Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/bio.c
26242 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2001 Jens Axboe <[email protected]>
4
*/
5
#include <linux/mm.h>
6
#include <linux/swap.h>
7
#include <linux/bio-integrity.h>
8
#include <linux/blkdev.h>
9
#include <linux/uio.h>
10
#include <linux/iocontext.h>
11
#include <linux/slab.h>
12
#include <linux/init.h>
13
#include <linux/kernel.h>
14
#include <linux/export.h>
15
#include <linux/mempool.h>
16
#include <linux/workqueue.h>
17
#include <linux/cgroup.h>
18
#include <linux/highmem.h>
19
#include <linux/blk-crypto.h>
20
#include <linux/xarray.h>
21
22
#include <trace/events/block.h>
23
#include "blk.h"
24
#include "blk-rq-qos.h"
25
#include "blk-cgroup.h"
26
27
#define ALLOC_CACHE_THRESHOLD 16
28
#define ALLOC_CACHE_MAX 256
29
30
struct bio_alloc_cache {
31
struct bio *free_list;
32
struct bio *free_list_irq;
33
unsigned int nr;
34
unsigned int nr_irq;
35
};
36
37
static struct biovec_slab {
38
int nr_vecs;
39
char *name;
40
struct kmem_cache *slab;
41
} bvec_slabs[] __read_mostly = {
42
{ .nr_vecs = 16, .name = "biovec-16" },
43
{ .nr_vecs = 64, .name = "biovec-64" },
44
{ .nr_vecs = 128, .name = "biovec-128" },
45
{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46
};
47
48
static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49
{
50
switch (nr_vecs) {
51
/* smaller bios use inline vecs */
52
case 5 ... 16:
53
return &bvec_slabs[0];
54
case 17 ... 64:
55
return &bvec_slabs[1];
56
case 65 ... 128:
57
return &bvec_slabs[2];
58
case 129 ... BIO_MAX_VECS:
59
return &bvec_slabs[3];
60
default:
61
BUG();
62
return NULL;
63
}
64
}
65
66
/*
67
* fs_bio_set is the bio_set containing bio and iovec memory pools used by
68
* IO code that does not need private memory pools.
69
*/
70
struct bio_set fs_bio_set;
71
EXPORT_SYMBOL(fs_bio_set);
72
73
/*
74
* Our slab pool management
75
*/
76
struct bio_slab {
77
struct kmem_cache *slab;
78
unsigned int slab_ref;
79
unsigned int slab_size;
80
char name[12];
81
};
82
static DEFINE_MUTEX(bio_slab_lock);
83
static DEFINE_XARRAY(bio_slabs);
84
85
static struct bio_slab *create_bio_slab(unsigned int size)
86
{
87
struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88
89
if (!bslab)
90
return NULL;
91
92
snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93
bslab->slab = kmem_cache_create(bslab->name, size,
94
ARCH_KMALLOC_MINALIGN,
95
SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96
if (!bslab->slab)
97
goto fail_alloc_slab;
98
99
bslab->slab_ref = 1;
100
bslab->slab_size = size;
101
102
if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103
return bslab;
104
105
kmem_cache_destroy(bslab->slab);
106
107
fail_alloc_slab:
108
kfree(bslab);
109
return NULL;
110
}
111
112
static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113
{
114
return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115
}
116
117
static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118
{
119
unsigned int size = bs_bio_slab_size(bs);
120
struct bio_slab *bslab;
121
122
mutex_lock(&bio_slab_lock);
123
bslab = xa_load(&bio_slabs, size);
124
if (bslab)
125
bslab->slab_ref++;
126
else
127
bslab = create_bio_slab(size);
128
mutex_unlock(&bio_slab_lock);
129
130
if (bslab)
131
return bslab->slab;
132
return NULL;
133
}
134
135
static void bio_put_slab(struct bio_set *bs)
136
{
137
struct bio_slab *bslab = NULL;
138
unsigned int slab_size = bs_bio_slab_size(bs);
139
140
mutex_lock(&bio_slab_lock);
141
142
bslab = xa_load(&bio_slabs, slab_size);
143
if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144
goto out;
145
146
WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147
148
WARN_ON(!bslab->slab_ref);
149
150
if (--bslab->slab_ref)
151
goto out;
152
153
xa_erase(&bio_slabs, slab_size);
154
155
kmem_cache_destroy(bslab->slab);
156
kfree(bslab);
157
158
out:
159
mutex_unlock(&bio_slab_lock);
160
}
161
162
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163
{
164
BUG_ON(nr_vecs > BIO_MAX_VECS);
165
166
if (nr_vecs == BIO_MAX_VECS)
167
mempool_free(bv, pool);
168
else if (nr_vecs > BIO_INLINE_VECS)
169
kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170
}
171
172
/*
173
* Make the first allocation restricted and don't dump info on allocation
174
* failures, since we'll fall back to the mempool in case of failure.
175
*/
176
static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177
{
178
return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179
__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180
}
181
182
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183
gfp_t gfp_mask)
184
{
185
struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186
187
if (WARN_ON_ONCE(!bvs))
188
return NULL;
189
190
/*
191
* Upgrade the nr_vecs request to take full advantage of the allocation.
192
* We also rely on this in the bvec_free path.
193
*/
194
*nr_vecs = bvs->nr_vecs;
195
196
/*
197
* Try a slab allocation first for all smaller allocations. If that
198
* fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199
* The mempool is sized to handle up to BIO_MAX_VECS entries.
200
*/
201
if (*nr_vecs < BIO_MAX_VECS) {
202
struct bio_vec *bvl;
203
204
bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205
if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206
return bvl;
207
*nr_vecs = BIO_MAX_VECS;
208
}
209
210
return mempool_alloc(pool, gfp_mask);
211
}
212
213
void bio_uninit(struct bio *bio)
214
{
215
#ifdef CONFIG_BLK_CGROUP
216
if (bio->bi_blkg) {
217
blkg_put(bio->bi_blkg);
218
bio->bi_blkg = NULL;
219
}
220
#endif
221
if (bio_integrity(bio))
222
bio_integrity_free(bio);
223
224
bio_crypt_free_ctx(bio);
225
}
226
EXPORT_SYMBOL(bio_uninit);
227
228
static void bio_free(struct bio *bio)
229
{
230
struct bio_set *bs = bio->bi_pool;
231
void *p = bio;
232
233
WARN_ON_ONCE(!bs);
234
235
bio_uninit(bio);
236
bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237
mempool_free(p - bs->front_pad, &bs->bio_pool);
238
}
239
240
/*
241
* Users of this function have their own bio allocation. Subsequently,
242
* they must remember to pair any call to bio_init() with bio_uninit()
243
* when IO has completed, or when the bio is released.
244
*/
245
void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246
unsigned short max_vecs, blk_opf_t opf)
247
{
248
bio->bi_next = NULL;
249
bio->bi_bdev = bdev;
250
bio->bi_opf = opf;
251
bio->bi_flags = 0;
252
bio->bi_ioprio = 0;
253
bio->bi_write_hint = 0;
254
bio->bi_write_stream = 0;
255
bio->bi_status = 0;
256
bio->bi_iter.bi_sector = 0;
257
bio->bi_iter.bi_size = 0;
258
bio->bi_iter.bi_idx = 0;
259
bio->bi_iter.bi_bvec_done = 0;
260
bio->bi_end_io = NULL;
261
bio->bi_private = NULL;
262
#ifdef CONFIG_BLK_CGROUP
263
bio->bi_blkg = NULL;
264
bio->bi_issue.value = 0;
265
if (bdev)
266
bio_associate_blkg(bio);
267
#ifdef CONFIG_BLK_CGROUP_IOCOST
268
bio->bi_iocost_cost = 0;
269
#endif
270
#endif
271
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
272
bio->bi_crypt_context = NULL;
273
#endif
274
#ifdef CONFIG_BLK_DEV_INTEGRITY
275
bio->bi_integrity = NULL;
276
#endif
277
bio->bi_vcnt = 0;
278
279
atomic_set(&bio->__bi_remaining, 1);
280
atomic_set(&bio->__bi_cnt, 1);
281
bio->bi_cookie = BLK_QC_T_NONE;
282
283
bio->bi_max_vecs = max_vecs;
284
bio->bi_io_vec = table;
285
bio->bi_pool = NULL;
286
}
287
EXPORT_SYMBOL(bio_init);
288
289
/**
290
* bio_reset - reinitialize a bio
291
* @bio: bio to reset
292
* @bdev: block device to use the bio for
293
* @opf: operation and flags for bio
294
*
295
* Description:
296
* After calling bio_reset(), @bio will be in the same state as a freshly
297
* allocated bio returned bio bio_alloc_bioset() - the only fields that are
298
* preserved are the ones that are initialized by bio_alloc_bioset(). See
299
* comment in struct bio.
300
*/
301
void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
302
{
303
bio_uninit(bio);
304
memset(bio, 0, BIO_RESET_BYTES);
305
atomic_set(&bio->__bi_remaining, 1);
306
bio->bi_bdev = bdev;
307
if (bio->bi_bdev)
308
bio_associate_blkg(bio);
309
bio->bi_opf = opf;
310
}
311
EXPORT_SYMBOL(bio_reset);
312
313
static struct bio *__bio_chain_endio(struct bio *bio)
314
{
315
struct bio *parent = bio->bi_private;
316
317
if (bio->bi_status && !parent->bi_status)
318
parent->bi_status = bio->bi_status;
319
bio_put(bio);
320
return parent;
321
}
322
323
static void bio_chain_endio(struct bio *bio)
324
{
325
bio_endio(__bio_chain_endio(bio));
326
}
327
328
/**
329
* bio_chain - chain bio completions
330
* @bio: the target bio
331
* @parent: the parent bio of @bio
332
*
333
* The caller won't have a bi_end_io called when @bio completes - instead,
334
* @parent's bi_end_io won't be called until both @parent and @bio have
335
* completed; the chained bio will also be freed when it completes.
336
*
337
* The caller must not set bi_private or bi_end_io in @bio.
338
*/
339
void bio_chain(struct bio *bio, struct bio *parent)
340
{
341
BUG_ON(bio->bi_private || bio->bi_end_io);
342
343
bio->bi_private = parent;
344
bio->bi_end_io = bio_chain_endio;
345
bio_inc_remaining(parent);
346
}
347
EXPORT_SYMBOL(bio_chain);
348
349
/**
350
* bio_chain_and_submit - submit a bio after chaining it to another one
351
* @prev: bio to chain and submit
352
* @new: bio to chain to
353
*
354
* If @prev is non-NULL, chain it to @new and submit it.
355
*
356
* Return: @new.
357
*/
358
struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
359
{
360
if (prev) {
361
bio_chain(prev, new);
362
submit_bio(prev);
363
}
364
return new;
365
}
366
367
struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
368
unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
369
{
370
return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
371
}
372
EXPORT_SYMBOL_GPL(blk_next_bio);
373
374
static void bio_alloc_rescue(struct work_struct *work)
375
{
376
struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
377
struct bio *bio;
378
379
while (1) {
380
spin_lock(&bs->rescue_lock);
381
bio = bio_list_pop(&bs->rescue_list);
382
spin_unlock(&bs->rescue_lock);
383
384
if (!bio)
385
break;
386
387
submit_bio_noacct(bio);
388
}
389
}
390
391
static void punt_bios_to_rescuer(struct bio_set *bs)
392
{
393
struct bio_list punt, nopunt;
394
struct bio *bio;
395
396
if (WARN_ON_ONCE(!bs->rescue_workqueue))
397
return;
398
/*
399
* In order to guarantee forward progress we must punt only bios that
400
* were allocated from this bio_set; otherwise, if there was a bio on
401
* there for a stacking driver higher up in the stack, processing it
402
* could require allocating bios from this bio_set, and doing that from
403
* our own rescuer would be bad.
404
*
405
* Since bio lists are singly linked, pop them all instead of trying to
406
* remove from the middle of the list:
407
*/
408
409
bio_list_init(&punt);
410
bio_list_init(&nopunt);
411
412
while ((bio = bio_list_pop(&current->bio_list[0])))
413
bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
414
current->bio_list[0] = nopunt;
415
416
bio_list_init(&nopunt);
417
while ((bio = bio_list_pop(&current->bio_list[1])))
418
bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
419
current->bio_list[1] = nopunt;
420
421
spin_lock(&bs->rescue_lock);
422
bio_list_merge(&bs->rescue_list, &punt);
423
spin_unlock(&bs->rescue_lock);
424
425
queue_work(bs->rescue_workqueue, &bs->rescue_work);
426
}
427
428
static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
429
{
430
unsigned long flags;
431
432
/* cache->free_list must be empty */
433
if (WARN_ON_ONCE(cache->free_list))
434
return;
435
436
local_irq_save(flags);
437
cache->free_list = cache->free_list_irq;
438
cache->free_list_irq = NULL;
439
cache->nr += cache->nr_irq;
440
cache->nr_irq = 0;
441
local_irq_restore(flags);
442
}
443
444
static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
445
unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
446
struct bio_set *bs)
447
{
448
struct bio_alloc_cache *cache;
449
struct bio *bio;
450
451
cache = per_cpu_ptr(bs->cache, get_cpu());
452
if (!cache->free_list) {
453
if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
454
bio_alloc_irq_cache_splice(cache);
455
if (!cache->free_list) {
456
put_cpu();
457
return NULL;
458
}
459
}
460
bio = cache->free_list;
461
cache->free_list = bio->bi_next;
462
cache->nr--;
463
put_cpu();
464
465
bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
466
bio->bi_pool = bs;
467
return bio;
468
}
469
470
/**
471
* bio_alloc_bioset - allocate a bio for I/O
472
* @bdev: block device to allocate the bio for (can be %NULL)
473
* @nr_vecs: number of bvecs to pre-allocate
474
* @opf: operation and flags for bio
475
* @gfp_mask: the GFP_* mask given to the slab allocator
476
* @bs: the bio_set to allocate from.
477
*
478
* Allocate a bio from the mempools in @bs.
479
*
480
* If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
481
* allocate a bio. This is due to the mempool guarantees. To make this work,
482
* callers must never allocate more than 1 bio at a time from the general pool.
483
* Callers that need to allocate more than 1 bio must always submit the
484
* previously allocated bio for IO before attempting to allocate a new one.
485
* Failure to do so can cause deadlocks under memory pressure.
486
*
487
* Note that when running under submit_bio_noacct() (i.e. any block driver),
488
* bios are not submitted until after you return - see the code in
489
* submit_bio_noacct() that converts recursion into iteration, to prevent
490
* stack overflows.
491
*
492
* This would normally mean allocating multiple bios under submit_bio_noacct()
493
* would be susceptible to deadlocks, but we have
494
* deadlock avoidance code that resubmits any blocked bios from a rescuer
495
* thread.
496
*
497
* However, we do not guarantee forward progress for allocations from other
498
* mempools. Doing multiple allocations from the same mempool under
499
* submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
500
* for per bio allocations.
501
*
502
* Returns: Pointer to new bio on success, NULL on failure.
503
*/
504
struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
505
blk_opf_t opf, gfp_t gfp_mask,
506
struct bio_set *bs)
507
{
508
gfp_t saved_gfp = gfp_mask;
509
struct bio *bio;
510
void *p;
511
512
/* should not use nobvec bioset for nr_vecs > 0 */
513
if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
514
return NULL;
515
516
if (opf & REQ_ALLOC_CACHE) {
517
if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
518
bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
519
gfp_mask, bs);
520
if (bio)
521
return bio;
522
/*
523
* No cached bio available, bio returned below marked with
524
* REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
525
*/
526
} else {
527
opf &= ~REQ_ALLOC_CACHE;
528
}
529
}
530
531
/*
532
* submit_bio_noacct() converts recursion to iteration; this means if
533
* we're running beneath it, any bios we allocate and submit will not be
534
* submitted (and thus freed) until after we return.
535
*
536
* This exposes us to a potential deadlock if we allocate multiple bios
537
* from the same bio_set() while running underneath submit_bio_noacct().
538
* If we were to allocate multiple bios (say a stacking block driver
539
* that was splitting bios), we would deadlock if we exhausted the
540
* mempool's reserve.
541
*
542
* We solve this, and guarantee forward progress, with a rescuer
543
* workqueue per bio_set. If we go to allocate and there are bios on
544
* current->bio_list, we first try the allocation without
545
* __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
546
* blocking to the rescuer workqueue before we retry with the original
547
* gfp_flags.
548
*/
549
if (current->bio_list &&
550
(!bio_list_empty(&current->bio_list[0]) ||
551
!bio_list_empty(&current->bio_list[1])) &&
552
bs->rescue_workqueue)
553
gfp_mask &= ~__GFP_DIRECT_RECLAIM;
554
555
p = mempool_alloc(&bs->bio_pool, gfp_mask);
556
if (!p && gfp_mask != saved_gfp) {
557
punt_bios_to_rescuer(bs);
558
gfp_mask = saved_gfp;
559
p = mempool_alloc(&bs->bio_pool, gfp_mask);
560
}
561
if (unlikely(!p))
562
return NULL;
563
if (!mempool_is_saturated(&bs->bio_pool))
564
opf &= ~REQ_ALLOC_CACHE;
565
566
bio = p + bs->front_pad;
567
if (nr_vecs > BIO_INLINE_VECS) {
568
struct bio_vec *bvl = NULL;
569
570
bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
571
if (!bvl && gfp_mask != saved_gfp) {
572
punt_bios_to_rescuer(bs);
573
gfp_mask = saved_gfp;
574
bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
575
}
576
if (unlikely(!bvl))
577
goto err_free;
578
579
bio_init(bio, bdev, bvl, nr_vecs, opf);
580
} else if (nr_vecs) {
581
bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
582
} else {
583
bio_init(bio, bdev, NULL, 0, opf);
584
}
585
586
bio->bi_pool = bs;
587
return bio;
588
589
err_free:
590
mempool_free(p, &bs->bio_pool);
591
return NULL;
592
}
593
EXPORT_SYMBOL(bio_alloc_bioset);
594
595
/**
596
* bio_kmalloc - kmalloc a bio
597
* @nr_vecs: number of bio_vecs to allocate
598
* @gfp_mask: the GFP_* mask given to the slab allocator
599
*
600
* Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
601
* using bio_init() before use. To free a bio returned from this function use
602
* kfree() after calling bio_uninit(). A bio returned from this function can
603
* be reused by calling bio_uninit() before calling bio_init() again.
604
*
605
* Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
606
* function are not backed by a mempool can fail. Do not use this function
607
* for allocations in the file system I/O path.
608
*
609
* Returns: Pointer to new bio on success, NULL on failure.
610
*/
611
struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
612
{
613
struct bio *bio;
614
615
if (nr_vecs > BIO_MAX_INLINE_VECS)
616
return NULL;
617
return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
618
}
619
EXPORT_SYMBOL(bio_kmalloc);
620
621
void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
622
{
623
struct bio_vec bv;
624
struct bvec_iter iter;
625
626
__bio_for_each_segment(bv, bio, iter, start)
627
memzero_bvec(&bv);
628
}
629
EXPORT_SYMBOL(zero_fill_bio_iter);
630
631
/**
632
* bio_truncate - truncate the bio to small size of @new_size
633
* @bio: the bio to be truncated
634
* @new_size: new size for truncating the bio
635
*
636
* Description:
637
* Truncate the bio to new size of @new_size. If bio_op(bio) is
638
* REQ_OP_READ, zero the truncated part. This function should only
639
* be used for handling corner cases, such as bio eod.
640
*/
641
static void bio_truncate(struct bio *bio, unsigned new_size)
642
{
643
struct bio_vec bv;
644
struct bvec_iter iter;
645
unsigned int done = 0;
646
bool truncated = false;
647
648
if (new_size >= bio->bi_iter.bi_size)
649
return;
650
651
if (bio_op(bio) != REQ_OP_READ)
652
goto exit;
653
654
bio_for_each_segment(bv, bio, iter) {
655
if (done + bv.bv_len > new_size) {
656
size_t offset;
657
658
if (!truncated)
659
offset = new_size - done;
660
else
661
offset = 0;
662
memzero_page(bv.bv_page, bv.bv_offset + offset,
663
bv.bv_len - offset);
664
truncated = true;
665
}
666
done += bv.bv_len;
667
}
668
669
exit:
670
/*
671
* Don't touch bvec table here and make it really immutable, since
672
* fs bio user has to retrieve all pages via bio_for_each_segment_all
673
* in its .end_bio() callback.
674
*
675
* It is enough to truncate bio by updating .bi_size since we can make
676
* correct bvec with the updated .bi_size for drivers.
677
*/
678
bio->bi_iter.bi_size = new_size;
679
}
680
681
/**
682
* guard_bio_eod - truncate a BIO to fit the block device
683
* @bio: bio to truncate
684
*
685
* This allows us to do IO even on the odd last sectors of a device, even if the
686
* block size is some multiple of the physical sector size.
687
*
688
* We'll just truncate the bio to the size of the device, and clear the end of
689
* the buffer head manually. Truly out-of-range accesses will turn into actual
690
* I/O errors, this only handles the "we need to be able to do I/O at the final
691
* sector" case.
692
*/
693
void guard_bio_eod(struct bio *bio)
694
{
695
sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
696
697
if (!maxsector)
698
return;
699
700
/*
701
* If the *whole* IO is past the end of the device,
702
* let it through, and the IO layer will turn it into
703
* an EIO.
704
*/
705
if (unlikely(bio->bi_iter.bi_sector >= maxsector))
706
return;
707
708
maxsector -= bio->bi_iter.bi_sector;
709
if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
710
return;
711
712
bio_truncate(bio, maxsector << 9);
713
}
714
715
static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
716
unsigned int nr)
717
{
718
unsigned int i = 0;
719
struct bio *bio;
720
721
while ((bio = cache->free_list) != NULL) {
722
cache->free_list = bio->bi_next;
723
cache->nr--;
724
bio_free(bio);
725
if (++i == nr)
726
break;
727
}
728
return i;
729
}
730
731
static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
732
unsigned int nr)
733
{
734
nr -= __bio_alloc_cache_prune(cache, nr);
735
if (!READ_ONCE(cache->free_list)) {
736
bio_alloc_irq_cache_splice(cache);
737
__bio_alloc_cache_prune(cache, nr);
738
}
739
}
740
741
static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
742
{
743
struct bio_set *bs;
744
745
bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
746
if (bs->cache) {
747
struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
748
749
bio_alloc_cache_prune(cache, -1U);
750
}
751
return 0;
752
}
753
754
static void bio_alloc_cache_destroy(struct bio_set *bs)
755
{
756
int cpu;
757
758
if (!bs->cache)
759
return;
760
761
cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
762
for_each_possible_cpu(cpu) {
763
struct bio_alloc_cache *cache;
764
765
cache = per_cpu_ptr(bs->cache, cpu);
766
bio_alloc_cache_prune(cache, -1U);
767
}
768
free_percpu(bs->cache);
769
bs->cache = NULL;
770
}
771
772
static inline void bio_put_percpu_cache(struct bio *bio)
773
{
774
struct bio_alloc_cache *cache;
775
776
cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
777
if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
778
goto out_free;
779
780
if (in_task()) {
781
bio_uninit(bio);
782
bio->bi_next = cache->free_list;
783
/* Not necessary but helps not to iopoll already freed bios */
784
bio->bi_bdev = NULL;
785
cache->free_list = bio;
786
cache->nr++;
787
} else if (in_hardirq()) {
788
lockdep_assert_irqs_disabled();
789
790
bio_uninit(bio);
791
bio->bi_next = cache->free_list_irq;
792
cache->free_list_irq = bio;
793
cache->nr_irq++;
794
} else {
795
goto out_free;
796
}
797
put_cpu();
798
return;
799
out_free:
800
put_cpu();
801
bio_free(bio);
802
}
803
804
/**
805
* bio_put - release a reference to a bio
806
* @bio: bio to release reference to
807
*
808
* Description:
809
* Put a reference to a &struct bio, either one you have gotten with
810
* bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
811
**/
812
void bio_put(struct bio *bio)
813
{
814
if (unlikely(bio_flagged(bio, BIO_REFFED))) {
815
BUG_ON(!atomic_read(&bio->__bi_cnt));
816
if (!atomic_dec_and_test(&bio->__bi_cnt))
817
return;
818
}
819
if (bio->bi_opf & REQ_ALLOC_CACHE)
820
bio_put_percpu_cache(bio);
821
else
822
bio_free(bio);
823
}
824
EXPORT_SYMBOL(bio_put);
825
826
static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
827
{
828
bio_set_flag(bio, BIO_CLONED);
829
bio->bi_ioprio = bio_src->bi_ioprio;
830
bio->bi_write_hint = bio_src->bi_write_hint;
831
bio->bi_write_stream = bio_src->bi_write_stream;
832
bio->bi_iter = bio_src->bi_iter;
833
834
if (bio->bi_bdev) {
835
if (bio->bi_bdev == bio_src->bi_bdev &&
836
bio_flagged(bio_src, BIO_REMAPPED))
837
bio_set_flag(bio, BIO_REMAPPED);
838
bio_clone_blkg_association(bio, bio_src);
839
}
840
841
if (bio_crypt_clone(bio, bio_src, gfp) < 0)
842
return -ENOMEM;
843
if (bio_integrity(bio_src) &&
844
bio_integrity_clone(bio, bio_src, gfp) < 0)
845
return -ENOMEM;
846
return 0;
847
}
848
849
/**
850
* bio_alloc_clone - clone a bio that shares the original bio's biovec
851
* @bdev: block_device to clone onto
852
* @bio_src: bio to clone from
853
* @gfp: allocation priority
854
* @bs: bio_set to allocate from
855
*
856
* Allocate a new bio that is a clone of @bio_src. The caller owns the returned
857
* bio, but not the actual data it points to.
858
*
859
* The caller must ensure that the return bio is not freed before @bio_src.
860
*/
861
struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
862
gfp_t gfp, struct bio_set *bs)
863
{
864
struct bio *bio;
865
866
bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
867
if (!bio)
868
return NULL;
869
870
if (__bio_clone(bio, bio_src, gfp) < 0) {
871
bio_put(bio);
872
return NULL;
873
}
874
bio->bi_io_vec = bio_src->bi_io_vec;
875
876
return bio;
877
}
878
EXPORT_SYMBOL(bio_alloc_clone);
879
880
/**
881
* bio_init_clone - clone a bio that shares the original bio's biovec
882
* @bdev: block_device to clone onto
883
* @bio: bio to clone into
884
* @bio_src: bio to clone from
885
* @gfp: allocation priority
886
*
887
* Initialize a new bio in caller provided memory that is a clone of @bio_src.
888
* The caller owns the returned bio, but not the actual data it points to.
889
*
890
* The caller must ensure that @bio_src is not freed before @bio.
891
*/
892
int bio_init_clone(struct block_device *bdev, struct bio *bio,
893
struct bio *bio_src, gfp_t gfp)
894
{
895
int ret;
896
897
bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
898
ret = __bio_clone(bio, bio_src, gfp);
899
if (ret)
900
bio_uninit(bio);
901
return ret;
902
}
903
EXPORT_SYMBOL(bio_init_clone);
904
905
/**
906
* bio_full - check if the bio is full
907
* @bio: bio to check
908
* @len: length of one segment to be added
909
*
910
* Return true if @bio is full and one segment with @len bytes can't be
911
* added to the bio, otherwise return false
912
*/
913
static inline bool bio_full(struct bio *bio, unsigned len)
914
{
915
if (bio->bi_vcnt >= bio->bi_max_vecs)
916
return true;
917
if (bio->bi_iter.bi_size > UINT_MAX - len)
918
return true;
919
return false;
920
}
921
922
static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
923
unsigned int len, unsigned int off)
924
{
925
size_t bv_end = bv->bv_offset + bv->bv_len;
926
phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
927
phys_addr_t page_addr = page_to_phys(page);
928
929
if (vec_end_addr + 1 != page_addr + off)
930
return false;
931
if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
932
return false;
933
934
if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
935
if (IS_ENABLED(CONFIG_KMSAN))
936
return false;
937
if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
938
return false;
939
}
940
941
bv->bv_len += len;
942
return true;
943
}
944
945
/*
946
* Try to merge a page into a segment, while obeying the hardware segment
947
* size limit.
948
*
949
* This is kept around for the integrity metadata, which is still tries
950
* to build the initial bio to the hardware limit and doesn't have proper
951
* helpers to split. Hopefully this will go away soon.
952
*/
953
bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
954
struct page *page, unsigned len, unsigned offset)
955
{
956
unsigned long mask = queue_segment_boundary(q);
957
phys_addr_t addr1 = bvec_phys(bv);
958
phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
959
960
if ((addr1 | mask) != (addr2 | mask))
961
return false;
962
if (len > queue_max_segment_size(q) - bv->bv_len)
963
return false;
964
return bvec_try_merge_page(bv, page, len, offset);
965
}
966
967
/**
968
* __bio_add_page - add page(s) to a bio in a new segment
969
* @bio: destination bio
970
* @page: start page to add
971
* @len: length of the data to add, may cross pages
972
* @off: offset of the data relative to @page, may cross pages
973
*
974
* Add the data at @page + @off to @bio as a new bvec. The caller must ensure
975
* that @bio has space for another bvec.
976
*/
977
void __bio_add_page(struct bio *bio, struct page *page,
978
unsigned int len, unsigned int off)
979
{
980
WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
981
WARN_ON_ONCE(bio_full(bio, len));
982
983
if (is_pci_p2pdma_page(page))
984
bio->bi_opf |= REQ_P2PDMA | REQ_NOMERGE;
985
986
bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
987
bio->bi_iter.bi_size += len;
988
bio->bi_vcnt++;
989
}
990
EXPORT_SYMBOL_GPL(__bio_add_page);
991
992
/**
993
* bio_add_virt_nofail - add data in the direct kernel mapping to a bio
994
* @bio: destination bio
995
* @vaddr: data to add
996
* @len: length of the data to add, may cross pages
997
*
998
* Add the data at @vaddr to @bio. The caller must have ensure a segment
999
* is available for the added data. No merging into an existing segment
1000
* will be performed.
1001
*/
1002
void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1003
{
1004
__bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1005
}
1006
EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1007
1008
/**
1009
* bio_add_page - attempt to add page(s) to bio
1010
* @bio: destination bio
1011
* @page: start page to add
1012
* @len: vec entry length, may cross pages
1013
* @offset: vec entry offset relative to @page, may cross pages
1014
*
1015
* Attempt to add page(s) to the bio_vec maplist. This will only fail
1016
* if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1017
*/
1018
int bio_add_page(struct bio *bio, struct page *page,
1019
unsigned int len, unsigned int offset)
1020
{
1021
if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1022
return 0;
1023
if (bio->bi_iter.bi_size > UINT_MAX - len)
1024
return 0;
1025
1026
if (bio->bi_vcnt > 0) {
1027
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1028
1029
if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
1030
return 0;
1031
1032
if (bvec_try_merge_page(bv, page, len, offset)) {
1033
bio->bi_iter.bi_size += len;
1034
return len;
1035
}
1036
}
1037
1038
if (bio->bi_vcnt >= bio->bi_max_vecs)
1039
return 0;
1040
__bio_add_page(bio, page, len, offset);
1041
return len;
1042
}
1043
EXPORT_SYMBOL(bio_add_page);
1044
1045
void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1046
size_t off)
1047
{
1048
unsigned long nr = off / PAGE_SIZE;
1049
1050
WARN_ON_ONCE(len > UINT_MAX);
1051
__bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1052
}
1053
EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1054
1055
/**
1056
* bio_add_folio - Attempt to add part of a folio to a bio.
1057
* @bio: BIO to add to.
1058
* @folio: Folio to add.
1059
* @len: How many bytes from the folio to add.
1060
* @off: First byte in this folio to add.
1061
*
1062
* Filesystems that use folios can call this function instead of calling
1063
* bio_add_page() for each page in the folio. If @off is bigger than
1064
* PAGE_SIZE, this function can create a bio_vec that starts in a page
1065
* after the bv_page. BIOs do not support folios that are 4GiB or larger.
1066
*
1067
* Return: Whether the addition was successful.
1068
*/
1069
bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1070
size_t off)
1071
{
1072
unsigned long nr = off / PAGE_SIZE;
1073
1074
if (len > UINT_MAX)
1075
return false;
1076
return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1077
}
1078
EXPORT_SYMBOL(bio_add_folio);
1079
1080
/**
1081
* bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1082
* @bio: destination bio
1083
* @vaddr: vmalloc address to add
1084
* @len: total length in bytes of the data to add
1085
*
1086
* Add data starting at @vaddr to @bio and return how many bytes were added.
1087
* This may be less than the amount originally asked. Returns 0 if no data
1088
* could be added to @bio.
1089
*
1090
* This helper calls flush_kernel_vmap_range() for the range added. For reads
1091
* the caller still needs to manually call invalidate_kernel_vmap_range() in
1092
* the completion handler.
1093
*/
1094
unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1095
{
1096
unsigned int offset = offset_in_page(vaddr);
1097
1098
len = min(len, PAGE_SIZE - offset);
1099
if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1100
return 0;
1101
if (op_is_write(bio_op(bio)))
1102
flush_kernel_vmap_range(vaddr, len);
1103
return len;
1104
}
1105
EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1106
1107
/**
1108
* bio_add_vmalloc - add a vmalloc region to a bio
1109
* @bio: destination bio
1110
* @vaddr: vmalloc address to add
1111
* @len: total length in bytes of the data to add
1112
*
1113
* Add data starting at @vaddr to @bio. Return %true on success or %false if
1114
* @bio does not have enough space for the payload.
1115
*
1116
* This helper calls flush_kernel_vmap_range() for the range added. For reads
1117
* the caller still needs to manually call invalidate_kernel_vmap_range() in
1118
* the completion handler.
1119
*/
1120
bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1121
{
1122
do {
1123
unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1124
1125
if (!added)
1126
return false;
1127
vaddr += added;
1128
len -= added;
1129
} while (len);
1130
1131
return true;
1132
}
1133
EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1134
1135
void __bio_release_pages(struct bio *bio, bool mark_dirty)
1136
{
1137
struct folio_iter fi;
1138
1139
bio_for_each_folio_all(fi, bio) {
1140
size_t nr_pages;
1141
1142
if (mark_dirty) {
1143
folio_lock(fi.folio);
1144
folio_mark_dirty(fi.folio);
1145
folio_unlock(fi.folio);
1146
}
1147
nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1148
fi.offset / PAGE_SIZE + 1;
1149
unpin_user_folio(fi.folio, nr_pages);
1150
}
1151
}
1152
EXPORT_SYMBOL_GPL(__bio_release_pages);
1153
1154
void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
1155
{
1156
WARN_ON_ONCE(bio->bi_max_vecs);
1157
1158
bio->bi_vcnt = iter->nr_segs;
1159
bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1160
bio->bi_iter.bi_bvec_done = iter->iov_offset;
1161
bio->bi_iter.bi_size = iov_iter_count(iter);
1162
bio_set_flag(bio, BIO_CLONED);
1163
}
1164
1165
static unsigned int get_contig_folio_len(unsigned int *num_pages,
1166
struct page **pages, unsigned int i,
1167
struct folio *folio, size_t left,
1168
size_t offset)
1169
{
1170
size_t bytes = left;
1171
size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1172
unsigned int j;
1173
1174
/*
1175
* We might COW a single page in the middle of
1176
* a large folio, so we have to check that all
1177
* pages belong to the same folio.
1178
*/
1179
bytes -= contig_sz;
1180
for (j = i + 1; j < i + *num_pages; j++) {
1181
size_t next = min_t(size_t, PAGE_SIZE, bytes);
1182
1183
if (page_folio(pages[j]) != folio ||
1184
pages[j] != pages[j - 1] + 1) {
1185
break;
1186
}
1187
contig_sz += next;
1188
bytes -= next;
1189
}
1190
*num_pages = j - i;
1191
1192
return contig_sz;
1193
}
1194
1195
#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1196
1197
/**
1198
* __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1199
* @bio: bio to add pages to
1200
* @iter: iov iterator describing the region to be mapped
1201
*
1202
* Extracts pages from *iter and appends them to @bio's bvec array. The pages
1203
* will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1204
* For a multi-segment *iter, this function only adds pages from the next
1205
* non-empty segment of the iov iterator.
1206
*/
1207
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1208
{
1209
iov_iter_extraction_t extraction_flags = 0;
1210
unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1211
unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1212
struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1213
struct page **pages = (struct page **)bv;
1214
ssize_t size;
1215
unsigned int num_pages, i = 0;
1216
size_t offset, folio_offset, left, len;
1217
int ret = 0;
1218
1219
/*
1220
* Move page array up in the allocated memory for the bio vecs as far as
1221
* possible so that we can start filling biovecs from the beginning
1222
* without overwriting the temporary page array.
1223
*/
1224
BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1225
pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1226
1227
if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1228
extraction_flags |= ITER_ALLOW_P2PDMA;
1229
1230
/*
1231
* Each segment in the iov is required to be a block size multiple.
1232
* However, we may not be able to get the entire segment if it spans
1233
* more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1234
* result to ensure the bio's total size is correct. The remainder of
1235
* the iov data will be picked up in the next bio iteration.
1236
*/
1237
size = iov_iter_extract_pages(iter, &pages,
1238
UINT_MAX - bio->bi_iter.bi_size,
1239
nr_pages, extraction_flags, &offset);
1240
if (unlikely(size <= 0))
1241
return size ? size : -EFAULT;
1242
1243
nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1244
1245
if (bio->bi_bdev) {
1246
size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1247
iov_iter_revert(iter, trim);
1248
size -= trim;
1249
}
1250
1251
if (unlikely(!size)) {
1252
ret = -EFAULT;
1253
goto out;
1254
}
1255
1256
for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1257
struct page *page = pages[i];
1258
struct folio *folio = page_folio(page);
1259
unsigned int old_vcnt = bio->bi_vcnt;
1260
1261
folio_offset = ((size_t)folio_page_idx(folio, page) <<
1262
PAGE_SHIFT) + offset;
1263
1264
len = min(folio_size(folio) - folio_offset, left);
1265
1266
num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1267
1268
if (num_pages > 1)
1269
len = get_contig_folio_len(&num_pages, pages, i,
1270
folio, left, offset);
1271
1272
if (!bio_add_folio(bio, folio, len, folio_offset)) {
1273
WARN_ON_ONCE(1);
1274
ret = -EINVAL;
1275
goto out;
1276
}
1277
1278
if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1279
/*
1280
* We're adding another fragment of a page that already
1281
* was part of the last segment. Undo our pin as the
1282
* page was pinned when an earlier fragment of it was
1283
* added to the bio and __bio_release_pages expects a
1284
* single pin per page.
1285
*/
1286
if (offset && bio->bi_vcnt == old_vcnt)
1287
unpin_user_folio(folio, 1);
1288
}
1289
offset = 0;
1290
}
1291
1292
iov_iter_revert(iter, left);
1293
out:
1294
while (i < nr_pages)
1295
bio_release_page(bio, pages[i++]);
1296
1297
return ret;
1298
}
1299
1300
/**
1301
* bio_iov_iter_get_pages - add user or kernel pages to a bio
1302
* @bio: bio to add pages to
1303
* @iter: iov iterator describing the region to be added
1304
*
1305
* This takes either an iterator pointing to user memory, or one pointing to
1306
* kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1307
* map them into the kernel. On IO completion, the caller should put those
1308
* pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1309
* bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1310
* to ensure the bvecs and pages stay referenced until the submitted I/O is
1311
* completed by a call to ->ki_complete() or returns with an error other than
1312
* -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1313
* on IO completion. If it isn't, then pages should be released.
1314
*
1315
* The function tries, but does not guarantee, to pin as many pages as
1316
* fit into the bio, or are requested in @iter, whatever is smaller. If
1317
* MM encounters an error pinning the requested pages, it stops. Error
1318
* is returned only if 0 pages could be pinned.
1319
*/
1320
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1321
{
1322
int ret = 0;
1323
1324
if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1325
return -EIO;
1326
1327
if (iov_iter_is_bvec(iter)) {
1328
bio_iov_bvec_set(bio, iter);
1329
iov_iter_advance(iter, bio->bi_iter.bi_size);
1330
return 0;
1331
}
1332
1333
if (iov_iter_extract_will_pin(iter))
1334
bio_set_flag(bio, BIO_PAGE_PINNED);
1335
do {
1336
ret = __bio_iov_iter_get_pages(bio, iter);
1337
} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1338
1339
return bio->bi_vcnt ? 0 : ret;
1340
}
1341
EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1342
1343
static void submit_bio_wait_endio(struct bio *bio)
1344
{
1345
complete(bio->bi_private);
1346
}
1347
1348
/**
1349
* submit_bio_wait - submit a bio, and wait until it completes
1350
* @bio: The &struct bio which describes the I/O
1351
*
1352
* Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1353
* bio_endio() on failure.
1354
*
1355
* WARNING: Unlike to how submit_bio() is usually used, this function does not
1356
* result in bio reference to be consumed. The caller must drop the reference
1357
* on his own.
1358
*/
1359
int submit_bio_wait(struct bio *bio)
1360
{
1361
DECLARE_COMPLETION_ONSTACK_MAP(done,
1362
bio->bi_bdev->bd_disk->lockdep_map);
1363
1364
bio->bi_private = &done;
1365
bio->bi_end_io = submit_bio_wait_endio;
1366
bio->bi_opf |= REQ_SYNC;
1367
submit_bio(bio);
1368
blk_wait_io(&done);
1369
1370
return blk_status_to_errno(bio->bi_status);
1371
}
1372
EXPORT_SYMBOL(submit_bio_wait);
1373
1374
/**
1375
* bdev_rw_virt - synchronously read into / write from kernel mapping
1376
* @bdev: block device to access
1377
* @sector: sector to access
1378
* @data: data to read/write
1379
* @len: length in byte to read/write
1380
* @op: operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1381
*
1382
* Performs synchronous I/O to @bdev for @data/@len. @data must be in
1383
* the kernel direct mapping and not a vmalloc address.
1384
*/
1385
int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1386
size_t len, enum req_op op)
1387
{
1388
struct bio_vec bv;
1389
struct bio bio;
1390
int error;
1391
1392
if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1393
return -EIO;
1394
1395
bio_init(&bio, bdev, &bv, 1, op);
1396
bio.bi_iter.bi_sector = sector;
1397
bio_add_virt_nofail(&bio, data, len);
1398
error = submit_bio_wait(&bio);
1399
bio_uninit(&bio);
1400
return error;
1401
}
1402
EXPORT_SYMBOL_GPL(bdev_rw_virt);
1403
1404
static void bio_wait_end_io(struct bio *bio)
1405
{
1406
complete(bio->bi_private);
1407
bio_put(bio);
1408
}
1409
1410
/*
1411
* bio_await_chain - ends @bio and waits for every chained bio to complete
1412
*/
1413
void bio_await_chain(struct bio *bio)
1414
{
1415
DECLARE_COMPLETION_ONSTACK_MAP(done,
1416
bio->bi_bdev->bd_disk->lockdep_map);
1417
1418
bio->bi_private = &done;
1419
bio->bi_end_io = bio_wait_end_io;
1420
bio_endio(bio);
1421
blk_wait_io(&done);
1422
}
1423
1424
void __bio_advance(struct bio *bio, unsigned bytes)
1425
{
1426
if (bio_integrity(bio))
1427
bio_integrity_advance(bio, bytes);
1428
1429
bio_crypt_advance(bio, bytes);
1430
bio_advance_iter(bio, &bio->bi_iter, bytes);
1431
}
1432
EXPORT_SYMBOL(__bio_advance);
1433
1434
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1435
struct bio *src, struct bvec_iter *src_iter)
1436
{
1437
while (src_iter->bi_size && dst_iter->bi_size) {
1438
struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1439
struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1440
unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1441
void *src_buf = bvec_kmap_local(&src_bv);
1442
void *dst_buf = bvec_kmap_local(&dst_bv);
1443
1444
memcpy(dst_buf, src_buf, bytes);
1445
1446
kunmap_local(dst_buf);
1447
kunmap_local(src_buf);
1448
1449
bio_advance_iter_single(src, src_iter, bytes);
1450
bio_advance_iter_single(dst, dst_iter, bytes);
1451
}
1452
}
1453
EXPORT_SYMBOL(bio_copy_data_iter);
1454
1455
/**
1456
* bio_copy_data - copy contents of data buffers from one bio to another
1457
* @src: source bio
1458
* @dst: destination bio
1459
*
1460
* Stops when it reaches the end of either @src or @dst - that is, copies
1461
* min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1462
*/
1463
void bio_copy_data(struct bio *dst, struct bio *src)
1464
{
1465
struct bvec_iter src_iter = src->bi_iter;
1466
struct bvec_iter dst_iter = dst->bi_iter;
1467
1468
bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1469
}
1470
EXPORT_SYMBOL(bio_copy_data);
1471
1472
void bio_free_pages(struct bio *bio)
1473
{
1474
struct bio_vec *bvec;
1475
struct bvec_iter_all iter_all;
1476
1477
bio_for_each_segment_all(bvec, bio, iter_all)
1478
__free_page(bvec->bv_page);
1479
}
1480
EXPORT_SYMBOL(bio_free_pages);
1481
1482
/*
1483
* bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1484
* for performing direct-IO in BIOs.
1485
*
1486
* The problem is that we cannot run folio_mark_dirty() from interrupt context
1487
* because the required locks are not interrupt-safe. So what we can do is to
1488
* mark the pages dirty _before_ performing IO. And in interrupt context,
1489
* check that the pages are still dirty. If so, fine. If not, redirty them
1490
* in process context.
1491
*
1492
* Note that this code is very hard to test under normal circumstances because
1493
* direct-io pins the pages with get_user_pages(). This makes
1494
* is_page_cache_freeable return false, and the VM will not clean the pages.
1495
* But other code (eg, flusher threads) could clean the pages if they are mapped
1496
* pagecache.
1497
*
1498
* Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1499
* deferred bio dirtying paths.
1500
*/
1501
1502
/*
1503
* bio_set_pages_dirty() will mark all the bio's pages as dirty.
1504
*/
1505
void bio_set_pages_dirty(struct bio *bio)
1506
{
1507
struct folio_iter fi;
1508
1509
bio_for_each_folio_all(fi, bio) {
1510
folio_lock(fi.folio);
1511
folio_mark_dirty(fi.folio);
1512
folio_unlock(fi.folio);
1513
}
1514
}
1515
EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1516
1517
/*
1518
* bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1519
* If they are, then fine. If, however, some pages are clean then they must
1520
* have been written out during the direct-IO read. So we take another ref on
1521
* the BIO and re-dirty the pages in process context.
1522
*
1523
* It is expected that bio_check_pages_dirty() will wholly own the BIO from
1524
* here on. It will unpin each page and will run one bio_put() against the
1525
* BIO.
1526
*/
1527
1528
static void bio_dirty_fn(struct work_struct *work);
1529
1530
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1531
static DEFINE_SPINLOCK(bio_dirty_lock);
1532
static struct bio *bio_dirty_list;
1533
1534
/*
1535
* This runs in process context
1536
*/
1537
static void bio_dirty_fn(struct work_struct *work)
1538
{
1539
struct bio *bio, *next;
1540
1541
spin_lock_irq(&bio_dirty_lock);
1542
next = bio_dirty_list;
1543
bio_dirty_list = NULL;
1544
spin_unlock_irq(&bio_dirty_lock);
1545
1546
while ((bio = next) != NULL) {
1547
next = bio->bi_private;
1548
1549
bio_release_pages(bio, true);
1550
bio_put(bio);
1551
}
1552
}
1553
1554
void bio_check_pages_dirty(struct bio *bio)
1555
{
1556
struct folio_iter fi;
1557
unsigned long flags;
1558
1559
bio_for_each_folio_all(fi, bio) {
1560
if (!folio_test_dirty(fi.folio))
1561
goto defer;
1562
}
1563
1564
bio_release_pages(bio, false);
1565
bio_put(bio);
1566
return;
1567
defer:
1568
spin_lock_irqsave(&bio_dirty_lock, flags);
1569
bio->bi_private = bio_dirty_list;
1570
bio_dirty_list = bio;
1571
spin_unlock_irqrestore(&bio_dirty_lock, flags);
1572
schedule_work(&bio_dirty_work);
1573
}
1574
EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1575
1576
static inline bool bio_remaining_done(struct bio *bio)
1577
{
1578
/*
1579
* If we're not chaining, then ->__bi_remaining is always 1 and
1580
* we always end io on the first invocation.
1581
*/
1582
if (!bio_flagged(bio, BIO_CHAIN))
1583
return true;
1584
1585
BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1586
1587
if (atomic_dec_and_test(&bio->__bi_remaining)) {
1588
bio_clear_flag(bio, BIO_CHAIN);
1589
return true;
1590
}
1591
1592
return false;
1593
}
1594
1595
/**
1596
* bio_endio - end I/O on a bio
1597
* @bio: bio
1598
*
1599
* Description:
1600
* bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1601
* way to end I/O on a bio. No one should call bi_end_io() directly on a
1602
* bio unless they own it and thus know that it has an end_io function.
1603
*
1604
* bio_endio() can be called several times on a bio that has been chained
1605
* using bio_chain(). The ->bi_end_io() function will only be called the
1606
* last time.
1607
**/
1608
void bio_endio(struct bio *bio)
1609
{
1610
again:
1611
if (!bio_remaining_done(bio))
1612
return;
1613
if (!bio_integrity_endio(bio))
1614
return;
1615
1616
blk_zone_bio_endio(bio);
1617
1618
rq_qos_done_bio(bio);
1619
1620
if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1621
trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1622
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1623
}
1624
1625
/*
1626
* Need to have a real endio function for chained bios, otherwise
1627
* various corner cases will break (like stacking block devices that
1628
* save/restore bi_end_io) - however, we want to avoid unbounded
1629
* recursion and blowing the stack. Tail call optimization would
1630
* handle this, but compiling with frame pointers also disables
1631
* gcc's sibling call optimization.
1632
*/
1633
if (bio->bi_end_io == bio_chain_endio) {
1634
bio = __bio_chain_endio(bio);
1635
goto again;
1636
}
1637
1638
#ifdef CONFIG_BLK_CGROUP
1639
/*
1640
* Release cgroup info. We shouldn't have to do this here, but quite
1641
* a few callers of bio_init fail to call bio_uninit, so we cover up
1642
* for that here at least for now.
1643
*/
1644
if (bio->bi_blkg) {
1645
blkg_put(bio->bi_blkg);
1646
bio->bi_blkg = NULL;
1647
}
1648
#endif
1649
1650
if (bio->bi_end_io)
1651
bio->bi_end_io(bio);
1652
}
1653
EXPORT_SYMBOL(bio_endio);
1654
1655
/**
1656
* bio_split - split a bio
1657
* @bio: bio to split
1658
* @sectors: number of sectors to split from the front of @bio
1659
* @gfp: gfp mask
1660
* @bs: bio set to allocate from
1661
*
1662
* Allocates and returns a new bio which represents @sectors from the start of
1663
* @bio, and updates @bio to represent the remaining sectors.
1664
*
1665
* Unless this is a discard request the newly allocated bio will point
1666
* to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1667
* neither @bio nor @bs are freed before the split bio.
1668
*/
1669
struct bio *bio_split(struct bio *bio, int sectors,
1670
gfp_t gfp, struct bio_set *bs)
1671
{
1672
struct bio *split;
1673
1674
if (WARN_ON_ONCE(sectors <= 0))
1675
return ERR_PTR(-EINVAL);
1676
if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1677
return ERR_PTR(-EINVAL);
1678
1679
/* Zone append commands cannot be split */
1680
if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1681
return ERR_PTR(-EINVAL);
1682
1683
/* atomic writes cannot be split */
1684
if (bio->bi_opf & REQ_ATOMIC)
1685
return ERR_PTR(-EINVAL);
1686
1687
split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1688
if (!split)
1689
return ERR_PTR(-ENOMEM);
1690
1691
split->bi_iter.bi_size = sectors << 9;
1692
1693
if (bio_integrity(split))
1694
bio_integrity_trim(split);
1695
1696
bio_advance(bio, split->bi_iter.bi_size);
1697
1698
if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1699
bio_set_flag(split, BIO_TRACE_COMPLETION);
1700
1701
return split;
1702
}
1703
EXPORT_SYMBOL(bio_split);
1704
1705
/**
1706
* bio_trim - trim a bio
1707
* @bio: bio to trim
1708
* @offset: number of sectors to trim from the front of @bio
1709
* @size: size we want to trim @bio to, in sectors
1710
*
1711
* This function is typically used for bios that are cloned and submitted
1712
* to the underlying device in parts.
1713
*/
1714
void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1715
{
1716
/* We should never trim an atomic write */
1717
if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1718
return;
1719
1720
if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1721
offset + size > bio_sectors(bio)))
1722
return;
1723
1724
size <<= 9;
1725
if (offset == 0 && size == bio->bi_iter.bi_size)
1726
return;
1727
1728
bio_advance(bio, offset << 9);
1729
bio->bi_iter.bi_size = size;
1730
1731
if (bio_integrity(bio))
1732
bio_integrity_trim(bio);
1733
}
1734
EXPORT_SYMBOL_GPL(bio_trim);
1735
1736
/*
1737
* create memory pools for biovec's in a bio_set.
1738
* use the global biovec slabs created for general use.
1739
*/
1740
int biovec_init_pool(mempool_t *pool, int pool_entries)
1741
{
1742
struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1743
1744
return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1745
}
1746
1747
/*
1748
* bioset_exit - exit a bioset initialized with bioset_init()
1749
*
1750
* May be called on a zeroed but uninitialized bioset (i.e. allocated with
1751
* kzalloc()).
1752
*/
1753
void bioset_exit(struct bio_set *bs)
1754
{
1755
bio_alloc_cache_destroy(bs);
1756
if (bs->rescue_workqueue)
1757
destroy_workqueue(bs->rescue_workqueue);
1758
bs->rescue_workqueue = NULL;
1759
1760
mempool_exit(&bs->bio_pool);
1761
mempool_exit(&bs->bvec_pool);
1762
1763
if (bs->bio_slab)
1764
bio_put_slab(bs);
1765
bs->bio_slab = NULL;
1766
}
1767
EXPORT_SYMBOL(bioset_exit);
1768
1769
/**
1770
* bioset_init - Initialize a bio_set
1771
* @bs: pool to initialize
1772
* @pool_size: Number of bio and bio_vecs to cache in the mempool
1773
* @front_pad: Number of bytes to allocate in front of the returned bio
1774
* @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1775
* and %BIOSET_NEED_RESCUER
1776
*
1777
* Description:
1778
* Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1779
* to ask for a number of bytes to be allocated in front of the bio.
1780
* Front pad allocation is useful for embedding the bio inside
1781
* another structure, to avoid allocating extra data to go with the bio.
1782
* Note that the bio must be embedded at the END of that structure always,
1783
* or things will break badly.
1784
* If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1785
* for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1786
* If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1787
* to dispatch queued requests when the mempool runs out of space.
1788
*
1789
*/
1790
int bioset_init(struct bio_set *bs,
1791
unsigned int pool_size,
1792
unsigned int front_pad,
1793
int flags)
1794
{
1795
bs->front_pad = front_pad;
1796
if (flags & BIOSET_NEED_BVECS)
1797
bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1798
else
1799
bs->back_pad = 0;
1800
1801
spin_lock_init(&bs->rescue_lock);
1802
bio_list_init(&bs->rescue_list);
1803
INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1804
1805
bs->bio_slab = bio_find_or_create_slab(bs);
1806
if (!bs->bio_slab)
1807
return -ENOMEM;
1808
1809
if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1810
goto bad;
1811
1812
if ((flags & BIOSET_NEED_BVECS) &&
1813
biovec_init_pool(&bs->bvec_pool, pool_size))
1814
goto bad;
1815
1816
if (flags & BIOSET_NEED_RESCUER) {
1817
bs->rescue_workqueue = alloc_workqueue("bioset",
1818
WQ_MEM_RECLAIM, 0);
1819
if (!bs->rescue_workqueue)
1820
goto bad;
1821
}
1822
if (flags & BIOSET_PERCPU_CACHE) {
1823
bs->cache = alloc_percpu(struct bio_alloc_cache);
1824
if (!bs->cache)
1825
goto bad;
1826
cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1827
}
1828
1829
return 0;
1830
bad:
1831
bioset_exit(bs);
1832
return -ENOMEM;
1833
}
1834
EXPORT_SYMBOL(bioset_init);
1835
1836
static int __init init_bio(void)
1837
{
1838
int i;
1839
1840
BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1841
1842
for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1843
struct biovec_slab *bvs = bvec_slabs + i;
1844
1845
bvs->slab = kmem_cache_create(bvs->name,
1846
bvs->nr_vecs * sizeof(struct bio_vec), 0,
1847
SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1848
}
1849
1850
cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1851
bio_cpu_dead);
1852
1853
if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1854
BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1855
panic("bio: can't allocate bios\n");
1856
1857
return 0;
1858
}
1859
subsys_initcall(init_bio);
1860
1861