Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/xtensa/kernel/process.c
26444 views
1
/*
2
* arch/xtensa/kernel/process.c
3
*
4
* Xtensa Processor version.
5
*
6
* This file is subject to the terms and conditions of the GNU General Public
7
* License. See the file "COPYING" in the main directory of this archive
8
* for more details.
9
*
10
* Copyright (C) 2001 - 2005 Tensilica Inc.
11
*
12
* Joe Taylor <[email protected], [email protected]>
13
* Chris Zankel <[email protected]>
14
* Marc Gauthier <[email protected], [email protected]>
15
* Kevin Chea
16
*/
17
18
#include <linux/errno.h>
19
#include <linux/sched.h>
20
#include <linux/sched/debug.h>
21
#include <linux/sched/task.h>
22
#include <linux/sched/task_stack.h>
23
#include <linux/kernel.h>
24
#include <linux/mm.h>
25
#include <linux/smp.h>
26
#include <linux/stddef.h>
27
#include <linux/unistd.h>
28
#include <linux/ptrace.h>
29
#include <linux/elf.h>
30
#include <linux/hw_breakpoint.h>
31
#include <linux/init.h>
32
#include <linux/prctl.h>
33
#include <linux/init_task.h>
34
#include <linux/module.h>
35
#include <linux/mqueue.h>
36
#include <linux/fs.h>
37
#include <linux/slab.h>
38
#include <linux/rcupdate.h>
39
40
#include <linux/uaccess.h>
41
#include <asm/io.h>
42
#include <asm/processor.h>
43
#include <asm/platform.h>
44
#include <asm/mmu.h>
45
#include <asm/irq.h>
46
#include <linux/atomic.h>
47
#include <asm/asm-offsets.h>
48
#include <asm/regs.h>
49
#include <asm/hw_breakpoint.h>
50
#include <asm/sections.h>
51
#include <asm/traps.h>
52
53
extern void ret_from_fork(void);
54
extern void ret_from_kernel_thread(void);
55
56
void (*pm_power_off)(void) = NULL;
57
EXPORT_SYMBOL(pm_power_off);
58
59
60
#ifdef CONFIG_STACKPROTECTOR
61
#include <linux/stackprotector.h>
62
unsigned long __stack_chk_guard __read_mostly;
63
EXPORT_SYMBOL(__stack_chk_guard);
64
#endif
65
66
#if XTENSA_HAVE_COPROCESSORS
67
68
void local_coprocessors_flush_release_all(void)
69
{
70
struct thread_info **coprocessor_owner;
71
struct thread_info *unique_owner[XCHAL_CP_MAX];
72
int n = 0;
73
int i, j;
74
75
coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
76
xtensa_set_sr(XCHAL_CP_MASK, cpenable);
77
78
for (i = 0; i < XCHAL_CP_MAX; i++) {
79
struct thread_info *ti = coprocessor_owner[i];
80
81
if (ti) {
82
coprocessor_flush(ti, i);
83
84
for (j = 0; j < n; j++)
85
if (unique_owner[j] == ti)
86
break;
87
if (j == n)
88
unique_owner[n++] = ti;
89
90
coprocessor_owner[i] = NULL;
91
}
92
}
93
for (i = 0; i < n; i++) {
94
/* pairs with memw (1) in fast_coprocessor and memw in switch_to */
95
smp_wmb();
96
unique_owner[i]->cpenable = 0;
97
}
98
xtensa_set_sr(0, cpenable);
99
}
100
101
static void local_coprocessor_release_all(void *info)
102
{
103
struct thread_info *ti = info;
104
struct thread_info **coprocessor_owner;
105
int i;
106
107
coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
108
109
/* Walk through all cp owners and release it for the requested one. */
110
111
for (i = 0; i < XCHAL_CP_MAX; i++) {
112
if (coprocessor_owner[i] == ti)
113
coprocessor_owner[i] = NULL;
114
}
115
/* pairs with memw (1) in fast_coprocessor and memw in switch_to */
116
smp_wmb();
117
ti->cpenable = 0;
118
if (ti == current_thread_info())
119
xtensa_set_sr(0, cpenable);
120
}
121
122
void coprocessor_release_all(struct thread_info *ti)
123
{
124
if (ti->cpenable) {
125
/* pairs with memw (2) in fast_coprocessor */
126
smp_rmb();
127
smp_call_function_single(ti->cp_owner_cpu,
128
local_coprocessor_release_all,
129
ti, true);
130
}
131
}
132
133
static void local_coprocessor_flush_all(void *info)
134
{
135
struct thread_info *ti = info;
136
struct thread_info **coprocessor_owner;
137
unsigned long old_cpenable;
138
int i;
139
140
coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
141
old_cpenable = xtensa_xsr(ti->cpenable, cpenable);
142
143
for (i = 0; i < XCHAL_CP_MAX; i++) {
144
if (coprocessor_owner[i] == ti)
145
coprocessor_flush(ti, i);
146
}
147
xtensa_set_sr(old_cpenable, cpenable);
148
}
149
150
void coprocessor_flush_all(struct thread_info *ti)
151
{
152
if (ti->cpenable) {
153
/* pairs with memw (2) in fast_coprocessor */
154
smp_rmb();
155
smp_call_function_single(ti->cp_owner_cpu,
156
local_coprocessor_flush_all,
157
ti, true);
158
}
159
}
160
161
static void local_coprocessor_flush_release_all(void *info)
162
{
163
local_coprocessor_flush_all(info);
164
local_coprocessor_release_all(info);
165
}
166
167
void coprocessor_flush_release_all(struct thread_info *ti)
168
{
169
if (ti->cpenable) {
170
/* pairs with memw (2) in fast_coprocessor */
171
smp_rmb();
172
smp_call_function_single(ti->cp_owner_cpu,
173
local_coprocessor_flush_release_all,
174
ti, true);
175
}
176
}
177
178
#endif
179
180
181
/*
182
* Powermanagement idle function, if any is provided by the platform.
183
*/
184
void arch_cpu_idle(void)
185
{
186
platform_idle();
187
raw_local_irq_disable();
188
}
189
190
/*
191
* This is called when the thread calls exit().
192
*/
193
void exit_thread(struct task_struct *tsk)
194
{
195
#if XTENSA_HAVE_COPROCESSORS
196
coprocessor_release_all(task_thread_info(tsk));
197
#endif
198
}
199
200
/*
201
* Flush thread state. This is called when a thread does an execve()
202
* Note that we flush coprocessor registers for the case execve fails.
203
*/
204
void flush_thread(void)
205
{
206
#if XTENSA_HAVE_COPROCESSORS
207
struct thread_info *ti = current_thread_info();
208
coprocessor_flush_release_all(ti);
209
#endif
210
flush_ptrace_hw_breakpoint(current);
211
}
212
213
/*
214
* this gets called so that we can store coprocessor state into memory and
215
* copy the current task into the new thread.
216
*/
217
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
218
{
219
#if XTENSA_HAVE_COPROCESSORS
220
coprocessor_flush_all(task_thread_info(src));
221
#endif
222
*dst = *src;
223
return 0;
224
}
225
226
/*
227
* Copy thread.
228
*
229
* There are two modes in which this function is called:
230
* 1) Userspace thread creation,
231
* regs != NULL, usp_thread_fn is userspace stack pointer.
232
* It is expected to copy parent regs (in case CLONE_VM is not set
233
* in the clone_flags) and set up passed usp in the childregs.
234
* 2) Kernel thread creation,
235
* regs == NULL, usp_thread_fn is the function to run in the new thread
236
* and thread_fn_arg is its parameter.
237
* childregs are not used for the kernel threads.
238
*
239
* The stack layout for the new thread looks like this:
240
*
241
* +------------------------+
242
* | childregs |
243
* +------------------------+ <- thread.sp = sp in dummy-frame
244
* | dummy-frame | (saved in dummy-frame spill-area)
245
* +------------------------+
246
*
247
* We create a dummy frame to return to either ret_from_fork or
248
* ret_from_kernel_thread:
249
* a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
250
* sp points to itself (thread.sp)
251
* a2, a3 are unused for userspace threads,
252
* a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
253
*
254
* Note: This is a pristine frame, so we don't need any spill region on top of
255
* childregs.
256
*
257
* The fun part: if we're keeping the same VM (i.e. cloning a thread,
258
* not an entire process), we're normally given a new usp, and we CANNOT share
259
* any live address register windows. If we just copy those live frames over,
260
* the two threads (parent and child) will overflow the same frames onto the
261
* parent stack at different times, likely corrupting the parent stack (esp.
262
* if the parent returns from functions that called clone() and calls new
263
* ones, before the child overflows its now old copies of its parent windows).
264
* One solution is to spill windows to the parent stack, but that's fairly
265
* involved. Much simpler to just not copy those live frames across.
266
*/
267
268
int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
269
{
270
unsigned long clone_flags = args->flags;
271
unsigned long usp_thread_fn = args->stack;
272
unsigned long tls = args->tls;
273
struct pt_regs *childregs = task_pt_regs(p);
274
275
#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
276
struct thread_info *ti;
277
#endif
278
279
#if defined(__XTENSA_WINDOWED_ABI__)
280
/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
281
SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
282
SPILL_SLOT(childregs, 0) = 0;
283
284
p->thread.sp = (unsigned long)childregs;
285
#elif defined(__XTENSA_CALL0_ABI__)
286
/* Reserve 16 bytes for the _switch_to stack frame. */
287
p->thread.sp = (unsigned long)childregs - 16;
288
#else
289
#error Unsupported Xtensa ABI
290
#endif
291
292
if (!args->fn) {
293
struct pt_regs *regs = current_pt_regs();
294
unsigned long usp = usp_thread_fn ?
295
usp_thread_fn : regs->areg[1];
296
297
p->thread.ra = MAKE_RA_FOR_CALL(
298
(unsigned long)ret_from_fork, 0x1);
299
300
*childregs = *regs;
301
childregs->areg[1] = usp;
302
childregs->areg[2] = 0;
303
304
/* When sharing memory with the parent thread, the child
305
usually starts on a pristine stack, so we have to reset
306
windowbase, windowstart and wmask.
307
(Note that such a new thread is required to always create
308
an initial call4 frame)
309
The exception is vfork, where the new thread continues to
310
run on the parent's stack until it calls execve. This could
311
be a call8 or call12, which requires a legal stack frame
312
of the previous caller for the overflow handlers to work.
313
(Note that it's always legal to overflow live registers).
314
In this case, ensure to spill at least the stack pointer
315
of that frame. */
316
317
if (clone_flags & CLONE_VM) {
318
/* check that caller window is live and same stack */
319
int len = childregs->wmask & ~0xf;
320
if (regs->areg[1] == usp && len != 0) {
321
int callinc = (regs->areg[0] >> 30) & 3;
322
int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
323
put_user(regs->areg[caller_ars+1],
324
(unsigned __user*)(usp - 12));
325
}
326
childregs->wmask = 1;
327
childregs->windowstart = 1;
328
childregs->windowbase = 0;
329
}
330
331
if (clone_flags & CLONE_SETTLS)
332
childregs->threadptr = tls;
333
} else {
334
p->thread.ra = MAKE_RA_FOR_CALL(
335
(unsigned long)ret_from_kernel_thread, 1);
336
337
/* pass parameters to ret_from_kernel_thread: */
338
#if defined(__XTENSA_WINDOWED_ABI__)
339
/*
340
* a2 = thread_fn, a3 = thread_fn arg.
341
* Window underflow will load registers from the
342
* spill slots on the stack on return from _switch_to.
343
*/
344
SPILL_SLOT(childregs, 2) = (unsigned long)args->fn;
345
SPILL_SLOT(childregs, 3) = (unsigned long)args->fn_arg;
346
#elif defined(__XTENSA_CALL0_ABI__)
347
/*
348
* a12 = thread_fn, a13 = thread_fn arg.
349
* _switch_to epilogue will load registers from the stack.
350
*/
351
((unsigned long *)p->thread.sp)[0] = (unsigned long)args->fn;
352
((unsigned long *)p->thread.sp)[1] = (unsigned long)args->fn_arg;
353
#else
354
#error Unsupported Xtensa ABI
355
#endif
356
357
/* Childregs are only used when we're going to userspace
358
* in which case start_thread will set them up.
359
*/
360
}
361
362
#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
363
ti = task_thread_info(p);
364
ti->cpenable = 0;
365
#endif
366
367
clear_ptrace_hw_breakpoint(p);
368
369
return 0;
370
}
371
372
373
/*
374
* These bracket the sleeping functions..
375
*/
376
377
unsigned long __get_wchan(struct task_struct *p)
378
{
379
unsigned long sp, pc;
380
unsigned long stack_page = (unsigned long) task_stack_page(p);
381
int count = 0;
382
383
sp = p->thread.sp;
384
pc = MAKE_PC_FROM_RA(p->thread.ra, _text);
385
386
do {
387
if (sp < stack_page + sizeof(struct task_struct) ||
388
sp >= (stack_page + THREAD_SIZE) ||
389
pc == 0)
390
return 0;
391
if (!in_sched_functions(pc))
392
return pc;
393
394
/* Stack layout: sp-4: ra, sp-3: sp' */
395
396
pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), _text);
397
sp = SPILL_SLOT(sp, 1);
398
} while (count++ < 16);
399
return 0;
400
}
401
402