven't
154
* changed. Since Xen writes different descriptors than the one
155
* passed in the update_descriptor hypercall we keep shadow copies to
156
* compare against.
157
*/
158
static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
159
160
static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
161
162
static int __init parse_xen_msr_safe(char *str)
163
{
164
if (str)
165
return kstrtobool(str, &xen_msr_safe);
166
return -EINVAL;
167
}
168
early_param("xen_msr_safe", parse_xen_msr_safe);
169
170
/* Get MTRR settings from Xen and put them into mtrr_state. */
171
static void __init xen_set_mtrr_data(void)
172
{
173
#ifdef CONFIG_MTRR
174
struct xen_platform_op op = {
175
.cmd = XENPF_read_memtype,
176
.interface_version = XENPF_INTERFACE_VERSION,
177
};
178
unsigned int reg;
179
unsigned long mask;
180
uint32_t eax, width;
181
static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
182
183
/* Get physical address width (only 64-bit cpus supported). */
184
width = 36;
185
eax = cpuid_eax(0x80000000);
186
if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
187
eax = cpuid_eax(0x80000008);
188
width = eax & 0xff;
189
}
190
191
for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
192
op.u.read_memtype.reg = reg;
193
if (HYPERVISOR_platform_op(&op))
194
break;
195
196
/*
197
* Only called in dom0, which has all RAM PFNs mapped at
198
* RAM MFNs, and all PCI space etc. is identity mapped.
199
* This means we can treat MFN == PFN regarding MTRR settings.
200
*/
201
var[reg].base_lo = op.u.read_memtype.type;
202
var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
203
var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
204
mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
205
mask &= (1UL << width) - 1;
206
if (mask)
207
mask |= MTRR_PHYSMASK_V;
208
var[reg].mask_lo = mask;
209
var[reg].mask_hi = mask >> 32;
210
}
211
212
/* Only overwrite MTRR state if any MTRR could be got from Xen. */
213
if (reg)
214
guest_force_mtrr_state(var, reg, MTRR_TYPE_UNCACHABLE);
215
#endif
216
}
217
218
static void __init xen_pv_init_platform(void)
219
{
220
/* PV guests can't operate virtio devices without grants. */
221
if (IS_ENABLED(CONFIG_XEN_VIRTIO))
222
virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
223
224
populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
225
226
set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
227
HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
228
229
/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
230
xen_vcpu_info_reset(0);
231
232
/* pvclock is in shared info area */
233
xen_init_time_ops();
234
235
if (xen_initial_domain())
236
xen_set_mtrr_data();
237
else
238
guest_force_mtrr_state(NULL, 0, MTRR_TYPE_WRBACK);
239
240
/* Adjust nr_cpu_ids before "enumeration" happens */
241
xen_smp_count_cpus();
242
}
243
244
static void __init xen_pv_guest_late_init(void)
245
{
246
#ifndef CONFIG_SMP
247
/* Setup shared vcpu info for non-smp configurations */
248
xen_setup_vcpu_info_placement();
249
#endif
250
}
251
252
static __read_mostly unsigned int cpuid_leaf5_ecx_val;
253
static __read_mostly unsigned int cpuid_leaf5_edx_val;
254
255
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
256
unsigned int *cx, unsigned int *dx)
257
{
258
unsigned int maskebx = ~0;
259
unsigned int or_ebx = 0;
260
261
/*
262
* Mask out inconvenient features, to try and disable as many
263
* unsupported kernel subsystems as possible.
264
*/
265
switch (*ax) {
266
case 0x1:
267
/* Replace initial APIC ID in bits 24-31 of EBX. */
268
/* See xen_pv_smp_config() for related topology preparations. */
269
maskebx = 0x00ffffff;
270
or_ebx = smp_processor_id() << 24;
271
break;
272
273
case CPUID_LEAF_MWAIT:
274
/* Synthesize the values.. */
275
*ax = 0;
276
*bx = 0;
277
*cx = cpuid_leaf5_ecx_val;
278
*dx = cpuid_leaf5_edx_val;
279
return;
280
281
case 0xb:
282
/* Suppress extended topology stuff */
283
maskebx = 0;
284
break;
285
}
286
287
asm(XEN_EMULATE_PREFIX "cpuid"
288
: "=a" (*ax),
289
"=b" (*bx),
290
"=c" (*cx),
291
"=d" (*dx)
292
: "0" (*ax), "2" (*cx));
293
294
*bx &= maskebx;
295
*bx |= or_ebx;
296
}
297
298
static bool __init xen_check_mwait(void)
299
{
300
#ifdef CONFIG_ACPI
301
struct xen_platform_op op = {
302
.cmd = XENPF_set_processor_pminfo,
303
.u.set_pminfo.id = -1,
304
.u.set_pminfo.type = XEN_PM_PDC,
305
};
306
uint32_t buf[3];
307
unsigned int ax, bx, cx, dx;
308
unsigned int mwait_mask;
309
310
/* We need to determine whether it is OK to expose the MWAIT
311
* capability to the kernel to harvest deeper than C3 states from ACPI
312
* _CST using the processor_harvest_xen.c module. For this to work, we
313
* need to gather the MWAIT_LEAF values (which the cstate.c code
314
* checks against). The hypervisor won't expose the MWAIT flag because
315
* it would break backwards compatibility; so we will find out directly
316
* from the hardware and hypercall.
317
*/
318
if (!xen_initial_domain())
319
return false;
320
321
/*
322
* When running under platform earlier than Xen4.2, do not expose
323
* mwait, to avoid the risk of loading native acpi pad driver
324
*/
325
if (!xen_running_on_version_or_later(4, 2))
326
return false;
327
328
ax = 1;
329
cx = 0;
330
331
native_cpuid(&ax, &bx, &cx, &dx);
332
333
mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
334
(1 << (X86_FEATURE_MWAIT % 32));
335
336
if ((cx & mwait_mask) != mwait_mask)
337
return false;
338
339
/* We need to emulate the MWAIT_LEAF and for that we need both
340
* ecx and edx. The hypercall provides only partial information.
341
*/
342
343
ax = CPUID_LEAF_MWAIT;
344
bx = 0;
345
cx = 0;
346
dx = 0;
347
348
native_cpuid(&ax, &bx, &cx, &dx);
349
350
/* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
351
* don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
352
*/
353
buf[0] = ACPI_PDC_REVISION_ID;
354
buf[1] = 1;
355
buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
356
357
set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
358
359
if ((HYPERVISOR_platform_op(&op) == 0) &&
360
(buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
361
cpuid_leaf5_ecx_val = cx;
362
cpuid_leaf5_edx_val = dx;
363
}
364
return true;
365
#else
366
return false;
367
#endif
368
}
369
370
static bool __init xen_check_xsave(void)
371
{
372
unsigned int cx, xsave_mask;
373
374
cx = cpuid_ecx(1);
375
376
xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
377
(1 << (X86_FEATURE_OSXSAVE % 32));
378
379
/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
380
return (cx & xsave_mask) == xsave_mask;
381
}
382
383
static void __init xen_init_capabilities(void)
384
{
385
setup_clear_cpu_cap(X86_FEATURE_DCA);
386
setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
387
setup_clear_cpu_cap(X86_FEATURE_MTRR);
388
setup_clear_cpu_cap(X86_FEATURE_ACC);
389
setup_clear_cpu_cap(X86_FEATURE_X2APIC);
390
setup_clear_cpu_cap(X86_FEATURE_SME);
391
setup_clear_cpu_cap(X86_FEATURE_LKGS);
392
393
/*
394
* Xen PV would need some work to support PCID: CR3 handling as well
395
* as xen_flush_tlb_others() would need updating.
396
*/
397
setup_clear_cpu_cap(X86_FEATURE_PCID);
398
399
if (!xen_initial_domain())
400
setup_clear_cpu_cap(X86_FEATURE_ACPI);
401
402
if (xen_check_mwait())
403
setup_force_cpu_cap(X86_FEATURE_MWAIT);
404
else
405
setup_clear_cpu_cap(X86_FEATURE_MWAIT);
406
407
if (!xen_check_xsave()) {
408
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
409
setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
410
}
411
}
412
413
static noinstr void xen_set_debugreg(int reg, unsigned long val)
414
{
415
HYPERVISOR_set_debugreg(reg, val);
416
}
417
418
static noinstr unsigned long xen_get_debugreg(int reg)
419
{
420
return HYPERVISOR_get_debugreg(reg);
421
}
422
423
static void xen_start_context_switch(struct task_struct *prev)
424
{
425
BUG_ON(preemptible());
426
427
if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
428
arch_leave_lazy_mmu_mode();
429
}
430
enter_lazy(XEN_LAZY_CPU);
431
}
432
433
static void xen_end_context_switch(struct task_struct *next)
434
{
435
BUG_ON(preemptible());
436
437
xen_mc_flush();
438
leave_lazy(XEN_LAZY_CPU);
439
if (__task_lazy_mmu_mode_active(next))
440
arch_enter_lazy_mmu_mode();
441
}
442
443
static unsigned long xen_store_tr(void)
444
{
445
return 0;
446
}
447
448
/*
449
* Set the page permissions for a particular virtual address. If the
450
* address is a vmalloc mapping (or other non-linear mapping), then
451
* find the linear mapping of the page and also set its protections to
452
* match.
453
*/
454
static void set_aliased_prot(void *v, pgprot_t prot)
455
{
456
int level;
457
pte_t *ptep;
458
pte_t pte;
459
unsigned long pfn;
460
unsigned char dummy;
461
void *va;
462
463
ptep = lookup_address((unsigned long)v, &level);
464
BUG_ON(ptep == NULL);
465
466
pfn = pte_pfn(*ptep);
467
pte = pfn_pte(pfn, prot);
468
469
/*
470
* Careful: update_va_mapping() will fail if the virtual address
471
* we're poking isn't populated in the page tables. We don't
472
* need to worry about the direct map (that's always in the page
473
* tables), but we need to be careful about vmap space. In
474
* particular, the top level page table can lazily propagate
475
* entries between processes, so if we've switched mms since we
476
* vmapped the target in the first place, we might not have the
477
* top-level page table entry populated.
478
*
479
* We disable preemption because we want the same mm active when
480
* we probe the target and when we issue the hypercall. We'll
481
* have the same nominal mm, but if we're a kernel thread, lazy
482
* mm dropping could change our pgd.
483
*
484
* Out of an abundance of caution, this uses __get_user() to fault
485
* in the target address just in case there's some obscure case
486
* in which the target address isn't readable.
487
*/
488
489
preempt_disable();
490
491
copy_from_kernel_nofault(&dummy, v, 1);
492
493
if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
494
BUG();
495
496
va = __va(PFN_PHYS(pfn));
497
498
if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
499
BUG();
500
501
preempt_enable();
502
}
503
504
static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
505
{
506
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
507
int i;
508
509
/*
510
* We need to mark the all aliases of the LDT pages RO. We
511
* don't need to call vm_flush_aliases(), though, since that's
512
* only responsible for flushing aliases out the TLBs, not the
513
* page tables, and Xen will flush the TLB for us if needed.
514
*
515
* To avoid confusing future readers: none of this is necessary
516
* to load the LDT. The hypervisor only checks this when the
517
* LDT is faulted in due to subsequent descriptor access.
518
*/
519
520
for (i = 0; i < entries; i += entries_per_page)
521
set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
522
}
523
524
static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
525
{
526
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
527
int i;
528
529
for (i = 0; i < entries; i += entries_per_page)
530
set_aliased_prot(ldt + i, PAGE_KERNEL);
531
}
532
533
static void xen_set_ldt(const void *addr, unsigned entries)
534
{
535
struct mmuext_op *op;
536
struct multicall_space mcs = xen_mc_entry(sizeof(*op));
537
538
trace_xen_cpu_set_ldt(addr, entries);
539
540
op = mcs.args;
541
op->cmd = MMUEXT_SET_LDT;
542
op->arg1.linear_addr = (unsigned long)addr;
543
op->arg2.nr_ents = entries;
544
545
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
546
547
xen_mc_issue(XEN_LAZY_CPU);
548
}
549
550
static void xen_load_gdt(const struct desc_ptr *dtr)
551
{
552
unsigned long va = dtr->address;
553
unsigned int size = dtr->size + 1;
554
unsigned long pfn, mfn;
555
int level;
556
pte_t *ptep;
557
void *virt;
558
559
/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
560
BUG_ON(size > PAGE_SIZE);
561
BUG_ON(va & ~PAGE_MASK);
562
563
/*
564
* The GDT is per-cpu and is in the percpu data area.
565
* That can be virtually mapped, so we need to do a
566
* page-walk to get the underlying MFN for the
567
* hypercall. The page can also be in the kernel's
568
* linear range, so we need to RO that mapping too.
569
*/
570
ptep = lookup_address(va, &level);
571
BUG_ON(ptep == NULL);
572
573
pfn = pte_pfn(*ptep);
574
mfn = pfn_to_mfn(pfn);
575
virt = __va(PFN_PHYS(pfn));
576
577
make_lowmem_page_readonly((void *)va);
578
make_lowmem_page_readonly(virt);
579
580
if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
581
BUG();
582
}
583
584
/*
585
* load_gdt for early boot, when the gdt is only mapped once
586
*/
587
static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
588
{
589
unsigned long va = dtr->address;
590
unsigned int size = dtr->size + 1;
591
unsigned long pfn, mfn;
592
pte_t pte;
593
594
/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
595
BUG_ON(size > PAGE_SIZE);
596
BUG_ON(va & ~PAGE_MASK);
597
598
pfn = virt_to_pfn((void *)va);
599
mfn = pfn_to_mfn(pfn);
600
601
pte = pfn_pte(pfn, PAGE_KERNEL_RO);
602
603
if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
604
BUG();
605
606
if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
607
BUG();
608
}
609
610
static inline bool desc_equal(const struct desc_struct *d1,
611
const struct desc_struct *d2)
612
{
613
return !memcmp(d1, d2, sizeof(*d1));
614
}
615
616
static void load_TLS_descriptor(struct thread_struct *t,
617
unsigned int cpu, unsigned int i)
618
{
619
struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
620
struct desc_struct *gdt;
621
xmaddr_t maddr;
622
struct multicall_space mc;
623
624
if (desc_equal(shadow, &t->tls_array[i]))
625
return;
626
627
*shadow = t->tls_array[i];
628
629
gdt = get_cpu_gdt_rw(cpu);
630
maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
631
mc = __xen_mc_entry(0);
632
633
MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
634
}
635
636
static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
637
{
638
/*
639
* In lazy mode we need to zero %fs, otherwise we may get an
640
* exception between the new %fs descriptor being loaded and
641
* %fs being effectively cleared at __switch_to().
642
*/
643
if (xen_get_lazy_mode() == XEN_LAZY_CPU)
644
loadsegment(fs, 0);
645
646
xen_mc_batch();
647
648
load_TLS_descriptor(t, cpu, 0);
649
load_TLS_descriptor(t, cpu, 1);
650
load_TLS_descriptor(t, cpu, 2);
651
652
xen_mc_issue(XEN_LAZY_CPU);
653
}
654
655
static void xen_load_gs_index(unsigned int idx)
656
{
657
if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
658
BUG();
659
}
660
661
static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
662
const void *ptr)
663
{
664
xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
665
u64 entry = *(u64 *)ptr;
666
667
trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
668
669
preempt_disable();
670
671
xen_mc_flush();
672
if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
673
BUG();
674
675
preempt_enable();
676
}
677
678
void noist_exc_debug(struct pt_regs *regs);
679
680
DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
681
{
682
/* On Xen PV, NMI doesn't use IST. The C part is the same as native. */
683
exc_nmi(regs);
684
}
685
686
DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
687
{
688
/* On Xen PV, DF doesn't use IST. The C part is the same as native. */
689
exc_double_fault(regs, error_code);
690
}
691
692
DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
693
{
694
/*
695
* There's no IST on Xen PV, but we still need to dispatch
696
* to the correct handler.
697
*/
698
if (user_mode(regs))
699
noist_exc_debug(regs);
700
else
701
exc_debug(regs);
702
}
703
704
DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
705
{
706
/* This should never happen and there is no way to handle it. */
707
instrumentation_begin();
708
pr_err("Unknown trap in Xen PV mode.");
709
BUG();
710
instrumentation_end();
711
}
712
713
#ifdef CONFIG_X86_MCE
714
DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
715
{
716
/*
717
* There's no IST on Xen PV, but we still need to dispatch
718
* to the correct handler.
719
*/
720
if (user_mode(regs))
721
noist_exc_machine_check(regs);
722
else
723
exc_machine_check(regs);
724
}
725
#endif
726
727
static void __xen_pv_evtchn_do_upcall(struct pt_regs *regs)
728
{
729
struct pt_regs *old_regs = set_irq_regs(regs);
730
731
inc_irq_stat(irq_hv_callback_count);
732
733
xen_evtchn_do_upcall();
734
735
set_irq_regs(old_regs);
736
}
737
738
__visible noinstr void xen_pv_evtchn_do_upcall(struct pt_regs *regs)
739
{
740
irqentry_state_t state = irqentry_enter(regs);
741
bool inhcall;
742
743
instrumentation_begin();
744
run_sysvec_on_irqstack_cond(__xen_pv_evtchn_do_upcall, regs);
745
746
inhcall = get_and_clear_inhcall();
747
if (inhcall && !WARN_ON_ONCE(state.exit_rcu)) {
748
irqentry_exit_cond_resched();
749
instrumentation_end();
750
restore_inhcall(inhcall);
751
} else {
752
instrumentation_end();
753
irqentry_exit(regs, state);
754
}
755
}
756
757
struct trap_array_entry {
758
void (*orig)(void);
759
void (*xen)(void);
760
bool ist_okay;
761
};
762
763
#define TRAP_ENTRY(func, ist_ok) { \
764
.orig = asm_##func, \
765
.xen = xen_asm_##func, \
766
.ist_okay = ist_ok }
767
768
#define TRAP_ENTRY_REDIR(func, ist_ok) { \
769
.orig = asm_##func, \
770
.xen = xen_asm_xenpv_##func, \
771
.ist_okay = ist_ok }
772
773
static struct trap_array_entry trap_array[] = {
774
TRAP_ENTRY_REDIR(exc_debug, true ),
775
TRAP_ENTRY_REDIR(exc_double_fault, true ),
776
#ifdef CONFIG_X86_MCE
777
TRAP_ENTRY_REDIR(exc_machine_check, true ),
778
#endif
779
TRAP_ENTRY_REDIR(exc_nmi, true ),
780
TRAP_ENTRY(exc_int3, false ),
781
TRAP_ENTRY(exc_overflow, false ),
782
#ifdef CONFIG_IA32_EMULATION
783
TRAP_ENTRY(int80_emulation, false ),
784
#endif
785
TRAP_ENTRY(exc_page_fault, false ),
786
TRAP_ENTRY(exc_divide_error, false ),
787
TRAP_ENTRY(exc_bounds, false ),
788
TRAP_ENTRY(exc_invalid_op, false ),
789
TRAP_ENTRY(exc_device_not_available, false ),
790
TRAP_ENTRY(exc_coproc_segment_overrun, false ),
791
TRAP_ENTRY(exc_invalid_tss, false ),
792
TRAP_ENTRY(exc_segment_not_present, false ),
793
TRAP_ENTRY(exc_stack_segment, false ),
794
TRAP_ENTRY(exc_general_protection, false ),
795
TRAP_ENTRY(exc_spurious_interrupt_bug, false ),
796
TRAP_ENTRY(exc_coprocessor_error, false ),
797
TRAP_ENTRY(exc_alignment_check, false ),
798
TRAP_ENTRY(exc_simd_coprocessor_error, false ),
799
#ifdef CONFIG_X86_CET
800
TRAP_ENTRY(exc_control_protection, false ),
801
#endif
802
};
803
804
static bool __ref get_trap_addr(void **addr, unsigned int ist)
805
{
806
unsigned int nr;
807
bool ist_okay = false;
808
bool found = false;
809
810
/*
811
* Replace trap handler addresses by Xen specific ones.
812
* Check for known traps using IST and whitelist them.
813
* The debugger ones are the only ones we care about.
814
* Xen will handle faults like double_fault, so we should never see
815
* them. Warn if there's an unexpected IST-using fault handler.
816
*/
817
for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
818
struct trap_array_entry *entry = trap_array + nr;
819
820
if (*addr == entry->orig) {
821
*addr = entry->xen;
822
ist_okay = entry->ist_okay;
823
found = true;
824
break;
825
}
826
}
827
828
if (nr == ARRAY_SIZE(trap_array) &&
829
*addr >= (void *)early_idt_handler_array[0] &&
830
*addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
831
nr = (*addr - (void *)early_idt_handler_array[0]) /
832
EARLY_IDT_HANDLER_SIZE;
833
*addr = (void *)xen_early_idt_handler_array[nr];
834
found = true;
835
}
836
837
if (!found)
838
*addr = (void *)xen_asm_exc_xen_unknown_trap;
839
840
if (WARN_ON(found && ist != 0 && !ist_okay))
841
return false;
842
843
return true;
844
}
845
846
static int cvt_gate_to_trap(int vector, const gate_desc *val,
847
struct trap_info *info)
848
{
849
unsigned long addr;
850
851
if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
852
return 0;
853
854
info->vector = vector;
855
856
addr = gate_offset(val);
857
if (!get_trap_addr((void **)&addr, val->bits.ist))
858
return 0;
859
info->address = addr;
860
861
info->cs = gate_segment(val);
862
info->flags = val->bits.dpl;
863
/* interrupt gates clear IF */
864
if (val->bits.type == GATE_INTERRUPT)
865
info->flags |= 1 << 2;
866
867
return 1;
868
}
869
870
/* Locations of each CPU's IDT */
871
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
872
873
/* Set an IDT entry. If the entry is part of the current IDT, then
874
also update Xen. */
875
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
876
{
877
unsigned long p = (unsigned long)&dt[entrynum];
878
unsigned long start, end;
879
880
trace_xen_cpu_write_idt_entry(dt, entrynum, g);
881
882
preempt_disable();
883
884
start = __this_cpu_read(idt_desc.address);
885
end = start + __this_cpu_read(idt_desc.size) + 1;
886
887
xen_mc_flush();
888
889
native_write_idt_entry(dt, entrynum, g);
890
891
if (p >= start && (p + 8) <= end) {
892
struct trap_info info[2];
893
894
info[1].address = 0;
895
896
if (cvt_gate_to_trap(entrynum, g, &info[0]))
897
if (HYPERVISOR_set_trap_table(info))
898
BUG();
899
}
900
901
preempt_enable();
902
}
903
904
static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
905
struct trap_info *traps, bool full)
906
{
907
unsigned in, out, count;
908
909
count = (desc->size+1) / sizeof(gate_desc);
910
BUG_ON(count > 256);
911
912
for (in = out = 0; in < count; in++) {
913
gate_desc *entry = (gate_desc *)(desc->address) + in;
914
915
if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
916
out++;
917
}
918
919
return out;
920
}
921
922
void xen_copy_trap_info(struct trap_info *traps)
923
{
924
const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
925
926
xen_convert_trap_info(desc, traps, true);
927
}
928
929
/* Load a new IDT into Xen. In principle this can be per-CPU, so we
930
hold a spinlock to protect the static traps[] array (static because
931
it avoids allocation, and saves stack space). */
932
static void xen_load_idt(const struct desc_ptr *desc)
933
{
934
static DEFINE_SPINLOCK(lock);
935
static struct trap_info traps[257];
936
static const struct trap_info zero = { };
937
unsigned out;
938
939
trace_xen_cpu_load_idt(desc);
940
941
spin_lock(&lock);
942
943
memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
944
945
out = xen_convert_trap_info(desc, traps, false);
946
traps[out] = zero;
947
948
xen_mc_flush();
949
if (HYPERVISOR_set_trap_table(traps))
950
BUG();
951
952
spin_unlock(&lock);
953
}
954
955
/* Write a GDT descriptor entry. Ignore LDT descriptors, since
956
they're handled differently. */
957
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
958
const void *desc, int type)
959
{
960
trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
961
962
preempt_disable();
963
964
switch (type) {
965
case DESC_LDT:
966
case DESC_TSS:
967
/* ignore */
968
break;
969
970
default: {
971
xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
972
973
xen_mc_flush();
974
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
975
BUG();
976
}
977
978
}
979
980
preempt_enable();
981
}
982
983
/*
984
* Version of write_gdt_entry for use at early boot-time needed to
985
* update an entry as simply as possible.
986
*/
987
static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
988
const void *desc, int type)
989
{
990
trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
991
992
switch (type) {
993
case DESC_LDT:
994
case DESC_TSS:
995
/* ignore */
996
break;
997
998
default: {
999
xmaddr_t maddr = virt_to_machine(&dt[entry]);
1000
1001
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
1002
dt[entry] = *(struct desc_struct *)desc;
1003
}
1004
1005
}
1006
}
1007
1008
static void xen_load_sp0(unsigned long sp0)
1009
{
1010
struct multicall_space mcs;
1011
1012
mcs = xen_mc_entry(0);
1013
MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
1014
xen_mc_issue(XEN_LAZY_CPU);
1015
this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
1016
}
1017
1018
#ifdef CONFIG_X86_IOPL_IOPERM
1019
static void xen_invalidate_io_bitmap(void)
1020
{
1021
struct physdev_set_iobitmap iobitmap = {
1022
.bitmap = NULL,
1023
.nr_ports = 0,
1024
};
1025
1026
native_tss_invalidate_io_bitmap();
1027
HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
1028
}
1029
1030
static void xen_update_io_bitmap(void)
1031
{
1032
struct physdev_set_iobitmap iobitmap;
1033
struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1034
1035
native_tss_update_io_bitmap();
1036
1037
iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
1038
tss->x86_tss.io_bitmap_base;
1039
if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
1040
iobitmap.nr_ports = 0;
1041
else
1042
iobitmap.nr_ports = IO_BITMAP_BITS;
1043
1044
HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
1045
}
1046
#endif
1047
1048
static void xen_io_delay(void)
1049
{
1050
}
1051
1052
static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1053
1054
static unsigned long xen_read_cr0(void)
1055
{
1056
unsigned long cr0 = this_cpu_read(xen_cr0_value);
1057
1058
if (unlikely(cr0 == 0)) {
1059
cr0 = native_read_cr0();
1060
this_cpu_write(xen_cr0_value, cr0);
1061
}
1062
1063
return cr0;
1064
}
1065
1066
static void xen_write_cr0(unsigned long cr0)
1067
{
1068
struct multicall_space mcs;
1069
1070
this_cpu_write(xen_cr0_value, cr0);
1071
1072
/* Only pay attention to cr0.TS; everything else is
1073
ignored. */
1074
mcs = xen_mc_entry(0);
1075
1076
MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1077
1078
xen_mc_issue(XEN_LAZY_CPU);
1079
}
1080
1081
static void xen_write_cr4(unsigned long cr4)
1082
{
1083
cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1084
1085
native_write_cr4(cr4);
1086
}
1087
1088
static u64 xen_do_read_msr(u32 msr, int *err)
1089
{
1090
u64 val = 0; /* Avoid uninitialized value for safe variant. */
1091
1092
if (pmu_msr_chk_emulated(msr, &val, true))
1093
return val;
1094
1095
if (err)
1096
*err = native_read_msr_safe(msr, &val);
1097
else
1098
val = native_read_msr(msr);
1099
1100
switch (msr) {
1101
case MSR_IA32_APICBASE:
1102
val &= ~X2APIC_ENABLE;
1103
if (smp_processor_id() == 0)
1104
val |= MSR_IA32_APICBASE_BSP;
1105
else
1106
val &= ~MSR_IA32_APICBASE_BSP;
1107
break;
1108
}
1109
return val;
1110
}
1111
1112
static void set_seg(u32 which, u64 base)
1113
{
1114
if (HYPERVISOR_set_segment_base(which, base))
1115
WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1116
}
1117
1118
/*
1119
* Support write_msr_safe() and write_msr() semantics.
1120
* With err == NULL write_msr() semantics are selected.
1121
* Supplying an err pointer requires err to be pre-initialized with 0.
1122
*/
1123
static void xen_do_write_msr(u32 msr, u64 val, int *err)
1124
{
1125
switch (msr) {
1126
case MSR_FS_BASE:
1127
set_seg(SEGBASE_FS, val);
1128
break;
1129
1130
case MSR_KERNEL_GS_BASE:
1131
set_seg(SEGBASE_GS_USER, val);
1132
break;
1133
1134
case MSR_GS_BASE:
1135
set_seg(SEGBASE_GS_KERNEL, val);
1136
break;
1137
1138
case MSR_STAR:
1139
case MSR_CSTAR:
1140
case MSR_LSTAR:
1141
case MSR_SYSCALL_MASK:
1142
case MSR_IA32_SYSENTER_CS:
1143
case MSR_IA32_SYSENTER_ESP:
1144
case MSR_IA32_SYSENTER_EIP:
1145
/* Fast syscall setup is all done in hypercalls, so
1146
these are all ignored. Stub them out here to stop
1147
Xen console noise. */
1148
break;
1149
1150
default:
1151
if (pmu_msr_chk_emulated(msr, &val, false))
1152
return;
1153
1154
if (err)
1155
*err = native_write_msr_safe(msr, val);
1156
else
1157
native_write_msr(msr, val);
1158
}
1159
}
1160
1161
static int xen_read_msr_safe(u32 msr, u64 *val)
1162
{
1163
int err = 0;
1164
1165
*val = xen_do_read_msr(msr, &err);
1166
return err;
1167
}
1168
1169
static int xen_write_msr_safe(u32 msr, u64 val)
1170
{
1171
int err = 0;
1172
1173
xen_do_write_msr(msr, val, &err);
1174
1175
return err;
1176
}
1177
1178
static u64 xen_read_msr(u32 msr)
1179
{
1180
int err = 0;
1181
1182
return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1183
}
1184
1185
static void xen_write_msr(u32 msr, u64 val)
1186
{
1187
int err;
1188
1189
xen_do_write_msr(msr, val, xen_msr_safe ? &err : NULL);
1190
}
1191
1192
/* This is called once we have the cpu_possible_mask */
1193
void __init xen_setup_vcpu_info_placement(void)
1194
{
1195
int cpu;
1196
1197
for_each_possible_cpu(cpu) {
1198
/* Set up direct vCPU id mapping for PV guests. */
1199
per_cpu(xen_vcpu_id, cpu) = cpu;
1200
xen_vcpu_setup(cpu);
1201
}
1202
1203
pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1204
pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1205
pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1206
pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1207
}
1208
1209
static const struct pv_info xen_info __initconst = {
1210
.extra_user_64bit_cs = FLAT_USER_CS64,
1211
.name = "Xen",
1212
};
1213
1214
static void xen_restart(char *msg)
1215
{
1216
xen_reboot(SHUTDOWN_reboot);
1217
}
1218
1219
static void xen_machine_halt(void)
1220
{
1221
xen_reboot(SHUTDOWN_poweroff);
1222
}
1223
1224
static void xen_machine_power_off(void)
1225
{
1226
do_kernel_power_off();
1227
xen_reboot(SHUTDOWN_poweroff);
1228
}
1229
1230
static void xen_crash_shutdown(struct pt_regs *regs)
1231
{
1232
xen_reboot(SHUTDOWN_crash);
1233
}
1234
1235
static const struct machine_ops xen_machine_ops __initconst = {
1236
.restart = xen_restart,
1237
.halt = xen_machine_halt,
1238
.power_off = xen_machine_power_off,
1239
.shutdown = xen_machine_halt,
1240
.crash_shutdown = xen_crash_shutdown,
1241
.emergency_restart = xen_emergency_restart,
1242
};
1243
1244
static unsigned char xen_get_nmi_reason(void)
1245
{
1246
unsigned char reason = 0;
1247
1248
/* Construct a value which looks like it came from port 0x61. */
1249
if (test_bit(_XEN_NMIREASON_io_error,
1250
&HYPERVISOR_shared_info->arch.nmi_reason))
1251
reason |= NMI_REASON_IOCHK;
1252
if (test_bit(_XEN_NMIREASON_pci_serr,
1253
&HYPERVISOR_shared_info->arch.nmi_reason))
1254
reason |= NMI_REASON_SERR;
1255
1256
return reason;
1257
}
1258
1259
static void __init xen_boot_params_init_edd(void)
1260
{
1261
#if IS_ENABLED(CONFIG_EDD)
1262
struct xen_platform_op op;
1263
struct edd_info *edd_info;
1264
u32 *mbr_signature;
1265
unsigned nr;
1266
int ret;
1267
1268
edd_info = boot_params.eddbuf;
1269
mbr_signature = boot_params.edd_mbr_sig_buffer;
1270
1271
op.cmd = XENPF_firmware_info;
1272
1273
op.u.firmware_info.type = XEN_FW_DISK_INFO;
1274
for (nr = 0; nr < EDDMAXNR; nr++) {
1275
struct edd_info *info = edd_info + nr;
1276
1277
op.u.firmware_info.index = nr;
1278
info->params.length = sizeof(info->params);
1279
set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1280
&info->params);
1281
ret = HYPERVISOR_platform_op(&op);
1282
if (ret)
1283
break;
1284
1285
#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1286
C(device);
1287
C(version);
1288
C(interface_support);
1289
C(legacy_max_cylinder);
1290
C(legacy_max_head);
1291
C(legacy_sectors_per_track);
1292
#undef C
1293
}
1294
boot_params.eddbuf_entries = nr;
1295
1296
op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1297
for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1298
op.u.firmware_info.index = nr;
1299
ret = HYPERVISOR_platform_op(&op);
1300
if (ret)
1301
break;
1302
mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1303
}
1304
boot_params.edd_mbr_sig_buf_entries = nr;
1305
#endif
1306
}
1307
1308
/*
1309
* Set up the GDT and segment registers for -fstack-protector. Until
1310
* we do this, we have to be careful not to call any stack-protected
1311
* function, which is most of the kernel.
1312
*/
1313
static void __init xen_setup_gdt(int cpu)
1314
{
1315
pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1316
pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1317
1318
switch_gdt_and_percpu_base(cpu);
1319
1320
pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1321
pv_ops.cpu.load_gdt = xen_load_gdt;
1322
}
1323
1324
static void __init xen_dom0_set_legacy_features(void)
1325
{
1326
x86_platform.legacy.rtc = 1;
1327
}
1328
1329
static void __init xen_domu_set_legacy_features(void)
1330
{
1331
x86_platform.legacy.rtc = 0;
1332
}
1333
1334
extern void early_xen_iret_patch(void);
1335
1336
/* First C function to be called on Xen boot */
1337
asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1338
{
1339
struct physdev_set_iopl set_iopl;
1340
unsigned long initrd_start = 0;
1341
int rc;
1342
1343
if (!si)
1344
return;
1345
1346
clear_bss();
1347
1348
xen_start_info = si;
1349
1350
__text_gen_insn(&early_xen_iret_patch,
1351
JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1352
JMP32_INSN_SIZE);
1353
1354
xen_domain_type = XEN_PV_DOMAIN;
1355
setup_force_cpu_cap(X86_FEATURE_XENPV);
1356
xen_start_flags = xen_start_info->flags;
1357
/* Interrupts are guaranteed to be off initially. */
1358
early_boot_irqs_disabled = true;
1359
static_call_update_early(xen_hypercall, xen_hypercall_pv);
1360
1361
xen_setup_features();
1362
1363
/* Install Xen paravirt ops */
1364
pv_info = xen_info;
1365
1366
pv_ops.cpu.cpuid = xen_cpuid;
1367
pv_ops.cpu.set_debugreg = xen_set_debugreg;
1368
pv_ops.cpu.get_debugreg = xen_get_debugreg;
1369
pv_ops.cpu.read_cr0 = xen_read_cr0;
1370
pv_ops.cpu.write_cr0 = xen_write_cr0;
1371
pv_ops.cpu.write_cr4 = xen_write_cr4;
1372
pv_ops.cpu.read_msr = xen_read_msr;
1373
pv_ops.cpu.write_msr = xen_write_msr;
1374
pv_ops.cpu.read_msr_safe = xen_read_msr_safe;
1375
pv_ops.cpu.write_msr_safe = xen_write_msr_safe;
1376
pv_ops.cpu.read_pmc = xen_read_pmc;
1377
pv_ops.cpu.load_tr_desc = paravirt_nop;
1378
pv_ops.cpu.set_ldt = xen_set_ldt;
1379
pv_ops.cpu.load_gdt = xen_load_gdt;
1380
pv_ops.cpu.load_idt = xen_load_idt;
1381
pv_ops.cpu.load_tls = xen_load_tls;
1382
pv_ops.cpu.load_gs_index = xen_load_gs_index;
1383
pv_ops.cpu.alloc_ldt = xen_alloc_ldt;
1384
pv_ops.cpu.free_ldt = xen_free_ldt;
1385
pv_ops.cpu.store_tr = xen_store_tr;
1386
pv_ops.cpu.write_ldt_entry = xen_write_ldt_entry;
1387
pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1388
pv_ops.cpu.write_idt_entry = xen_write_idt_entry;
1389
pv_ops.cpu.load_sp0 = xen_load_sp0;
1390
#ifdef CONFIG_X86_IOPL_IOPERM
1391
pv_ops.cpu.invalidate_io_bitmap = xen_invalidate_io_bitmap;
1392
pv_ops.cpu.update_io_bitmap = xen_update_io_bitmap;
1393
#endif
1394
pv_ops.cpu.io_delay = xen_io_delay;
1395
pv_ops.cpu.start_context_switch = xen_start_context_switch;
1396
pv_ops.cpu.end_context_switch = xen_end_context_switch;
1397
1398
xen_init_irq_ops();
1399
1400
/*
1401
* Setup xen_vcpu early because it is needed for
1402
* local_irq_disable(), irqs_disabled(), e.g. in printk().
1403
*
1404
* Don't do the full vcpu_info placement stuff until we have
1405
* the cpu_possible_mask and a non-dummy shared_info.
1406
*/
1407
xen_vcpu_info_reset(0);
1408
1409
x86_platform.get_nmi_reason = xen_get_nmi_reason;
1410
x86_platform.realmode_reserve = x86_init_noop;
1411
x86_platform.realmode_init = x86_init_noop;
1412
1413
x86_init.resources.memory_setup = xen_memory_setup;
1414
x86_init.irqs.intr_mode_select = x86_init_noop;
1415
x86_init.irqs.intr_mode_init = x86_64_probe_apic;
1416
x86_init.oem.arch_setup = xen_arch_setup;
1417
x86_init.oem.banner = xen_banner;
1418
x86_init.hyper.init_platform = xen_pv_init_platform;
1419
x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1420
1421
/*
1422
* Set up some pagetable state before starting to set any ptes.
1423
*/
1424
1425
xen_setup_machphys_mapping();
1426
xen_init_mmu_ops();
1427
1428
/* Prevent unwanted bits from being set in PTEs. */
1429
__supported_pte_mask &= ~_PAGE_GLOBAL;
1430
__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1431
1432
/* Get mfn list */
1433
xen_build_dynamic_phys_to_machine();
1434
1435
/* Work out if we support NX */
1436
get_cpu_cap(&boot_cpu_data);
1437
x86_configure_nx();
1438
1439
/*
1440
* Set up kernel GDT and segment registers, mainly so that
1441
* -fstack-protector code can be executed.
1442
*/
1443
xen_setup_gdt(0);
1444
1445
/* Determine virtual and physical address sizes */
1446
get_cpu_address_sizes(&boot_cpu_data);
1447
1448
/* Let's presume PV guests always boot on vCPU with id 0. */
1449
per_cpu(xen_vcpu_id, 0) = 0;
1450
1451
idt_setup_early_handler();
1452
1453
xen_init_capabilities();
1454
1455
/*
1456
* set up the basic apic ops.
1457
*/
1458
xen_init_apic();
1459
1460
machine_ops = xen_machine_ops;
1461
1462
/*
1463
* The only reliable way to retain the initial address of the
1464
* percpu gdt_page is to remember it here, so we can go and
1465
* mark it RW later, when the initial percpu area is freed.
1466
*/
1467
xen_initial_gdt = &per_cpu(gdt_page, 0);
1468
1469
xen_smp_init();
1470
1471
#ifdef CONFIG_ACPI_NUMA
1472
/*
1473
* The pages we from Xen are not related to machine pages, so
1474
* any NUMA information the kernel tries to get from ACPI will
1475
* be meaningless. Prevent it from trying.
1476
*/
1477
disable_srat();
1478
#endif
1479
WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1480
1481
local_irq_disable();
1482
1483
xen_raw_console_write("mapping kernel into physical memory\n");
1484
xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1485
xen_start_info->nr_pages);
1486
xen_reserve_special_pages();
1487
1488
/*
1489
* We used to do this in xen_arch_setup, but that is too late
1490
* on AMD were early_cpu_init (run before ->arch_setup()) calls
1491
* early_amd_init which pokes 0xcf8 port.
1492
*/
1493
set_iopl.iopl = 1;
1494
rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1495
if (rc != 0)
1496
xen_raw_printk("physdev_op failed %d\n", rc);
1497
1498
1499
if (xen_start_info->mod_start) {
1500
if (xen_start_info->flags & SIF_MOD_START_PFN)
1501
initrd_start = PFN_PHYS(xen_start_info->mod_start);
1502
else
1503
initrd_start = __pa(xen_start_info->mod_start);
1504
}
1505
1506
/* Poke various useful things into boot_params */
1507
boot_params.hdr.type_of_loader = (9 << 4) | 0;
1508
boot_params.hdr.ramdisk_image = initrd_start;
1509
boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1510
boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1511
boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1512
1513
if (!xen_initial_domain()) {
1514
if (pci_xen)
1515
x86_init.pci.arch_init = pci_xen_init;
1516
x86_platform.set_legacy_features =
1517
xen_domu_set_legacy_features;
1518
} else {
1519
const struct dom0_vga_console_info *info =
1520
(void *)((char *)xen_start_info +
1521
xen_start_info->console.dom0.info_off);
1522
struct xen_platform_op op = {
1523
.cmd = XENPF_firmware_info,
1524
.interface_version = XENPF_INTERFACE_VERSION,
1525
.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1526
};
1527
1528
x86_platform.set_legacy_features =
1529
xen_dom0_set_legacy_features;
1530
xen_init_vga(info, xen_start_info->console.dom0.info_size,
1531
&boot_params.screen_info);
1532
xen_start_info->console.domU.mfn = 0;
1533
xen_start_info->console.domU.evtchn = 0;
1534
1535
if (HYPERVISOR_platform_op(&op) == 0)
1536
boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1537
1538
/* Make sure ACS will be enabled */
1539
pci_request_acs();
1540
1541
xen_acpi_sleep_register();
1542
1543
xen_boot_params_init_edd();
1544
1545
#ifdef CONFIG_ACPI
1546
/*
1547
* Disable selecting "Firmware First mode" for correctable
1548
* memory errors, as this is the duty of the hypervisor to
1549
* decide.
1550
*/
1551
acpi_disable_cmcff = 1;
1552
#endif
1553
}
1554
1555
xen_add_preferred_consoles();
1556
1557
#ifdef CONFIG_PCI
1558
/* PCI BIOS service won't work from a PV guest. */
1559
pci_probe &= ~PCI_PROBE_BIOS;
1560
#endif
1561
xen_raw_console_write("about to get started...\n");
1562
1563
/* We need this for printk timestamps */
1564
xen_setup_runstate_info(0);
1565
1566
xen_efi_init(&boot_params);
1567
1568
/* Start the world */
1569
cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1570
x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1571
}
1572
1573
static int xen_cpu_up_prepare_pv(unsigned int cpu)
1574
{
1575
int rc;
1576
1577
if (per_cpu(xen_vcpu, cpu) == NULL)
1578
return -ENODEV;
1579
1580
xen_setup_timer(cpu);
1581
1582
rc = xen_smp_intr_init(cpu);
1583
if (rc) {
1584
WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1585
cpu, rc);
1586
return rc;
1587
}
1588
1589
rc = xen_smp_intr_init_pv(cpu);
1590
if (rc) {
1591
WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1592
cpu, rc);
1593
return rc;
1594
}
1595
1596
return 0;
1597
}
1598
1599
static int xen_cpu_dead_pv(unsigned int cpu)
1600
{
1601
xen_smp_intr_free(cpu);
1602
xen_smp_intr_free_pv(cpu);
1603
1604
xen_teardown_timer(cpu);
1605
1606
return 0;
1607
}
1608
1609
static uint32_t __init xen_platform_pv(void)
1610
{
1611
if (xen_pv_domain())
1612
return xen_cpuid_base();
1613
1614
return 0;
1615
}
1616
1617
const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1618
.name = "Xen PV",
1619
.detect = xen_platform_pv,
1620
.type = X86_HYPER_XEN_PV,
1621
.runtime.pin_vcpu = xen_pin_vcpu,
1622
.ignore_nopv = true,
1623
};
1624
1625