Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/xen/time.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Xen time implementation.
4
*
5
* This is implemented in terms of a clocksource driver which uses
6
* the hypervisor clock as a nanosecond timebase, and a clockevent
7
* driver which uses the hypervisor's timer mechanism.
8
*
9
* Jeremy Fitzhardinge <[email protected]>, XenSource Inc, 2007
10
*/
11
#include <linux/kernel.h>
12
#include <linux/interrupt.h>
13
#include <linux/clocksource.h>
14
#include <linux/clockchips.h>
15
#include <linux/gfp.h>
16
#include <linux/slab.h>
17
#include <linux/pvclock_gtod.h>
18
#include <linux/timekeeper_internal.h>
19
20
#include <asm/pvclock.h>
21
#include <asm/xen/hypervisor.h>
22
#include <asm/xen/hypercall.h>
23
#include <asm/xen/cpuid.h>
24
25
#include <xen/events.h>
26
#include <xen/features.h>
27
#include <xen/interface/xen.h>
28
#include <xen/interface/vcpu.h>
29
30
#include "xen-ops.h"
31
32
/* Minimum amount of time until next clock event fires */
33
#define TIMER_SLOP 1
34
35
static u64 xen_sched_clock_offset __read_mostly;
36
37
/* Get the TSC speed from Xen */
38
static unsigned long xen_tsc_khz(void)
39
{
40
struct pvclock_vcpu_time_info *info =
41
&HYPERVISOR_shared_info->vcpu_info[0].time;
42
43
setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
44
return pvclock_tsc_khz(info);
45
}
46
47
static u64 xen_clocksource_read(void)
48
{
49
struct pvclock_vcpu_time_info *src;
50
u64 ret;
51
52
preempt_disable_notrace();
53
src = &__this_cpu_read(xen_vcpu)->time;
54
ret = pvclock_clocksource_read(src);
55
preempt_enable_notrace();
56
return ret;
57
}
58
59
static u64 xen_clocksource_get_cycles(struct clocksource *cs)
60
{
61
return xen_clocksource_read();
62
}
63
64
static noinstr u64 xen_sched_clock(void)
65
{
66
struct pvclock_vcpu_time_info *src;
67
u64 ret;
68
69
src = &__this_cpu_read(xen_vcpu)->time;
70
ret = pvclock_clocksource_read_nowd(src);
71
ret -= xen_sched_clock_offset;
72
73
return ret;
74
}
75
76
static void xen_read_wallclock(struct timespec64 *ts)
77
{
78
struct shared_info *s = HYPERVISOR_shared_info;
79
struct pvclock_wall_clock *wall_clock = &(s->wc);
80
struct pvclock_vcpu_time_info *vcpu_time;
81
82
vcpu_time = &get_cpu_var(xen_vcpu)->time;
83
pvclock_read_wallclock(wall_clock, vcpu_time, ts);
84
put_cpu_var(xen_vcpu);
85
}
86
87
static void xen_get_wallclock(struct timespec64 *now)
88
{
89
xen_read_wallclock(now);
90
}
91
92
static int xen_set_wallclock(const struct timespec64 *now)
93
{
94
return -ENODEV;
95
}
96
97
static int xen_pvclock_gtod_notify(struct notifier_block *nb,
98
unsigned long was_set, void *priv)
99
{
100
/* Protected by the calling core code serialization */
101
static struct timespec64 next_sync;
102
103
struct xen_platform_op op;
104
struct timespec64 now;
105
struct timekeeper *tk = priv;
106
static bool settime64_supported = true;
107
int ret;
108
109
now.tv_sec = tk->xtime_sec;
110
now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
111
112
/*
113
* We only take the expensive HV call when the clock was set
114
* or when the 11 minutes RTC synchronization time elapsed.
115
*/
116
if (!was_set && timespec64_compare(&now, &next_sync) < 0)
117
return NOTIFY_OK;
118
119
again:
120
if (settime64_supported) {
121
op.cmd = XENPF_settime64;
122
op.u.settime64.mbz = 0;
123
op.u.settime64.secs = now.tv_sec;
124
op.u.settime64.nsecs = now.tv_nsec;
125
op.u.settime64.system_time = xen_clocksource_read();
126
} else {
127
op.cmd = XENPF_settime32;
128
op.u.settime32.secs = now.tv_sec;
129
op.u.settime32.nsecs = now.tv_nsec;
130
op.u.settime32.system_time = xen_clocksource_read();
131
}
132
133
ret = HYPERVISOR_platform_op(&op);
134
135
if (ret == -ENOSYS && settime64_supported) {
136
settime64_supported = false;
137
goto again;
138
}
139
if (ret < 0)
140
return NOTIFY_BAD;
141
142
/*
143
* Move the next drift compensation time 11 minutes
144
* ahead. That's emulating the sync_cmos_clock() update for
145
* the hardware RTC.
146
*/
147
next_sync = now;
148
next_sync.tv_sec += 11 * 60;
149
150
return NOTIFY_OK;
151
}
152
153
static struct notifier_block xen_pvclock_gtod_notifier = {
154
.notifier_call = xen_pvclock_gtod_notify,
155
};
156
157
static int xen_cs_enable(struct clocksource *cs)
158
{
159
vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
160
return 0;
161
}
162
163
static struct clocksource xen_clocksource __read_mostly = {
164
.name = "xen",
165
.rating = 400,
166
.read = xen_clocksource_get_cycles,
167
.mask = CLOCKSOURCE_MASK(64),
168
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
169
.enable = xen_cs_enable,
170
};
171
172
/*
173
Xen clockevent implementation
174
175
Xen has two clockevent implementations:
176
177
The old timer_op one works with all released versions of Xen prior
178
to version 3.0.4. This version of the hypervisor provides a
179
single-shot timer with nanosecond resolution. However, sharing the
180
same event channel is a 100Hz tick which is delivered while the
181
vcpu is running. We don't care about or use this tick, but it will
182
cause the core time code to think the timer fired too soon, and
183
will end up resetting it each time. It could be filtered, but
184
doing so has complications when the ktime clocksource is not yet
185
the xen clocksource (ie, at boot time).
186
187
The new vcpu_op-based timer interface allows the tick timer period
188
to be changed or turned off. The tick timer is not useful as a
189
periodic timer because events are only delivered to running vcpus.
190
The one-shot timer can report when a timeout is in the past, so
191
set_next_event is capable of returning -ETIME when appropriate.
192
This interface is used when available.
193
*/
194
195
196
/*
197
Get a hypervisor absolute time. In theory we could maintain an
198
offset between the kernel's time and the hypervisor's time, and
199
apply that to a kernel's absolute timeout. Unfortunately the
200
hypervisor and kernel times can drift even if the kernel is using
201
the Xen clocksource, because ntp can warp the kernel's clocksource.
202
*/
203
static s64 get_abs_timeout(unsigned long delta)
204
{
205
return xen_clocksource_read() + delta;
206
}
207
208
static int xen_timerop_shutdown(struct clock_event_device *evt)
209
{
210
/* cancel timeout */
211
HYPERVISOR_set_timer_op(0);
212
213
return 0;
214
}
215
216
static int xen_timerop_set_next_event(unsigned long delta,
217
struct clock_event_device *evt)
218
{
219
WARN_ON(!clockevent_state_oneshot(evt));
220
221
if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
222
BUG();
223
224
/* We may have missed the deadline, but there's no real way of
225
knowing for sure. If the event was in the past, then we'll
226
get an immediate interrupt. */
227
228
return 0;
229
}
230
231
static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
232
.name = "xen",
233
.features = CLOCK_EVT_FEAT_ONESHOT,
234
235
.max_delta_ns = 0xffffffff,
236
.max_delta_ticks = 0xffffffff,
237
.min_delta_ns = TIMER_SLOP,
238
.min_delta_ticks = TIMER_SLOP,
239
240
.mult = 1,
241
.shift = 0,
242
.rating = 500,
243
244
.set_state_shutdown = xen_timerop_shutdown,
245
.set_next_event = xen_timerop_set_next_event,
246
};
247
248
static int xen_vcpuop_shutdown(struct clock_event_device *evt)
249
{
250
int cpu = smp_processor_id();
251
252
if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
253
NULL) ||
254
HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
255
NULL))
256
BUG();
257
258
return 0;
259
}
260
261
static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
262
{
263
int cpu = smp_processor_id();
264
265
if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
266
NULL))
267
BUG();
268
269
return 0;
270
}
271
272
static int xen_vcpuop_set_next_event(unsigned long delta,
273
struct clock_event_device *evt)
274
{
275
int cpu = smp_processor_id();
276
struct vcpu_set_singleshot_timer single;
277
int ret;
278
279
WARN_ON(!clockevent_state_oneshot(evt));
280
281
single.timeout_abs_ns = get_abs_timeout(delta);
282
/* Get an event anyway, even if the timeout is already expired */
283
single.flags = 0;
284
285
ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
286
&single);
287
BUG_ON(ret != 0);
288
289
return ret;
290
}
291
292
static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
293
.name = "xen",
294
.features = CLOCK_EVT_FEAT_ONESHOT,
295
296
.max_delta_ns = 0xffffffff,
297
.max_delta_ticks = 0xffffffff,
298
.min_delta_ns = TIMER_SLOP,
299
.min_delta_ticks = TIMER_SLOP,
300
301
.mult = 1,
302
.shift = 0,
303
.rating = 500,
304
305
.set_state_shutdown = xen_vcpuop_shutdown,
306
.set_state_oneshot = xen_vcpuop_set_oneshot,
307
.set_next_event = xen_vcpuop_set_next_event,
308
};
309
310
static const struct clock_event_device *xen_clockevent =
311
&xen_timerop_clockevent;
312
313
struct xen_clock_event_device {
314
struct clock_event_device evt;
315
char name[16];
316
};
317
static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
318
319
static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
320
{
321
struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
322
irqreturn_t ret;
323
324
ret = IRQ_NONE;
325
if (evt->event_handler) {
326
evt->event_handler(evt);
327
ret = IRQ_HANDLED;
328
}
329
330
return ret;
331
}
332
333
void xen_teardown_timer(int cpu)
334
{
335
struct clock_event_device *evt;
336
evt = &per_cpu(xen_clock_events, cpu).evt;
337
338
if (evt->irq >= 0) {
339
unbind_from_irqhandler(evt->irq, NULL);
340
evt->irq = -1;
341
}
342
}
343
344
void xen_setup_timer(int cpu)
345
{
346
struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
347
struct clock_event_device *evt = &xevt->evt;
348
int irq;
349
350
WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
351
if (evt->irq >= 0)
352
xen_teardown_timer(cpu);
353
354
printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
355
356
snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
357
358
irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
359
IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
360
IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
361
xevt->name, NULL);
362
(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
363
364
memcpy(evt, xen_clockevent, sizeof(*evt));
365
366
evt->cpumask = cpumask_of(cpu);
367
evt->irq = irq;
368
}
369
370
371
void xen_setup_cpu_clockevents(void)
372
{
373
clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
374
}
375
376
void xen_timer_resume(void)
377
{
378
int cpu;
379
380
if (xen_clockevent != &xen_vcpuop_clockevent)
381
return;
382
383
for_each_online_cpu(cpu) {
384
if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
385
xen_vcpu_nr(cpu), NULL))
386
BUG();
387
}
388
}
389
390
static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
391
static u64 xen_clock_value_saved;
392
393
void xen_save_time_memory_area(void)
394
{
395
struct vcpu_register_time_memory_area t;
396
int ret;
397
398
xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
399
400
if (!xen_clock)
401
return;
402
403
t.addr.v = NULL;
404
405
ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
406
if (ret != 0)
407
pr_notice("Cannot save secondary vcpu_time_info (err %d)",
408
ret);
409
else
410
clear_page(xen_clock);
411
}
412
413
void xen_restore_time_memory_area(void)
414
{
415
struct vcpu_register_time_memory_area t;
416
int ret;
417
418
if (!xen_clock)
419
goto out;
420
421
t.addr.v = &xen_clock->pvti;
422
423
ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
424
425
/*
426
* We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
427
* register the secondary time info with Xen or if we migrated to a
428
* host without the necessary flags. On both of these cases what
429
* happens is either process seeing a zeroed out pvti or seeing no
430
* PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
431
* if 0, it discards the data in pvti and fallbacks to a system
432
* call for a reliable timestamp.
433
*/
434
if (ret != 0)
435
pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
436
ret);
437
438
out:
439
/* Need pvclock_resume() before using xen_clocksource_read(). */
440
pvclock_resume();
441
xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
442
}
443
444
static void xen_setup_vsyscall_time_info(void)
445
{
446
struct vcpu_register_time_memory_area t;
447
struct pvclock_vsyscall_time_info *ti;
448
int ret;
449
450
ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
451
if (!ti)
452
return;
453
454
t.addr.v = &ti->pvti;
455
456
ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
457
if (ret) {
458
pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
459
free_page((unsigned long)ti);
460
return;
461
}
462
463
/*
464
* If primary time info had this bit set, secondary should too since
465
* it's the same data on both just different memory regions. But we
466
* still check it in case hypervisor is buggy.
467
*/
468
if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
469
t.addr.v = NULL;
470
ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
471
0, &t);
472
if (!ret)
473
free_page((unsigned long)ti);
474
475
pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
476
return;
477
}
478
479
xen_clock = ti;
480
pvclock_set_pvti_cpu0_va(xen_clock);
481
482
xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
483
}
484
485
/*
486
* Check if it is possible to safely use the tsc as a clocksource. This is
487
* only true if the hypervisor notifies the guest that its tsc is invariant,
488
* the tsc is stable, and the tsc instruction will never be emulated.
489
*/
490
static int __init xen_tsc_safe_clocksource(void)
491
{
492
u32 eax, ebx, ecx, edx;
493
494
if (!(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)))
495
return 0;
496
497
if (!(boot_cpu_has(X86_FEATURE_NONSTOP_TSC)))
498
return 0;
499
500
if (check_tsc_unstable())
501
return 0;
502
503
/* Leaf 4, sub-leaf 0 (0x40000x03) */
504
cpuid_count(xen_cpuid_base() + 3, 0, &eax, &ebx, &ecx, &edx);
505
506
return ebx == XEN_CPUID_TSC_MODE_NEVER_EMULATE;
507
}
508
509
static void __init xen_time_init(void)
510
{
511
struct pvclock_vcpu_time_info *pvti;
512
int cpu = smp_processor_id();
513
struct timespec64 tp;
514
515
/*
516
* As Dom0 is never moved, no penalty on using TSC there.
517
*
518
* If it is possible for the guest to determine that the tsc is a safe
519
* clocksource, then set xen_clocksource rating below that of the tsc
520
* so that the system prefers tsc instead.
521
*/
522
if (xen_initial_domain())
523
xen_clocksource.rating = 275;
524
else if (xen_tsc_safe_clocksource())
525
xen_clocksource.rating = 299;
526
527
clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
528
529
if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
530
NULL) == 0) {
531
/* Successfully turned off 100Hz tick, so we have the
532
vcpuop-based timer interface */
533
printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
534
xen_clockevent = &xen_vcpuop_clockevent;
535
}
536
537
/* Set initial system time with full resolution */
538
xen_read_wallclock(&tp);
539
do_settimeofday64(&tp);
540
541
setup_force_cpu_cap(X86_FEATURE_TSC);
542
543
/*
544
* We check ahead on the primary time info if this
545
* bit is supported hence speeding up Xen clocksource.
546
*/
547
pvti = &__this_cpu_read(xen_vcpu)->time;
548
if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
549
pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
550
xen_setup_vsyscall_time_info();
551
}
552
553
xen_setup_runstate_info(cpu);
554
xen_setup_timer(cpu);
555
xen_setup_cpu_clockevents();
556
557
xen_time_setup_guest();
558
559
if (xen_initial_domain())
560
pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
561
}
562
563
static void __init xen_init_time_common(void)
564
{
565
xen_sched_clock_offset = xen_clocksource_read();
566
static_call_update(pv_steal_clock, xen_steal_clock);
567
paravirt_set_sched_clock(xen_sched_clock);
568
569
x86_platform.calibrate_tsc = xen_tsc_khz;
570
x86_platform.get_wallclock = xen_get_wallclock;
571
}
572
573
void __init xen_init_time_ops(void)
574
{
575
xen_init_time_common();
576
577
x86_init.timers.timer_init = xen_time_init;
578
x86_init.timers.setup_percpu_clockev = x86_init_noop;
579
x86_cpuinit.setup_percpu_clockev = x86_init_noop;
580
581
/* Dom0 uses the native method to set the hardware RTC. */
582
if (!xen_initial_domain())
583
x86_platform.set_wallclock = xen_set_wallclock;
584
}
585
586
#ifdef CONFIG_XEN_PVHVM
587
static void xen_hvm_setup_cpu_clockevents(void)
588
{
589
int cpu = smp_processor_id();
590
xen_setup_runstate_info(cpu);
591
/*
592
* xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
593
* doing it xen_hvm_cpu_notify (which gets called by smp_init during
594
* early bootup and also during CPU hotplug events).
595
*/
596
xen_setup_cpu_clockevents();
597
}
598
599
void __init xen_hvm_init_time_ops(void)
600
{
601
static bool hvm_time_initialized;
602
603
if (hvm_time_initialized)
604
return;
605
606
/*
607
* vector callback is needed otherwise we cannot receive interrupts
608
* on cpu > 0 and at this point we don't know how many cpus are
609
* available.
610
*/
611
if (!xen_have_vector_callback)
612
return;
613
614
if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
615
pr_info_once("Xen doesn't support pvclock on HVM, disable pv timer");
616
return;
617
}
618
619
/*
620
* Only MAX_VIRT_CPUS 'vcpu_info' are embedded inside 'shared_info'.
621
* The __this_cpu_read(xen_vcpu) is still NULL when Xen HVM guest
622
* boots on vcpu >= MAX_VIRT_CPUS (e.g., kexec), To access
623
* __this_cpu_read(xen_vcpu) via xen_clocksource_read() will panic.
624
*
625
* The xen_hvm_init_time_ops() should be called again later after
626
* __this_cpu_read(xen_vcpu) is available.
627
*/
628
if (!__this_cpu_read(xen_vcpu)) {
629
pr_info("Delay xen_init_time_common() as kernel is running on vcpu=%d\n",
630
xen_vcpu_nr(0));
631
return;
632
}
633
634
xen_init_time_common();
635
636
x86_init.timers.setup_percpu_clockev = xen_time_init;
637
x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
638
639
x86_platform.set_wallclock = xen_set_wallclock;
640
641
hvm_time_initialized = true;
642
}
643
#endif
644
645
/* Kernel parameter to specify Xen timer slop */
646
static int __init parse_xen_timer_slop(char *ptr)
647
{
648
unsigned long slop = memparse(ptr, NULL);
649
650
xen_timerop_clockevent.min_delta_ns = slop;
651
xen_timerop_clockevent.min_delta_ticks = slop;
652
xen_vcpuop_clockevent.min_delta_ns = slop;
653
xen_vcpuop_clockevent.min_delta_ticks = slop;
654
655
return 0;
656
}
657
early_param("xen_timer_slop", parse_xen_timer_slop);
658
659