Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/xtensa/include/asm/pgtable.h
26442 views
1
/* SPDX-License-Identifier: GPL-2.0-only */
2
/*
3
* include/asm-xtensa/pgtable.h
4
*
5
* Copyright (C) 2001 - 2013 Tensilica Inc.
6
*/
7
8
#ifndef _XTENSA_PGTABLE_H
9
#define _XTENSA_PGTABLE_H
10
11
#include <asm/page.h>
12
#include <asm/kmem_layout.h>
13
#include <asm-generic/pgtable-nopmd.h>
14
15
/*
16
* We only use two ring levels, user and kernel space.
17
*/
18
19
#ifdef CONFIG_MMU
20
#define USER_RING 1 /* user ring level */
21
#else
22
#define USER_RING 0
23
#endif
24
#define KERNEL_RING 0 /* kernel ring level */
25
26
/*
27
* The Xtensa architecture port of Linux has a two-level page table system,
28
* i.e. the logical three-level Linux page table layout is folded.
29
* Each task has the following memory page tables:
30
*
31
* PGD table (page directory), ie. 3rd-level page table:
32
* One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
33
* (Architectures that don't have the PMD folded point to the PMD tables)
34
*
35
* The pointer to the PGD table for a given task can be retrieved from
36
* the task structure (struct task_struct*) t, e.g. current():
37
* (t->mm ? t->mm : t->active_mm)->pgd
38
*
39
* PMD tables (page middle-directory), ie. 2nd-level page tables:
40
* Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
41
*
42
* PTE tables (page table entry), ie. 1st-level page tables:
43
* One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
44
* invalid_pte_table for absent mappings.
45
*
46
* The individual pages are 4 kB big with special pages for the empty_zero_page.
47
*/
48
49
#define PGDIR_SHIFT 22
50
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
51
#define PGDIR_MASK (~(PGDIR_SIZE-1))
52
53
/*
54
* Entries per page directory level: we use two-level, so
55
* we don't really have any PMD directory physically.
56
*/
57
#define PTRS_PER_PTE 1024
58
#define PTRS_PER_PTE_SHIFT 10
59
#define PTRS_PER_PGD 1024
60
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
61
#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
62
63
#ifdef CONFIG_MMU
64
/*
65
* Virtual memory area. We keep a distance to other memory regions to be
66
* on the safe side. We also use this area for cache aliasing.
67
*/
68
#define VMALLOC_START (XCHAL_KSEG_CACHED_VADDR - 0x10000000)
69
#define VMALLOC_END (VMALLOC_START + 0x07FEFFFF)
70
#define TLBTEMP_BASE_1 (VMALLOC_START + 0x08000000)
71
#define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
72
#if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
73
#define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE)
74
#else
75
#define TLBTEMP_SIZE ICACHE_WAY_SIZE
76
#endif
77
78
#else
79
80
#define VMALLOC_START __XTENSA_UL_CONST(0)
81
#define VMALLOC_END __XTENSA_UL_CONST(0xffffffff)
82
83
#endif
84
85
/*
86
* For the Xtensa architecture, the PTE layout is as follows:
87
*
88
* 31------12 11 10-9 8-6 5-4 3-2 1-0
89
* +-----------------------------------------+
90
* | | Software | HARDWARE |
91
* | PPN | ADW | RI |Attribute|
92
* +-----------------------------------------+
93
* pte_none | MBZ | 01 | 11 | 00 |
94
* +-----------------------------------------+
95
* present | PPN | 0 | 00 | ADW | RI | CA | wx |
96
* +- - - - - - - - - - - - - - - - - - - - -+
97
* (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 |
98
* +-----------------------------------------+
99
* swap | index | type | 01 | 11 | e0 |
100
* +-----------------------------------------+
101
*
102
* For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
103
* +-----------------------------------------+
104
* present | PPN | 0 | 00 | ADW | RI | CA | w1 |
105
* +-----------------------------------------+
106
* (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 |
107
* +-----------------------------------------+
108
*
109
* Legend:
110
* PPN Physical Page Number
111
* ADW software: accessed (young) / dirty / writable
112
* RI ring (0=privileged, 1=user, 2 and 3 are unused)
113
* CA cache attribute: 00 bypass, 01 writeback, 10 writethrough
114
* (11 is invalid and used to mark pages that are not present)
115
* e exclusive marker in swap PTEs
116
* w page is writable (hw)
117
* x page is executable (hw)
118
* index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
119
* (note that the index is always non-zero)
120
* type swap type (5 bits -> 32 types)
121
*
122
* Notes:
123
* - (PROT_NONE) is a special case of 'present' but causes an exception for
124
* any access (read, write, and execute).
125
* - 'multihit-exception' has the highest priority of all MMU exceptions,
126
* so the ring must be set to 'RING_USER' even for 'non-present' pages.
127
* - on older hardware, the exectuable flag was not supported and
128
* used as a 'valid' flag, so it needs to be always set.
129
* - we need to keep track of certain flags in software (dirty and young)
130
* to do this, we use write exceptions and have a separate software w-flag.
131
* - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
132
*/
133
134
#define _PAGE_ATTRIB_MASK 0xf
135
136
#define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */
137
#define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */
138
139
#define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */
140
#define _PAGE_CA_WB (1<<2) /* write-back */
141
#define _PAGE_CA_WT (2<<2) /* write-through */
142
#define _PAGE_CA_MASK (3<<2)
143
#define _PAGE_CA_INVALID (3<<2)
144
145
/* We use invalid attribute values to distinguish special pte entries */
146
#if XCHAL_HW_VERSION_MAJOR < 2000
147
#define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */
148
#define _PAGE_NONE 0x04
149
#else
150
#define _PAGE_HW_VALID 0x00
151
#define _PAGE_NONE 0x0f
152
#endif
153
154
#define _PAGE_USER (1<<4) /* user access (ring=1) */
155
156
/* Software */
157
#define _PAGE_WRITABLE_BIT 6
158
#define _PAGE_WRITABLE (1<<6) /* software: page writable */
159
#define _PAGE_DIRTY (1<<7) /* software: page dirty */
160
#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
161
162
/* We borrow bit 1 to store the exclusive marker in swap PTEs. */
163
#define _PAGE_SWP_EXCLUSIVE (1<<1)
164
165
#ifdef CONFIG_MMU
166
167
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
168
#define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
169
170
#define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER)
171
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
172
#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
173
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
174
#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
175
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
176
#define PAGE_SHARED_EXEC \
177
__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
178
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
179
#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT)
180
#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
181
182
#if (DCACHE_WAY_SIZE > PAGE_SIZE)
183
# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
184
#else
185
# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
186
#endif
187
188
#else /* no mmu */
189
190
# define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
191
# define PAGE_NONE __pgprot(0)
192
# define PAGE_SHARED __pgprot(0)
193
# define PAGE_COPY __pgprot(0)
194
# define PAGE_READONLY __pgprot(0)
195
# define PAGE_KERNEL __pgprot(0)
196
197
#endif
198
199
/*
200
* On certain configurations of Xtensa MMUs (eg. the initial Linux config),
201
* the MMU can't do page protection for execute, and considers that the same as
202
* read. Also, write permissions may imply read permissions.
203
* What follows is the closest we can get by reasonable means..
204
* See linux/mm/mmap.c for protection_map[] array that uses these definitions.
205
*/
206
#ifndef __ASSEMBLER__
207
208
#define pte_ERROR(e) \
209
printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
210
#define pgd_ERROR(e) \
211
printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
212
213
extern unsigned long empty_zero_page[1024];
214
215
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
216
217
#ifdef CONFIG_MMU
218
extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
219
extern void paging_init(void);
220
#else
221
# define swapper_pg_dir NULL
222
static inline void paging_init(void) { }
223
#endif
224
225
/*
226
* The pmd contains the kernel virtual address of the pte page.
227
*/
228
#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
229
#define pmd_pfn(pmd) (__pa(pmd_val(pmd)) >> PAGE_SHIFT)
230
#define pmd_page(pmd) virt_to_page(pmd_val(pmd))
231
232
/*
233
* pte status.
234
*/
235
# define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
236
#if XCHAL_HW_VERSION_MAJOR < 2000
237
# define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
238
#else
239
# define pte_present(pte) \
240
(((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \
241
|| ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
242
#endif
243
#define pte_clear(mm,addr,ptep) \
244
do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
245
246
#define pmd_none(pmd) (!pmd_val(pmd))
247
#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
248
#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
249
#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
250
251
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
252
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
253
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
254
255
static inline pte_t pte_wrprotect(pte_t pte)
256
{ pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
257
static inline pte_t pte_mkclean(pte_t pte)
258
{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
259
static inline pte_t pte_mkold(pte_t pte)
260
{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
261
static inline pte_t pte_mkdirty(pte_t pte)
262
{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
263
static inline pte_t pte_mkyoung(pte_t pte)
264
{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
265
static inline pte_t pte_mkwrite_novma(pte_t pte)
266
{ pte_val(pte) |= _PAGE_WRITABLE; return pte; }
267
268
#define pgprot_noncached(prot) \
269
((__pgprot((pgprot_val(prot) & ~_PAGE_CA_MASK) | \
270
_PAGE_CA_BYPASS)))
271
272
#define PFN_PTE_SHIFT PAGE_SHIFT
273
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
274
#define pte_same(a,b) (pte_val(a) == pte_val(b))
275
#define pte_page(x) pfn_to_page(pte_pfn(x))
276
#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
277
278
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
279
{
280
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
281
}
282
283
/*
284
* Certain architectures need to do special things when pte's
285
* within a page table are directly modified. Thus, the following
286
* hook is made available.
287
*/
288
static inline void update_pte(pte_t *ptep, pte_t pteval)
289
{
290
*ptep = pteval;
291
#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
292
__asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
293
#endif
294
295
}
296
297
struct mm_struct;
298
299
static inline void set_pte(pte_t *ptep, pte_t pte)
300
{
301
update_pte(ptep, pte);
302
}
303
304
static inline void
305
set_pmd(pmd_t *pmdp, pmd_t pmdval)
306
{
307
*pmdp = pmdval;
308
}
309
310
struct vm_area_struct;
311
312
static inline int
313
ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
314
pte_t *ptep)
315
{
316
pte_t pte = *ptep;
317
if (!pte_young(pte))
318
return 0;
319
update_pte(ptep, pte_mkold(pte));
320
return 1;
321
}
322
323
static inline pte_t
324
ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
325
{
326
pte_t pte = *ptep;
327
pte_clear(mm, addr, ptep);
328
return pte;
329
}
330
331
static inline void
332
ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
333
{
334
pte_t pte = *ptep;
335
update_pte(ptep, pte_wrprotect(pte));
336
}
337
338
/*
339
* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
340
* are !pte_none() && !pte_present().
341
*/
342
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
343
344
#define __swp_type(entry) (((entry).val >> 6) & 0x1f)
345
#define __swp_offset(entry) ((entry).val >> 11)
346
#define __swp_entry(type,offs) \
347
((swp_entry_t){(((type) & 0x1f) << 6) | ((offs) << 11) | \
348
_PAGE_CA_INVALID | _PAGE_USER})
349
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
350
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
351
352
static inline bool pte_swp_exclusive(pte_t pte)
353
{
354
return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
355
}
356
357
static inline pte_t pte_swp_mkexclusive(pte_t pte)
358
{
359
pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
360
return pte;
361
}
362
363
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
364
{
365
pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
366
return pte;
367
}
368
369
#endif /* !defined (__ASSEMBLER__) */
370
371
372
#ifdef __ASSEMBLER__
373
374
/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
375
* _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
376
* _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
377
* _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
378
*
379
* Note: We require an additional temporary register which can be the same as
380
* the register that holds the address.
381
*
382
* ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
383
*
384
*/
385
#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
386
#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
387
388
#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
389
_PGD_INDEX(tmp, adr); \
390
addx4 mm, tmp, mm
391
392
#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
393
srli pmd, pmd, PAGE_SHIFT; \
394
slli pmd, pmd, PAGE_SHIFT; \
395
addx4 pmd, tmp, pmd
396
397
#else
398
399
struct vm_fault;
400
void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
401
unsigned long address, pte_t *ptep, unsigned int nr);
402
#define update_mmu_cache(vma, address, ptep) \
403
update_mmu_cache_range(NULL, vma, address, ptep, 1)
404
405
typedef pte_t *pte_addr_t;
406
407
void update_mmu_tlb_range(struct vm_area_struct *vma,
408
unsigned long address, pte_t *ptep, unsigned int nr);
409
#define update_mmu_tlb_range update_mmu_tlb_range
410
411
#endif /* !defined (__ASSEMBLER__) */
412
413
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
414
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
415
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
416
#define __HAVE_ARCH_PTEP_MKDIRTY
417
#define __HAVE_ARCH_PTE_SAME
418
/* We provide our own get_unmapped_area to cope with
419
* SHM area cache aliasing for userland.
420
*/
421
#define HAVE_ARCH_UNMAPPED_AREA
422
423
#endif /* _XTENSA_PGTABLE_H */
424
425