Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/xtensa/kernel/vectors.S
26439 views
1
/*
2
* arch/xtensa/kernel/vectors.S
3
*
4
* This file contains all exception vectors (user, kernel, and double),
5
* as well as the window vectors (overflow and underflow), and the debug
6
* vector. These are the primary vectors executed by the processor if an
7
* exception occurs.
8
*
9
* This file is subject to the terms and conditions of the GNU General
10
* Public License. See the file "COPYING" in the main directory of
11
* this archive for more details.
12
*
13
* Copyright (C) 2005 - 2008 Tensilica, Inc.
14
*
15
* Chris Zankel <[email protected]>
16
*
17
*/
18
19
/*
20
* We use a two-level table approach. The user and kernel exception vectors
21
* use a first-level dispatch table to dispatch the exception to a registered
22
* fast handler or the default handler, if no fast handler was registered.
23
* The default handler sets up a C-stack and dispatches the exception to a
24
* registerd C handler in the second-level dispatch table.
25
*
26
* Fast handler entry condition:
27
*
28
* a0: trashed, original value saved on stack (PT_AREG0)
29
* a1: a1
30
* a2: new stack pointer, original value in depc
31
* a3: dispatch table
32
* depc: a2, original value saved on stack (PT_DEPC)
33
* excsave_1: a3
34
*
35
* The value for PT_DEPC saved to stack also functions as a boolean to
36
* indicate that the exception is either a double or a regular exception:
37
*
38
* PT_DEPC >= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
39
* < VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
40
*
41
* Note: Neither the kernel nor the user exception handler generate literals.
42
*
43
*/
44
45
#include <linux/linkage.h>
46
#include <linux/pgtable.h>
47
#include <asm/asmmacro.h>
48
#include <asm/ptrace.h>
49
#include <asm/current.h>
50
#include <asm/asm-offsets.h>
51
#include <asm/processor.h>
52
#include <asm/page.h>
53
#include <asm/thread_info.h>
54
#include <asm/vectors.h>
55
56
#define WINDOW_VECTORS_SIZE 0x180
57
58
59
/*
60
* User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
61
*
62
* We get here when an exception occurred while we were in userland.
63
* We switch to the kernel stack and jump to the first level handler
64
* associated to the exception cause.
65
*
66
* Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
67
* decremented by PT_USER_SIZE.
68
*/
69
70
.section .UserExceptionVector.text, "ax"
71
72
ENTRY(_UserExceptionVector)
73
74
xsr a3, excsave1 # save a3 and get dispatch table
75
wsr a2, depc # save a2
76
l32i a2, a3, EXC_TABLE_KSTK # load kernel stack to a2
77
s32i a0, a2, PT_AREG0 # save a0 to ESF
78
rsr a0, exccause # retrieve exception cause
79
s32i a0, a2, PT_DEPC # mark it as a regular exception
80
addx4 a0, a0, a3 # find entry in table
81
l32i a0, a0, EXC_TABLE_FAST_USER # load handler
82
xsr a3, excsave1 # restore a3 and dispatch table
83
jx a0
84
85
ENDPROC(_UserExceptionVector)
86
87
/*
88
* Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
89
*
90
* We get this exception when we were already in kernel space.
91
* We decrement the current stack pointer (kernel) by PT_KERNEL_SIZE and
92
* jump to the first-level handler associated with the exception cause.
93
*
94
* Note: we need to preserve space for the spill region.
95
*/
96
97
.section .KernelExceptionVector.text, "ax"
98
99
ENTRY(_KernelExceptionVector)
100
101
xsr a3, excsave1 # save a3, and get dispatch table
102
wsr a2, depc # save a2
103
addi a2, a1, -16 - PT_KERNEL_SIZE # adjust stack pointer
104
s32i a0, a2, PT_AREG0 # save a0 to ESF
105
rsr a0, exccause # retrieve exception cause
106
s32i a0, a2, PT_DEPC # mark it as a regular exception
107
addx4 a0, a0, a3 # find entry in table
108
l32i a0, a0, EXC_TABLE_FAST_KERNEL # load handler address
109
xsr a3, excsave1 # restore a3 and dispatch table
110
jx a0
111
112
ENDPROC(_KernelExceptionVector)
113
114
/*
115
* Double exception vector (Exceptions with PS.EXCM == 1)
116
* We get this exception when another exception occurs while were are
117
* already in an exception, such as window overflow/underflow exception,
118
* or 'expected' exceptions, for example memory exception when we were trying
119
* to read data from an invalid address in user space.
120
*
121
* Note that this vector is never invoked for level-1 interrupts, because such
122
* interrupts are disabled (masked) when PS.EXCM is set.
123
*
124
* We decode the exception and take the appropriate action. However, the
125
* double exception vector is much more careful, because a lot more error
126
* cases go through the double exception vector than through the user and
127
* kernel exception vectors.
128
*
129
* Occasionally, the kernel expects a double exception to occur. This usually
130
* happens when accessing user-space memory with the user's permissions
131
* (l32e/s32e instructions). The kernel state, though, is not always suitable
132
* for immediate transfer of control to handle_double, where "normal" exception
133
* processing occurs. Also in kernel mode, TLB misses can occur if accessing
134
* vmalloc memory, possibly requiring repair in a double exception handler.
135
*
136
* The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
137
* a boolean variable and a pointer to a fixup routine. If the variable
138
* EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
139
* zero indicates to use the default kernel/user exception handler.
140
* There is only one exception, when the value is identical to the exc_table
141
* label, the kernel is in trouble. This mechanism is used to protect critical
142
* sections, mainly when the handler writes to the stack to assert the stack
143
* pointer is valid. Once the fixup/default handler leaves that area, the
144
* EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
145
*
146
* Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
147
* nonzero address of a fixup routine before it could cause a double exception
148
* and reset it before it returns.
149
*
150
* Some other things to take care of when a fast exception handler doesn't
151
* specify a particular fixup handler but wants to use the default handlers:
152
*
153
* - The original stack pointer (in a1) must not be modified. The fast
154
* exception handler should only use a2 as the stack pointer.
155
*
156
* - If the fast handler manipulates the stack pointer (in a2), it has to
157
* register a valid fixup handler and cannot use the default handlers.
158
*
159
* - The handler can use any other generic register from a3 to a15, but it
160
* must save the content of these registers to stack (PT_AREG3...PT_AREGx)
161
*
162
* - These registers must be saved before a double exception can occur.
163
*
164
* - If we ever implement handling signals while in double exceptions, the
165
* number of registers a fast handler has saved (excluding a0 and a1) must
166
* be written to PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
167
*
168
* The fixup handlers are special handlers:
169
*
170
* - Fixup entry conditions differ from regular exceptions:
171
*
172
* a0: DEPC
173
* a1: a1
174
* a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE
175
* a3: exctable
176
* depc: a0
177
* excsave_1: a3
178
*
179
* - When the kernel enters the fixup handler, it still assumes it is in a
180
* critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
181
* The fixup handler, therefore, has to re-register itself as the fixup
182
* handler before it returns from the double exception.
183
*
184
* - Fixup handler can share the same exception frame with the fast handler.
185
* The kernel stack pointer is not changed when entering the fixup handler.
186
*
187
* - Fixup handlers can jump to the default kernel and user exception
188
* handlers. Before it jumps, though, it has to setup a exception frame
189
* on stack. Because the default handler resets the register fixup handler
190
* the fixup handler must make sure that the default handler returns to
191
* it instead of the exception address, so it can re-register itself as
192
* the fixup handler.
193
*
194
* In case of a critical condition where the kernel cannot recover, we jump
195
* to unrecoverable_exception with the following entry conditions.
196
* All registers a0...a15 are unchanged from the last exception, except:
197
*
198
* a0: last address before we jumped to the unrecoverable_exception.
199
* excsave_1: a0
200
*
201
*
202
* See the handle_alloca_user and spill_registers routines for example clients.
203
*
204
* FIXME: Note: we currently don't allow signal handling coming from a double
205
* exception, so the item markt with (*) is not required.
206
*/
207
208
.section .DoubleExceptionVector.text, "ax"
209
210
ENTRY(_DoubleExceptionVector)
211
212
xsr a3, excsave1
213
s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
214
215
/* Check for kernel double exception (usually fatal). */
216
217
rsr a2, ps
218
_bbsi.l a2, PS_UM_BIT, 1f
219
j .Lksp
220
221
.align 4
222
.literal_position
223
1:
224
/* Check if we are currently handling a window exception. */
225
/* Note: We don't need to indicate that we enter a critical section. */
226
227
xsr a0, depc # get DEPC, save a0
228
229
#ifdef SUPPORT_WINDOWED
230
movi a2, WINDOW_VECTORS_VADDR
231
_bltu a0, a2, .Lfixup
232
addi a2, a2, WINDOW_VECTORS_SIZE
233
_bgeu a0, a2, .Lfixup
234
235
/* Window overflow/underflow exception. Get stack pointer. */
236
237
l32i a2, a3, EXC_TABLE_KSTK
238
239
/* Check for overflow/underflow exception, jump if overflow. */
240
241
bbci.l a0, 6, _DoubleExceptionVector_WindowOverflow
242
243
/*
244
* Restart window underflow exception.
245
* Currently:
246
* depc = orig a0,
247
* a0 = orig DEPC,
248
* a2 = new sp based on KSTK from exc_table
249
* a3 = excsave_1
250
* excsave_1 = orig a3
251
*
252
* We return to the instruction in user space that caused the window
253
* underflow exception. Therefore, we change window base to the value
254
* before we entered the window underflow exception and prepare the
255
* registers to return as if we were coming from a regular exception
256
* by changing depc (in a0).
257
* Note: We can trash the current window frame (a0...a3) and depc!
258
*/
259
_DoubleExceptionVector_WindowUnderflow:
260
xsr a3, excsave1
261
wsr a2, depc # save stack pointer temporarily
262
rsr a0, ps
263
extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
264
wsr a0, windowbase
265
rsync
266
267
/* We are now in the previous window frame. Save registers again. */
268
269
xsr a2, depc # save a2 and get stack pointer
270
s32i a0, a2, PT_AREG0
271
xsr a3, excsave1
272
rsr a0, exccause
273
s32i a0, a2, PT_DEPC # mark it as a regular exception
274
addx4 a0, a0, a3
275
xsr a3, excsave1
276
l32i a0, a0, EXC_TABLE_FAST_USER
277
jx a0
278
279
#else
280
j .Lfixup
281
#endif
282
283
/*
284
* We only allow the ITLB miss exception if we are in kernel space.
285
* All other exceptions are unexpected and thus unrecoverable!
286
*/
287
288
#ifdef CONFIG_MMU
289
.extern fast_second_level_miss_double_kernel
290
291
.Lksp: /* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
292
293
rsr a3, exccause
294
beqi a3, EXCCAUSE_ITLB_MISS, 1f
295
addi a3, a3, -EXCCAUSE_DTLB_MISS
296
bnez a3, .Lunrecoverable
297
1: movi a3, fast_second_level_miss_double_kernel
298
jx a3
299
#else
300
.equ .Lksp, .Lunrecoverable
301
#endif
302
303
/* Critical! We can't handle this situation. PANIC! */
304
305
.extern unrecoverable_exception
306
307
.Lunrecoverable_fixup:
308
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
309
xsr a0, depc
310
311
.Lunrecoverable:
312
rsr a3, excsave1
313
wsr a0, excsave1
314
call0 unrecoverable_exception
315
316
.Lfixup:/* Check for a fixup handler or if we were in a critical section. */
317
318
/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave1: a3 */
319
320
/* Enter critical section. */
321
322
l32i a2, a3, EXC_TABLE_FIXUP
323
s32i a3, a3, EXC_TABLE_FIXUP
324
beq a2, a3, .Lunrecoverable_fixup # critical section
325
beqz a2, .Ldflt # no handler was registered
326
327
/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
328
329
jx a2
330
331
.Ldflt: /* Get stack pointer. */
332
333
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
334
addi a2, a2, -PT_USER_SIZE
335
336
/* a0: depc, a1: a1, a2: kstk, a3: exctable, depc: a0, excsave: a3 */
337
338
s32i a0, a2, PT_DEPC
339
l32i a0, a3, EXC_TABLE_DOUBLE_SAVE
340
xsr a0, depc
341
s32i a0, a2, PT_AREG0
342
343
/* a0: avail, a1: a1, a2: kstk, a3: exctable, depc: a2, excsave: a3 */
344
345
rsr a0, exccause
346
addx4 a0, a0, a3
347
xsr a3, excsave1
348
l32i a0, a0, EXC_TABLE_FAST_USER
349
jx a0
350
351
#ifdef SUPPORT_WINDOWED
352
/*
353
* Restart window OVERFLOW exception.
354
* Currently:
355
* depc = orig a0,
356
* a0 = orig DEPC,
357
* a2 = new sp based on KSTK from exc_table
358
* a3 = EXCSAVE_1
359
* excsave_1 = orig a3
360
*
361
* We return to the instruction in user space that caused the window
362
* overflow exception. Therefore, we change window base to the value
363
* before we entered the window overflow exception and prepare the
364
* registers to return as if we were coming from a regular exception
365
* by changing DEPC (in a0).
366
*
367
* NOTE: We CANNOT trash the current window frame (a0...a3), but we
368
* can clobber depc.
369
*
370
* The tricky part here is that overflow8 and overflow12 handlers
371
* save a0, then clobber a0. To restart the handler, we have to restore
372
* a0 if the double exception was past the point where a0 was clobbered.
373
*
374
* To keep things simple, we take advantage of the fact all overflow
375
* handlers save a0 in their very first instruction. If DEPC was past
376
* that instruction, we can safely restore a0 from where it was saved
377
* on the stack.
378
*
379
* a0: depc, a1: a1, a2: kstk, a3: exc_table, depc: a0, excsave1: a3
380
*/
381
_DoubleExceptionVector_WindowOverflow:
382
extui a2, a0, 0, 6 # get offset into 64-byte vector handler
383
beqz a2, 1f # if at start of vector, don't restore
384
385
addi a0, a0, -128
386
bbsi.l a0, 8, 1f # don't restore except for overflow 8 and 12
387
388
/*
389
* This fixup handler is for the extremely unlikely case where the
390
* overflow handler's reference thru a0 gets a hardware TLB refill
391
* that bumps out the (distinct, aliasing) TLB entry that mapped its
392
* prior references thru a9/a13, and where our reference now thru
393
* a9/a13 gets a 2nd-level miss exception (not hardware TLB refill).
394
*/
395
movi a2, window_overflow_restore_a0_fixup
396
s32i a2, a3, EXC_TABLE_FIXUP
397
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
398
xsr a3, excsave1
399
400
bbsi.l a0, 7, 2f
401
402
/*
403
* Restore a0 as saved by _WindowOverflow8().
404
*/
405
406
l32e a0, a9, -16
407
wsr a0, depc # replace the saved a0
408
j 3f
409
410
2:
411
/*
412
* Restore a0 as saved by _WindowOverflow12().
413
*/
414
415
l32e a0, a13, -16
416
wsr a0, depc # replace the saved a0
417
3:
418
xsr a3, excsave1
419
movi a0, 0
420
s32i a0, a3, EXC_TABLE_FIXUP
421
s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
422
1:
423
/*
424
* Restore WindowBase while leaving all address registers restored.
425
* We have to use ROTW for this, because WSR.WINDOWBASE requires
426
* an address register (which would prevent restore).
427
*
428
* Window Base goes from 0 ... 7 (Module 8)
429
* Window Start is 8 bits; Ex: (0b1010 1010):0x55 from series of call4s
430
*/
431
432
rsr a0, ps
433
extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
434
rsr a2, windowbase
435
sub a0, a2, a0
436
extui a0, a0, 0, 3
437
438
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
439
xsr a3, excsave1
440
beqi a0, 1, .L1pane
441
beqi a0, 3, .L3pane
442
443
rsr a0, depc
444
rotw -2
445
446
/*
447
* We are now in the user code's original window frame.
448
* Process the exception as a user exception as if it was
449
* taken by the user code.
450
*
451
* This is similar to the user exception vector,
452
* except that PT_DEPC isn't set to EXCCAUSE.
453
*/
454
1:
455
xsr a3, excsave1
456
wsr a2, depc
457
l32i a2, a3, EXC_TABLE_KSTK
458
s32i a0, a2, PT_AREG0
459
rsr a0, exccause
460
461
s32i a0, a2, PT_DEPC
462
463
_DoubleExceptionVector_handle_exception:
464
addi a0, a0, -EXCCAUSE_UNALIGNED
465
beqz a0, 2f
466
addx4 a0, a0, a3
467
l32i a0, a0, EXC_TABLE_FAST_USER + 4 * EXCCAUSE_UNALIGNED
468
xsr a3, excsave1
469
jx a0
470
2:
471
movi a0, user_exception
472
xsr a3, excsave1
473
jx a0
474
475
.L1pane:
476
rsr a0, depc
477
rotw -1
478
j 1b
479
480
.L3pane:
481
rsr a0, depc
482
rotw -3
483
j 1b
484
#endif
485
486
ENDPROC(_DoubleExceptionVector)
487
488
#ifdef SUPPORT_WINDOWED
489
490
/*
491
* Fixup handler for TLB miss in double exception handler for window owerflow.
492
* We get here with windowbase set to the window that was being spilled and
493
* a0 trashed. a0 bit 7 determines if this is a call8 (bit clear) or call12
494
* (bit set) window.
495
*
496
* We do the following here:
497
* - go to the original window retaining a0 value;
498
* - set up exception stack to return back to appropriate a0 restore code
499
* (we'll need to rotate window back and there's no place to save this
500
* information, use different return address for that);
501
* - handle the exception;
502
* - go to the window that was being spilled;
503
* - set up window_overflow_restore_a0_fixup as a fixup routine;
504
* - reload a0;
505
* - restore the original window;
506
* - reset the default fixup routine;
507
* - return to user. By the time we get to this fixup handler all information
508
* about the conditions of the original double exception that happened in
509
* the window overflow handler is lost, so we just return to userspace to
510
* retry overflow from start.
511
*
512
* a0: value of depc, original value in depc
513
* a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE
514
* a3: exctable, original value in excsave1
515
*/
516
517
__XTENSA_HANDLER
518
.literal_position
519
520
ENTRY(window_overflow_restore_a0_fixup)
521
522
rsr a0, ps
523
extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
524
rsr a2, windowbase
525
sub a0, a2, a0
526
extui a0, a0, 0, 3
527
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
528
xsr a3, excsave1
529
530
_beqi a0, 1, .Lhandle_1
531
_beqi a0, 3, .Lhandle_3
532
533
.macro overflow_fixup_handle_exception_pane n
534
535
rsr a0, depc
536
rotw -\n
537
538
xsr a3, excsave1
539
wsr a2, depc
540
l32i a2, a3, EXC_TABLE_KSTK
541
s32i a0, a2, PT_AREG0
542
543
movi a0, .Lrestore_\n
544
s32i a0, a2, PT_DEPC
545
rsr a0, exccause
546
j _DoubleExceptionVector_handle_exception
547
548
.endm
549
550
overflow_fixup_handle_exception_pane 2
551
.Lhandle_1:
552
overflow_fixup_handle_exception_pane 1
553
.Lhandle_3:
554
overflow_fixup_handle_exception_pane 3
555
556
.macro overflow_fixup_restore_a0_pane n
557
558
rotw \n
559
/* Need to preserve a0 value here to be able to handle exception
560
* that may occur on a0 reload from stack. It may occur because
561
* TLB miss handler may not be atomic and pointer to page table
562
* may be lost before we get here. There are no free registers,
563
* so we need to use EXC_TABLE_DOUBLE_SAVE area.
564
*/
565
xsr a3, excsave1
566
s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
567
movi a2, window_overflow_restore_a0_fixup
568
s32i a2, a3, EXC_TABLE_FIXUP
569
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
570
xsr a3, excsave1
571
bbsi.l a0, 7, 1f
572
l32e a0, a9, -16
573
j 2f
574
1:
575
l32e a0, a13, -16
576
2:
577
rotw -\n
578
579
.endm
580
581
.Lrestore_2:
582
overflow_fixup_restore_a0_pane 2
583
584
.Lset_default_fixup:
585
xsr a3, excsave1
586
s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
587
movi a2, 0
588
s32i a2, a3, EXC_TABLE_FIXUP
589
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
590
xsr a3, excsave1
591
rfe
592
593
.Lrestore_1:
594
overflow_fixup_restore_a0_pane 1
595
j .Lset_default_fixup
596
.Lrestore_3:
597
overflow_fixup_restore_a0_pane 3
598
j .Lset_default_fixup
599
600
ENDPROC(window_overflow_restore_a0_fixup)
601
602
#endif
603
604
/*
605
* Debug interrupt vector
606
*
607
* There is not much space here, so simply jump to another handler.
608
* EXCSAVE[DEBUGLEVEL] has been set to that handler.
609
*/
610
611
.section .DebugInterruptVector.text, "ax"
612
613
ENTRY(_DebugInterruptVector)
614
615
xsr a3, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
616
s32i a0, a3, DT_DEBUG_SAVE
617
l32i a0, a3, DT_DEBUG_EXCEPTION
618
jx a0
619
620
ENDPROC(_DebugInterruptVector)
621
622
623
624
/*
625
* Medium priority level interrupt vectors
626
*
627
* Each takes less than 16 (0x10) bytes, no literals, by placing
628
* the extra 8 bytes that would otherwise be required in the window
629
* vectors area where there is space. With relocatable vectors,
630
* all vectors are within ~ 4 kB range of each other, so we can
631
* simply jump (J) to another vector without having to use JX.
632
*
633
* common_exception code gets current IRQ level in PS.INTLEVEL
634
* and preserves it for the IRQ handling time.
635
*/
636
637
.macro irq_entry_level level
638
639
.if XCHAL_EXCM_LEVEL >= \level
640
.section .Level\level\()InterruptVector.text, "ax"
641
ENTRY(_Level\level\()InterruptVector)
642
wsr a0, excsave2
643
rsr a0, epc\level
644
wsr a0, epc1
645
.if \level <= LOCKLEVEL
646
movi a0, EXCCAUSE_LEVEL1_INTERRUPT
647
.else
648
movi a0, EXCCAUSE_MAPPED_NMI
649
.endif
650
wsr a0, exccause
651
rsr a0, eps\level
652
# branch to user or kernel vector
653
j _SimulateUserKernelVectorException
654
.endif
655
656
.endm
657
658
irq_entry_level 2
659
irq_entry_level 3
660
irq_entry_level 4
661
irq_entry_level 5
662
irq_entry_level 6
663
664
#if XCHAL_EXCM_LEVEL >= 2
665
/*
666
* Continuation of medium priority interrupt dispatch code.
667
* On entry here, a0 contains PS, and EPC2 contains saved a0:
668
*/
669
__XTENSA_HANDLER
670
.align 4
671
_SimulateUserKernelVectorException:
672
addi a0, a0, (1 << PS_EXCM_BIT)
673
#if !XTENSA_FAKE_NMI
674
wsr a0, ps
675
#endif
676
bbsi.l a0, PS_UM_BIT, 1f # branch if user mode
677
xsr a0, excsave2 # restore a0
678
j _KernelExceptionVector # simulate kernel vector exception
679
1: xsr a0, excsave2 # restore a0
680
j _UserExceptionVector # simulate user vector exception
681
#endif
682
683
684
/* Window overflow and underflow handlers.
685
* The handlers must be 64 bytes apart, first starting with the underflow
686
* handlers underflow-4 to underflow-12, then the overflow handlers
687
* overflow-4 to overflow-12.
688
*
689
* Note: We rerun the underflow handlers if we hit an exception, so
690
* we try to access any page that would cause a page fault early.
691
*/
692
693
#define ENTRY_ALIGN64(name) \
694
.globl name; \
695
.align 64; \
696
name:
697
698
.section .WindowVectors.text, "ax"
699
700
701
#ifdef SUPPORT_WINDOWED
702
703
/* 4-Register Window Overflow Vector (Handler) */
704
705
ENTRY_ALIGN64(_WindowOverflow4)
706
707
s32e a0, a5, -16
708
s32e a1, a5, -12
709
s32e a2, a5, -8
710
s32e a3, a5, -4
711
rfwo
712
713
ENDPROC(_WindowOverflow4)
714
715
/* 4-Register Window Underflow Vector (Handler) */
716
717
ENTRY_ALIGN64(_WindowUnderflow4)
718
719
l32e a0, a5, -16
720
l32e a1, a5, -12
721
l32e a2, a5, -8
722
l32e a3, a5, -4
723
rfwu
724
725
ENDPROC(_WindowUnderflow4)
726
727
/* 8-Register Window Overflow Vector (Handler) */
728
729
ENTRY_ALIGN64(_WindowOverflow8)
730
731
s32e a0, a9, -16
732
l32e a0, a1, -12
733
s32e a2, a9, -8
734
s32e a1, a9, -12
735
s32e a3, a9, -4
736
s32e a4, a0, -32
737
s32e a5, a0, -28
738
s32e a6, a0, -24
739
s32e a7, a0, -20
740
rfwo
741
742
ENDPROC(_WindowOverflow8)
743
744
/* 8-Register Window Underflow Vector (Handler) */
745
746
ENTRY_ALIGN64(_WindowUnderflow8)
747
748
l32e a1, a9, -12
749
l32e a0, a9, -16
750
l32e a7, a1, -12
751
l32e a2, a9, -8
752
l32e a4, a7, -32
753
l32e a3, a9, -4
754
l32e a5, a7, -28
755
l32e a6, a7, -24
756
l32e a7, a7, -20
757
rfwu
758
759
ENDPROC(_WindowUnderflow8)
760
761
/* 12-Register Window Overflow Vector (Handler) */
762
763
ENTRY_ALIGN64(_WindowOverflow12)
764
765
s32e a0, a13, -16
766
l32e a0, a1, -12
767
s32e a1, a13, -12
768
s32e a2, a13, -8
769
s32e a3, a13, -4
770
s32e a4, a0, -48
771
s32e a5, a0, -44
772
s32e a6, a0, -40
773
s32e a7, a0, -36
774
s32e a8, a0, -32
775
s32e a9, a0, -28
776
s32e a10, a0, -24
777
s32e a11, a0, -20
778
rfwo
779
780
ENDPROC(_WindowOverflow12)
781
782
/* 12-Register Window Underflow Vector (Handler) */
783
784
ENTRY_ALIGN64(_WindowUnderflow12)
785
786
l32e a1, a13, -12
787
l32e a0, a13, -16
788
l32e a11, a1, -12
789
l32e a2, a13, -8
790
l32e a4, a11, -48
791
l32e a8, a11, -32
792
l32e a3, a13, -4
793
l32e a5, a11, -44
794
l32e a6, a11, -40
795
l32e a7, a11, -36
796
l32e a9, a11, -28
797
l32e a10, a11, -24
798
l32e a11, a11, -20
799
rfwu
800
801
ENDPROC(_WindowUnderflow12)
802
803
#endif
804
805
.text
806
807