Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/xen/enlighten_pv.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Core of Xen paravirt_ops implementation.
4
*
5
* This file contains the xen_paravirt_ops structure itself, and the
6
* implementations for:
7
* - privileged instructions
8
* - interrupt flags
9
* - segment operations
10
* - booting and setup
11
*
12
* Jeremy Fitzhardinge <[email protected]>, XenSource Inc, 2007
13
*/
14
15
#include <linux/cpu.h>
16
#include <linux/kernel.h>
17
#include <linux/init.h>
18
#include <linux/smp.h>
19
#include <linux/preempt.h>
20
#include <linux/hardirq.h>
21
#include <linux/percpu.h>
22
#include <linux/delay.h>
23
#include <linux/start_kernel.h>
24
#include <linux/sched.h>
25
#include <linux/kprobes.h>
26
#include <linux/kstrtox.h>
27
#include <linux/memblock.h>
28
#include <linux/export.h>
29
#include <linux/mm.h>
30
#include <linux/page-flags.h>
31
#include <linux/pci.h>
32
#include <linux/gfp.h>
33
#include <linux/edd.h>
34
#include <linux/reboot.h>
35
#include <linux/virtio_anchor.h>
36
#include <linux/stackprotector.h>
37
38
#include <xen/xen.h>
39
#include <xen/events.h>
40
#include <xen/interface/xen.h>
41
#include <xen/interface/version.h>
42
#include <xen/interface/physdev.h>
43
#include <xen/interface/vcpu.h>
44
#include <xen/interface/memory.h>
45
#include <xen/interface/nmi.h>
46
#include <xen/interface/xen-mca.h>
47
#include <xen/features.h>
48
#include <xen/page.h>
49
#include <xen/hvc-console.h>
50
#include <xen/acpi.h>
51
52
#include <asm/cpuid/api.h>
53
#include <asm/paravirt.h>
54
#include <asm/apic.h>
55
#include <asm/page.h>
56
#include <asm/xen/pci.h>
57
#include <asm/xen/hypercall.h>
58
#include <asm/xen/hypervisor.h>
59
#include <asm/xen/cpuid.h>
60
#include <asm/fixmap.h>
61
#include <asm/processor.h>
62
#include <asm/proto.h>
63
#include <asm/msr-index.h>
64
#include <asm/msr.h>
65
#include <asm/traps.h>
66
#include <asm/setup.h>
67
#include <asm/desc.h>
68
#include <asm/pgalloc.h>
69
#include <asm/tlbflush.h>
70
#include <asm/reboot.h>
71
#include <asm/hypervisor.h>
72
#include <asm/mach_traps.h>
73
#include <asm/mtrr.h>
74
#include <asm/mwait.h>
75
#include <asm/pci_x86.h>
76
#include <asm/cpu.h>
77
#include <asm/irq_stack.h>
78
#ifdef CONFIG_X86_IOPL_IOPERM
79
#include <asm/io_bitmap.h>
80
#endif
81
82
#ifdef CONFIG_ACPI
83
#include <linux/acpi.h>
84
#include <asm/acpi.h>
85
#include <acpi/proc_cap_intel.h>
86
#include <acpi/processor.h>
87
#include <xen/interface/platform.h>
88
#endif
89
90
#include "xen-ops.h"
91
92
#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
93
94
void *xen_initial_gdt;
95
96
static int xen_cpu_up_prepare_pv(unsigned int cpu);
97
static int xen_cpu_dead_pv(unsigned int cpu);
98
99
#ifndef CONFIG_PREEMPTION
100
/*
101
* Some hypercalls issued by the toolstack can take many 10s of
102
* seconds. Allow tasks running hypercalls via the privcmd driver to
103
* be voluntarily preempted even if full kernel preemption is
104
* disabled.
105
*
106
* Such preemptible hypercalls are bracketed by
107
* xen_preemptible_hcall_begin() and xen_preemptible_hcall_end()
108
* calls.
109
*/
110
DEFINE_PER_CPU(bool, xen_in_preemptible_hcall);
111
EXPORT_SYMBOL_GPL(xen_in_preemptible_hcall);
112
113
/*
114
* In case of scheduling the flag must be cleared and restored after
115
* returning from schedule as the task might move to a different CPU.
116
*/
117
static __always_inline bool get_and_clear_inhcall(void)
118
{
119
bool inhcall = __this_cpu_read(xen_in_preemptible_hcall);
120
121
__this_cpu_write(xen_in_preemptible_hcall, false);
122
return inhcall;
123
}
124
125
static __always_inline void restore_inhcall(bool inhcall)
126
{
127
__this_cpu_write(xen_in_preemptible_hcall, inhcall);
128
}
129
130
#else
131
132
static __always_inline bool get_and_clear_inhcall(void) { return false; }
133
static __always_inline void restore_inhcall(bool inhcall) { }
134
135
#endif
136
137
struct tls_descs {
138
struct desc_struct desc[3];
139
};
140
141
DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
142
143
enum xen_lazy_mode xen_get_lazy_mode(void)
144
{
145
if (in_interrupt())
146
return XEN_LAZY_NONE;
147
148
return this_cpu_read(xen_lazy_mode);
149
}
150
151
/*
152
* Updating the 3 TLS descriptors in the GDT on every task switch is
153
* surprisingly expensive so we avoid updating them if they haven't
154
* changed. Since Xen writes different descriptors than the one
155
* passed in the update_descriptor hypercall we keep shadow copies to
156
* compare against.
157
*/
158
static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
159
160
static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
161
162
static int __init parse_xen_msr_safe(char *str)
163
{
164
if (str)
165
return kstrtobool(str, &xen_msr_safe);
166
return -EINVAL;
167
}
168
early_param("xen_msr_safe", parse_xen_msr_safe);
169
170
/* Get MTRR settings from Xen and put them into mtrr_state. */
171
static void __init xen_set_mtrr_data(void)
172
{
173
#ifdef CONFIG_MTRR
174
struct xen_platform_op op = {
175
.cmd = XENPF_read_memtype,
176
.interface_version = XENPF_INTERFACE_VERSION,
177
};
178
unsigned int reg;
179
unsigned long mask;
180
uint32_t eax, width;
181
static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
182
183
/* Get physical address width (only 64-bit cpus supported). */
184
width = 36;
185
eax = cpuid_eax(0x80000000);
186
if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
187
eax = cpuid_eax(0x80000008);
188
width = eax & 0xff;
189
}
190
191
for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
192
op.u.read_memtype.reg = reg;
193
if (HYPERVISOR_platform_op(&op))
194
break;
195
196
/*
197
* Only called in dom0, which has all RAM PFNs mapped at
198
* RAM MFNs, and all PCI space etc. is identity mapped.
199
* This means we can treat MFN == PFN regarding MTRR settings.
200
*/
201
var[reg].base_lo = op.u.read_memtype.type;
202
var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
203
var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
204
mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
205
mask &= (1UL << width) - 1;
206
if (mask)
207
mask |= MTRR_PHYSMASK_V;
208
var[reg].mask_lo = mask;
209
var[reg].mask_hi = mask >> 32;
210
}
211
212
/* Only overwrite MTRR state if any MTRR could be got from Xen. */
213
if (reg)
214
guest_force_mtrr_state(var, reg, MTRR_TYPE_UNCACHABLE);
215
#endif
216
}
217
218
static void __init xen_pv_init_platform(void)
219
{
220
/* PV guests can't operate virtio devices without grants. */
221
if (IS_ENABLED(CONFIG_XEN_VIRTIO))
222
virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
223
224
populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
225
226
set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
227
HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
228
229
/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
230
xen_vcpu_info_reset(0);
231
232
/* pvclock is in shared info area */
233
xen_init_time_ops();
234
235
if (xen_initial_domain())
236
xen_set_mtrr_data();
237
else
238
guest_force_mtrr_state(NULL, 0, MTRR_TYPE_WRBACK);
239
240
/* Adjust nr_cpu_ids before "enumeration" happens */
241
xen_smp_count_cpus();
242
}
243
244
static void __init xen_pv_guest_late_init(void)
245
{
246
#ifndef CONFIG_SMP
247
/* Setup shared vcpu info for non-smp configurations */
248
xen_setup_vcpu_info_placement();
249
#endif
250
}
251
252
static __read_mostly unsigned int cpuid_leaf5_ecx_val;
253
static __read_mostly unsigned int cpuid_leaf5_edx_val;
254
255
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
256
unsigned int *cx, unsigned int *dx)
257
{
258
unsigned int maskebx = ~0;
259
unsigned int or_ebx = 0;
260
261
/*
262
* Mask out inconvenient features, to try and disable as many
263
* unsupported kernel subsystems as possible.
264
*/
265
switch (*ax) {
266
case 0x1:
267
/* Replace initial APIC ID in bits 24-31 of EBX. */
268
/* See xen_pv_smp_config() for related topology preparations. */
269
maskebx = 0x00ffffff;
270
or_ebx = smp_processor_id() << 24;
271
break;
272
273
case CPUID_LEAF_MWAIT:
274
/* Synthesize the values.. */
275
*ax = 0;
276
*bx = 0;
277
*cx = cpuid_leaf5_ecx_val;
278
*dx = cpuid_leaf5_edx_val;
279
return;
280
281
case 0xb:
282
/* Suppress extended topology stuff */
283
maskebx = 0;
284
break;
285
}
286
287
asm(XEN_EMULATE_PREFIX "cpuid"
288
: "=a" (*ax),
289
"=b" (*bx),
290
"=c" (*cx),
291
"=d" (*dx)
292
: "0" (*ax), "2" (*cx));
293
294
*bx &= maskebx;
295
*bx |= or_ebx;
296
}
297
298
static bool __init xen_check_mwait(void)
299
{
300
#ifdef CONFIG_ACPI
301
struct xen_platform_op op = {
302
.cmd = XENPF_set_processor_pminfo,
303
.u.set_pminfo.id = -1,
304
.u.set_pminfo.type = XEN_PM_PDC,
305
};
306
uint32_t buf[3];
307
unsigned int ax, bx, cx, dx;
308
unsigned int mwait_mask;
309
310
/* We need to determine whether it is OK to expose the MWAIT
311
* capability to the kernel to harvest deeper than C3 states from ACPI
312
* _CST using the processor_harvest_xen.c module. For this to work, we
313
* need to gather the MWAIT_LEAF values (which the cstate.c code
314
* checks against). The hypervisor won't expose the MWAIT flag because
315
* it would break backwards compatibility; so we will find out directly
316
* from the hardware and hypercall.
317
*/
318
if (!xen_initial_domain())
319
return false;
320
321
/*
322
* When running under platform earlier than Xen4.2, do not expose
323
* mwait, to avoid the risk of loading native acpi pad driver
324
*/
325
if (!xen_running_on_version_or_later(4, 2))
326
return false;
327
328
ax = 1;
329
cx = 0;
330
331
native_cpuid(&ax, &bx, &cx, &dx);
332
333
mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
334
(1 << (X86_FEATURE_MWAIT % 32));
335
336
if ((cx & mwait_mask) != mwait_mask)
337
return false;
338
339
/* We need to emulate the MWAIT_LEAF and for that we need both
340
* ecx and edx. The hypercall provides only partial information.
341
*/
342
343
ax = CPUID_LEAF_MWAIT;
344
bx = 0;
345
cx = 0;
346
dx = 0;
347
348
native_cpuid(&ax, &bx, &cx, &dx);
349
350
/* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
351
* don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
352
*/
353
buf[0] = ACPI_PDC_REVISION_ID;
354
buf[1] = 1;
355
buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
356
357
set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
358
359
if ((HYPERVISOR_platform_op(&op) == 0) &&
360
(buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
361
cpuid_leaf5_ecx_val = cx;
362
cpuid_leaf5_edx_val = dx;
363
}
364
return true;
365
#else
366
return false;
367
#endif
368
}
369
370
static bool __init xen_check_xsave(void)
371
{
372
unsigned int cx, xsave_mask;
373
374
cx = cpuid_ecx(1);
375
376
xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
377
(1 << (X86_FEATURE_OSXSAVE % 32));
378
379
/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
380
return (cx & xsave_mask) == xsave_mask;
381
}
382
383
static void __init xen_init_capabilities(void)
384
{
385
setup_force_cpu_cap(X86_FEATURE_XENPV);
386
setup_clear_cpu_cap(X86_FEATURE_DCA);
387
setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
388
setup_clear_cpu_cap(X86_FEATURE_MTRR);
389
setup_clear_cpu_cap(X86_FEATURE_ACC);
390
setup_clear_cpu_cap(X86_FEATURE_X2APIC);
391
setup_clear_cpu_cap(X86_FEATURE_SME);
392
setup_clear_cpu_cap(X86_FEATURE_LKGS);
393
394
/*
395
* Xen PV would need some work to support PCID: CR3 handling as well
396
* as xen_flush_tlb_others() would need updating.
397
*/
398
setup_clear_cpu_cap(X86_FEATURE_PCID);
399
400
if (!xen_initial_domain())
401
setup_clear_cpu_cap(X86_FEATURE_ACPI);
402
403
if (xen_check_mwait())
404
setup_force_cpu_cap(X86_FEATURE_MWAIT);
405
else
406
setup_clear_cpu_cap(X86_FEATURE_MWAIT);
407
408
if (!xen_check_xsave()) {
409
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
410
setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
411
}
412
}
413
414
static noinstr void xen_set_debugreg(int reg, unsigned long val)
415
{
416
HYPERVISOR_set_debugreg(reg, val);
417
}
418
419
static noinstr unsigned long xen_get_debugreg(int reg)
420
{
421
return HYPERVISOR_get_debugreg(reg);
422
}
423
424
static void xen_start_context_switch(struct task_struct *prev)
425
{
426
BUG_ON(preemptible());
427
428
if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
429
arch_leave_lazy_mmu_mode();
430
set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
431
}
432
enter_lazy(XEN_LAZY_CPU);
433
}
434
435
static void xen_end_context_switch(struct task_struct *next)
436
{
437
BUG_ON(preemptible());
438
439
xen_mc_flush();
440
leave_lazy(XEN_LAZY_CPU);
441
if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
442
arch_enter_lazy_mmu_mode();
443
}
444
445
static unsigned long xen_store_tr(void)
446
{
447
return 0;
448
}
449
450
/*
451
* Set the page permissions for a particular virtual address. If the
452
* address is a vmalloc mapping (or other non-linear mapping), then
453
* find the linear mapping of the page and also set its protections to
454
* match.
455
*/
456
static void set_aliased_prot(void *v, pgprot_t prot)
457
{
458
int level;
459
pte_t *ptep;
460
pte_t pte;
461
unsigned long pfn;
462
unsigned char dummy;
463
void *va;
464
465
ptep = lookup_address((unsigned long)v, &level);
466
BUG_ON(ptep == NULL);
467
468
pfn = pte_pfn(*ptep);
469
pte = pfn_pte(pfn, prot);
470
471
/*
472
* Careful: update_va_mapping() will fail if the virtual address
473
* we're poking isn't populated in the page tables. We don't
474
* need to worry about the direct map (that's always in the page
475
* tables), but we need to be careful about vmap space. In
476
* particular, the top level page table can lazily propagate
477
* entries between processes, so if we've switched mms since we
478
* vmapped the target in the first place, we might not have the
479
* top-level page table entry populated.
480
*
481
* We disable preemption because we want the same mm active when
482
* we probe the target and when we issue the hypercall. We'll
483
* have the same nominal mm, but if we're a kernel thread, lazy
484
* mm dropping could change our pgd.
485
*
486
* Out of an abundance of caution, this uses __get_user() to fault
487
* in the target address just in case there's some obscure case
488
* in which the target address isn't readable.
489
*/
490
491
preempt_disable();
492
493
copy_from_kernel_nofault(&dummy, v, 1);
494
495
if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
496
BUG();
497
498
va = __va(PFN_PHYS(pfn));
499
500
if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
501
BUG();
502
503
preempt_enable();
504
}
505
506
static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
507
{
508
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
509
int i;
510
511
/*
512
* We need to mark the all aliases of the LDT pages RO. We
513
* don't need to call vm_flush_aliases(), though, since that's
514
* only responsible for flushing aliases out the TLBs, not the
515
* page tables, and Xen will flush the TLB for us if needed.
516
*
517
* To avoid confusing future readers: none of this is necessary
518
* to load the LDT. The hypervisor only checks this when the
519
* LDT is faulted in due to subsequent descriptor access.
520
*/
521
522
for (i = 0; i < entries; i += entries_per_page)
523
set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
524
}
525
526
static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
527
{
528
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
529
int i;
530
531
for (i = 0; i < entries; i += entries_per_page)
532
set_aliased_prot(ldt + i, PAGE_KERNEL);
533
}
534
535
static void xen_set_ldt(const void *addr, unsigned entries)
536
{
537
struct mmuext_op *op;
538
struct multicall_space mcs = xen_mc_entry(sizeof(*op));
539
540
trace_xen_cpu_set_ldt(addr, entries);
541
542
op = mcs.args;
543
op->cmd = MMUEXT_SET_LDT;
544
op->arg1.linear_addr = (unsigned long)addr;
545
op->arg2.nr_ents = entries;
546
547
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
548
549
xen_mc_issue(XEN_LAZY_CPU);
550
}
551
552
static void xen_load_gdt(const struct desc_ptr *dtr)
553
{
554
unsigned long va = dtr->address;
555
unsigned int size = dtr->size + 1;
556
unsigned long pfn, mfn;
557
int level;
558
pte_t *ptep;
559
void *virt;
560
561
/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
562
BUG_ON(size > PAGE_SIZE);
563
BUG_ON(va & ~PAGE_MASK);
564
565
/*
566
* The GDT is per-cpu and is in the percpu data area.
567
* That can be virtually mapped, so we need to do a
568
* page-walk to get the underlying MFN for the
569
* hypercall. The page can also be in the kernel's
570
* linear range, so we need to RO that mapping too.
571
*/
572
ptep = lookup_address(va, &level);
573
BUG_ON(ptep == NULL);
574
575
pfn = pte_pfn(*ptep);
576
mfn = pfn_to_mfn(pfn);
577
virt = __va(PFN_PHYS(pfn));
578
579
make_lowmem_page_readonly((void *)va);
580
make_lowmem_page_readonly(virt);
581
582
if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
583
BUG();
584
}
585
586
/*
587
* load_gdt for early boot, when the gdt is only mapped once
588
*/
589
static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
590
{
591
unsigned long va = dtr->address;
592
unsigned int size = dtr->size + 1;
593
unsigned long pfn, mfn;
594
pte_t pte;
595
596
/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
597
BUG_ON(size > PAGE_SIZE);
598
BUG_ON(va & ~PAGE_MASK);
599
600
pfn = virt_to_pfn((void *)va);
601
mfn = pfn_to_mfn(pfn);
602
603
pte = pfn_pte(pfn, PAGE_KERNEL_RO);
604
605
if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
606
BUG();
607
608
if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
609
BUG();
610
}
611
612
static inline bool desc_equal(const struct desc_struct *d1,
613
const struct desc_struct *d2)
614
{
615
return !memcmp(d1, d2, sizeof(*d1));
616
}
617
618
static void load_TLS_descriptor(struct thread_struct *t,
619
unsigned int cpu, unsigned int i)
620
{
621
struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
622
struct desc_struct *gdt;
623
xmaddr_t maddr;
624
struct multicall_space mc;
625
626
if (desc_equal(shadow, &t->tls_array[i]))
627
return;
628
629
*shadow = t->tls_array[i];
630
631
gdt = get_cpu_gdt_rw(cpu);
632
maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
633
mc = __xen_mc_entry(0);
634
635
MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
636
}
637
638
static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
639
{
640
/*
641
* In lazy mode we need to zero %fs, otherwise we may get an
642
* exception between the new %fs descriptor being loaded and
643
* %fs being effectively cleared at __switch_to().
644
*/
645
if (xen_get_lazy_mode() == XEN_LAZY_CPU)
646
loadsegment(fs, 0);
647
648
xen_mc_batch();
649
650
load_TLS_descriptor(t, cpu, 0);
651
load_TLS_descriptor(t, cpu, 1);
652
load_TLS_descriptor(t, cpu, 2);
653
654
xen_mc_issue(XEN_LAZY_CPU);
655
}
656
657
static void xen_load_gs_index(unsigned int idx)
658
{
659
if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
660
BUG();
661
}
662
663
static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
664
const void *ptr)
665
{
666
xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
667
u64 entry = *(u64 *)ptr;
668
669
trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
670
671
preempt_disable();
672
673
xen_mc_flush();
674
if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
675
BUG();
676
677
preempt_enable();
678
}
679
680
void noist_exc_debug(struct pt_regs *regs);
681
682
DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
683
{
684
/* On Xen PV, NMI doesn't use IST. The C part is the same as native. */
685
exc_nmi(regs);
686
}
687
688
DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
689
{
690
/* On Xen PV, DF doesn't use IST. The C part is the same as native. */
691
exc_double_fault(regs, error_code);
692
}
693
694
DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
695
{
696
/*
697
* There's no IST on Xen PV, but we still need to dispatch
698
* to the correct handler.
699
*/
700
if (user_mode(regs))
701
noist_exc_debug(regs);
702
else
703
exc_debug(regs);
704
}
705
706
DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
707
{
708
/* This should never happen and there is no way to handle it. */
709
instrumentation_begin();
710
pr_err("Unknown trap in Xen PV mode.");
711
BUG();
712
instrumentation_end();
713
}
714
715
#ifdef CONFIG_X86_MCE
716
DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
717
{
718
/*
719
* There's no IST on Xen PV, but we still need to dispatch
720
* to the correct handler.
721
*/
722
if (user_mode(regs))
723
noist_exc_machine_check(regs);
724
else
725
exc_machine_check(regs);
726
}
727
#endif
728
729
static void __xen_pv_evtchn_do_upcall(struct pt_regs *regs)
730
{
731
struct pt_regs *old_regs = set_irq_regs(regs);
732
733
inc_irq_stat(irq_hv_callback_count);
734
735
xen_evtchn_do_upcall();
736
737
set_irq_regs(old_regs);
738
}
739
740
__visible noinstr void xen_pv_evtchn_do_upcall(struct pt_regs *regs)
741
{
742
irqentry_state_t state = irqentry_enter(regs);
743
bool inhcall;
744
745
instrumentation_begin();
746
run_sysvec_on_irqstack_cond(__xen_pv_evtchn_do_upcall, regs);
747
748
inhcall = get_and_clear_inhcall();
749
if (inhcall && !WARN_ON_ONCE(state.exit_rcu)) {
750
irqentry_exit_cond_resched();
751
instrumentation_end();
752
restore_inhcall(inhcall);
753
} else {
754
instrumentation_end();
755
irqentry_exit(regs, state);
756
}
757
}
758
759
struct trap_array_entry {
760
void (*orig)(void);
761
void (*xen)(void);
762
bool ist_okay;
763
};
764
765
#define TRAP_ENTRY(func, ist_ok) { \
766
.orig = asm_##func, \
767
.xen = xen_asm_##func, \
768
.ist_okay = ist_ok }
769
770
#define TRAP_ENTRY_REDIR(func, ist_ok) { \
771
.orig = asm_##func, \
772
.xen = xen_asm_xenpv_##func, \
773
.ist_okay = ist_ok }
774
775
static struct trap_array_entry trap_array[] = {
776
TRAP_ENTRY_REDIR(exc_debug, true ),
777
TRAP_ENTRY_REDIR(exc_double_fault, true ),
778
#ifdef CONFIG_X86_MCE
779
TRAP_ENTRY_REDIR(exc_machine_check, true ),
780
#endif
781
TRAP_ENTRY_REDIR(exc_nmi, true ),
782
TRAP_ENTRY(exc_int3, false ),
783
TRAP_ENTRY(exc_overflow, false ),
784
#ifdef CONFIG_IA32_EMULATION
785
TRAP_ENTRY(int80_emulation, false ),
786
#endif
787
TRAP_ENTRY(exc_page_fault, false ),
788
TRAP_ENTRY(exc_divide_error, false ),
789
TRAP_ENTRY(exc_bounds, false ),
790
TRAP_ENTRY(exc_invalid_op, false ),
791
TRAP_ENTRY(exc_device_not_available, false ),
792
TRAP_ENTRY(exc_coproc_segment_overrun, false ),
793
TRAP_ENTRY(exc_invalid_tss, false ),
794
TRAP_ENTRY(exc_segment_not_present, false ),
795
TRAP_ENTRY(exc_stack_segment, false ),
796
TRAP_ENTRY(exc_general_protection, false ),
797
TRAP_ENTRY(exc_spurious_interrupt_bug, false ),
798
TRAP_ENTRY(exc_coprocessor_error, false ),
799
TRAP_ENTRY(exc_alignment_check, false ),
800
TRAP_ENTRY(exc_simd_coprocessor_error, false ),
801
#ifdef CONFIG_X86_CET
802
TRAP_ENTRY(exc_control_protection, false ),
803
#endif
804
};
805
806
static bool __ref get_trap_addr(void **addr, unsigned int ist)
807
{
808
unsigned int nr;
809
bool ist_okay = false;
810
bool found = false;
811
812
/*
813
* Replace trap handler addresses by Xen specific ones.
814
* Check for known traps using IST and whitelist them.
815
* The debugger ones are the only ones we care about.
816
* Xen will handle faults like double_fault, so we should never see
817
* them. Warn if there's an unexpected IST-using fault handler.
818
*/
819
for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
820
struct trap_array_entry *entry = trap_array + nr;
821
822
if (*addr == entry->orig) {
823
*addr = entry->xen;
824
ist_okay = entry->ist_okay;
825
found = true;
826
break;
827
}
828
}
829
830
if (nr == ARRAY_SIZE(trap_array) &&
831
*addr >= (void *)early_idt_handler_array[0] &&
832
*addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
833
nr = (*addr - (void *)early_idt_handler_array[0]) /
834
EARLY_IDT_HANDLER_SIZE;
835
*addr = (void *)xen_early_idt_handler_array[nr];
836
found = true;
837
}
838
839
if (!found)
840
*addr = (void *)xen_asm_exc_xen_unknown_trap;
841
842
if (WARN_ON(found && ist != 0 && !ist_okay))
843
return false;
844
845
return true;
846
}
847
848
static int cvt_gate_to_trap(int vector, const gate_desc *val,
849
struct trap_info *info)
850
{
851
unsigned long addr;
852
853
if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
854
return 0;
855
856
info->vector = vector;
857
858
addr = gate_offset(val);
859
if (!get_trap_addr((void **)&addr, val->bits.ist))
860
return 0;
861
info->address = addr;
862
863
info->cs = gate_segment(val);
864
info->flags = val->bits.dpl;
865
/* interrupt gates clear IF */
866
if (val->bits.type == GATE_INTERRUPT)
867
info->flags |= 1 << 2;
868
869
return 1;
870
}
871
872
/* Locations of each CPU's IDT */
873
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
874
875
/* Set an IDT entry. If the entry is part of the current IDT, then
876
also update Xen. */
877
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
878
{
879
unsigned long p = (unsigned long)&dt[entrynum];
880
unsigned long start, end;
881
882
trace_xen_cpu_write_idt_entry(dt, entrynum, g);
883
884
preempt_disable();
885
886
start = __this_cpu_read(idt_desc.address);
887
end = start + __this_cpu_read(idt_desc.size) + 1;
888
889
xen_mc_flush();
890
891
native_write_idt_entry(dt, entrynum, g);
892
893
if (p >= start && (p + 8) <= end) {
894
struct trap_info info[2];
895
896
info[1].address = 0;
897
898
if (cvt_gate_to_trap(entrynum, g, &info[0]))
899
if (HYPERVISOR_set_trap_table(info))
900
BUG();
901
}
902
903
preempt_enable();
904
}
905
906
static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
907
struct trap_info *traps, bool full)
908
{
909
unsigned in, out, count;
910
911
count = (desc->size+1) / sizeof(gate_desc);
912
BUG_ON(count > 256);
913
914
for (in = out = 0; in < count; in++) {
915
gate_desc *entry = (gate_desc *)(desc->address) + in;
916
917
if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
918
out++;
919
}
920
921
return out;
922
}
923
924
void xen_copy_trap_info(struct trap_info *traps)
925
{
926
const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
927
928
xen_convert_trap_info(desc, traps, true);
929
}
930
931
/* Load a new IDT into Xen. In principle this can be per-CPU, so we
932
hold a spinlock to protect the static traps[] array (static because
933
it avoids allocation, and saves stack space). */
934
static void xen_load_idt(const struct desc_ptr *desc)
935
{
936
static DEFINE_SPINLOCK(lock);
937
static struct trap_info traps[257];
938
static const struct trap_info zero = { };
939
unsigned out;
940
941
trace_xen_cpu_load_idt(desc);
942
943
spin_lock(&lock);
944
945
memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
946
947
out = xen_convert_trap_info(desc, traps, false);
948
traps[out] = zero;
949
950
xen_mc_flush();
951
if (HYPERVISOR_set_trap_table(traps))
952
BUG();
953
954
spin_unlock(&lock);
955
}
956
957
/* Write a GDT descriptor entry. Ignore LDT descriptors, since
958
they're handled differently. */
959
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
960
const void *desc, int type)
961
{
962
trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
963
964
preempt_disable();
965
966
switch (type) {
967
case DESC_LDT:
968
case DESC_TSS:
969
/* ignore */
970
break;
971
972
default: {
973
xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
974
975
xen_mc_flush();
976
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
977
BUG();
978
}
979
980
}
981
982
preempt_enable();
983
}
984
985
/*
986
* Version of write_gdt_entry for use at early boot-time needed to
987
* update an entry as simply as possible.
988
*/
989
static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
990
const void *desc, int type)
991
{
992
trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
993
994
switch (type) {
995
case DESC_LDT:
996
case DESC_TSS:
997
/* ignore */
998
break;
999
1000
default: {
1001
xmaddr_t maddr = virt_to_machine(&dt[entry]);
1002
1003
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
1004
dt[entry] = *(struct desc_struct *)desc;
1005
}
1006
1007
}
1008
}
1009
1010
static void xen_load_sp0(unsigned long sp0)
1011
{
1012
struct multicall_space mcs;
1013
1014
mcs = xen_mc_entry(0);
1015
MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
1016
xen_mc_issue(XEN_LAZY_CPU);
1017
this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
1018
}
1019
1020
#ifdef CONFIG_X86_IOPL_IOPERM
1021
static void xen_invalidate_io_bitmap(void)
1022
{
1023
struct physdev_set_iobitmap iobitmap = {
1024
.bitmap = NULL,
1025
.nr_ports = 0,
1026
};
1027
1028
native_tss_invalidate_io_bitmap();
1029
HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
1030
}
1031
1032
static void xen_update_io_bitmap(void)
1033
{
1034
struct physdev_set_iobitmap iobitmap;
1035
struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1036
1037
native_tss_update_io_bitmap();
1038
1039
iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
1040
tss->x86_tss.io_bitmap_base;
1041
if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
1042
iobitmap.nr_ports = 0;
1043
else
1044
iobitmap.nr_ports = IO_BITMAP_BITS;
1045
1046
HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
1047
}
1048
#endif
1049
1050
static void xen_io_delay(void)
1051
{
1052
}
1053
1054
static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1055
1056
static unsigned long xen_read_cr0(void)
1057
{
1058
unsigned long cr0 = this_cpu_read(xen_cr0_value);
1059
1060
if (unlikely(cr0 == 0)) {
1061
cr0 = native_read_cr0();
1062
this_cpu_write(xen_cr0_value, cr0);
1063
}
1064
1065
return cr0;
1066
}
1067
1068
static void xen_write_cr0(unsigned long cr0)
1069
{
1070
struct multicall_space mcs;
1071
1072
this_cpu_write(xen_cr0_value, cr0);
1073
1074
/* Only pay attention to cr0.TS; everything else is
1075
ignored. */
1076
mcs = xen_mc_entry(0);
1077
1078
MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1079
1080
xen_mc_issue(XEN_LAZY_CPU);
1081
}
1082
1083
static void xen_write_cr4(unsigned long cr4)
1084
{
1085
cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1086
1087
native_write_cr4(cr4);
1088
}
1089
1090
static u64 xen_do_read_msr(u32 msr, int *err)
1091
{
1092
u64 val = 0; /* Avoid uninitialized value for safe variant. */
1093
1094
if (pmu_msr_chk_emulated(msr, &val, true))
1095
return val;
1096
1097
if (err)
1098
*err = native_read_msr_safe(msr, &val);
1099
else
1100
val = native_read_msr(msr);
1101
1102
switch (msr) {
1103
case MSR_IA32_APICBASE:
1104
val &= ~X2APIC_ENABLE;
1105
if (smp_processor_id() == 0)
1106
val |= MSR_IA32_APICBASE_BSP;
1107
else
1108
val &= ~MSR_IA32_APICBASE_BSP;
1109
break;
1110
}
1111
return val;
1112
}
1113
1114
static void set_seg(u32 which, u64 base)
1115
{
1116
if (HYPERVISOR_set_segment_base(which, base))
1117
WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1118
}
1119
1120
/*
1121
* Support write_msr_safe() and write_msr() semantics.
1122
* With err == NULL write_msr() semantics are selected.
1123
* Supplying an err pointer requires err to be pre-initialized with 0.
1124
*/
1125
static void xen_do_write_msr(u32 msr, u64 val, int *err)
1126
{
1127
switch (msr) {
1128
case MSR_FS_BASE:
1129
set_seg(SEGBASE_FS, val);
1130
break;
1131
1132
case MSR_KERNEL_GS_BASE:
1133
set_seg(SEGBASE_GS_USER, val);
1134
break;
1135
1136
case MSR_GS_BASE:
1137
set_seg(SEGBASE_GS_KERNEL, val);
1138
break;
1139
1140
case MSR_STAR:
1141
case MSR_CSTAR:
1142
case MSR_LSTAR:
1143
case MSR_SYSCALL_MASK:
1144
case MSR_IA32_SYSENTER_CS:
1145
case MSR_IA32_SYSENTER_ESP:
1146
case MSR_IA32_SYSENTER_EIP:
1147
/* Fast syscall setup is all done in hypercalls, so
1148
these are all ignored. Stub them out here to stop
1149
Xen console noise. */
1150
break;
1151
1152
default:
1153
if (pmu_msr_chk_emulated(msr, &val, false))
1154
return;
1155
1156
if (err)
1157
*err = native_write_msr_safe(msr, val);
1158
else
1159
native_write_msr(msr, val);
1160
}
1161
}
1162
1163
static int xen_read_msr_safe(u32 msr, u64 *val)
1164
{
1165
int err = 0;
1166
1167
*val = xen_do_read_msr(msr, &err);
1168
return err;
1169
}
1170
1171
static int xen_write_msr_safe(u32 msr, u64 val)
1172
{
1173
int err = 0;
1174
1175
xen_do_write_msr(msr, val, &err);
1176
1177
return err;
1178
}
1179
1180
static u64 xen_read_msr(u32 msr)
1181
{
1182
int err = 0;
1183
1184
return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1185
}
1186
1187
static void xen_write_msr(u32 msr, u64 val)
1188
{
1189
int err;
1190
1191
xen_do_write_msr(msr, val, xen_msr_safe ? &err : NULL);
1192
}
1193
1194
/* This is called once we have the cpu_possible_mask */
1195
void __init xen_setup_vcpu_info_placement(void)
1196
{
1197
int cpu;
1198
1199
for_each_possible_cpu(cpu) {
1200
/* Set up direct vCPU id mapping for PV guests. */
1201
per_cpu(xen_vcpu_id, cpu) = cpu;
1202
xen_vcpu_setup(cpu);
1203
}
1204
1205
pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1206
pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1207
pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1208
pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1209
}
1210
1211
static const struct pv_info xen_info __initconst = {
1212
.extra_user_64bit_cs = FLAT_USER_CS64,
1213
.name = "Xen",
1214
};
1215
1216
static const typeof(pv_ops) xen_cpu_ops __initconst = {
1217
.cpu = {
1218
.cpuid = xen_cpuid,
1219
1220
.set_debugreg = xen_set_debugreg,
1221
.get_debugreg = xen_get_debugreg,
1222
1223
.read_cr0 = xen_read_cr0,
1224
.write_cr0 = xen_write_cr0,
1225
1226
.write_cr4 = xen_write_cr4,
1227
1228
.read_msr = xen_read_msr,
1229
.write_msr = xen_write_msr,
1230
1231
.read_msr_safe = xen_read_msr_safe,
1232
.write_msr_safe = xen_write_msr_safe,
1233
1234
.read_pmc = xen_read_pmc,
1235
1236
.load_tr_desc = paravirt_nop,
1237
.set_ldt = xen_set_ldt,
1238
.load_gdt = xen_load_gdt,
1239
.load_idt = xen_load_idt,
1240
.load_tls = xen_load_tls,
1241
.load_gs_index = xen_load_gs_index,
1242
1243
.alloc_ldt = xen_alloc_ldt,
1244
.free_ldt = xen_free_ldt,
1245
1246
.store_tr = xen_store_tr,
1247
1248
.write_ldt_entry = xen_write_ldt_entry,
1249
.write_gdt_entry = xen_write_gdt_entry,
1250
.write_idt_entry = xen_write_idt_entry,
1251
.load_sp0 = xen_load_sp0,
1252
1253
#ifdef CONFIG_X86_IOPL_IOPERM
1254
.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1255
.update_io_bitmap = xen_update_io_bitmap,
1256
#endif
1257
.io_delay = xen_io_delay,
1258
1259
.start_context_switch = xen_start_context_switch,
1260
.end_context_switch = xen_end_context_switch,
1261
},
1262
};
1263
1264
static void xen_restart(char *msg)
1265
{
1266
xen_reboot(SHUTDOWN_reboot);
1267
}
1268
1269
static void xen_machine_halt(void)
1270
{
1271
xen_reboot(SHUTDOWN_poweroff);
1272
}
1273
1274
static void xen_machine_power_off(void)
1275
{
1276
do_kernel_power_off();
1277
xen_reboot(SHUTDOWN_poweroff);
1278
}
1279
1280
static void xen_crash_shutdown(struct pt_regs *regs)
1281
{
1282
xen_reboot(SHUTDOWN_crash);
1283
}
1284
1285
static const struct machine_ops xen_machine_ops __initconst = {
1286
.restart = xen_restart,
1287
.halt = xen_machine_halt,
1288
.power_off = xen_machine_power_off,
1289
.shutdown = xen_machine_halt,
1290
.crash_shutdown = xen_crash_shutdown,
1291
.emergency_restart = xen_emergency_restart,
1292
};
1293
1294
static unsigned char xen_get_nmi_reason(void)
1295
{
1296
unsigned char reason = 0;
1297
1298
/* Construct a value which looks like it came from port 0x61. */
1299
if (test_bit(_XEN_NMIREASON_io_error,
1300
&HYPERVISOR_shared_info->arch.nmi_reason))
1301
reason |= NMI_REASON_IOCHK;
1302
if (test_bit(_XEN_NMIREASON_pci_serr,
1303
&HYPERVISOR_shared_info->arch.nmi_reason))
1304
reason |= NMI_REASON_SERR;
1305
1306
return reason;
1307
}
1308
1309
static void __init xen_boot_params_init_edd(void)
1310
{
1311
#if IS_ENABLED(CONFIG_EDD)
1312
struct xen_platform_op op;
1313
struct edd_info *edd_info;
1314
u32 *mbr_signature;
1315
unsigned nr;
1316
int ret;
1317
1318
edd_info = boot_params.eddbuf;
1319
mbr_signature = boot_params.edd_mbr_sig_buffer;
1320
1321
op.cmd = XENPF_firmware_info;
1322
1323
op.u.firmware_info.type = XEN_FW_DISK_INFO;
1324
for (nr = 0; nr < EDDMAXNR; nr++) {
1325
struct edd_info *info = edd_info + nr;
1326
1327
op.u.firmware_info.index = nr;
1328
info->params.length = sizeof(info->params);
1329
set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1330
&info->params);
1331
ret = HYPERVISOR_platform_op(&op);
1332
if (ret)
1333
break;
1334
1335
#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1336
C(device);
1337
C(version);
1338
C(interface_support);
1339
C(legacy_max_cylinder);
1340
C(legacy_max_head);
1341
C(legacy_sectors_per_track);
1342
#undef C
1343
}
1344
boot_params.eddbuf_entries = nr;
1345
1346
op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1347
for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1348
op.u.firmware_info.index = nr;
1349
ret = HYPERVISOR_platform_op(&op);
1350
if (ret)
1351
break;
1352
mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1353
}
1354
boot_params.edd_mbr_sig_buf_entries = nr;
1355
#endif
1356
}
1357
1358
/*
1359
* Set up the GDT and segment registers for -fstack-protector. Until
1360
* we do this, we have to be careful not to call any stack-protected
1361
* function, which is most of the kernel.
1362
*/
1363
static void __init xen_setup_gdt(int cpu)
1364
{
1365
pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1366
pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1367
1368
switch_gdt_and_percpu_base(cpu);
1369
1370
pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1371
pv_ops.cpu.load_gdt = xen_load_gdt;
1372
}
1373
1374
static void __init xen_dom0_set_legacy_features(void)
1375
{
1376
x86_platform.legacy.rtc = 1;
1377
}
1378
1379
static void __init xen_domu_set_legacy_features(void)
1380
{
1381
x86_platform.legacy.rtc = 0;
1382
}
1383
1384
extern void early_xen_iret_patch(void);
1385
1386
/* First C function to be called on Xen boot */
1387
asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1388
{
1389
struct physdev_set_iopl set_iopl;
1390
unsigned long initrd_start = 0;
1391
int rc;
1392
1393
if (!si)
1394
return;
1395
1396
clear_bss();
1397
1398
xen_start_info = si;
1399
1400
__text_gen_insn(&early_xen_iret_patch,
1401
JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1402
JMP32_INSN_SIZE);
1403
1404
xen_domain_type = XEN_PV_DOMAIN;
1405
xen_start_flags = xen_start_info->flags;
1406
/* Interrupts are guaranteed to be off initially. */
1407
early_boot_irqs_disabled = true;
1408
static_call_update_early(xen_hypercall, xen_hypercall_pv);
1409
1410
xen_setup_features();
1411
1412
/* Install Xen paravirt ops */
1413
pv_info = xen_info;
1414
pv_ops.cpu = xen_cpu_ops.cpu;
1415
xen_init_irq_ops();
1416
1417
/*
1418
* Setup xen_vcpu early because it is needed for
1419
* local_irq_disable(), irqs_disabled(), e.g. in printk().
1420
*
1421
* Don't do the full vcpu_info placement stuff until we have
1422
* the cpu_possible_mask and a non-dummy shared_info.
1423
*/
1424
xen_vcpu_info_reset(0);
1425
1426
x86_platform.get_nmi_reason = xen_get_nmi_reason;
1427
x86_platform.realmode_reserve = x86_init_noop;
1428
x86_platform.realmode_init = x86_init_noop;
1429
1430
x86_init.resources.memory_setup = xen_memory_setup;
1431
x86_init.irqs.intr_mode_select = x86_init_noop;
1432
x86_init.irqs.intr_mode_init = x86_64_probe_apic;
1433
x86_init.oem.arch_setup = xen_arch_setup;
1434
x86_init.oem.banner = xen_banner;
1435
x86_init.hyper.init_platform = xen_pv_init_platform;
1436
x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1437
1438
/*
1439
* Set up some pagetable state before starting to set any ptes.
1440
*/
1441
1442
xen_setup_machphys_mapping();
1443
xen_init_mmu_ops();
1444
1445
/* Prevent unwanted bits from being set in PTEs. */
1446
__supported_pte_mask &= ~_PAGE_GLOBAL;
1447
__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1448
1449
/* Get mfn list */
1450
xen_build_dynamic_phys_to_machine();
1451
1452
/* Work out if we support NX */
1453
get_cpu_cap(&boot_cpu_data);
1454
x86_configure_nx();
1455
1456
/*
1457
* Set up kernel GDT and segment registers, mainly so that
1458
* -fstack-protector code can be executed.
1459
*/
1460
xen_setup_gdt(0);
1461
1462
/* Determine virtual and physical address sizes */
1463
get_cpu_address_sizes(&boot_cpu_data);
1464
1465
/* Let's presume PV guests always boot on vCPU with id 0. */
1466
per_cpu(xen_vcpu_id, 0) = 0;
1467
1468
idt_setup_early_handler();
1469
1470
xen_init_capabilities();
1471
1472
/*
1473
* set up the basic apic ops.
1474
*/
1475
xen_init_apic();
1476
1477
machine_ops = xen_machine_ops;
1478
1479
/*
1480
* The only reliable way to retain the initial address of the
1481
* percpu gdt_page is to remember it here, so we can go and
1482
* mark it RW later, when the initial percpu area is freed.
1483
*/
1484
xen_initial_gdt = &per_cpu(gdt_page, 0);
1485
1486
xen_smp_init();
1487
1488
#ifdef CONFIG_ACPI_NUMA
1489
/*
1490
* The pages we from Xen are not related to machine pages, so
1491
* any NUMA information the kernel tries to get from ACPI will
1492
* be meaningless. Prevent it from trying.
1493
*/
1494
disable_srat();
1495
#endif
1496
WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1497
1498
local_irq_disable();
1499
1500
xen_raw_console_write("mapping kernel into physical memory\n");
1501
xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1502
xen_start_info->nr_pages);
1503
xen_reserve_special_pages();
1504
1505
/*
1506
* We used to do this in xen_arch_setup, but that is too late
1507
* on AMD were early_cpu_init (run before ->arch_setup()) calls
1508
* early_amd_init which pokes 0xcf8 port.
1509
*/
1510
set_iopl.iopl = 1;
1511
rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1512
if (rc != 0)
1513
xen_raw_printk("physdev_op failed %d\n", rc);
1514
1515
1516
if (xen_start_info->mod_start) {
1517
if (xen_start_info->flags & SIF_MOD_START_PFN)
1518
initrd_start = PFN_PHYS(xen_start_info->mod_start);
1519
else
1520
initrd_start = __pa(xen_start_info->mod_start);
1521
}
1522
1523
/* Poke various useful things into boot_params */
1524
boot_params.hdr.type_of_loader = (9 << 4) | 0;
1525
boot_params.hdr.ramdisk_image = initrd_start;
1526
boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1527
boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1528
boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1529
1530
if (!xen_initial_domain()) {
1531
if (pci_xen)
1532
x86_init.pci.arch_init = pci_xen_init;
1533
x86_platform.set_legacy_features =
1534
xen_domu_set_legacy_features;
1535
} else {
1536
const struct dom0_vga_console_info *info =
1537
(void *)((char *)xen_start_info +
1538
xen_start_info->console.dom0.info_off);
1539
struct xen_platform_op op = {
1540
.cmd = XENPF_firmware_info,
1541
.interface_version = XENPF_INTERFACE_VERSION,
1542
.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1543
};
1544
1545
x86_platform.set_legacy_features =
1546
xen_dom0_set_legacy_features;
1547
xen_init_vga(info, xen_start_info->console.dom0.info_size,
1548
&boot_params.screen_info);
1549
xen_start_info->console.domU.mfn = 0;
1550
xen_start_info->console.domU.evtchn = 0;
1551
1552
if (HYPERVISOR_platform_op(&op) == 0)
1553
boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1554
1555
/* Make sure ACS will be enabled */
1556
pci_request_acs();
1557
1558
xen_acpi_sleep_register();
1559
1560
xen_boot_params_init_edd();
1561
1562
#ifdef CONFIG_ACPI
1563
/*
1564
* Disable selecting "Firmware First mode" for correctable
1565
* memory errors, as this is the duty of the hypervisor to
1566
* decide.
1567
*/
1568
acpi_disable_cmcff = 1;
1569
#endif
1570
}
1571
1572
xen_add_preferred_consoles();
1573
1574
#ifdef CONFIG_PCI
1575
/* PCI BIOS service won't work from a PV guest. */
1576
pci_probe &= ~PCI_PROBE_BIOS;
1577
#endif
1578
xen_raw_console_write("about to get started...\n");
1579
1580
/* We need this for printk timestamps */
1581
xen_setup_runstate_info(0);
1582
1583
xen_efi_init(&boot_params);
1584
1585
/* Start the world */
1586
cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1587
x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1588
}
1589
1590
static int xen_cpu_up_prepare_pv(unsigned int cpu)
1591
{
1592
int rc;
1593
1594
if (per_cpu(xen_vcpu, cpu) == NULL)
1595
return -ENODEV;
1596
1597
xen_setup_timer(cpu);
1598
1599
rc = xen_smp_intr_init(cpu);
1600
if (rc) {
1601
WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1602
cpu, rc);
1603
return rc;
1604
}
1605
1606
rc = xen_smp_intr_init_pv(cpu);
1607
if (rc) {
1608
WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1609
cpu, rc);
1610
return rc;
1611
}
1612
1613
return 0;
1614
}
1615
1616
static int xen_cpu_dead_pv(unsigned int cpu)
1617
{
1618
xen_smp_intr_free(cpu);
1619
xen_smp_intr_free_pv(cpu);
1620
1621
xen_teardown_timer(cpu);
1622
1623
return 0;
1624
}
1625
1626
static uint32_t __init xen_platform_pv(void)
1627
{
1628
if (xen_pv_domain())
1629
return xen_cpuid_base();
1630
1631
return 0;
1632
}
1633
1634
const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1635
.name = "Xen PV",
1636
.detect = xen_platform_pv,
1637
.type = X86_HYPER_XEN_PV,
1638
.runtime.pin_vcpu = xen_pin_vcpu,
1639
.ignore_nopv = true,
1640
};
1641
1642