Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/badblocks.c
26242 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Bad block management
4
*
5
* - Heavily based on MD badblocks code from Neil Brown
6
*
7
* Copyright (c) 2015, Intel Corporation.
8
*/
9
10
#include <linux/badblocks.h>
11
#include <linux/seqlock.h>
12
#include <linux/device.h>
13
#include <linux/kernel.h>
14
#include <linux/module.h>
15
#include <linux/stddef.h>
16
#include <linux/types.h>
17
#include <linux/slab.h>
18
19
/*
20
* The purpose of badblocks set/clear is to manage bad blocks ranges which are
21
* identified by LBA addresses.
22
*
23
* When the caller of badblocks_set() wants to set a range of bad blocks, the
24
* setting range can be acked or unacked. And the setting range may merge,
25
* overwrite, skip the overlapped already set range, depends on who they are
26
* overlapped or adjacent, and the acknowledgment type of the ranges. It can be
27
* more complicated when the setting range covers multiple already set bad block
28
* ranges, with restrictions of maximum length of each bad range and the bad
29
* table space limitation.
30
*
31
* It is difficult and unnecessary to take care of all the possible situations,
32
* for setting a large range of bad blocks, we can handle it by dividing the
33
* large range into smaller ones when encounter overlap, max range length or
34
* bad table full conditions. Every time only a smaller piece of the bad range
35
* is handled with a limited number of conditions how it is interacted with
36
* possible overlapped or adjacent already set bad block ranges. Then the hard
37
* complicated problem can be much simpler to handle in proper way.
38
*
39
* When setting a range of bad blocks to the bad table, the simplified situations
40
* to be considered are, (The already set bad blocks ranges are naming with
41
* prefix E, and the setting bad blocks range is naming with prefix S)
42
*
43
* 1) A setting range is not overlapped or adjacent to any other already set bad
44
* block range.
45
* +--------+
46
* | S |
47
* +--------+
48
* +-------------+ +-------------+
49
* | E1 | | E2 |
50
* +-------------+ +-------------+
51
* For this situation if the bad blocks table is not full, just allocate a
52
* free slot from the bad blocks table to mark the setting range S. The
53
* result is,
54
* +-------------+ +--------+ +-------------+
55
* | E1 | | S | | E2 |
56
* +-------------+ +--------+ +-------------+
57
* 2) A setting range starts exactly at a start LBA of an already set bad blocks
58
* range.
59
* 2.1) The setting range size < already set range size
60
* +--------+
61
* | S |
62
* +--------+
63
* +-------------+
64
* | E |
65
* +-------------+
66
* 2.1.1) If S and E are both acked or unacked range, the setting range S can
67
* be merged into existing bad range E. The result is,
68
* +-------------+
69
* | S |
70
* +-------------+
71
* 2.1.2) If S is unacked setting and E is acked, the setting will be denied, and
72
* the result is,
73
* +-------------+
74
* | E |
75
* +-------------+
76
* 2.1.3) If S is acked setting and E is unacked, range S can overwrite on E.
77
* An extra slot from the bad blocks table will be allocated for S, and head
78
* of E will move to end of the inserted range S. The result is,
79
* +--------+----+
80
* | S | E |
81
* +--------+----+
82
* 2.2) The setting range size == already set range size
83
* 2.2.1) If S and E are both acked or unacked range, the setting range S can
84
* be merged into existing bad range E. The result is,
85
* +-------------+
86
* | S |
87
* +-------------+
88
* 2.2.2) If S is unacked setting and E is acked, the setting will be denied, and
89
* the result is,
90
* +-------------+
91
* | E |
92
* +-------------+
93
* 2.2.3) If S is acked setting and E is unacked, range S can overwrite all of
94
bad blocks range E. The result is,
95
* +-------------+
96
* | S |
97
* +-------------+
98
* 2.3) The setting range size > already set range size
99
* +-------------------+
100
* | S |
101
* +-------------------+
102
* +-------------+
103
* | E |
104
* +-------------+
105
* For such situation, the setting range S can be treated as two parts, the
106
* first part (S1) is as same size as the already set range E, the second
107
* part (S2) is the rest of setting range.
108
* +-------------+-----+ +-------------+ +-----+
109
* | S1 | S2 | | S1 | | S2 |
110
* +-------------+-----+ ===> +-------------+ +-----+
111
* +-------------+ +-------------+
112
* | E | | E |
113
* +-------------+ +-------------+
114
* Now we only focus on how to handle the setting range S1 and already set
115
* range E, which are already explained in 2.2), for the rest S2 it will be
116
* handled later in next loop.
117
* 3) A setting range starts before the start LBA of an already set bad blocks
118
* range.
119
* +-------------+
120
* | S |
121
* +-------------+
122
* +-------------+
123
* | E |
124
* +-------------+
125
* For this situation, the setting range S can be divided into two parts, the
126
* first (S1) ends at the start LBA of already set range E, the second part
127
* (S2) starts exactly at a start LBA of the already set range E.
128
* +----+---------+ +----+ +---------+
129
* | S1 | S2 | | S1 | | S2 |
130
* +----+---------+ ===> +----+ +---------+
131
* +-------------+ +-------------+
132
* | E | | E |
133
* +-------------+ +-------------+
134
* Now only the first part S1 should be handled in this loop, which is in
135
* similar condition as 1). The rest part S2 has exact same start LBA address
136
* of the already set range E, they will be handled in next loop in one of
137
* situations in 2).
138
* 4) A setting range starts after the start LBA of an already set bad blocks
139
* range.
140
* 4.1) If the setting range S exactly matches the tail part of already set bad
141
* blocks range E, like the following chart shows,
142
* +---------+
143
* | S |
144
* +---------+
145
* +-------------+
146
* | E |
147
* +-------------+
148
* 4.1.1) If range S and E have same acknowledge value (both acked or unacked),
149
* they will be merged into one, the result is,
150
* +-------------+
151
* | S |
152
* +-------------+
153
* 4.1.2) If range E is acked and the setting range S is unacked, the setting
154
* request of S will be rejected, the result is,
155
* +-------------+
156
* | E |
157
* +-------------+
158
* 4.1.3) If range E is unacked, and the setting range S is acked, then S may
159
* overwrite the overlapped range of E, the result is,
160
* +---+---------+
161
* | E | S |
162
* +---+---------+
163
* 4.2) If the setting range S stays in middle of an already set range E, like
164
* the following chart shows,
165
* +----+
166
* | S |
167
* +----+
168
* +--------------+
169
* | E |
170
* +--------------+
171
* 4.2.1) If range S and E have same acknowledge value (both acked or unacked),
172
* they will be merged into one, the result is,
173
* +--------------+
174
* | S |
175
* +--------------+
176
* 4.2.2) If range E is acked and the setting range S is unacked, the setting
177
* request of S will be rejected, the result is also,
178
* +--------------+
179
* | E |
180
* +--------------+
181
* 4.2.3) If range E is unacked, and the setting range S is acked, then S will
182
* inserted into middle of E and split previous range E into two parts (E1
183
* and E2), the result is,
184
* +----+----+----+
185
* | E1 | S | E2 |
186
* +----+----+----+
187
* 4.3) If the setting bad blocks range S is overlapped with an already set bad
188
* blocks range E. The range S starts after the start LBA of range E, and
189
* ends after the end LBA of range E, as the following chart shows,
190
* +-------------------+
191
* | S |
192
* +-------------------+
193
* +-------------+
194
* | E |
195
* +-------------+
196
* For this situation the range S can be divided into two parts, the first
197
* part (S1) ends at end range E, and the second part (S2) has rest range of
198
* origin S.
199
* +---------+---------+ +---------+ +---------+
200
* | S1 | S2 | | S1 | | S2 |
201
* +---------+---------+ ===> +---------+ +---------+
202
* +-------------+ +-------------+
203
* | E | | E |
204
* +-------------+ +-------------+
205
* Now in this loop the setting range S1 and already set range E can be
206
* handled as the situations 4.1), the rest range S2 will be handled in next
207
* loop and ignored in this loop.
208
* 5) A setting bad blocks range S is adjacent to one or more already set bad
209
* blocks range(s), and they are all acked or unacked range.
210
* 5.1) Front merge: If the already set bad blocks range E is before setting
211
* range S and they are adjacent,
212
* +------+
213
* | S |
214
* +------+
215
* +-------+
216
* | E |
217
* +-------+
218
* 5.1.1) When total size of range S and E <= BB_MAX_LEN, and their acknowledge
219
* values are same, the setting range S can front merges into range E. The
220
* result is,
221
* +--------------+
222
* | S |
223
* +--------------+
224
* 5.1.2) Otherwise these two ranges cannot merge, just insert the setting
225
* range S right after already set range E into the bad blocks table. The
226
* result is,
227
* +--------+------+
228
* | E | S |
229
* +--------+------+
230
* 6) Special cases which above conditions cannot handle
231
* 6.1) Multiple already set ranges may merge into less ones in a full bad table
232
* +-------------------------------------------------------+
233
* | S |
234
* +-------------------------------------------------------+
235
* |<----- BB_MAX_LEN ----->|
236
* +-----+ +-----+ +-----+
237
* | E1 | | E2 | | E3 |
238
* +-----+ +-----+ +-----+
239
* In the above example, when the bad blocks table is full, inserting the
240
* first part of setting range S will fail because no more available slot
241
* can be allocated from bad blocks table. In this situation a proper
242
* setting method should be go though all the setting bad blocks range and
243
* look for chance to merge already set ranges into less ones. When there
244
* is available slot from bad blocks table, re-try again to handle more
245
* setting bad blocks ranges as many as possible.
246
* +------------------------+
247
* | S3 |
248
* +------------------------+
249
* |<----- BB_MAX_LEN ----->|
250
* +-----+-----+-----+---+-----+--+
251
* | S1 | S2 |
252
* +-----+-----+-----+---+-----+--+
253
* The above chart shows although the first part (S3) cannot be inserted due
254
* to no-space in bad blocks table, but the following E1, E2 and E3 ranges
255
* can be merged with rest part of S into less range S1 and S2. Now there is
256
* 1 free slot in bad blocks table.
257
* +------------------------+-----+-----+-----+---+-----+--+
258
* | S3 | S1 | S2 |
259
* +------------------------+-----+-----+-----+---+-----+--+
260
* Since the bad blocks table is not full anymore, re-try again for the
261
* origin setting range S. Now the setting range S3 can be inserted into the
262
* bad blocks table with previous freed slot from multiple ranges merge.
263
* 6.2) Front merge after overwrite
264
* In the following example, in bad blocks table, E1 is an acked bad blocks
265
* range and E2 is an unacked bad blocks range, therefore they are not able
266
* to merge into a larger range. The setting bad blocks range S is acked,
267
* therefore part of E2 can be overwritten by S.
268
* +--------+
269
* | S | acknowledged
270
* +--------+ S: 1
271
* +-------+-------------+ E1: 1
272
* | E1 | E2 | E2: 0
273
* +-------+-------------+
274
* With previous simplified routines, after overwriting part of E2 with S,
275
* the bad blocks table should be (E3 is remaining part of E2 which is not
276
* overwritten by S),
277
* acknowledged
278
* +-------+--------+----+ S: 1
279
* | E1 | S | E3 | E1: 1
280
* +-------+--------+----+ E3: 0
281
* The above result is correct but not perfect. Range E1 and S in the bad
282
* blocks table are all acked, merging them into a larger one range may
283
* occupy less bad blocks table space and make badblocks_check() faster.
284
* Therefore in such situation, after overwriting range S, the previous range
285
* E1 should be checked for possible front combination. Then the ideal
286
* result can be,
287
* +----------------+----+ acknowledged
288
* | E1 | E3 | E1: 1
289
* +----------------+----+ E3: 0
290
* 6.3) Behind merge: If the already set bad blocks range E is behind the setting
291
* range S and they are adjacent. Normally we don't need to care about this
292
* because front merge handles this while going though range S from head to
293
* tail, except for the tail part of range S. When the setting range S are
294
* fully handled, all the above simplified routine doesn't check whether the
295
* tail LBA of range S is adjacent to the next already set range and not
296
* merge them even it is possible.
297
* +------+
298
* | S |
299
* +------+
300
* +-------+
301
* | E |
302
* +-------+
303
* For the above special situation, when the setting range S are all handled
304
* and the loop ends, an extra check is necessary for whether next already
305
* set range E is right after S and mergeable.
306
* 6.3.1) When total size of range E and S <= BB_MAX_LEN, and their acknowledge
307
* values are same, the setting range S can behind merges into range E. The
308
* result is,
309
* +--------------+
310
* | S |
311
* +--------------+
312
* 6.3.2) Otherwise these two ranges cannot merge, just insert the setting range
313
* S in front of the already set range E in the bad blocks table. The result
314
* is,
315
* +------+-------+
316
* | S | E |
317
* +------+-------+
318
*
319
* All the above 5 simplified situations and 3 special cases may cover 99%+ of
320
* the bad block range setting conditions. Maybe there is some rare corner case
321
* is not considered and optimized, it won't hurt if badblocks_set() fails due
322
* to no space, or some ranges are not merged to save bad blocks table space.
323
*
324
* Inside badblocks_set() each loop starts by jumping to re_insert label, every
325
* time for the new loop prev_badblocks() is called to find an already set range
326
* which starts before or at current setting range. Since the setting bad blocks
327
* range is handled from head to tail, most of the cases it is unnecessary to do
328
* the binary search inside prev_badblocks(), it is possible to provide a hint
329
* to prev_badblocks() for a fast path, then the expensive binary search can be
330
* avoided. In my test with the hint to prev_badblocks(), except for the first
331
* loop, all rested calls to prev_badblocks() can go into the fast path and
332
* return correct bad blocks table index immediately.
333
*
334
*
335
* Clearing a bad blocks range from the bad block table has similar idea as
336
* setting does, but much more simpler. The only thing needs to be noticed is
337
* when the clearing range hits middle of a bad block range, the existing bad
338
* block range will split into two, and one more item should be added into the
339
* bad block table. The simplified situations to be considered are, (The already
340
* set bad blocks ranges in bad block table are naming with prefix E, and the
341
* clearing bad blocks range is naming with prefix C)
342
*
343
* 1) A clearing range is not overlapped to any already set ranges in bad block
344
* table.
345
* +-----+ | +-----+ | +-----+
346
* | C | | | C | | | C |
347
* +-----+ or +-----+ or +-----+
348
* +---+ | +----+ +----+ | +---+
349
* | E | | | E1 | | E2 | | | E |
350
* +---+ | +----+ +----+ | +---+
351
* For the above situations, no bad block to be cleared and no failure
352
* happens, simply returns 0.
353
* 2) The clearing range hits middle of an already setting bad blocks range in
354
* the bad block table.
355
* +---+
356
* | C |
357
* +---+
358
* +-----------------+
359
* | E |
360
* +-----------------+
361
* In this situation if the bad block table is not full, the range E will be
362
* split into two ranges E1 and E2. The result is,
363
* +------+ +------+
364
* | E1 | | E2 |
365
* +------+ +------+
366
* 3) The clearing range starts exactly at same LBA as an already set bad block range
367
* from the bad block table.
368
* 3.1) Partially covered at head part
369
* +------------+
370
* | C |
371
* +------------+
372
* +-----------------+
373
* | E |
374
* +-----------------+
375
* For this situation, the overlapped already set range will update the
376
* start LBA to end of C and shrink the range to BB_LEN(E) - BB_LEN(C). No
377
* item deleted from bad block table. The result is,
378
* +----+
379
* | E1 |
380
* +----+
381
* 3.2) Exact fully covered
382
* +-----------------+
383
* | C |
384
* +-----------------+
385
* +-----------------+
386
* | E |
387
* +-----------------+
388
* For this situation the whole bad blocks range E will be cleared and its
389
* corresponded item is deleted from the bad block table.
390
* 4) The clearing range exactly ends at same LBA as an already set bad block
391
* range.
392
* +-------+
393
* | C |
394
* +-------+
395
* +-----------------+
396
* | E |
397
* +-----------------+
398
* For the above situation, the already set range E is updated to shrink its
399
* end to the start of C, and reduce its length to BB_LEN(E) - BB_LEN(C).
400
* The result is,
401
* +---------+
402
* | E |
403
* +---------+
404
* 5) The clearing range is partially overlapped with an already set bad block
405
* range from the bad block table.
406
* 5.1) The already set bad block range is front overlapped with the clearing
407
* range.
408
* +----------+
409
* | C |
410
* +----------+
411
* +------------+
412
* | E |
413
* +------------+
414
* For such situation, the clearing range C can be treated as two parts. The
415
* first part ends at the start LBA of range E, and the second part starts at
416
* same LBA of range E.
417
* +----+-----+ +----+ +-----+
418
* | C1 | C2 | | C1 | | C2 |
419
* +----+-----+ ===> +----+ +-----+
420
* +------------+ +------------+
421
* | E | | E |
422
* +------------+ +------------+
423
* Now the first part C1 can be handled as condition 1), and the second part C2 can be
424
* handled as condition 3.1) in next loop.
425
* 5.2) The already set bad block range is behind overlaopped with the clearing
426
* range.
427
* +----------+
428
* | C |
429
* +----------+
430
* +------------+
431
* | E |
432
* +------------+
433
* For such situation, the clearing range C can be treated as two parts. The
434
* first part C1 ends at same end LBA of range E, and the second part starts
435
* at end LBA of range E.
436
* +----+-----+ +----+ +-----+
437
* | C1 | C2 | | C1 | | C2 |
438
* +----+-----+ ===> +----+ +-----+
439
* +------------+ +------------+
440
* | E | | E |
441
* +------------+ +------------+
442
* Now the first part clearing range C1 can be handled as condition 4), and
443
* the second part clearing range C2 can be handled as condition 1) in next
444
* loop.
445
*
446
* All bad blocks range clearing can be simplified into the above 5 situations
447
* by only handling the head part of the clearing range in each run of the
448
* while-loop. The idea is similar to bad blocks range setting but much
449
* simpler.
450
*/
451
452
/*
453
* Find the range starts at-or-before 's' from bad table. The search
454
* starts from index 'hint' and stops at index 'hint_end' from the bad
455
* table.
456
*/
457
static int prev_by_hint(struct badblocks *bb, sector_t s, int hint)
458
{
459
int hint_end = hint + 2;
460
u64 *p = bb->page;
461
int ret = -1;
462
463
while ((hint < hint_end) && ((hint + 1) <= bb->count) &&
464
(BB_OFFSET(p[hint]) <= s)) {
465
if ((hint + 1) == bb->count || BB_OFFSET(p[hint + 1]) > s) {
466
ret = hint;
467
break;
468
}
469
hint++;
470
}
471
472
return ret;
473
}
474
475
/*
476
* Find the range starts at-or-before bad->start. If 'hint' is provided
477
* (hint >= 0) then search in the bad table from hint firstly. It is
478
* very probably the wanted bad range can be found from the hint index,
479
* then the unnecessary while-loop iteration can be avoided.
480
*/
481
static int prev_badblocks(struct badblocks *bb, struct badblocks_context *bad,
482
int hint)
483
{
484
sector_t s = bad->start;
485
int ret = -1;
486
int lo, hi;
487
u64 *p;
488
489
if (!bb->count)
490
goto out;
491
492
if (hint >= 0) {
493
ret = prev_by_hint(bb, s, hint);
494
if (ret >= 0)
495
goto out;
496
}
497
498
lo = 0;
499
hi = bb->count;
500
p = bb->page;
501
502
/* The following bisect search might be unnecessary */
503
if (BB_OFFSET(p[lo]) > s)
504
return -1;
505
if (BB_OFFSET(p[hi - 1]) <= s)
506
return hi - 1;
507
508
/* Do bisect search in bad table */
509
while (hi - lo > 1) {
510
int mid = (lo + hi)/2;
511
sector_t a = BB_OFFSET(p[mid]);
512
513
if (a == s) {
514
ret = mid;
515
goto out;
516
}
517
518
if (a < s)
519
lo = mid;
520
else
521
hi = mid;
522
}
523
524
if (BB_OFFSET(p[lo]) <= s)
525
ret = lo;
526
out:
527
return ret;
528
}
529
530
/*
531
* Return 'true' if the range indicated by 'bad' can be forward
532
* merged with the bad range (from the bad table) indexed by 'prev'.
533
*/
534
static bool can_merge_front(struct badblocks *bb, int prev,
535
struct badblocks_context *bad)
536
{
537
sector_t s = bad->start;
538
u64 *p = bb->page;
539
540
if (BB_ACK(p[prev]) == bad->ack &&
541
(s < BB_END(p[prev]) ||
542
(s == BB_END(p[prev]) && (BB_LEN(p[prev]) < BB_MAX_LEN))))
543
return true;
544
return false;
545
}
546
547
/*
548
* Do forward merge for range indicated by 'bad' and the bad range
549
* (from bad table) indexed by 'prev'. The return value is sectors
550
* merged from bad->len.
551
*/
552
static int front_merge(struct badblocks *bb, int prev, struct badblocks_context *bad)
553
{
554
sector_t sectors = bad->len;
555
sector_t s = bad->start;
556
u64 *p = bb->page;
557
int merged = 0;
558
559
WARN_ON(s > BB_END(p[prev]));
560
561
if (s < BB_END(p[prev])) {
562
merged = min_t(sector_t, sectors, BB_END(p[prev]) - s);
563
} else {
564
merged = min_t(sector_t, sectors, BB_MAX_LEN - BB_LEN(p[prev]));
565
if ((prev + 1) < bb->count &&
566
merged > (BB_OFFSET(p[prev + 1]) - BB_END(p[prev]))) {
567
merged = BB_OFFSET(p[prev + 1]) - BB_END(p[prev]);
568
}
569
570
p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
571
BB_LEN(p[prev]) + merged, bad->ack);
572
}
573
574
return merged;
575
}
576
577
/*
578
* 'Combine' is a special case which can_merge_front() is not able to
579
* handle: If a bad range (indexed by 'prev' from bad table) exactly
580
* starts as bad->start, and the bad range ahead of 'prev' (indexed by
581
* 'prev - 1' from bad table) exactly ends at where 'prev' starts, and
582
* the sum of their lengths does not exceed BB_MAX_LEN limitation, then
583
* these two bad range (from bad table) can be combined.
584
*
585
* Return 'true' if bad ranges indexed by 'prev' and 'prev - 1' from bad
586
* table can be combined.
587
*/
588
static bool can_combine_front(struct badblocks *bb, int prev,
589
struct badblocks_context *bad)
590
{
591
u64 *p = bb->page;
592
593
if ((prev > 0) &&
594
(BB_OFFSET(p[prev]) == bad->start) &&
595
(BB_END(p[prev - 1]) == BB_OFFSET(p[prev])) &&
596
(BB_LEN(p[prev - 1]) + BB_LEN(p[prev]) <= BB_MAX_LEN) &&
597
(BB_ACK(p[prev - 1]) == BB_ACK(p[prev])))
598
return true;
599
return false;
600
}
601
602
/*
603
* Combine the bad ranges indexed by 'prev' and 'prev - 1' (from bad
604
* table) into one larger bad range, and the new range is indexed by
605
* 'prev - 1'.
606
* The caller of front_combine() will decrease bb->count, therefore
607
* it is unnecessary to clear p[perv] after front merge.
608
*/
609
static void front_combine(struct badblocks *bb, int prev)
610
{
611
u64 *p = bb->page;
612
613
p[prev - 1] = BB_MAKE(BB_OFFSET(p[prev - 1]),
614
BB_LEN(p[prev - 1]) + BB_LEN(p[prev]),
615
BB_ACK(p[prev]));
616
if ((prev + 1) < bb->count)
617
memmove(p + prev, p + prev + 1, (bb->count - prev - 1) * 8);
618
}
619
620
/*
621
* Return 'true' if the range indicated by 'bad' is exactly forward
622
* overlapped with the bad range (from bad table) indexed by 'front'.
623
* Exactly forward overlap means the bad range (from bad table) indexed
624
* by 'prev' does not cover the whole range indicated by 'bad'.
625
*/
626
static bool overlap_front(struct badblocks *bb, int front,
627
struct badblocks_context *bad)
628
{
629
u64 *p = bb->page;
630
631
if (bad->start >= BB_OFFSET(p[front]) &&
632
bad->start < BB_END(p[front]))
633
return true;
634
return false;
635
}
636
637
/*
638
* Return 'true' if the range indicated by 'bad' is exactly backward
639
* overlapped with the bad range (from bad table) indexed by 'behind'.
640
*/
641
static bool overlap_behind(struct badblocks *bb, struct badblocks_context *bad,
642
int behind)
643
{
644
u64 *p = bb->page;
645
646
if (bad->start < BB_OFFSET(p[behind]) &&
647
(bad->start + bad->len) > BB_OFFSET(p[behind]))
648
return true;
649
return false;
650
}
651
652
/*
653
* Return 'true' if the range indicated by 'bad' can overwrite the bad
654
* range (from bad table) indexed by 'prev'.
655
*
656
* The range indicated by 'bad' can overwrite the bad range indexed by
657
* 'prev' when,
658
* 1) The whole range indicated by 'bad' can cover partial or whole bad
659
* range (from bad table) indexed by 'prev'.
660
* 2) The ack value of 'bad' is larger or equal to the ack value of bad
661
* range 'prev'.
662
*
663
* If the overwriting doesn't cover the whole bad range (from bad table)
664
* indexed by 'prev', new range might be split from existing bad range,
665
* 1) The overwrite covers head or tail part of existing bad range, 1
666
* extra bad range will be split and added into the bad table.
667
* 2) The overwrite covers middle of existing bad range, 2 extra bad
668
* ranges will be split (ahead and after the overwritten range) and
669
* added into the bad table.
670
* The number of extra split ranges of the overwriting is stored in
671
* 'extra' and returned for the caller.
672
*/
673
static bool can_front_overwrite(struct badblocks *bb, int prev,
674
struct badblocks_context *bad, int *extra)
675
{
676
u64 *p = bb->page;
677
int len;
678
679
WARN_ON(!overlap_front(bb, prev, bad));
680
681
if (BB_ACK(p[prev]) >= bad->ack)
682
return false;
683
684
if (BB_END(p[prev]) <= (bad->start + bad->len)) {
685
len = BB_END(p[prev]) - bad->start;
686
if (BB_OFFSET(p[prev]) == bad->start)
687
*extra = 0;
688
else
689
*extra = 1;
690
691
bad->len = len;
692
} else {
693
if (BB_OFFSET(p[prev]) == bad->start)
694
*extra = 1;
695
else
696
/*
697
* prev range will be split into two, beside the overwritten
698
* one, an extra slot needed from bad table.
699
*/
700
*extra = 2;
701
}
702
703
if ((bb->count + (*extra)) > MAX_BADBLOCKS)
704
return false;
705
706
return true;
707
}
708
709
/*
710
* Do the overwrite from the range indicated by 'bad' to the bad range
711
* (from bad table) indexed by 'prev'.
712
* The previously called can_front_overwrite() will provide how many
713
* extra bad range(s) might be split and added into the bad table. All
714
* the splitting cases in the bad table will be handled here.
715
*/
716
static int front_overwrite(struct badblocks *bb, int prev,
717
struct badblocks_context *bad, int extra)
718
{
719
u64 *p = bb->page;
720
sector_t orig_end = BB_END(p[prev]);
721
int orig_ack = BB_ACK(p[prev]);
722
723
switch (extra) {
724
case 0:
725
p[prev] = BB_MAKE(BB_OFFSET(p[prev]), BB_LEN(p[prev]),
726
bad->ack);
727
break;
728
case 1:
729
if (BB_OFFSET(p[prev]) == bad->start) {
730
p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
731
bad->len, bad->ack);
732
memmove(p + prev + 2, p + prev + 1,
733
(bb->count - prev - 1) * 8);
734
p[prev + 1] = BB_MAKE(bad->start + bad->len,
735
orig_end - BB_END(p[prev]),
736
orig_ack);
737
} else {
738
p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
739
bad->start - BB_OFFSET(p[prev]),
740
orig_ack);
741
/*
742
* prev +2 -> prev + 1 + 1, which is for,
743
* 1) prev + 1: the slot index of the previous one
744
* 2) + 1: one more slot for extra being 1.
745
*/
746
memmove(p + prev + 2, p + prev + 1,
747
(bb->count - prev - 1) * 8);
748
p[prev + 1] = BB_MAKE(bad->start, bad->len, bad->ack);
749
}
750
break;
751
case 2:
752
p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
753
bad->start - BB_OFFSET(p[prev]),
754
orig_ack);
755
/*
756
* prev + 3 -> prev + 1 + 2, which is for,
757
* 1) prev + 1: the slot index of the previous one
758
* 2) + 2: two more slots for extra being 2.
759
*/
760
memmove(p + prev + 3, p + prev + 1,
761
(bb->count - prev - 1) * 8);
762
p[prev + 1] = BB_MAKE(bad->start, bad->len, bad->ack);
763
p[prev + 2] = BB_MAKE(BB_END(p[prev + 1]),
764
orig_end - BB_END(p[prev + 1]),
765
orig_ack);
766
break;
767
default:
768
break;
769
}
770
771
return bad->len;
772
}
773
774
/*
775
* Explicitly insert a range indicated by 'bad' to the bad table, where
776
* the location is indexed by 'at'.
777
*/
778
static int insert_at(struct badblocks *bb, int at, struct badblocks_context *bad)
779
{
780
u64 *p = bb->page;
781
int len;
782
783
WARN_ON(badblocks_full(bb));
784
785
len = min_t(sector_t, bad->len, BB_MAX_LEN);
786
if (at < bb->count)
787
memmove(p + at + 1, p + at, (bb->count - at) * 8);
788
p[at] = BB_MAKE(bad->start, len, bad->ack);
789
790
return len;
791
}
792
793
static void badblocks_update_acked(struct badblocks *bb)
794
{
795
bool unacked = false;
796
u64 *p = bb->page;
797
int i;
798
799
if (!bb->unacked_exist)
800
return;
801
802
for (i = 0; i < bb->count ; i++) {
803
if (!BB_ACK(p[i])) {
804
unacked = true;
805
break;
806
}
807
}
808
809
if (!unacked)
810
bb->unacked_exist = 0;
811
}
812
813
/*
814
* Return 'true' if the range indicated by 'bad' is exactly backward
815
* overlapped with the bad range (from bad table) indexed by 'behind'.
816
*/
817
static bool try_adjacent_combine(struct badblocks *bb, int prev)
818
{
819
u64 *p = bb->page;
820
821
if (prev >= 0 && (prev + 1) < bb->count &&
822
BB_END(p[prev]) == BB_OFFSET(p[prev + 1]) &&
823
(BB_LEN(p[prev]) + BB_LEN(p[prev + 1])) <= BB_MAX_LEN &&
824
BB_ACK(p[prev]) == BB_ACK(p[prev + 1])) {
825
p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
826
BB_LEN(p[prev]) + BB_LEN(p[prev + 1]),
827
BB_ACK(p[prev]));
828
829
if ((prev + 2) < bb->count)
830
memmove(p + prev + 1, p + prev + 2,
831
(bb->count - (prev + 2)) * 8);
832
bb->count--;
833
return true;
834
}
835
return false;
836
}
837
838
/* Do exact work to set bad block range into the bad block table */
839
static bool _badblocks_set(struct badblocks *bb, sector_t s, sector_t sectors,
840
int acknowledged)
841
{
842
int len = 0, added = 0;
843
struct badblocks_context bad;
844
int prev = -1, hint = -1;
845
unsigned long flags;
846
u64 *p;
847
848
if (bb->shift < 0)
849
/* badblocks are disabled */
850
return false;
851
852
if (sectors == 0)
853
/* Invalid sectors number */
854
return false;
855
856
if (bb->shift) {
857
/* round the start down, and the end up */
858
sector_t next = s + sectors;
859
860
rounddown(s, 1 << bb->shift);
861
roundup(next, 1 << bb->shift);
862
sectors = next - s;
863
}
864
865
write_seqlock_irqsave(&bb->lock, flags);
866
867
bad.ack = acknowledged;
868
p = bb->page;
869
870
re_insert:
871
bad.start = s;
872
bad.len = sectors;
873
len = 0;
874
875
if (badblocks_full(bb))
876
goto out;
877
878
if (badblocks_empty(bb)) {
879
len = insert_at(bb, 0, &bad);
880
bb->count++;
881
added++;
882
goto update_sectors;
883
}
884
885
prev = prev_badblocks(bb, &bad, hint);
886
887
/* start before all badblocks */
888
if (prev < 0) {
889
/* insert on the first */
890
if (bad.len > (BB_OFFSET(p[0]) - bad.start))
891
bad.len = BB_OFFSET(p[0]) - bad.start;
892
len = insert_at(bb, 0, &bad);
893
bb->count++;
894
added++;
895
hint = ++prev;
896
goto update_sectors;
897
}
898
899
/* in case p[prev-1] can be merged with p[prev] */
900
if (can_combine_front(bb, prev, &bad)) {
901
front_combine(bb, prev);
902
bb->count--;
903
added++;
904
hint = prev;
905
goto update_sectors;
906
}
907
908
if (can_merge_front(bb, prev, &bad)) {
909
len = front_merge(bb, prev, &bad);
910
added++;
911
hint = prev;
912
goto update_sectors;
913
}
914
915
if (overlap_front(bb, prev, &bad)) {
916
int extra = 0;
917
918
if (!can_front_overwrite(bb, prev, &bad, &extra)) {
919
if (extra > 0)
920
goto out;
921
922
len = min_t(sector_t,
923
BB_END(p[prev]) - s, sectors);
924
hint = prev;
925
goto update_sectors;
926
}
927
928
len = front_overwrite(bb, prev, &bad, extra);
929
added++;
930
bb->count += extra;
931
932
if (can_combine_front(bb, prev, &bad)) {
933
front_combine(bb, prev);
934
bb->count--;
935
}
936
937
hint = prev;
938
goto update_sectors;
939
}
940
941
/* cannot merge and there is space in bad table */
942
if ((prev + 1) < bb->count &&
943
overlap_behind(bb, &bad, prev + 1))
944
bad.len = min_t(sector_t,
945
bad.len, BB_OFFSET(p[prev + 1]) - bad.start);
946
947
len = insert_at(bb, prev + 1, &bad);
948
bb->count++;
949
added++;
950
hint = ++prev;
951
952
update_sectors:
953
s += len;
954
sectors -= len;
955
956
if (sectors > 0)
957
goto re_insert;
958
959
/*
960
* Check whether the following already set range can be
961
* merged. (prev < 0) condition is not handled here,
962
* because it's already complicated enough.
963
*/
964
try_adjacent_combine(bb, prev);
965
966
out:
967
if (added) {
968
set_changed(bb);
969
970
if (!acknowledged)
971
bb->unacked_exist = 1;
972
else
973
badblocks_update_acked(bb);
974
}
975
976
write_sequnlock_irqrestore(&bb->lock, flags);
977
978
return sectors == 0;
979
}
980
981
/*
982
* Clear the bad block range from bad block table which is front overlapped
983
* with the clearing range. The return value is how many sectors from an
984
* already set bad block range are cleared. If the whole bad block range is
985
* covered by the clearing range and fully cleared, 'delete' is set as 1 for
986
* the caller to reduce bb->count.
987
*/
988
static int front_clear(struct badblocks *bb, int prev,
989
struct badblocks_context *bad, int *deleted)
990
{
991
sector_t sectors = bad->len;
992
sector_t s = bad->start;
993
u64 *p = bb->page;
994
int cleared = 0;
995
996
*deleted = 0;
997
if (s == BB_OFFSET(p[prev])) {
998
if (BB_LEN(p[prev]) > sectors) {
999
p[prev] = BB_MAKE(BB_OFFSET(p[prev]) + sectors,
1000
BB_LEN(p[prev]) - sectors,
1001
BB_ACK(p[prev]));
1002
cleared = sectors;
1003
} else {
1004
/* BB_LEN(p[prev]) <= sectors */
1005
cleared = BB_LEN(p[prev]);
1006
if ((prev + 1) < bb->count)
1007
memmove(p + prev, p + prev + 1,
1008
(bb->count - prev - 1) * 8);
1009
*deleted = 1;
1010
}
1011
} else if (s > BB_OFFSET(p[prev])) {
1012
if (BB_END(p[prev]) <= (s + sectors)) {
1013
cleared = BB_END(p[prev]) - s;
1014
p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
1015
s - BB_OFFSET(p[prev]),
1016
BB_ACK(p[prev]));
1017
} else {
1018
/* Splitting is handled in front_splitting_clear() */
1019
BUG();
1020
}
1021
}
1022
1023
return cleared;
1024
}
1025
1026
/*
1027
* Handle the condition that the clearing range hits middle of an already set
1028
* bad block range from bad block table. In this condition the existing bad
1029
* block range is split into two after the middle part is cleared.
1030
*/
1031
static int front_splitting_clear(struct badblocks *bb, int prev,
1032
struct badblocks_context *bad)
1033
{
1034
u64 *p = bb->page;
1035
u64 end = BB_END(p[prev]);
1036
int ack = BB_ACK(p[prev]);
1037
sector_t sectors = bad->len;
1038
sector_t s = bad->start;
1039
1040
p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
1041
s - BB_OFFSET(p[prev]),
1042
ack);
1043
memmove(p + prev + 2, p + prev + 1, (bb->count - prev - 1) * 8);
1044
p[prev + 1] = BB_MAKE(s + sectors, end - s - sectors, ack);
1045
return sectors;
1046
}
1047
1048
/* Do the exact work to clear bad block range from the bad block table */
1049
static bool _badblocks_clear(struct badblocks *bb, sector_t s, sector_t sectors)
1050
{
1051
struct badblocks_context bad;
1052
int prev = -1, hint = -1;
1053
int len = 0, cleared = 0;
1054
u64 *p;
1055
1056
if (bb->shift < 0)
1057
/* badblocks are disabled */
1058
return false;
1059
1060
if (sectors == 0)
1061
/* Invalid sectors number */
1062
return false;
1063
1064
if (bb->shift) {
1065
sector_t target;
1066
1067
/* When clearing we round the start up and the end down.
1068
* This should not matter as the shift should align with
1069
* the block size and no rounding should ever be needed.
1070
* However it is better the think a block is bad when it
1071
* isn't than to think a block is not bad when it is.
1072
*/
1073
target = s + sectors;
1074
roundup(s, 1 << bb->shift);
1075
rounddown(target, 1 << bb->shift);
1076
sectors = target - s;
1077
}
1078
1079
write_seqlock_irq(&bb->lock);
1080
1081
bad.ack = true;
1082
p = bb->page;
1083
1084
re_clear:
1085
bad.start = s;
1086
bad.len = sectors;
1087
1088
if (badblocks_empty(bb)) {
1089
len = sectors;
1090
cleared++;
1091
goto update_sectors;
1092
}
1093
1094
1095
prev = prev_badblocks(bb, &bad, hint);
1096
1097
/* Start before all badblocks */
1098
if (prev < 0) {
1099
if (overlap_behind(bb, &bad, 0)) {
1100
len = BB_OFFSET(p[0]) - s;
1101
hint = 0;
1102
} else {
1103
len = sectors;
1104
}
1105
/*
1106
* Both situations are to clear non-bad range,
1107
* should be treated as successful
1108
*/
1109
cleared++;
1110
goto update_sectors;
1111
}
1112
1113
/* Start after all badblocks */
1114
if ((prev + 1) >= bb->count && !overlap_front(bb, prev, &bad)) {
1115
len = sectors;
1116
cleared++;
1117
goto update_sectors;
1118
}
1119
1120
/* Clear will split a bad record but the table is full */
1121
if (badblocks_full(bb) && (BB_OFFSET(p[prev]) < bad.start) &&
1122
(BB_END(p[prev]) > (bad.start + sectors))) {
1123
len = sectors;
1124
goto update_sectors;
1125
}
1126
1127
if (overlap_front(bb, prev, &bad)) {
1128
if ((BB_OFFSET(p[prev]) < bad.start) &&
1129
(BB_END(p[prev]) > (bad.start + bad.len))) {
1130
/* Splitting */
1131
if ((bb->count + 1) <= MAX_BADBLOCKS) {
1132
len = front_splitting_clear(bb, prev, &bad);
1133
bb->count += 1;
1134
cleared++;
1135
} else {
1136
/* No space to split, give up */
1137
len = sectors;
1138
}
1139
} else {
1140
int deleted = 0;
1141
1142
len = front_clear(bb, prev, &bad, &deleted);
1143
bb->count -= deleted;
1144
cleared++;
1145
hint = prev;
1146
}
1147
1148
goto update_sectors;
1149
}
1150
1151
/* Not front overlap, but behind overlap */
1152
if ((prev + 1) < bb->count && overlap_behind(bb, &bad, prev + 1)) {
1153
len = BB_OFFSET(p[prev + 1]) - bad.start;
1154
hint = prev + 1;
1155
/* Clear non-bad range should be treated as successful */
1156
cleared++;
1157
goto update_sectors;
1158
}
1159
1160
/* Not cover any badblocks range in the table */
1161
len = sectors;
1162
/* Clear non-bad range should be treated as successful */
1163
cleared++;
1164
1165
update_sectors:
1166
s += len;
1167
sectors -= len;
1168
1169
if (sectors > 0)
1170
goto re_clear;
1171
1172
if (cleared) {
1173
badblocks_update_acked(bb);
1174
set_changed(bb);
1175
}
1176
1177
write_sequnlock_irq(&bb->lock);
1178
1179
if (!cleared)
1180
return false;
1181
1182
return true;
1183
}
1184
1185
/* Do the exact work to check bad blocks range from the bad block table */
1186
static int _badblocks_check(struct badblocks *bb, sector_t s, sector_t sectors,
1187
sector_t *first_bad, sector_t *bad_sectors)
1188
{
1189
int prev = -1, hint = -1, set = 0;
1190
struct badblocks_context bad;
1191
int unacked_badblocks = 0;
1192
int acked_badblocks = 0;
1193
u64 *p = bb->page;
1194
int len, rv;
1195
1196
re_check:
1197
bad.start = s;
1198
bad.len = sectors;
1199
1200
if (badblocks_empty(bb)) {
1201
len = sectors;
1202
goto update_sectors;
1203
}
1204
1205
prev = prev_badblocks(bb, &bad, hint);
1206
1207
/* start after all badblocks */
1208
if ((prev >= 0) &&
1209
((prev + 1) >= bb->count) && !overlap_front(bb, prev, &bad)) {
1210
len = sectors;
1211
goto update_sectors;
1212
}
1213
1214
/* Overlapped with front badblocks record */
1215
if ((prev >= 0) && overlap_front(bb, prev, &bad)) {
1216
if (BB_ACK(p[prev]))
1217
acked_badblocks++;
1218
else
1219
unacked_badblocks++;
1220
1221
if (BB_END(p[prev]) >= (s + sectors))
1222
len = sectors;
1223
else
1224
len = BB_END(p[prev]) - s;
1225
1226
if (set == 0) {
1227
*first_bad = BB_OFFSET(p[prev]);
1228
*bad_sectors = BB_LEN(p[prev]);
1229
set = 1;
1230
}
1231
goto update_sectors;
1232
}
1233
1234
/* Not front overlap, but behind overlap */
1235
if ((prev + 1) < bb->count && overlap_behind(bb, &bad, prev + 1)) {
1236
len = BB_OFFSET(p[prev + 1]) - bad.start;
1237
hint = prev + 1;
1238
goto update_sectors;
1239
}
1240
1241
/* not cover any badblocks range in the table */
1242
len = sectors;
1243
1244
update_sectors:
1245
/* This situation should never happen */
1246
WARN_ON(sectors < len);
1247
1248
s += len;
1249
sectors -= len;
1250
1251
if (sectors > 0)
1252
goto re_check;
1253
1254
if (unacked_badblocks > 0)
1255
rv = -1;
1256
else if (acked_badblocks > 0)
1257
rv = 1;
1258
else
1259
rv = 0;
1260
1261
return rv;
1262
}
1263
1264
/**
1265
* badblocks_check() - check a given range for bad sectors
1266
* @bb: the badblocks structure that holds all badblock information
1267
* @s: sector (start) at which to check for badblocks
1268
* @sectors: number of sectors to check for badblocks
1269
* @first_bad: pointer to store location of the first badblock
1270
* @bad_sectors: pointer to store number of badblocks after @first_bad
1271
*
1272
* We can record which blocks on each device are 'bad' and so just
1273
* fail those blocks, or that stripe, rather than the whole device.
1274
* Entries in the bad-block table are 64bits wide. This comprises:
1275
* Length of bad-range, in sectors: 0-511 for lengths 1-512
1276
* Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
1277
* A 'shift' can be set so that larger blocks are tracked and
1278
* consequently larger devices can be covered.
1279
* 'Acknowledged' flag - 1 bit. - the most significant bit.
1280
*
1281
* Locking of the bad-block table uses a seqlock so badblocks_check
1282
* might need to retry if it is very unlucky.
1283
* We will sometimes want to check for bad blocks in a bi_end_io function,
1284
* so we use the write_seqlock_irq variant.
1285
*
1286
* When looking for a bad block we specify a range and want to
1287
* know if any block in the range is bad. So we binary-search
1288
* to the last range that starts at-or-before the given endpoint,
1289
* (or "before the sector after the target range")
1290
* then see if it ends after the given start.
1291
*
1292
* Return:
1293
* 0: there are no known bad blocks in the range
1294
* 1: there are known bad block which are all acknowledged
1295
* -1: there are bad blocks which have not yet been acknowledged in metadata.
1296
* plus the start/length of the first bad section we overlap.
1297
*/
1298
int badblocks_check(struct badblocks *bb, sector_t s, sector_t sectors,
1299
sector_t *first_bad, sector_t *bad_sectors)
1300
{
1301
unsigned int seq;
1302
int rv;
1303
1304
WARN_ON(bb->shift < 0 || sectors == 0);
1305
1306
if (bb->shift > 0) {
1307
/* round the start down, and the end up */
1308
sector_t target = s + sectors;
1309
1310
rounddown(s, 1 << bb->shift);
1311
roundup(target, 1 << bb->shift);
1312
sectors = target - s;
1313
}
1314
1315
retry:
1316
seq = read_seqbegin(&bb->lock);
1317
rv = _badblocks_check(bb, s, sectors, first_bad, bad_sectors);
1318
if (read_seqretry(&bb->lock, seq))
1319
goto retry;
1320
1321
return rv;
1322
}
1323
EXPORT_SYMBOL_GPL(badblocks_check);
1324
1325
/**
1326
* badblocks_set() - Add a range of bad blocks to the table.
1327
* @bb: the badblocks structure that holds all badblock information
1328
* @s: first sector to mark as bad
1329
* @sectors: number of sectors to mark as bad
1330
* @acknowledged: weather to mark the bad sectors as acknowledged
1331
*
1332
* This might extend the table, or might contract it if two adjacent ranges
1333
* can be merged. We binary-search to find the 'insertion' point, then
1334
* decide how best to handle it.
1335
*
1336
* Return:
1337
* true: success
1338
* false: failed to set badblocks (out of space). Parital setting will be
1339
* treated as failure.
1340
*/
1341
bool badblocks_set(struct badblocks *bb, sector_t s, sector_t sectors,
1342
int acknowledged)
1343
{
1344
return _badblocks_set(bb, s, sectors, acknowledged);
1345
}
1346
EXPORT_SYMBOL_GPL(badblocks_set);
1347
1348
/**
1349
* badblocks_clear() - Remove a range of bad blocks to the table.
1350
* @bb: the badblocks structure that holds all badblock information
1351
* @s: first sector to mark as bad
1352
* @sectors: number of sectors to mark as bad
1353
*
1354
* This may involve extending the table if we spilt a region,
1355
* but it must not fail. So if the table becomes full, we just
1356
* drop the remove request.
1357
*
1358
* Return:
1359
* true: success
1360
* false: failed to clear badblocks
1361
*/
1362
bool badblocks_clear(struct badblocks *bb, sector_t s, sector_t sectors)
1363
{
1364
return _badblocks_clear(bb, s, sectors);
1365
}
1366
EXPORT_SYMBOL_GPL(badblocks_clear);
1367
1368
/**
1369
* ack_all_badblocks() - Acknowledge all bad blocks in a list.
1370
* @bb: the badblocks structure that holds all badblock information
1371
*
1372
* This only succeeds if ->changed is clear. It is used by
1373
* in-kernel metadata updates
1374
*/
1375
void ack_all_badblocks(struct badblocks *bb)
1376
{
1377
if (bb->page == NULL || bb->changed)
1378
/* no point even trying */
1379
return;
1380
write_seqlock_irq(&bb->lock);
1381
1382
if (bb->changed == 0 && bb->unacked_exist) {
1383
u64 *p = bb->page;
1384
int i;
1385
1386
for (i = 0; i < bb->count ; i++) {
1387
if (!BB_ACK(p[i])) {
1388
sector_t start = BB_OFFSET(p[i]);
1389
int len = BB_LEN(p[i]);
1390
1391
p[i] = BB_MAKE(start, len, 1);
1392
}
1393
}
1394
1395
for (i = 0; i < bb->count ; i++)
1396
while (try_adjacent_combine(bb, i))
1397
;
1398
1399
bb->unacked_exist = 0;
1400
}
1401
write_sequnlock_irq(&bb->lock);
1402
}
1403
EXPORT_SYMBOL_GPL(ack_all_badblocks);
1404
1405
/**
1406
* badblocks_show() - sysfs access to bad-blocks list
1407
* @bb: the badblocks structure that holds all badblock information
1408
* @page: buffer received from sysfs
1409
* @unack: weather to show unacknowledged badblocks
1410
*
1411
* Return:
1412
* Length of returned data
1413
*/
1414
ssize_t badblocks_show(struct badblocks *bb, char *page, int unack)
1415
{
1416
size_t len;
1417
int i;
1418
u64 *p = bb->page;
1419
unsigned seq;
1420
1421
if (bb->shift < 0)
1422
return 0;
1423
1424
retry:
1425
seq = read_seqbegin(&bb->lock);
1426
1427
len = 0;
1428
i = 0;
1429
1430
while (len < PAGE_SIZE && i < bb->count) {
1431
sector_t s = BB_OFFSET(p[i]);
1432
unsigned int length = BB_LEN(p[i]);
1433
int ack = BB_ACK(p[i]);
1434
1435
i++;
1436
1437
if (unack && ack)
1438
continue;
1439
1440
len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
1441
(unsigned long long)s << bb->shift,
1442
length << bb->shift);
1443
}
1444
if (unack && len == 0)
1445
bb->unacked_exist = 0;
1446
1447
if (read_seqretry(&bb->lock, seq))
1448
goto retry;
1449
1450
return len;
1451
}
1452
EXPORT_SYMBOL_GPL(badblocks_show);
1453
1454
/**
1455
* badblocks_store() - sysfs access to bad-blocks list
1456
* @bb: the badblocks structure that holds all badblock information
1457
* @page: buffer received from sysfs
1458
* @len: length of data received from sysfs
1459
* @unack: weather to show unacknowledged badblocks
1460
*
1461
* Return:
1462
* Length of the buffer processed or -ve error.
1463
*/
1464
ssize_t badblocks_store(struct badblocks *bb, const char *page, size_t len,
1465
int unack)
1466
{
1467
unsigned long long sector;
1468
int length;
1469
char newline;
1470
1471
switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
1472
case 3:
1473
if (newline != '\n')
1474
return -EINVAL;
1475
fallthrough;
1476
case 2:
1477
if (length <= 0)
1478
return -EINVAL;
1479
break;
1480
default:
1481
return -EINVAL;
1482
}
1483
1484
if (!badblocks_set(bb, sector, length, !unack))
1485
return -ENOSPC;
1486
1487
return len;
1488
}
1489
EXPORT_SYMBOL_GPL(badblocks_store);
1490
1491
static int __badblocks_init(struct device *dev, struct badblocks *bb,
1492
int enable)
1493
{
1494
bb->dev = dev;
1495
bb->count = 0;
1496
if (enable)
1497
bb->shift = 0;
1498
else
1499
bb->shift = -1;
1500
if (dev)
1501
bb->page = devm_kzalloc(dev, PAGE_SIZE, GFP_KERNEL);
1502
else
1503
bb->page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1504
if (!bb->page) {
1505
bb->shift = -1;
1506
return -ENOMEM;
1507
}
1508
seqlock_init(&bb->lock);
1509
1510
return 0;
1511
}
1512
1513
/**
1514
* badblocks_init() - initialize the badblocks structure
1515
* @bb: the badblocks structure that holds all badblock information
1516
* @enable: weather to enable badblocks accounting
1517
*
1518
* Return:
1519
* 0: success
1520
* -ve errno: on error
1521
*/
1522
int badblocks_init(struct badblocks *bb, int enable)
1523
{
1524
return __badblocks_init(NULL, bb, enable);
1525
}
1526
EXPORT_SYMBOL_GPL(badblocks_init);
1527
1528
int devm_init_badblocks(struct device *dev, struct badblocks *bb)
1529
{
1530
if (!bb)
1531
return -EINVAL;
1532
return __badblocks_init(dev, bb, 1);
1533
}
1534
EXPORT_SYMBOL_GPL(devm_init_badblocks);
1535
1536
/**
1537
* badblocks_exit() - free the badblocks structure
1538
* @bb: the badblocks structure that holds all badblock information
1539
*/
1540
void badblocks_exit(struct badblocks *bb)
1541
{
1542
if (!bb)
1543
return;
1544
if (bb->dev)
1545
devm_kfree(bb->dev, bb->page);
1546
else
1547
kfree(bb->page);
1548
bb->page = NULL;
1549
}
1550
EXPORT_SYMBOL_GPL(badblocks_exit);
1551
1552