Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/bio.c
48999 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2001 Jens Axboe <[email protected]>
4
*/
5
#include <linux/mm.h>
6
#include <linux/swap.h>
7
#include <linux/bio-integrity.h>
8
#include <linux/blkdev.h>
9
#include <linux/uio.h>
10
#include <linux/iocontext.h>
11
#include <linux/slab.h>
12
#include <linux/init.h>
13
#include <linux/kernel.h>
14
#include <linux/export.h>
15
#include <linux/mempool.h>
16
#include <linux/workqueue.h>
17
#include <linux/cgroup.h>
18
#include <linux/highmem.h>
19
#include <linux/blk-crypto.h>
20
#include <linux/xarray.h>
21
22
#include <trace/events/block.h>
23
#include "blk.h"
24
#include "blk-rq-qos.h"
25
#include "blk-cgroup.h"
26
27
#define ALLOC_CACHE_THRESHOLD 16
28
#define ALLOC_CACHE_MAX 256
29
30
struct bio_alloc_cache {
31
struct bio *free_list;
32
struct bio *free_list_irq;
33
unsigned int nr;
34
unsigned int nr_irq;
35
};
36
37
static struct biovec_slab {
38
int nr_vecs;
39
char *name;
40
struct kmem_cache *slab;
41
} bvec_slabs[] __read_mostly = {
42
{ .nr_vecs = 16, .name = "biovec-16" },
43
{ .nr_vecs = 64, .name = "biovec-64" },
44
{ .nr_vecs = 128, .name = "biovec-128" },
45
{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46
};
47
48
static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49
{
50
switch (nr_vecs) {
51
/* smaller bios use inline vecs */
52
case 5 ... 16:
53
return &bvec_slabs[0];
54
case 17 ... 64:
55
return &bvec_slabs[1];
56
case 65 ... 128:
57
return &bvec_slabs[2];
58
case 129 ... BIO_MAX_VECS:
59
return &bvec_slabs[3];
60
default:
61
BUG();
62
return NULL;
63
}
64
}
65
66
/*
67
* fs_bio_set is the bio_set containing bio and iovec memory pools used by
68
* IO code that does not need private memory pools.
69
*/
70
struct bio_set fs_bio_set;
71
EXPORT_SYMBOL(fs_bio_set);
72
73
/*
74
* Our slab pool management
75
*/
76
struct bio_slab {
77
struct kmem_cache *slab;
78
unsigned int slab_ref;
79
unsigned int slab_size;
80
char name[12];
81
};
82
static DEFINE_MUTEX(bio_slab_lock);
83
static DEFINE_XARRAY(bio_slabs);
84
85
static struct bio_slab *create_bio_slab(unsigned int size)
86
{
87
struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88
89
if (!bslab)
90
return NULL;
91
92
snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93
bslab->slab = kmem_cache_create(bslab->name, size,
94
ARCH_KMALLOC_MINALIGN,
95
SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96
if (!bslab->slab)
97
goto fail_alloc_slab;
98
99
bslab->slab_ref = 1;
100
bslab->slab_size = size;
101
102
if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103
return bslab;
104
105
kmem_cache_destroy(bslab->slab);
106
107
fail_alloc_slab:
108
kfree(bslab);
109
return NULL;
110
}
111
112
static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113
{
114
return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115
}
116
117
static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118
{
119
unsigned int size = bs_bio_slab_size(bs);
120
struct bio_slab *bslab;
121
122
mutex_lock(&bio_slab_lock);
123
bslab = xa_load(&bio_slabs, size);
124
if (bslab)
125
bslab->slab_ref++;
126
else
127
bslab = create_bio_slab(size);
128
mutex_unlock(&bio_slab_lock);
129
130
if (bslab)
131
return bslab->slab;
132
return NULL;
133
}
134
135
static void bio_put_slab(struct bio_set *bs)
136
{
137
struct bio_slab *bslab = NULL;
138
unsigned int slab_size = bs_bio_slab_size(bs);
139
140
mutex_lock(&bio_slab_lock);
141
142
bslab = xa_load(&bio_slabs, slab_size);
143
if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144
goto out;
145
146
WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147
148
WARN_ON(!bslab->slab_ref);
149
150
if (--bslab->slab_ref)
151
goto out;
152
153
xa_erase(&bio_slabs, slab_size);
154
155
kmem_cache_destroy(bslab->slab);
156
kfree(bslab);
157
158
out:
159
mutex_unlock(&bio_slab_lock);
160
}
161
162
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163
{
164
BUG_ON(nr_vecs > BIO_MAX_VECS);
165
166
if (nr_vecs == BIO_MAX_VECS)
167
mempool_free(bv, pool);
168
else if (nr_vecs > BIO_INLINE_VECS)
169
kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170
}
171
172
/*
173
* Make the first allocation restricted and don't dump info on allocation
174
* failures, since we'll fall back to the mempool in case of failure.
175
*/
176
static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177
{
178
return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179
__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180
}
181
182
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183
gfp_t gfp_mask)
184
{
185
struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186
187
if (WARN_ON_ONCE(!bvs))
188
return NULL;
189
190
/*
191
* Upgrade the nr_vecs request to take full advantage of the allocation.
192
* We also rely on this in the bvec_free path.
193
*/
194
*nr_vecs = bvs->nr_vecs;
195
196
/*
197
* Try a slab allocation first for all smaller allocations. If that
198
* fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199
* The mempool is sized to handle up to BIO_MAX_VECS entries.
200
*/
201
if (*nr_vecs < BIO_MAX_VECS) {
202
struct bio_vec *bvl;
203
204
bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205
if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206
return bvl;
207
*nr_vecs = BIO_MAX_VECS;
208
}
209
210
return mempool_alloc(pool, gfp_mask);
211
}
212
213
void bio_uninit(struct bio *bio)
214
{
215
#ifdef CONFIG_BLK_CGROUP
216
if (bio->bi_blkg) {
217
blkg_put(bio->bi_blkg);
218
bio->bi_blkg = NULL;
219
}
220
#endif
221
if (bio_integrity(bio))
222
bio_integrity_free(bio);
223
224
bio_crypt_free_ctx(bio);
225
}
226
EXPORT_SYMBOL(bio_uninit);
227
228
static void bio_free(struct bio *bio)
229
{
230
struct bio_set *bs = bio->bi_pool;
231
void *p = bio;
232
233
WARN_ON_ONCE(!bs);
234
235
bio_uninit(bio);
236
bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237
mempool_free(p - bs->front_pad, &bs->bio_pool);
238
}
239
240
/*
241
* Users of this function have their own bio allocation. Subsequently,
242
* they must remember to pair any call to bio_init() with bio_uninit()
243
* when IO has completed, or when the bio is released.
244
*/
245
void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246
unsigned short max_vecs, blk_opf_t opf)
247
{
248
bio->bi_next = NULL;
249
bio->bi_bdev = bdev;
250
bio->bi_opf = opf;
251
bio->bi_flags = 0;
252
bio->bi_ioprio = 0;
253
bio->bi_write_hint = 0;
254
bio->bi_write_stream = 0;
255
bio->bi_status = 0;
256
bio->bi_bvec_gap_bit = 0;
257
bio->bi_iter.bi_sector = 0;
258
bio->bi_iter.bi_size = 0;
259
bio->bi_iter.bi_idx = 0;
260
bio->bi_iter.bi_bvec_done = 0;
261
bio->bi_end_io = NULL;
262
bio->bi_private = NULL;
263
#ifdef CONFIG_BLK_CGROUP
264
bio->bi_blkg = NULL;
265
bio->issue_time_ns = 0;
266
if (bdev)
267
bio_associate_blkg(bio);
268
#ifdef CONFIG_BLK_CGROUP_IOCOST
269
bio->bi_iocost_cost = 0;
270
#endif
271
#endif
272
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
273
bio->bi_crypt_context = NULL;
274
#endif
275
#ifdef CONFIG_BLK_DEV_INTEGRITY
276
bio->bi_integrity = NULL;
277
#endif
278
bio->bi_vcnt = 0;
279
280
atomic_set(&bio->__bi_remaining, 1);
281
atomic_set(&bio->__bi_cnt, 1);
282
bio->bi_cookie = BLK_QC_T_NONE;
283
284
bio->bi_max_vecs = max_vecs;
285
bio->bi_io_vec = table;
286
bio->bi_pool = NULL;
287
}
288
EXPORT_SYMBOL(bio_init);
289
290
/**
291
* bio_reset - reinitialize a bio
292
* @bio: bio to reset
293
* @bdev: block device to use the bio for
294
* @opf: operation and flags for bio
295
*
296
* Description:
297
* After calling bio_reset(), @bio will be in the same state as a freshly
298
* allocated bio returned bio bio_alloc_bioset() - the only fields that are
299
* preserved are the ones that are initialized by bio_alloc_bioset(). See
300
* comment in struct bio.
301
*/
302
void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
303
{
304
bio_uninit(bio);
305
memset(bio, 0, BIO_RESET_BYTES);
306
atomic_set(&bio->__bi_remaining, 1);
307
bio->bi_bdev = bdev;
308
if (bio->bi_bdev)
309
bio_associate_blkg(bio);
310
bio->bi_opf = opf;
311
}
312
EXPORT_SYMBOL(bio_reset);
313
314
static struct bio *__bio_chain_endio(struct bio *bio)
315
{
316
struct bio *parent = bio->bi_private;
317
318
if (bio->bi_status && !parent->bi_status)
319
parent->bi_status = bio->bi_status;
320
bio_put(bio);
321
return parent;
322
}
323
324
/*
325
* This function should only be used as a flag and must never be called.
326
* If execution reaches here, it indicates a serious programming error.
327
*/
328
static void bio_chain_endio(struct bio *bio)
329
{
330
BUG();
331
}
332
333
/**
334
* bio_chain - chain bio completions
335
* @bio: the target bio
336
* @parent: the parent bio of @bio
337
*
338
* The caller won't have a bi_end_io called when @bio completes - instead,
339
* @parent's bi_end_io won't be called until both @parent and @bio have
340
* completed; the chained bio will also be freed when it completes.
341
*
342
* The caller must not set bi_private or bi_end_io in @bio.
343
*/
344
void bio_chain(struct bio *bio, struct bio *parent)
345
{
346
BUG_ON(bio->bi_private || bio->bi_end_io);
347
348
bio->bi_private = parent;
349
bio->bi_end_io = bio_chain_endio;
350
bio_inc_remaining(parent);
351
}
352
EXPORT_SYMBOL(bio_chain);
353
354
/**
355
* bio_chain_and_submit - submit a bio after chaining it to another one
356
* @prev: bio to chain and submit
357
* @new: bio to chain to
358
*
359
* If @prev is non-NULL, chain it to @new and submit it.
360
*
361
* Return: @new.
362
*/
363
struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
364
{
365
if (prev) {
366
bio_chain(prev, new);
367
submit_bio(prev);
368
}
369
return new;
370
}
371
372
struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
373
unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
374
{
375
return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
376
}
377
EXPORT_SYMBOL_GPL(blk_next_bio);
378
379
static void bio_alloc_rescue(struct work_struct *work)
380
{
381
struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
382
struct bio *bio;
383
384
while (1) {
385
spin_lock(&bs->rescue_lock);
386
bio = bio_list_pop(&bs->rescue_list);
387
spin_unlock(&bs->rescue_lock);
388
389
if (!bio)
390
break;
391
392
submit_bio_noacct(bio);
393
}
394
}
395
396
static void punt_bios_to_rescuer(struct bio_set *bs)
397
{
398
struct bio_list punt, nopunt;
399
struct bio *bio;
400
401
if (WARN_ON_ONCE(!bs->rescue_workqueue))
402
return;
403
/*
404
* In order to guarantee forward progress we must punt only bios that
405
* were allocated from this bio_set; otherwise, if there was a bio on
406
* there for a stacking driver higher up in the stack, processing it
407
* could require allocating bios from this bio_set, and doing that from
408
* our own rescuer would be bad.
409
*
410
* Since bio lists are singly linked, pop them all instead of trying to
411
* remove from the middle of the list:
412
*/
413
414
bio_list_init(&punt);
415
bio_list_init(&nopunt);
416
417
while ((bio = bio_list_pop(&current->bio_list[0])))
418
bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
419
current->bio_list[0] = nopunt;
420
421
bio_list_init(&nopunt);
422
while ((bio = bio_list_pop(&current->bio_list[1])))
423
bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
424
current->bio_list[1] = nopunt;
425
426
spin_lock(&bs->rescue_lock);
427
bio_list_merge(&bs->rescue_list, &punt);
428
spin_unlock(&bs->rescue_lock);
429
430
queue_work(bs->rescue_workqueue, &bs->rescue_work);
431
}
432
433
static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
434
{
435
unsigned long flags;
436
437
/* cache->free_list must be empty */
438
if (WARN_ON_ONCE(cache->free_list))
439
return;
440
441
local_irq_save(flags);
442
cache->free_list = cache->free_list_irq;
443
cache->free_list_irq = NULL;
444
cache->nr += cache->nr_irq;
445
cache->nr_irq = 0;
446
local_irq_restore(flags);
447
}
448
449
static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
450
unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
451
struct bio_set *bs)
452
{
453
struct bio_alloc_cache *cache;
454
struct bio *bio;
455
456
cache = per_cpu_ptr(bs->cache, get_cpu());
457
if (!cache->free_list) {
458
if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
459
bio_alloc_irq_cache_splice(cache);
460
if (!cache->free_list) {
461
put_cpu();
462
return NULL;
463
}
464
}
465
bio = cache->free_list;
466
cache->free_list = bio->bi_next;
467
cache->nr--;
468
put_cpu();
469
470
if (nr_vecs)
471
bio_init_inline(bio, bdev, nr_vecs, opf);
472
else
473
bio_init(bio, bdev, NULL, nr_vecs, opf);
474
bio->bi_pool = bs;
475
return bio;
476
}
477
478
/**
479
* bio_alloc_bioset - allocate a bio for I/O
480
* @bdev: block device to allocate the bio for (can be %NULL)
481
* @nr_vecs: number of bvecs to pre-allocate
482
* @opf: operation and flags for bio
483
* @gfp_mask: the GFP_* mask given to the slab allocator
484
* @bs: the bio_set to allocate from.
485
*
486
* Allocate a bio from the mempools in @bs.
487
*
488
* If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
489
* allocate a bio. This is due to the mempool guarantees. To make this work,
490
* callers must never allocate more than 1 bio at a time from the general pool.
491
* Callers that need to allocate more than 1 bio must always submit the
492
* previously allocated bio for IO before attempting to allocate a new one.
493
* Failure to do so can cause deadlocks under memory pressure.
494
*
495
* Note that when running under submit_bio_noacct() (i.e. any block driver),
496
* bios are not submitted until after you return - see the code in
497
* submit_bio_noacct() that converts recursion into iteration, to prevent
498
* stack overflows.
499
*
500
* This would normally mean allocating multiple bios under submit_bio_noacct()
501
* would be susceptible to deadlocks, but we have
502
* deadlock avoidance code that resubmits any blocked bios from a rescuer
503
* thread.
504
*
505
* However, we do not guarantee forward progress for allocations from other
506
* mempools. Doing multiple allocations from the same mempool under
507
* submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
508
* for per bio allocations.
509
*
510
* Returns: Pointer to new bio on success, NULL on failure.
511
*/
512
struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
513
blk_opf_t opf, gfp_t gfp_mask,
514
struct bio_set *bs)
515
{
516
gfp_t saved_gfp = gfp_mask;
517
struct bio *bio;
518
void *p;
519
520
/* should not use nobvec bioset for nr_vecs > 0 */
521
if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
522
return NULL;
523
524
if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
525
opf |= REQ_ALLOC_CACHE;
526
bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
527
gfp_mask, bs);
528
if (bio)
529
return bio;
530
/*
531
* No cached bio available, bio returned below marked with
532
* REQ_ALLOC_CACHE to participate in per-cpu alloc cache.
533
*/
534
} else
535
opf &= ~REQ_ALLOC_CACHE;
536
537
/*
538
* submit_bio_noacct() converts recursion to iteration; this means if
539
* we're running beneath it, any bios we allocate and submit will not be
540
* submitted (and thus freed) until after we return.
541
*
542
* This exposes us to a potential deadlock if we allocate multiple bios
543
* from the same bio_set() while running underneath submit_bio_noacct().
544
* If we were to allocate multiple bios (say a stacking block driver
545
* that was splitting bios), we would deadlock if we exhausted the
546
* mempool's reserve.
547
*
548
* We solve this, and guarantee forward progress, with a rescuer
549
* workqueue per bio_set. If we go to allocate and there are bios on
550
* current->bio_list, we first try the allocation without
551
* __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
552
* blocking to the rescuer workqueue before we retry with the original
553
* gfp_flags.
554
*/
555
if (current->bio_list &&
556
(!bio_list_empty(&current->bio_list[0]) ||
557
!bio_list_empty(&current->bio_list[1])) &&
558
bs->rescue_workqueue)
559
gfp_mask &= ~__GFP_DIRECT_RECLAIM;
560
561
p = mempool_alloc(&bs->bio_pool, gfp_mask);
562
if (!p && gfp_mask != saved_gfp) {
563
punt_bios_to_rescuer(bs);
564
gfp_mask = saved_gfp;
565
p = mempool_alloc(&bs->bio_pool, gfp_mask);
566
}
567
if (unlikely(!p))
568
return NULL;
569
if (!mempool_is_saturated(&bs->bio_pool))
570
opf &= ~REQ_ALLOC_CACHE;
571
572
bio = p + bs->front_pad;
573
if (nr_vecs > BIO_INLINE_VECS) {
574
struct bio_vec *bvl = NULL;
575
576
bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
577
if (!bvl && gfp_mask != saved_gfp) {
578
punt_bios_to_rescuer(bs);
579
gfp_mask = saved_gfp;
580
bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
581
}
582
if (unlikely(!bvl))
583
goto err_free;
584
585
bio_init(bio, bdev, bvl, nr_vecs, opf);
586
} else if (nr_vecs) {
587
bio_init_inline(bio, bdev, BIO_INLINE_VECS, opf);
588
} else {
589
bio_init(bio, bdev, NULL, 0, opf);
590
}
591
592
bio->bi_pool = bs;
593
return bio;
594
595
err_free:
596
mempool_free(p, &bs->bio_pool);
597
return NULL;
598
}
599
EXPORT_SYMBOL(bio_alloc_bioset);
600
601
/**
602
* bio_kmalloc - kmalloc a bio
603
* @nr_vecs: number of bio_vecs to allocate
604
* @gfp_mask: the GFP_* mask given to the slab allocator
605
*
606
* Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
607
* using bio_init() before use. To free a bio returned from this function use
608
* kfree() after calling bio_uninit(). A bio returned from this function can
609
* be reused by calling bio_uninit() before calling bio_init() again.
610
*
611
* Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
612
* function are not backed by a mempool can fail. Do not use this function
613
* for allocations in the file system I/O path.
614
*
615
* Returns: Pointer to new bio on success, NULL on failure.
616
*/
617
struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
618
{
619
struct bio *bio;
620
621
if (nr_vecs > BIO_MAX_INLINE_VECS)
622
return NULL;
623
return kmalloc(sizeof(*bio) + nr_vecs * sizeof(struct bio_vec),
624
gfp_mask);
625
}
626
EXPORT_SYMBOL(bio_kmalloc);
627
628
void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
629
{
630
struct bio_vec bv;
631
struct bvec_iter iter;
632
633
__bio_for_each_segment(bv, bio, iter, start)
634
memzero_bvec(&bv);
635
}
636
EXPORT_SYMBOL(zero_fill_bio_iter);
637
638
/**
639
* bio_truncate - truncate the bio to small size of @new_size
640
* @bio: the bio to be truncated
641
* @new_size: new size for truncating the bio
642
*
643
* Description:
644
* Truncate the bio to new size of @new_size. If bio_op(bio) is
645
* REQ_OP_READ, zero the truncated part. This function should only
646
* be used for handling corner cases, such as bio eod.
647
*/
648
static void bio_truncate(struct bio *bio, unsigned new_size)
649
{
650
struct bio_vec bv;
651
struct bvec_iter iter;
652
unsigned int done = 0;
653
bool truncated = false;
654
655
if (new_size >= bio->bi_iter.bi_size)
656
return;
657
658
if (bio_op(bio) != REQ_OP_READ)
659
goto exit;
660
661
bio_for_each_segment(bv, bio, iter) {
662
if (done + bv.bv_len > new_size) {
663
size_t offset;
664
665
if (!truncated)
666
offset = new_size - done;
667
else
668
offset = 0;
669
memzero_page(bv.bv_page, bv.bv_offset + offset,
670
bv.bv_len - offset);
671
truncated = true;
672
}
673
done += bv.bv_len;
674
}
675
676
exit:
677
/*
678
* Don't touch bvec table here and make it really immutable, since
679
* fs bio user has to retrieve all pages via bio_for_each_segment_all
680
* in its .end_bio() callback.
681
*
682
* It is enough to truncate bio by updating .bi_size since we can make
683
* correct bvec with the updated .bi_size for drivers.
684
*/
685
bio->bi_iter.bi_size = new_size;
686
}
687
688
/**
689
* guard_bio_eod - truncate a BIO to fit the block device
690
* @bio: bio to truncate
691
*
692
* This allows us to do IO even on the odd last sectors of a device, even if the
693
* block size is some multiple of the physical sector size.
694
*
695
* We'll just truncate the bio to the size of the device, and clear the end of
696
* the buffer head manually. Truly out-of-range accesses will turn into actual
697
* I/O errors, this only handles the "we need to be able to do I/O at the final
698
* sector" case.
699
*/
700
void guard_bio_eod(struct bio *bio)
701
{
702
sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
703
704
if (!maxsector)
705
return;
706
707
/*
708
* If the *whole* IO is past the end of the device,
709
* let it through, and the IO layer will turn it into
710
* an EIO.
711
*/
712
if (unlikely(bio->bi_iter.bi_sector >= maxsector))
713
return;
714
715
maxsector -= bio->bi_iter.bi_sector;
716
if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
717
return;
718
719
bio_truncate(bio, maxsector << 9);
720
}
721
722
static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
723
unsigned int nr)
724
{
725
unsigned int i = 0;
726
struct bio *bio;
727
728
while ((bio = cache->free_list) != NULL) {
729
cache->free_list = bio->bi_next;
730
cache->nr--;
731
bio_free(bio);
732
if (++i == nr)
733
break;
734
}
735
return i;
736
}
737
738
static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
739
unsigned int nr)
740
{
741
nr -= __bio_alloc_cache_prune(cache, nr);
742
if (!READ_ONCE(cache->free_list)) {
743
bio_alloc_irq_cache_splice(cache);
744
__bio_alloc_cache_prune(cache, nr);
745
}
746
}
747
748
static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
749
{
750
struct bio_set *bs;
751
752
bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
753
if (bs->cache) {
754
struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
755
756
bio_alloc_cache_prune(cache, -1U);
757
}
758
return 0;
759
}
760
761
static void bio_alloc_cache_destroy(struct bio_set *bs)
762
{
763
int cpu;
764
765
if (!bs->cache)
766
return;
767
768
cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
769
for_each_possible_cpu(cpu) {
770
struct bio_alloc_cache *cache;
771
772
cache = per_cpu_ptr(bs->cache, cpu);
773
bio_alloc_cache_prune(cache, -1U);
774
}
775
free_percpu(bs->cache);
776
bs->cache = NULL;
777
}
778
779
static inline void bio_put_percpu_cache(struct bio *bio)
780
{
781
struct bio_alloc_cache *cache;
782
783
cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
784
if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
785
goto out_free;
786
787
if (in_task()) {
788
bio_uninit(bio);
789
bio->bi_next = cache->free_list;
790
/* Not necessary but helps not to iopoll already freed bios */
791
bio->bi_bdev = NULL;
792
cache->free_list = bio;
793
cache->nr++;
794
} else if (in_hardirq()) {
795
lockdep_assert_irqs_disabled();
796
797
bio_uninit(bio);
798
bio->bi_next = cache->free_list_irq;
799
cache->free_list_irq = bio;
800
cache->nr_irq++;
801
} else {
802
goto out_free;
803
}
804
put_cpu();
805
return;
806
out_free:
807
put_cpu();
808
bio_free(bio);
809
}
810
811
/**
812
* bio_put - release a reference to a bio
813
* @bio: bio to release reference to
814
*
815
* Description:
816
* Put a reference to a &struct bio, either one you have gotten with
817
* bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
818
**/
819
void bio_put(struct bio *bio)
820
{
821
if (unlikely(bio_flagged(bio, BIO_REFFED))) {
822
BUG_ON(!atomic_read(&bio->__bi_cnt));
823
if (!atomic_dec_and_test(&bio->__bi_cnt))
824
return;
825
}
826
if (bio->bi_opf & REQ_ALLOC_CACHE)
827
bio_put_percpu_cache(bio);
828
else
829
bio_free(bio);
830
}
831
EXPORT_SYMBOL(bio_put);
832
833
static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
834
{
835
bio_set_flag(bio, BIO_CLONED);
836
bio->bi_ioprio = bio_src->bi_ioprio;
837
bio->bi_write_hint = bio_src->bi_write_hint;
838
bio->bi_write_stream = bio_src->bi_write_stream;
839
bio->bi_iter = bio_src->bi_iter;
840
841
if (bio->bi_bdev) {
842
if (bio->bi_bdev == bio_src->bi_bdev &&
843
bio_flagged(bio_src, BIO_REMAPPED))
844
bio_set_flag(bio, BIO_REMAPPED);
845
bio_clone_blkg_association(bio, bio_src);
846
}
847
848
if (bio_crypt_clone(bio, bio_src, gfp) < 0)
849
return -ENOMEM;
850
if (bio_integrity(bio_src) &&
851
bio_integrity_clone(bio, bio_src, gfp) < 0)
852
return -ENOMEM;
853
return 0;
854
}
855
856
/**
857
* bio_alloc_clone - clone a bio that shares the original bio's biovec
858
* @bdev: block_device to clone onto
859
* @bio_src: bio to clone from
860
* @gfp: allocation priority
861
* @bs: bio_set to allocate from
862
*
863
* Allocate a new bio that is a clone of @bio_src. The caller owns the returned
864
* bio, but not the actual data it points to.
865
*
866
* The caller must ensure that the return bio is not freed before @bio_src.
867
*/
868
struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
869
gfp_t gfp, struct bio_set *bs)
870
{
871
struct bio *bio;
872
873
bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
874
if (!bio)
875
return NULL;
876
877
if (__bio_clone(bio, bio_src, gfp) < 0) {
878
bio_put(bio);
879
return NULL;
880
}
881
bio->bi_io_vec = bio_src->bi_io_vec;
882
883
return bio;
884
}
885
EXPORT_SYMBOL(bio_alloc_clone);
886
887
/**
888
* bio_init_clone - clone a bio that shares the original bio's biovec
889
* @bdev: block_device to clone onto
890
* @bio: bio to clone into
891
* @bio_src: bio to clone from
892
* @gfp: allocation priority
893
*
894
* Initialize a new bio in caller provided memory that is a clone of @bio_src.
895
* The caller owns the returned bio, but not the actual data it points to.
896
*
897
* The caller must ensure that @bio_src is not freed before @bio.
898
*/
899
int bio_init_clone(struct block_device *bdev, struct bio *bio,
900
struct bio *bio_src, gfp_t gfp)
901
{
902
int ret;
903
904
bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
905
ret = __bio_clone(bio, bio_src, gfp);
906
if (ret)
907
bio_uninit(bio);
908
return ret;
909
}
910
EXPORT_SYMBOL(bio_init_clone);
911
912
/**
913
* bio_full - check if the bio is full
914
* @bio: bio to check
915
* @len: length of one segment to be added
916
*
917
* Return true if @bio is full and one segment with @len bytes can't be
918
* added to the bio, otherwise return false
919
*/
920
static inline bool bio_full(struct bio *bio, unsigned len)
921
{
922
if (bio->bi_vcnt >= bio->bi_max_vecs)
923
return true;
924
if (bio->bi_iter.bi_size > UINT_MAX - len)
925
return true;
926
return false;
927
}
928
929
static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
930
unsigned int len, unsigned int off)
931
{
932
size_t bv_end = bv->bv_offset + bv->bv_len;
933
phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
934
phys_addr_t page_addr = page_to_phys(page);
935
936
if (vec_end_addr + 1 != page_addr + off)
937
return false;
938
if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
939
return false;
940
941
if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
942
if (IS_ENABLED(CONFIG_KMSAN))
943
return false;
944
if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
945
return false;
946
}
947
948
bv->bv_len += len;
949
return true;
950
}
951
952
/*
953
* Try to merge a page into a segment, while obeying the hardware segment
954
* size limit.
955
*
956
* This is kept around for the integrity metadata, which is still tries
957
* to build the initial bio to the hardware limit and doesn't have proper
958
* helpers to split. Hopefully this will go away soon.
959
*/
960
bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
961
struct page *page, unsigned len, unsigned offset)
962
{
963
unsigned long mask = queue_segment_boundary(q);
964
phys_addr_t addr1 = bvec_phys(bv);
965
phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
966
967
if ((addr1 | mask) != (addr2 | mask))
968
return false;
969
if (len > queue_max_segment_size(q) - bv->bv_len)
970
return false;
971
return bvec_try_merge_page(bv, page, len, offset);
972
}
973
974
/**
975
* __bio_add_page - add page(s) to a bio in a new segment
976
* @bio: destination bio
977
* @page: start page to add
978
* @len: length of the data to add, may cross pages
979
* @off: offset of the data relative to @page, may cross pages
980
*
981
* Add the data at @page + @off to @bio as a new bvec. The caller must ensure
982
* that @bio has space for another bvec.
983
*/
984
void __bio_add_page(struct bio *bio, struct page *page,
985
unsigned int len, unsigned int off)
986
{
987
WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
988
WARN_ON_ONCE(bio_full(bio, len));
989
990
if (is_pci_p2pdma_page(page))
991
bio->bi_opf |= REQ_NOMERGE;
992
993
bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
994
bio->bi_iter.bi_size += len;
995
bio->bi_vcnt++;
996
}
997
EXPORT_SYMBOL_GPL(__bio_add_page);
998
999
/**
1000
* bio_add_virt_nofail - add data in the direct kernel mapping to a bio
1001
* @bio: destination bio
1002
* @vaddr: data to add
1003
* @len: length of the data to add, may cross pages
1004
*
1005
* Add the data at @vaddr to @bio. The caller must have ensure a segment
1006
* is available for the added data. No merging into an existing segment
1007
* will be performed.
1008
*/
1009
void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1010
{
1011
__bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1012
}
1013
EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1014
1015
/**
1016
* bio_add_page - attempt to add page(s) to bio
1017
* @bio: destination bio
1018
* @page: start page to add
1019
* @len: vec entry length, may cross pages
1020
* @offset: vec entry offset relative to @page, may cross pages
1021
*
1022
* Attempt to add page(s) to the bio_vec maplist. This will only fail
1023
* if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1024
*/
1025
int bio_add_page(struct bio *bio, struct page *page,
1026
unsigned int len, unsigned int offset)
1027
{
1028
if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1029
return 0;
1030
if (bio->bi_iter.bi_size > UINT_MAX - len)
1031
return 0;
1032
1033
if (bio->bi_vcnt > 0) {
1034
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1035
1036
if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
1037
return 0;
1038
1039
if (bvec_try_merge_page(bv, page, len, offset)) {
1040
bio->bi_iter.bi_size += len;
1041
return len;
1042
}
1043
}
1044
1045
if (bio->bi_vcnt >= bio->bi_max_vecs)
1046
return 0;
1047
__bio_add_page(bio, page, len, offset);
1048
return len;
1049
}
1050
EXPORT_SYMBOL(bio_add_page);
1051
1052
void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1053
size_t off)
1054
{
1055
unsigned long nr = off / PAGE_SIZE;
1056
1057
WARN_ON_ONCE(len > UINT_MAX);
1058
__bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1059
}
1060
EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1061
1062
/**
1063
* bio_add_folio - Attempt to add part of a folio to a bio.
1064
* @bio: BIO to add to.
1065
* @folio: Folio to add.
1066
* @len: How many bytes from the folio to add.
1067
* @off: First byte in this folio to add.
1068
*
1069
* Filesystems that use folios can call this function instead of calling
1070
* bio_add_page() for each page in the folio. If @off is bigger than
1071
* PAGE_SIZE, this function can create a bio_vec that starts in a page
1072
* after the bv_page. BIOs do not support folios that are 4GiB or larger.
1073
*
1074
* Return: Whether the addition was successful.
1075
*/
1076
bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1077
size_t off)
1078
{
1079
unsigned long nr = off / PAGE_SIZE;
1080
1081
if (len > UINT_MAX)
1082
return false;
1083
return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1084
}
1085
EXPORT_SYMBOL(bio_add_folio);
1086
1087
/**
1088
* bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1089
* @bio: destination bio
1090
* @vaddr: vmalloc address to add
1091
* @len: total length in bytes of the data to add
1092
*
1093
* Add data starting at @vaddr to @bio and return how many bytes were added.
1094
* This may be less than the amount originally asked. Returns 0 if no data
1095
* could be added to @bio.
1096
*
1097
* This helper calls flush_kernel_vmap_range() for the range added. For reads
1098
* the caller still needs to manually call invalidate_kernel_vmap_range() in
1099
* the completion handler.
1100
*/
1101
unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1102
{
1103
unsigned int offset = offset_in_page(vaddr);
1104
1105
len = min(len, PAGE_SIZE - offset);
1106
if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1107
return 0;
1108
if (op_is_write(bio_op(bio)))
1109
flush_kernel_vmap_range(vaddr, len);
1110
return len;
1111
}
1112
EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1113
1114
/**
1115
* bio_add_vmalloc - add a vmalloc region to a bio
1116
* @bio: destination bio
1117
* @vaddr: vmalloc address to add
1118
* @len: total length in bytes of the data to add
1119
*
1120
* Add data starting at @vaddr to @bio. Return %true on success or %false if
1121
* @bio does not have enough space for the payload.
1122
*
1123
* This helper calls flush_kernel_vmap_range() for the range added. For reads
1124
* the caller still needs to manually call invalidate_kernel_vmap_range() in
1125
* the completion handler.
1126
*/
1127
bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1128
{
1129
do {
1130
unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1131
1132
if (!added)
1133
return false;
1134
vaddr += added;
1135
len -= added;
1136
} while (len);
1137
1138
return true;
1139
}
1140
EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1141
1142
void __bio_release_pages(struct bio *bio, bool mark_dirty)
1143
{
1144
struct folio_iter fi;
1145
1146
bio_for_each_folio_all(fi, bio) {
1147
size_t nr_pages;
1148
1149
if (mark_dirty) {
1150
folio_lock(fi.folio);
1151
folio_mark_dirty(fi.folio);
1152
folio_unlock(fi.folio);
1153
}
1154
nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1155
fi.offset / PAGE_SIZE + 1;
1156
unpin_user_folio(fi.folio, nr_pages);
1157
}
1158
}
1159
EXPORT_SYMBOL_GPL(__bio_release_pages);
1160
1161
void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
1162
{
1163
WARN_ON_ONCE(bio->bi_max_vecs);
1164
1165
bio->bi_vcnt = iter->nr_segs;
1166
bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1167
bio->bi_iter.bi_bvec_done = iter->iov_offset;
1168
bio->bi_iter.bi_size = iov_iter_count(iter);
1169
bio_set_flag(bio, BIO_CLONED);
1170
}
1171
1172
static unsigned int get_contig_folio_len(unsigned int *num_pages,
1173
struct page **pages, unsigned int i,
1174
struct folio *folio, size_t left,
1175
size_t offset)
1176
{
1177
size_t bytes = left;
1178
size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1179
unsigned int j;
1180
1181
/*
1182
* We might COW a single page in the middle of
1183
* a large folio, so we have to check that all
1184
* pages belong to the same folio.
1185
*/
1186
bytes -= contig_sz;
1187
for (j = i + 1; j < i + *num_pages; j++) {
1188
size_t next = min_t(size_t, PAGE_SIZE, bytes);
1189
1190
if (page_folio(pages[j]) != folio ||
1191
pages[j] != pages[j - 1] + 1) {
1192
break;
1193
}
1194
contig_sz += next;
1195
bytes -= next;
1196
}
1197
*num_pages = j - i;
1198
1199
return contig_sz;
1200
}
1201
1202
#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1203
1204
/**
1205
* __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1206
* @bio: bio to add pages to
1207
* @iter: iov iterator describing the region to be mapped
1208
*
1209
* Extracts pages from *iter and appends them to @bio's bvec array. The pages
1210
* will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1211
* For a multi-segment *iter, this function only adds pages from the next
1212
* non-empty segment of the iov iterator.
1213
*/
1214
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1215
{
1216
iov_iter_extraction_t extraction_flags = 0;
1217
unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1218
unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1219
struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1220
struct page **pages = (struct page **)bv;
1221
ssize_t size;
1222
unsigned int num_pages, i = 0;
1223
size_t offset, folio_offset, left, len;
1224
int ret = 0;
1225
1226
/*
1227
* Move page array up in the allocated memory for the bio vecs as far as
1228
* possible so that we can start filling biovecs from the beginning
1229
* without overwriting the temporary page array.
1230
*/
1231
BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1232
pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1233
1234
if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1235
extraction_flags |= ITER_ALLOW_P2PDMA;
1236
1237
size = iov_iter_extract_pages(iter, &pages,
1238
UINT_MAX - bio->bi_iter.bi_size,
1239
nr_pages, extraction_flags, &offset);
1240
if (unlikely(size <= 0))
1241
return size ? size : -EFAULT;
1242
1243
nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1244
for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1245
struct page *page = pages[i];
1246
struct folio *folio = page_folio(page);
1247
unsigned int old_vcnt = bio->bi_vcnt;
1248
1249
folio_offset = ((size_t)folio_page_idx(folio, page) <<
1250
PAGE_SHIFT) + offset;
1251
1252
len = min(folio_size(folio) - folio_offset, left);
1253
1254
num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1255
1256
if (num_pages > 1)
1257
len = get_contig_folio_len(&num_pages, pages, i,
1258
folio, left, offset);
1259
1260
if (!bio_add_folio(bio, folio, len, folio_offset)) {
1261
WARN_ON_ONCE(1);
1262
ret = -EINVAL;
1263
goto out;
1264
}
1265
1266
if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1267
/*
1268
* We're adding another fragment of a page that already
1269
* was part of the last segment. Undo our pin as the
1270
* page was pinned when an earlier fragment of it was
1271
* added to the bio and __bio_release_pages expects a
1272
* single pin per page.
1273
*/
1274
if (offset && bio->bi_vcnt == old_vcnt)
1275
unpin_user_folio(folio, 1);
1276
}
1277
offset = 0;
1278
}
1279
1280
iov_iter_revert(iter, left);
1281
out:
1282
while (i < nr_pages)
1283
bio_release_page(bio, pages[i++]);
1284
1285
return ret;
1286
}
1287
1288
/*
1289
* Aligns the bio size to the len_align_mask, releasing excessive bio vecs that
1290
* __bio_iov_iter_get_pages may have inserted, and reverts the trimmed length
1291
* for the next iteration.
1292
*/
1293
static int bio_iov_iter_align_down(struct bio *bio, struct iov_iter *iter,
1294
unsigned len_align_mask)
1295
{
1296
size_t nbytes = bio->bi_iter.bi_size & len_align_mask;
1297
1298
if (!nbytes)
1299
return 0;
1300
1301
iov_iter_revert(iter, nbytes);
1302
bio->bi_iter.bi_size -= nbytes;
1303
do {
1304
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1305
1306
if (nbytes < bv->bv_len) {
1307
bv->bv_len -= nbytes;
1308
break;
1309
}
1310
1311
bio_release_page(bio, bv->bv_page);
1312
bio->bi_vcnt--;
1313
nbytes -= bv->bv_len;
1314
} while (nbytes);
1315
1316
if (!bio->bi_vcnt)
1317
return -EFAULT;
1318
return 0;
1319
}
1320
1321
/**
1322
* bio_iov_iter_get_pages - add user or kernel pages to a bio
1323
* @bio: bio to add pages to
1324
* @iter: iov iterator describing the region to be added
1325
* @len_align_mask: the mask to align the total size to, 0 for any length
1326
*
1327
* This takes either an iterator pointing to user memory, or one pointing to
1328
* kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1329
* map them into the kernel. On IO completion, the caller should put those
1330
* pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1331
* bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1332
* to ensure the bvecs and pages stay referenced until the submitted I/O is
1333
* completed by a call to ->ki_complete() or returns with an error other than
1334
* -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1335
* on IO completion. If it isn't, then pages should be released.
1336
*
1337
* The function tries, but does not guarantee, to pin as many pages as
1338
* fit into the bio, or are requested in @iter, whatever is smaller. If
1339
* MM encounters an error pinning the requested pages, it stops. Error
1340
* is returned only if 0 pages could be pinned.
1341
*/
1342
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter,
1343
unsigned len_align_mask)
1344
{
1345
int ret = 0;
1346
1347
if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1348
return -EIO;
1349
1350
if (iov_iter_is_bvec(iter)) {
1351
bio_iov_bvec_set(bio, iter);
1352
iov_iter_advance(iter, bio->bi_iter.bi_size);
1353
return 0;
1354
}
1355
1356
if (iov_iter_extract_will_pin(iter))
1357
bio_set_flag(bio, BIO_PAGE_PINNED);
1358
do {
1359
ret = __bio_iov_iter_get_pages(bio, iter);
1360
} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1361
1362
if (bio->bi_vcnt)
1363
return bio_iov_iter_align_down(bio, iter, len_align_mask);
1364
return ret;
1365
}
1366
1367
static void submit_bio_wait_endio(struct bio *bio)
1368
{
1369
complete(bio->bi_private);
1370
}
1371
1372
/**
1373
* submit_bio_wait - submit a bio, and wait until it completes
1374
* @bio: The &struct bio which describes the I/O
1375
*
1376
* Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1377
* bio_endio() on failure.
1378
*
1379
* WARNING: Unlike to how submit_bio() is usually used, this function does not
1380
* result in bio reference to be consumed. The caller must drop the reference
1381
* on his own.
1382
*/
1383
int submit_bio_wait(struct bio *bio)
1384
{
1385
DECLARE_COMPLETION_ONSTACK_MAP(done,
1386
bio->bi_bdev->bd_disk->lockdep_map);
1387
1388
bio->bi_private = &done;
1389
bio->bi_end_io = submit_bio_wait_endio;
1390
bio->bi_opf |= REQ_SYNC;
1391
submit_bio(bio);
1392
blk_wait_io(&done);
1393
1394
return blk_status_to_errno(bio->bi_status);
1395
}
1396
EXPORT_SYMBOL(submit_bio_wait);
1397
1398
/**
1399
* bdev_rw_virt - synchronously read into / write from kernel mapping
1400
* @bdev: block device to access
1401
* @sector: sector to access
1402
* @data: data to read/write
1403
* @len: length in byte to read/write
1404
* @op: operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1405
*
1406
* Performs synchronous I/O to @bdev for @data/@len. @data must be in
1407
* the kernel direct mapping and not a vmalloc address.
1408
*/
1409
int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1410
size_t len, enum req_op op)
1411
{
1412
struct bio_vec bv;
1413
struct bio bio;
1414
int error;
1415
1416
if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1417
return -EIO;
1418
1419
bio_init(&bio, bdev, &bv, 1, op);
1420
bio.bi_iter.bi_sector = sector;
1421
bio_add_virt_nofail(&bio, data, len);
1422
error = submit_bio_wait(&bio);
1423
bio_uninit(&bio);
1424
return error;
1425
}
1426
EXPORT_SYMBOL_GPL(bdev_rw_virt);
1427
1428
static void bio_wait_end_io(struct bio *bio)
1429
{
1430
complete(bio->bi_private);
1431
bio_put(bio);
1432
}
1433
1434
/*
1435
* bio_await_chain - ends @bio and waits for every chained bio to complete
1436
*/
1437
void bio_await_chain(struct bio *bio)
1438
{
1439
DECLARE_COMPLETION_ONSTACK_MAP(done,
1440
bio->bi_bdev->bd_disk->lockdep_map);
1441
1442
bio->bi_private = &done;
1443
bio->bi_end_io = bio_wait_end_io;
1444
bio_endio(bio);
1445
blk_wait_io(&done);
1446
}
1447
1448
void __bio_advance(struct bio *bio, unsigned bytes)
1449
{
1450
if (bio_integrity(bio))
1451
bio_integrity_advance(bio, bytes);
1452
1453
bio_crypt_advance(bio, bytes);
1454
bio_advance_iter(bio, &bio->bi_iter, bytes);
1455
}
1456
EXPORT_SYMBOL(__bio_advance);
1457
1458
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1459
struct bio *src, struct bvec_iter *src_iter)
1460
{
1461
while (src_iter->bi_size && dst_iter->bi_size) {
1462
struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1463
struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1464
unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1465
void *src_buf = bvec_kmap_local(&src_bv);
1466
void *dst_buf = bvec_kmap_local(&dst_bv);
1467
1468
memcpy(dst_buf, src_buf, bytes);
1469
1470
kunmap_local(dst_buf);
1471
kunmap_local(src_buf);
1472
1473
bio_advance_iter_single(src, src_iter, bytes);
1474
bio_advance_iter_single(dst, dst_iter, bytes);
1475
}
1476
}
1477
EXPORT_SYMBOL(bio_copy_data_iter);
1478
1479
/**
1480
* bio_copy_data - copy contents of data buffers from one bio to another
1481
* @src: source bio
1482
* @dst: destination bio
1483
*
1484
* Stops when it reaches the end of either @src or @dst - that is, copies
1485
* min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1486
*/
1487
void bio_copy_data(struct bio *dst, struct bio *src)
1488
{
1489
struct bvec_iter src_iter = src->bi_iter;
1490
struct bvec_iter dst_iter = dst->bi_iter;
1491
1492
bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1493
}
1494
EXPORT_SYMBOL(bio_copy_data);
1495
1496
void bio_free_pages(struct bio *bio)
1497
{
1498
struct bio_vec *bvec;
1499
struct bvec_iter_all iter_all;
1500
1501
bio_for_each_segment_all(bvec, bio, iter_all)
1502
__free_page(bvec->bv_page);
1503
}
1504
EXPORT_SYMBOL(bio_free_pages);
1505
1506
/*
1507
* bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1508
* for performing direct-IO in BIOs.
1509
*
1510
* The problem is that we cannot run folio_mark_dirty() from interrupt context
1511
* because the required locks are not interrupt-safe. So what we can do is to
1512
* mark the pages dirty _before_ performing IO. And in interrupt context,
1513
* check that the pages are still dirty. If so, fine. If not, redirty them
1514
* in process context.
1515
*
1516
* Note that this code is very hard to test under normal circumstances because
1517
* direct-io pins the pages with get_user_pages(). This makes
1518
* is_page_cache_freeable return false, and the VM will not clean the pages.
1519
* But other code (eg, flusher threads) could clean the pages if they are mapped
1520
* pagecache.
1521
*
1522
* Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1523
* deferred bio dirtying paths.
1524
*/
1525
1526
/*
1527
* bio_set_pages_dirty() will mark all the bio's pages as dirty.
1528
*/
1529
void bio_set_pages_dirty(struct bio *bio)
1530
{
1531
struct folio_iter fi;
1532
1533
bio_for_each_folio_all(fi, bio) {
1534
folio_lock(fi.folio);
1535
folio_mark_dirty(fi.folio);
1536
folio_unlock(fi.folio);
1537
}
1538
}
1539
EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1540
1541
/*
1542
* bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1543
* If they are, then fine. If, however, some pages are clean then they must
1544
* have been written out during the direct-IO read. So we take another ref on
1545
* the BIO and re-dirty the pages in process context.
1546
*
1547
* It is expected that bio_check_pages_dirty() will wholly own the BIO from
1548
* here on. It will unpin each page and will run one bio_put() against the
1549
* BIO.
1550
*/
1551
1552
static void bio_dirty_fn(struct work_struct *work);
1553
1554
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1555
static DEFINE_SPINLOCK(bio_dirty_lock);
1556
static struct bio *bio_dirty_list;
1557
1558
/*
1559
* This runs in process context
1560
*/
1561
static void bio_dirty_fn(struct work_struct *work)
1562
{
1563
struct bio *bio, *next;
1564
1565
spin_lock_irq(&bio_dirty_lock);
1566
next = bio_dirty_list;
1567
bio_dirty_list = NULL;
1568
spin_unlock_irq(&bio_dirty_lock);
1569
1570
while ((bio = next) != NULL) {
1571
next = bio->bi_private;
1572
1573
bio_release_pages(bio, true);
1574
bio_put(bio);
1575
}
1576
}
1577
1578
void bio_check_pages_dirty(struct bio *bio)
1579
{
1580
struct folio_iter fi;
1581
unsigned long flags;
1582
1583
bio_for_each_folio_all(fi, bio) {
1584
if (!folio_test_dirty(fi.folio))
1585
goto defer;
1586
}
1587
1588
bio_release_pages(bio, false);
1589
bio_put(bio);
1590
return;
1591
defer:
1592
spin_lock_irqsave(&bio_dirty_lock, flags);
1593
bio->bi_private = bio_dirty_list;
1594
bio_dirty_list = bio;
1595
spin_unlock_irqrestore(&bio_dirty_lock, flags);
1596
schedule_work(&bio_dirty_work);
1597
}
1598
EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1599
1600
static inline bool bio_remaining_done(struct bio *bio)
1601
{
1602
/*
1603
* If we're not chaining, then ->__bi_remaining is always 1 and
1604
* we always end io on the first invocation.
1605
*/
1606
if (!bio_flagged(bio, BIO_CHAIN))
1607
return true;
1608
1609
BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1610
1611
if (atomic_dec_and_test(&bio->__bi_remaining)) {
1612
bio_clear_flag(bio, BIO_CHAIN);
1613
return true;
1614
}
1615
1616
return false;
1617
}
1618
1619
/**
1620
* bio_endio - end I/O on a bio
1621
* @bio: bio
1622
*
1623
* Description:
1624
* bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1625
* way to end I/O on a bio. No one should call bi_end_io() directly on a
1626
* bio unless they own it and thus know that it has an end_io function.
1627
*
1628
* bio_endio() can be called several times on a bio that has been chained
1629
* using bio_chain(). The ->bi_end_io() function will only be called the
1630
* last time.
1631
**/
1632
void bio_endio(struct bio *bio)
1633
{
1634
again:
1635
if (!bio_remaining_done(bio))
1636
return;
1637
if (!bio_integrity_endio(bio))
1638
return;
1639
1640
blk_zone_bio_endio(bio);
1641
1642
rq_qos_done_bio(bio);
1643
1644
if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1645
trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1646
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1647
}
1648
1649
/*
1650
* Need to have a real endio function for chained bios, otherwise
1651
* various corner cases will break (like stacking block devices that
1652
* save/restore bi_end_io) - however, we want to avoid unbounded
1653
* recursion and blowing the stack. Tail call optimization would
1654
* handle this, but compiling with frame pointers also disables
1655
* gcc's sibling call optimization.
1656
*/
1657
if (bio->bi_end_io == bio_chain_endio) {
1658
bio = __bio_chain_endio(bio);
1659
goto again;
1660
}
1661
1662
#ifdef CONFIG_BLK_CGROUP
1663
/*
1664
* Release cgroup info. We shouldn't have to do this here, but quite
1665
* a few callers of bio_init fail to call bio_uninit, so we cover up
1666
* for that here at least for now.
1667
*/
1668
if (bio->bi_blkg) {
1669
blkg_put(bio->bi_blkg);
1670
bio->bi_blkg = NULL;
1671
}
1672
#endif
1673
1674
if (bio->bi_end_io)
1675
bio->bi_end_io(bio);
1676
}
1677
EXPORT_SYMBOL(bio_endio);
1678
1679
/**
1680
* bio_split - split a bio
1681
* @bio: bio to split
1682
* @sectors: number of sectors to split from the front of @bio
1683
* @gfp: gfp mask
1684
* @bs: bio set to allocate from
1685
*
1686
* Allocates and returns a new bio which represents @sectors from the start of
1687
* @bio, and updates @bio to represent the remaining sectors.
1688
*
1689
* Unless this is a discard request the newly allocated bio will point
1690
* to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1691
* neither @bio nor @bs are freed before the split bio.
1692
*/
1693
struct bio *bio_split(struct bio *bio, int sectors,
1694
gfp_t gfp, struct bio_set *bs)
1695
{
1696
struct bio *split;
1697
1698
if (WARN_ON_ONCE(sectors <= 0))
1699
return ERR_PTR(-EINVAL);
1700
if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1701
return ERR_PTR(-EINVAL);
1702
1703
/* Zone append commands cannot be split */
1704
if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1705
return ERR_PTR(-EINVAL);
1706
1707
/* atomic writes cannot be split */
1708
if (bio->bi_opf & REQ_ATOMIC)
1709
return ERR_PTR(-EINVAL);
1710
1711
split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1712
if (!split)
1713
return ERR_PTR(-ENOMEM);
1714
1715
split->bi_iter.bi_size = sectors << 9;
1716
1717
if (bio_integrity(split))
1718
bio_integrity_trim(split);
1719
1720
bio_advance(bio, split->bi_iter.bi_size);
1721
1722
if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1723
bio_set_flag(split, BIO_TRACE_COMPLETION);
1724
1725
return split;
1726
}
1727
EXPORT_SYMBOL(bio_split);
1728
1729
/**
1730
* bio_trim - trim a bio
1731
* @bio: bio to trim
1732
* @offset: number of sectors to trim from the front of @bio
1733
* @size: size we want to trim @bio to, in sectors
1734
*
1735
* This function is typically used for bios that are cloned and submitted
1736
* to the underlying device in parts.
1737
*/
1738
void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1739
{
1740
/* We should never trim an atomic write */
1741
if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1742
return;
1743
1744
if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1745
offset + size > bio_sectors(bio)))
1746
return;
1747
1748
size <<= 9;
1749
if (offset == 0 && size == bio->bi_iter.bi_size)
1750
return;
1751
1752
bio_advance(bio, offset << 9);
1753
bio->bi_iter.bi_size = size;
1754
1755
if (bio_integrity(bio))
1756
bio_integrity_trim(bio);
1757
}
1758
EXPORT_SYMBOL_GPL(bio_trim);
1759
1760
/*
1761
* create memory pools for biovec's in a bio_set.
1762
* use the global biovec slabs created for general use.
1763
*/
1764
int biovec_init_pool(mempool_t *pool, int pool_entries)
1765
{
1766
struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1767
1768
return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1769
}
1770
1771
/*
1772
* bioset_exit - exit a bioset initialized with bioset_init()
1773
*
1774
* May be called on a zeroed but uninitialized bioset (i.e. allocated with
1775
* kzalloc()).
1776
*/
1777
void bioset_exit(struct bio_set *bs)
1778
{
1779
bio_alloc_cache_destroy(bs);
1780
if (bs->rescue_workqueue)
1781
destroy_workqueue(bs->rescue_workqueue);
1782
bs->rescue_workqueue = NULL;
1783
1784
mempool_exit(&bs->bio_pool);
1785
mempool_exit(&bs->bvec_pool);
1786
1787
if (bs->bio_slab)
1788
bio_put_slab(bs);
1789
bs->bio_slab = NULL;
1790
}
1791
EXPORT_SYMBOL(bioset_exit);
1792
1793
/**
1794
* bioset_init - Initialize a bio_set
1795
* @bs: pool to initialize
1796
* @pool_size: Number of bio and bio_vecs to cache in the mempool
1797
* @front_pad: Number of bytes to allocate in front of the returned bio
1798
* @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1799
* and %BIOSET_NEED_RESCUER
1800
*
1801
* Description:
1802
* Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1803
* to ask for a number of bytes to be allocated in front of the bio.
1804
* Front pad allocation is useful for embedding the bio inside
1805
* another structure, to avoid allocating extra data to go with the bio.
1806
* Note that the bio must be embedded at the END of that structure always,
1807
* or things will break badly.
1808
* If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1809
* for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1810
* If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1811
* to dispatch queued requests when the mempool runs out of space.
1812
*
1813
*/
1814
int bioset_init(struct bio_set *bs,
1815
unsigned int pool_size,
1816
unsigned int front_pad,
1817
int flags)
1818
{
1819
bs->front_pad = front_pad;
1820
if (flags & BIOSET_NEED_BVECS)
1821
bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1822
else
1823
bs->back_pad = 0;
1824
1825
spin_lock_init(&bs->rescue_lock);
1826
bio_list_init(&bs->rescue_list);
1827
INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1828
1829
bs->bio_slab = bio_find_or_create_slab(bs);
1830
if (!bs->bio_slab)
1831
return -ENOMEM;
1832
1833
if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1834
goto bad;
1835
1836
if ((flags & BIOSET_NEED_BVECS) &&
1837
biovec_init_pool(&bs->bvec_pool, pool_size))
1838
goto bad;
1839
1840
if (flags & BIOSET_NEED_RESCUER) {
1841
bs->rescue_workqueue = alloc_workqueue("bioset",
1842
WQ_MEM_RECLAIM, 0);
1843
if (!bs->rescue_workqueue)
1844
goto bad;
1845
}
1846
if (flags & BIOSET_PERCPU_CACHE) {
1847
bs->cache = alloc_percpu(struct bio_alloc_cache);
1848
if (!bs->cache)
1849
goto bad;
1850
cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1851
}
1852
1853
return 0;
1854
bad:
1855
bioset_exit(bs);
1856
return -ENOMEM;
1857
}
1858
EXPORT_SYMBOL(bioset_init);
1859
1860
static int __init init_bio(void)
1861
{
1862
int i;
1863
1864
BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1865
1866
for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1867
struct biovec_slab *bvs = bvec_slabs + i;
1868
1869
bvs->slab = kmem_cache_create(bvs->name,
1870
bvs->nr_vecs * sizeof(struct bio_vec), 0,
1871
SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1872
}
1873
1874
cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1875
bio_cpu_dead);
1876
1877
if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1878
BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1879
panic("bio: can't allocate bios\n");
1880
1881
return 0;
1882
}
1883
subsys_initcall(init_bio);
1884
1885