Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-cgroup.c
49410 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Common Block IO controller cgroup interface
4
*
5
* Based on ideas and code from CFQ, CFS and BFQ:
6
* Copyright (C) 2003 Jens Axboe <[email protected]>
7
*
8
* Copyright (C) 2008 Fabio Checconi <[email protected]>
9
* Paolo Valente <[email protected]>
10
*
11
* Copyright (C) 2009 Vivek Goyal <[email protected]>
12
* Nauman Rafique <[email protected]>
13
*
14
* For policy-specific per-blkcg data:
15
* Copyright (C) 2015 Paolo Valente <[email protected]>
16
* Arianna Avanzini <[email protected]>
17
*/
18
#include <linux/ioprio.h>
19
#include <linux/kdev_t.h>
20
#include <linux/module.h>
21
#include <linux/sched/signal.h>
22
#include <linux/err.h>
23
#include <linux/blkdev.h>
24
#include <linux/backing-dev.h>
25
#include <linux/slab.h>
26
#include <linux/delay.h>
27
#include <linux/atomic.h>
28
#include <linux/ctype.h>
29
#include <linux/resume_user_mode.h>
30
#include <linux/psi.h>
31
#include <linux/part_stat.h>
32
#include "blk.h"
33
#include "blk-cgroup.h"
34
#include "blk-ioprio.h"
35
#include "blk-throttle.h"
36
37
static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39
/*
40
* blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41
* blkcg_pol_register_mutex nests outside of it and synchronizes entire
42
* policy [un]register operations including cgroup file additions /
43
* removals. Putting cgroup file registration outside blkcg_pol_mutex
44
* allows grabbing it from cgroup callbacks.
45
*/
46
static DEFINE_MUTEX(blkcg_pol_register_mutex);
47
static DEFINE_MUTEX(blkcg_pol_mutex);
48
49
struct blkcg blkcg_root;
50
EXPORT_SYMBOL_GPL(blkcg_root);
51
52
struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53
EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55
static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57
static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58
59
bool blkcg_debug_stats = false;
60
61
static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63
#define BLKG_DESTROY_BATCH_SIZE 64
64
65
/*
66
* Lockless lists for tracking IO stats update
67
*
68
* New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69
* There are multiple blkg's (one for each block device) attached to each
70
* blkcg. The rstat code keeps track of which cpu has IO stats updated,
71
* but it doesn't know which blkg has the updated stats. If there are many
72
* block devices in a system, the cost of iterating all the blkg's to flush
73
* out the IO stats can be high. To reduce such overhead, a set of percpu
74
* lockless lists (lhead) per blkcg are used to track the set of recently
75
* updated iostat_cpu's since the last flush. An iostat_cpu will be put
76
* onto the lockless list on the update side [blk_cgroup_bio_start()] if
77
* not there yet and then removed when being flushed [blkcg_rstat_flush()].
78
* References to blkg are gotten and then put back in the process to
79
* protect against blkg removal.
80
*
81
* Return: 0 if successful or -ENOMEM if allocation fails.
82
*/
83
static int init_blkcg_llists(struct blkcg *blkcg)
84
{
85
int cpu;
86
87
blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88
if (!blkcg->lhead)
89
return -ENOMEM;
90
91
for_each_possible_cpu(cpu)
92
init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93
return 0;
94
}
95
96
/**
97
* blkcg_css - find the current css
98
*
99
* Find the css associated with either the kthread or the current task.
100
* This may return a dying css, so it is up to the caller to use tryget logic
101
* to confirm it is alive and well.
102
*/
103
static struct cgroup_subsys_state *blkcg_css(void)
104
{
105
struct cgroup_subsys_state *css;
106
107
css = kthread_blkcg();
108
if (css)
109
return css;
110
return task_css(current, io_cgrp_id);
111
}
112
113
static void blkg_free_workfn(struct work_struct *work)
114
{
115
struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
116
free_work);
117
struct request_queue *q = blkg->q;
118
int i;
119
120
/*
121
* pd_free_fn() can also be called from blkcg_deactivate_policy(),
122
* in order to make sure pd_free_fn() is called in order, the deletion
123
* of the list blkg->q_node is delayed to here from blkg_destroy(), and
124
* blkcg_mutex is used to synchronize blkg_free_workfn() and
125
* blkcg_deactivate_policy().
126
*/
127
mutex_lock(&q->blkcg_mutex);
128
for (i = 0; i < BLKCG_MAX_POLS; i++)
129
if (blkg->pd[i])
130
blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
131
if (blkg->parent)
132
blkg_put(blkg->parent);
133
spin_lock_irq(&q->queue_lock);
134
list_del_init(&blkg->q_node);
135
spin_unlock_irq(&q->queue_lock);
136
mutex_unlock(&q->blkcg_mutex);
137
138
blk_put_queue(q);
139
free_percpu(blkg->iostat_cpu);
140
percpu_ref_exit(&blkg->refcnt);
141
kfree(blkg);
142
}
143
144
/**
145
* blkg_free - free a blkg
146
* @blkg: blkg to free
147
*
148
* Free @blkg which may be partially allocated.
149
*/
150
static void blkg_free(struct blkcg_gq *blkg)
151
{
152
if (!blkg)
153
return;
154
155
/*
156
* Both ->pd_free_fn() and request queue's release handler may
157
* sleep, so free us by scheduling one work func
158
*/
159
INIT_WORK(&blkg->free_work, blkg_free_workfn);
160
schedule_work(&blkg->free_work);
161
}
162
163
static void __blkg_release(struct rcu_head *rcu)
164
{
165
struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
166
struct blkcg *blkcg = blkg->blkcg;
167
int cpu;
168
169
#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
170
WARN_ON(!bio_list_empty(&blkg->async_bios));
171
#endif
172
/*
173
* Flush all the non-empty percpu lockless lists before releasing
174
* us, given these stat belongs to us.
175
*
176
* blkg_stat_lock is for serializing blkg stat update
177
*/
178
for_each_possible_cpu(cpu)
179
__blkcg_rstat_flush(blkcg, cpu);
180
181
/* release the blkcg and parent blkg refs this blkg has been holding */
182
css_put(&blkg->blkcg->css);
183
blkg_free(blkg);
184
}
185
186
/*
187
* A group is RCU protected, but having an rcu lock does not mean that one
188
* can access all the fields of blkg and assume these are valid. For
189
* example, don't try to follow throtl_data and request queue links.
190
*
191
* Having a reference to blkg under an rcu allows accesses to only values
192
* local to groups like group stats and group rate limits.
193
*/
194
static void blkg_release(struct percpu_ref *ref)
195
{
196
struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
197
198
call_rcu(&blkg->rcu_head, __blkg_release);
199
}
200
201
#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
202
static struct workqueue_struct *blkcg_punt_bio_wq;
203
204
static void blkg_async_bio_workfn(struct work_struct *work)
205
{
206
struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
207
async_bio_work);
208
struct bio_list bios = BIO_EMPTY_LIST;
209
struct bio *bio;
210
struct blk_plug plug;
211
bool need_plug = false;
212
213
/* as long as there are pending bios, @blkg can't go away */
214
spin_lock(&blkg->async_bio_lock);
215
bio_list_merge_init(&bios, &blkg->async_bios);
216
spin_unlock(&blkg->async_bio_lock);
217
218
/* start plug only when bio_list contains at least 2 bios */
219
if (bios.head && bios.head->bi_next) {
220
need_plug = true;
221
blk_start_plug(&plug);
222
}
223
while ((bio = bio_list_pop(&bios)))
224
submit_bio(bio);
225
if (need_plug)
226
blk_finish_plug(&plug);
227
}
228
229
/*
230
* When a shared kthread issues a bio for a cgroup, doing so synchronously can
231
* lead to priority inversions as the kthread can be trapped waiting for that
232
* cgroup. Use this helper instead of submit_bio to punt the actual issuing to
233
* a dedicated per-blkcg work item to avoid such priority inversions.
234
*/
235
void blkcg_punt_bio_submit(struct bio *bio)
236
{
237
struct blkcg_gq *blkg = bio->bi_blkg;
238
239
if (blkg->parent) {
240
spin_lock(&blkg->async_bio_lock);
241
bio_list_add(&blkg->async_bios, bio);
242
spin_unlock(&blkg->async_bio_lock);
243
queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
244
} else {
245
/* never bounce for the root cgroup */
246
submit_bio(bio);
247
}
248
}
249
EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
250
251
static int __init blkcg_punt_bio_init(void)
252
{
253
blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
254
WQ_MEM_RECLAIM | WQ_FREEZABLE |
255
WQ_UNBOUND | WQ_SYSFS, 0);
256
if (!blkcg_punt_bio_wq)
257
return -ENOMEM;
258
return 0;
259
}
260
subsys_initcall(blkcg_punt_bio_init);
261
#endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
262
263
/**
264
* bio_blkcg_css - return the blkcg CSS associated with a bio
265
* @bio: target bio
266
*
267
* This returns the CSS for the blkcg associated with a bio, or %NULL if not
268
* associated. Callers are expected to either handle %NULL or know association
269
* has been done prior to calling this.
270
*/
271
struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
272
{
273
if (!bio || !bio->bi_blkg)
274
return NULL;
275
return &bio->bi_blkg->blkcg->css;
276
}
277
EXPORT_SYMBOL_GPL(bio_blkcg_css);
278
279
/**
280
* blkcg_parent - get the parent of a blkcg
281
* @blkcg: blkcg of interest
282
*
283
* Return the parent blkcg of @blkcg. Can be called anytime.
284
*/
285
static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
286
{
287
return css_to_blkcg(blkcg->css.parent);
288
}
289
290
/**
291
* blkg_alloc - allocate a blkg
292
* @blkcg: block cgroup the new blkg is associated with
293
* @disk: gendisk the new blkg is associated with
294
* @gfp_mask: allocation mask to use
295
*
296
* Allocate a new blkg associating @blkcg and @disk.
297
*/
298
static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
299
gfp_t gfp_mask)
300
{
301
struct blkcg_gq *blkg;
302
int i, cpu;
303
304
/* alloc and init base part */
305
blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
306
if (!blkg)
307
return NULL;
308
if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
309
goto out_free_blkg;
310
blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
311
if (!blkg->iostat_cpu)
312
goto out_exit_refcnt;
313
if (!blk_get_queue(disk->queue))
314
goto out_free_iostat;
315
316
blkg->q = disk->queue;
317
INIT_LIST_HEAD(&blkg->q_node);
318
blkg->blkcg = blkcg;
319
blkg->iostat.blkg = blkg;
320
#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
321
spin_lock_init(&blkg->async_bio_lock);
322
bio_list_init(&blkg->async_bios);
323
INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
324
#endif
325
326
u64_stats_init(&blkg->iostat.sync);
327
for_each_possible_cpu(cpu) {
328
u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
329
per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
330
}
331
332
for (i = 0; i < BLKCG_MAX_POLS; i++) {
333
struct blkcg_policy *pol = blkcg_policy[i];
334
struct blkg_policy_data *pd;
335
336
if (!blkcg_policy_enabled(disk->queue, pol))
337
continue;
338
339
/* alloc per-policy data and attach it to blkg */
340
pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
341
if (!pd)
342
goto out_free_pds;
343
blkg->pd[i] = pd;
344
pd->blkg = blkg;
345
pd->plid = i;
346
pd->online = false;
347
}
348
349
return blkg;
350
351
out_free_pds:
352
while (--i >= 0)
353
if (blkg->pd[i])
354
blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
355
blk_put_queue(disk->queue);
356
out_free_iostat:
357
free_percpu(blkg->iostat_cpu);
358
out_exit_refcnt:
359
percpu_ref_exit(&blkg->refcnt);
360
out_free_blkg:
361
kfree(blkg);
362
return NULL;
363
}
364
365
/*
366
* If @new_blkg is %NULL, this function tries to allocate a new one as
367
* necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
368
*/
369
static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
370
struct blkcg_gq *new_blkg)
371
{
372
struct blkcg_gq *blkg;
373
int i, ret;
374
375
lockdep_assert_held(&disk->queue->queue_lock);
376
377
/* request_queue is dying, do not create/recreate a blkg */
378
if (blk_queue_dying(disk->queue)) {
379
ret = -ENODEV;
380
goto err_free_blkg;
381
}
382
383
/* blkg holds a reference to blkcg */
384
if (!css_tryget_online(&blkcg->css)) {
385
ret = -ENODEV;
386
goto err_free_blkg;
387
}
388
389
/* allocate */
390
if (!new_blkg) {
391
new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT);
392
if (unlikely(!new_blkg)) {
393
ret = -ENOMEM;
394
goto err_put_css;
395
}
396
}
397
blkg = new_blkg;
398
399
/* link parent */
400
if (blkcg_parent(blkcg)) {
401
blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
402
if (WARN_ON_ONCE(!blkg->parent)) {
403
ret = -ENODEV;
404
goto err_put_css;
405
}
406
blkg_get(blkg->parent);
407
}
408
409
/* invoke per-policy init */
410
for (i = 0; i < BLKCG_MAX_POLS; i++) {
411
struct blkcg_policy *pol = blkcg_policy[i];
412
413
if (blkg->pd[i] && pol->pd_init_fn)
414
pol->pd_init_fn(blkg->pd[i]);
415
}
416
417
/* insert */
418
spin_lock(&blkcg->lock);
419
ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
420
if (likely(!ret)) {
421
hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
422
list_add(&blkg->q_node, &disk->queue->blkg_list);
423
424
for (i = 0; i < BLKCG_MAX_POLS; i++) {
425
struct blkcg_policy *pol = blkcg_policy[i];
426
427
if (blkg->pd[i]) {
428
if (pol->pd_online_fn)
429
pol->pd_online_fn(blkg->pd[i]);
430
blkg->pd[i]->online = true;
431
}
432
}
433
}
434
blkg->online = true;
435
spin_unlock(&blkcg->lock);
436
437
if (!ret)
438
return blkg;
439
440
/* @blkg failed fully initialized, use the usual release path */
441
blkg_put(blkg);
442
return ERR_PTR(ret);
443
444
err_put_css:
445
css_put(&blkcg->css);
446
err_free_blkg:
447
if (new_blkg)
448
blkg_free(new_blkg);
449
return ERR_PTR(ret);
450
}
451
452
/**
453
* blkg_lookup_create - lookup blkg, try to create one if not there
454
* @blkcg: blkcg of interest
455
* @disk: gendisk of interest
456
*
457
* Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
458
* create one. blkg creation is performed recursively from blkcg_root such
459
* that all non-root blkg's have access to the parent blkg. This function
460
* should be called under RCU read lock and takes @disk->queue->queue_lock.
461
*
462
* Returns the blkg or the closest blkg if blkg_create() fails as it walks
463
* down from root.
464
*/
465
static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
466
struct gendisk *disk)
467
{
468
struct request_queue *q = disk->queue;
469
struct blkcg_gq *blkg;
470
unsigned long flags;
471
472
WARN_ON_ONCE(!rcu_read_lock_held());
473
474
blkg = blkg_lookup(blkcg, q);
475
if (blkg)
476
return blkg;
477
478
spin_lock_irqsave(&q->queue_lock, flags);
479
blkg = blkg_lookup(blkcg, q);
480
if (blkg) {
481
if (blkcg != &blkcg_root &&
482
blkg != rcu_dereference(blkcg->blkg_hint))
483
rcu_assign_pointer(blkcg->blkg_hint, blkg);
484
goto found;
485
}
486
487
/*
488
* Create blkgs walking down from blkcg_root to @blkcg, so that all
489
* non-root blkgs have access to their parents. Returns the closest
490
* blkg to the intended blkg should blkg_create() fail.
491
*/
492
while (true) {
493
struct blkcg *pos = blkcg;
494
struct blkcg *parent = blkcg_parent(blkcg);
495
struct blkcg_gq *ret_blkg = q->root_blkg;
496
497
while (parent) {
498
blkg = blkg_lookup(parent, q);
499
if (blkg) {
500
/* remember closest blkg */
501
ret_blkg = blkg;
502
break;
503
}
504
pos = parent;
505
parent = blkcg_parent(parent);
506
}
507
508
blkg = blkg_create(pos, disk, NULL);
509
if (IS_ERR(blkg)) {
510
blkg = ret_blkg;
511
break;
512
}
513
if (pos == blkcg)
514
break;
515
}
516
517
found:
518
spin_unlock_irqrestore(&q->queue_lock, flags);
519
return blkg;
520
}
521
522
static void blkg_destroy(struct blkcg_gq *blkg)
523
{
524
struct blkcg *blkcg = blkg->blkcg;
525
int i;
526
527
lockdep_assert_held(&blkg->q->queue_lock);
528
lockdep_assert_held(&blkcg->lock);
529
530
/*
531
* blkg stays on the queue list until blkg_free_workfn(), see details in
532
* blkg_free_workfn(), hence this function can be called from
533
* blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
534
* blkg_free_workfn().
535
*/
536
if (hlist_unhashed(&blkg->blkcg_node))
537
return;
538
539
for (i = 0; i < BLKCG_MAX_POLS; i++) {
540
struct blkcg_policy *pol = blkcg_policy[i];
541
542
if (blkg->pd[i] && blkg->pd[i]->online) {
543
blkg->pd[i]->online = false;
544
if (pol->pd_offline_fn)
545
pol->pd_offline_fn(blkg->pd[i]);
546
}
547
}
548
549
blkg->online = false;
550
551
radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
552
hlist_del_init_rcu(&blkg->blkcg_node);
553
554
/*
555
* Both setting lookup hint to and clearing it from @blkg are done
556
* under queue_lock. If it's not pointing to @blkg now, it never
557
* will. Hint assignment itself can race safely.
558
*/
559
if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
560
rcu_assign_pointer(blkcg->blkg_hint, NULL);
561
562
/*
563
* Put the reference taken at the time of creation so that when all
564
* queues are gone, group can be destroyed.
565
*/
566
percpu_ref_kill(&blkg->refcnt);
567
}
568
569
static void blkg_destroy_all(struct gendisk *disk)
570
{
571
struct request_queue *q = disk->queue;
572
struct blkcg_gq *blkg;
573
int count = BLKG_DESTROY_BATCH_SIZE;
574
int i;
575
576
restart:
577
spin_lock_irq(&q->queue_lock);
578
list_for_each_entry(blkg, &q->blkg_list, q_node) {
579
struct blkcg *blkcg = blkg->blkcg;
580
581
if (hlist_unhashed(&blkg->blkcg_node))
582
continue;
583
584
spin_lock(&blkcg->lock);
585
blkg_destroy(blkg);
586
spin_unlock(&blkcg->lock);
587
588
/*
589
* in order to avoid holding the spin lock for too long, release
590
* it when a batch of blkgs are destroyed.
591
*/
592
if (!(--count)) {
593
count = BLKG_DESTROY_BATCH_SIZE;
594
spin_unlock_irq(&q->queue_lock);
595
cond_resched();
596
goto restart;
597
}
598
}
599
600
/*
601
* Mark policy deactivated since policy offline has been done, and
602
* the free is scheduled, so future blkcg_deactivate_policy() can
603
* be bypassed
604
*/
605
for (i = 0; i < BLKCG_MAX_POLS; i++) {
606
struct blkcg_policy *pol = blkcg_policy[i];
607
608
if (pol)
609
__clear_bit(pol->plid, q->blkcg_pols);
610
}
611
612
q->root_blkg = NULL;
613
spin_unlock_irq(&q->queue_lock);
614
}
615
616
static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
617
{
618
int i;
619
620
for (i = 0; i < BLKG_IOSTAT_NR; i++) {
621
dst->bytes[i] = src->bytes[i];
622
dst->ios[i] = src->ios[i];
623
}
624
}
625
626
static void __blkg_clear_stat(struct blkg_iostat_set *bis)
627
{
628
struct blkg_iostat cur = {0};
629
unsigned long flags;
630
631
flags = u64_stats_update_begin_irqsave(&bis->sync);
632
blkg_iostat_set(&bis->cur, &cur);
633
blkg_iostat_set(&bis->last, &cur);
634
u64_stats_update_end_irqrestore(&bis->sync, flags);
635
}
636
637
static void blkg_clear_stat(struct blkcg_gq *blkg)
638
{
639
int cpu;
640
641
for_each_possible_cpu(cpu) {
642
struct blkg_iostat_set *s = per_cpu_ptr(blkg->iostat_cpu, cpu);
643
644
__blkg_clear_stat(s);
645
}
646
__blkg_clear_stat(&blkg->iostat);
647
}
648
649
static int blkcg_reset_stats(struct cgroup_subsys_state *css,
650
struct cftype *cftype, u64 val)
651
{
652
struct blkcg *blkcg = css_to_blkcg(css);
653
struct blkcg_gq *blkg;
654
int i;
655
656
pr_info_once("blkio.%s is deprecated\n", cftype->name);
657
mutex_lock(&blkcg_pol_mutex);
658
spin_lock_irq(&blkcg->lock);
659
660
/*
661
* Note that stat reset is racy - it doesn't synchronize against
662
* stat updates. This is a debug feature which shouldn't exist
663
* anyway. If you get hit by a race, retry.
664
*/
665
hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
666
blkg_clear_stat(blkg);
667
for (i = 0; i < BLKCG_MAX_POLS; i++) {
668
struct blkcg_policy *pol = blkcg_policy[i];
669
670
if (blkg->pd[i] && pol->pd_reset_stats_fn)
671
pol->pd_reset_stats_fn(blkg->pd[i]);
672
}
673
}
674
675
spin_unlock_irq(&blkcg->lock);
676
mutex_unlock(&blkcg_pol_mutex);
677
return 0;
678
}
679
680
const char *blkg_dev_name(struct blkcg_gq *blkg)
681
{
682
if (!blkg->q->disk)
683
return NULL;
684
return bdi_dev_name(blkg->q->disk->bdi);
685
}
686
687
/**
688
* blkcg_print_blkgs - helper for printing per-blkg data
689
* @sf: seq_file to print to
690
* @blkcg: blkcg of interest
691
* @prfill: fill function to print out a blkg
692
* @pol: policy in question
693
* @data: data to be passed to @prfill
694
* @show_total: to print out sum of prfill return values or not
695
*
696
* This function invokes @prfill on each blkg of @blkcg if pd for the
697
* policy specified by @pol exists. @prfill is invoked with @sf, the
698
* policy data and @data and the matching queue lock held. If @show_total
699
* is %true, the sum of the return values from @prfill is printed with
700
* "Total" label at the end.
701
*
702
* This is to be used to construct print functions for
703
* cftype->read_seq_string method.
704
*/
705
void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
706
u64 (*prfill)(struct seq_file *,
707
struct blkg_policy_data *, int),
708
const struct blkcg_policy *pol, int data,
709
bool show_total)
710
{
711
struct blkcg_gq *blkg;
712
u64 total = 0;
713
714
rcu_read_lock();
715
hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
716
spin_lock_irq(&blkg->q->queue_lock);
717
if (blkcg_policy_enabled(blkg->q, pol))
718
total += prfill(sf, blkg->pd[pol->plid], data);
719
spin_unlock_irq(&blkg->q->queue_lock);
720
}
721
rcu_read_unlock();
722
723
if (show_total)
724
seq_printf(sf, "Total %llu\n", (unsigned long long)total);
725
}
726
EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
727
728
/**
729
* __blkg_prfill_u64 - prfill helper for a single u64 value
730
* @sf: seq_file to print to
731
* @pd: policy private data of interest
732
* @v: value to print
733
*
734
* Print @v to @sf for the device associated with @pd.
735
*/
736
u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
737
{
738
const char *dname = blkg_dev_name(pd->blkg);
739
740
if (!dname)
741
return 0;
742
743
seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
744
return v;
745
}
746
EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
747
748
/**
749
* blkg_conf_init - initialize a blkg_conf_ctx
750
* @ctx: blkg_conf_ctx to initialize
751
* @input: input string
752
*
753
* Initialize @ctx which can be used to parse blkg config input string @input.
754
* Once initialized, @ctx can be used with blkg_conf_open_bdev() and
755
* blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
756
*/
757
void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
758
{
759
*ctx = (struct blkg_conf_ctx){ .input = input };
760
}
761
EXPORT_SYMBOL_GPL(blkg_conf_init);
762
763
/**
764
* blkg_conf_open_bdev - parse and open bdev for per-blkg config update
765
* @ctx: blkg_conf_ctx initialized with blkg_conf_init()
766
*
767
* Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
768
* @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
769
* set to point past the device node prefix.
770
*
771
* This function may be called multiple times on @ctx and the extra calls become
772
* NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
773
* explicitly if bdev access is needed without resolving the blkcg / policy part
774
* of @ctx->input. Returns -errno on error.
775
*/
776
int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
777
{
778
char *input = ctx->input;
779
unsigned int major, minor;
780
struct block_device *bdev;
781
int key_len;
782
783
if (ctx->bdev)
784
return 0;
785
786
if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
787
return -EINVAL;
788
789
input += key_len;
790
if (!isspace(*input))
791
return -EINVAL;
792
input = skip_spaces(input);
793
794
bdev = blkdev_get_no_open(MKDEV(major, minor), false);
795
if (!bdev)
796
return -ENODEV;
797
if (bdev_is_partition(bdev)) {
798
blkdev_put_no_open(bdev);
799
return -ENODEV;
800
}
801
802
mutex_lock(&bdev->bd_queue->rq_qos_mutex);
803
if (!disk_live(bdev->bd_disk)) {
804
blkdev_put_no_open(bdev);
805
mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
806
return -ENODEV;
807
}
808
809
ctx->body = input;
810
ctx->bdev = bdev;
811
return 0;
812
}
813
/*
814
* Similar to blkg_conf_open_bdev, but additionally freezes the queue,
815
* ensures the correct locking order between freeze queue and q->rq_qos_mutex.
816
*
817
* This function returns negative error on failure. On success it returns
818
* memflags which must be saved and later passed to blkg_conf_exit_frozen
819
* for restoring the memalloc scope.
820
*/
821
unsigned long __must_check blkg_conf_open_bdev_frozen(struct blkg_conf_ctx *ctx)
822
{
823
int ret;
824
unsigned long memflags;
825
826
if (ctx->bdev)
827
return -EINVAL;
828
829
ret = blkg_conf_open_bdev(ctx);
830
if (ret < 0)
831
return ret;
832
/*
833
* At this point, we haven’t started protecting anything related to QoS,
834
* so we release q->rq_qos_mutex here, which was first acquired in blkg_
835
* conf_open_bdev. Later, we re-acquire q->rq_qos_mutex after freezing
836
* the queue to maintain the correct locking order.
837
*/
838
mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
839
840
memflags = blk_mq_freeze_queue(ctx->bdev->bd_queue);
841
mutex_lock(&ctx->bdev->bd_queue->rq_qos_mutex);
842
843
return memflags;
844
}
845
846
/**
847
* blkg_conf_prep - parse and prepare for per-blkg config update
848
* @blkcg: target block cgroup
849
* @pol: target policy
850
* @ctx: blkg_conf_ctx initialized with blkg_conf_init()
851
*
852
* Parse per-blkg config update from @ctx->input and initialize @ctx
853
* accordingly. On success, @ctx->body points to the part of @ctx->input
854
* following MAJ:MIN, @ctx->bdev points to the target block device and
855
* @ctx->blkg to the blkg being configured.
856
*
857
* blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
858
* function returns with queue lock held and must be followed by
859
* blkg_conf_exit().
860
*/
861
int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
862
struct blkg_conf_ctx *ctx)
863
__acquires(&bdev->bd_queue->queue_lock)
864
{
865
struct gendisk *disk;
866
struct request_queue *q;
867
struct blkcg_gq *blkg;
868
int ret;
869
870
ret = blkg_conf_open_bdev(ctx);
871
if (ret)
872
return ret;
873
874
disk = ctx->bdev->bd_disk;
875
q = disk->queue;
876
877
/* Prevent concurrent with blkcg_deactivate_policy() */
878
mutex_lock(&q->blkcg_mutex);
879
spin_lock_irq(&q->queue_lock);
880
881
if (!blkcg_policy_enabled(q, pol)) {
882
ret = -EOPNOTSUPP;
883
goto fail_unlock;
884
}
885
886
blkg = blkg_lookup(blkcg, q);
887
if (blkg)
888
goto success;
889
890
/*
891
* Create blkgs walking down from blkcg_root to @blkcg, so that all
892
* non-root blkgs have access to their parents.
893
*/
894
while (true) {
895
struct blkcg *pos = blkcg;
896
struct blkcg *parent;
897
struct blkcg_gq *new_blkg;
898
899
parent = blkcg_parent(blkcg);
900
while (parent && !blkg_lookup(parent, q)) {
901
pos = parent;
902
parent = blkcg_parent(parent);
903
}
904
905
/* Drop locks to do new blkg allocation with GFP_KERNEL. */
906
spin_unlock_irq(&q->queue_lock);
907
908
new_blkg = blkg_alloc(pos, disk, GFP_NOIO);
909
if (unlikely(!new_blkg)) {
910
ret = -ENOMEM;
911
goto fail_exit;
912
}
913
914
if (radix_tree_preload(GFP_KERNEL)) {
915
blkg_free(new_blkg);
916
ret = -ENOMEM;
917
goto fail_exit;
918
}
919
920
spin_lock_irq(&q->queue_lock);
921
922
if (!blkcg_policy_enabled(q, pol)) {
923
blkg_free(new_blkg);
924
ret = -EOPNOTSUPP;
925
goto fail_preloaded;
926
}
927
928
blkg = blkg_lookup(pos, q);
929
if (blkg) {
930
blkg_free(new_blkg);
931
} else {
932
blkg = blkg_create(pos, disk, new_blkg);
933
if (IS_ERR(blkg)) {
934
ret = PTR_ERR(blkg);
935
goto fail_preloaded;
936
}
937
}
938
939
radix_tree_preload_end();
940
941
if (pos == blkcg)
942
goto success;
943
}
944
success:
945
mutex_unlock(&q->blkcg_mutex);
946
ctx->blkg = blkg;
947
return 0;
948
949
fail_preloaded:
950
radix_tree_preload_end();
951
fail_unlock:
952
spin_unlock_irq(&q->queue_lock);
953
fail_exit:
954
mutex_unlock(&q->blkcg_mutex);
955
/*
956
* If queue was bypassing, we should retry. Do so after a
957
* short msleep(). It isn't strictly necessary but queue
958
* can be bypassing for some time and it's always nice to
959
* avoid busy looping.
960
*/
961
if (ret == -EBUSY) {
962
msleep(10);
963
ret = restart_syscall();
964
}
965
return ret;
966
}
967
EXPORT_SYMBOL_GPL(blkg_conf_prep);
968
969
/**
970
* blkg_conf_exit - clean up per-blkg config update
971
* @ctx: blkg_conf_ctx initialized with blkg_conf_init()
972
*
973
* Clean up after per-blkg config update. This function must be called on all
974
* blkg_conf_ctx's initialized with blkg_conf_init().
975
*/
976
void blkg_conf_exit(struct blkg_conf_ctx *ctx)
977
__releases(&ctx->bdev->bd_queue->queue_lock)
978
__releases(&ctx->bdev->bd_queue->rq_qos_mutex)
979
{
980
if (ctx->blkg) {
981
spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
982
ctx->blkg = NULL;
983
}
984
985
if (ctx->bdev) {
986
mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
987
blkdev_put_no_open(ctx->bdev);
988
ctx->body = NULL;
989
ctx->bdev = NULL;
990
}
991
}
992
EXPORT_SYMBOL_GPL(blkg_conf_exit);
993
994
/*
995
* Similar to blkg_conf_exit, but also unfreezes the queue. Should be used
996
* when blkg_conf_open_bdev_frozen is used to open the bdev.
997
*/
998
void blkg_conf_exit_frozen(struct blkg_conf_ctx *ctx, unsigned long memflags)
999
{
1000
if (ctx->bdev) {
1001
struct request_queue *q = ctx->bdev->bd_queue;
1002
1003
blkg_conf_exit(ctx);
1004
blk_mq_unfreeze_queue(q, memflags);
1005
}
1006
}
1007
1008
static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
1009
{
1010
int i;
1011
1012
for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1013
dst->bytes[i] += src->bytes[i];
1014
dst->ios[i] += src->ios[i];
1015
}
1016
}
1017
1018
static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
1019
{
1020
int i;
1021
1022
for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1023
dst->bytes[i] -= src->bytes[i];
1024
dst->ios[i] -= src->ios[i];
1025
}
1026
}
1027
1028
static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
1029
struct blkg_iostat *last)
1030
{
1031
struct blkg_iostat delta;
1032
unsigned long flags;
1033
1034
/* propagate percpu delta to global */
1035
flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1036
blkg_iostat_set(&delta, cur);
1037
blkg_iostat_sub(&delta, last);
1038
blkg_iostat_add(&blkg->iostat.cur, &delta);
1039
blkg_iostat_add(last, &delta);
1040
u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1041
}
1042
1043
static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
1044
{
1045
struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1046
struct llist_node *lnode;
1047
struct blkg_iostat_set *bisc, *next_bisc;
1048
unsigned long flags;
1049
1050
rcu_read_lock();
1051
1052
lnode = llist_del_all(lhead);
1053
if (!lnode)
1054
goto out;
1055
1056
/*
1057
* For covering concurrent parent blkg update from blkg_release().
1058
*
1059
* When flushing from cgroup, the subsystem rstat lock is always held,
1060
* so this lock won't cause contention most of time.
1061
*/
1062
raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1063
1064
/*
1065
* Iterate only the iostat_cpu's queued in the lockless list.
1066
*/
1067
llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1068
struct blkcg_gq *blkg = bisc->blkg;
1069
struct blkcg_gq *parent = blkg->parent;
1070
struct blkg_iostat cur;
1071
unsigned int seq;
1072
1073
/*
1074
* Order assignment of `next_bisc` from `bisc->lnode.next` in
1075
* llist_for_each_entry_safe and clearing `bisc->lqueued` for
1076
* avoiding to assign `next_bisc` with new next pointer added
1077
* in blk_cgroup_bio_start() in case of re-ordering.
1078
*
1079
* The pair barrier is implied in llist_add() in blk_cgroup_bio_start().
1080
*/
1081
smp_mb();
1082
1083
WRITE_ONCE(bisc->lqueued, false);
1084
if (bisc == &blkg->iostat)
1085
goto propagate_up; /* propagate up to parent only */
1086
1087
/* fetch the current per-cpu values */
1088
do {
1089
seq = u64_stats_fetch_begin(&bisc->sync);
1090
blkg_iostat_set(&cur, &bisc->cur);
1091
} while (u64_stats_fetch_retry(&bisc->sync, seq));
1092
1093
blkcg_iostat_update(blkg, &cur, &bisc->last);
1094
1095
propagate_up:
1096
/* propagate global delta to parent (unless that's root) */
1097
if (parent && parent->parent) {
1098
blkcg_iostat_update(parent, &blkg->iostat.cur,
1099
&blkg->iostat.last);
1100
/*
1101
* Queue parent->iostat to its blkcg's lockless
1102
* list to propagate up to the grandparent if the
1103
* iostat hasn't been queued yet.
1104
*/
1105
if (!parent->iostat.lqueued) {
1106
struct llist_head *plhead;
1107
1108
plhead = per_cpu_ptr(parent->blkcg->lhead, cpu);
1109
llist_add(&parent->iostat.lnode, plhead);
1110
parent->iostat.lqueued = true;
1111
}
1112
}
1113
}
1114
raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1115
out:
1116
rcu_read_unlock();
1117
}
1118
1119
static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1120
{
1121
/* Root-level stats are sourced from system-wide IO stats */
1122
if (cgroup_parent(css->cgroup))
1123
__blkcg_rstat_flush(css_to_blkcg(css), cpu);
1124
}
1125
1126
/*
1127
* We source root cgroup stats from the system-wide stats to avoid
1128
* tracking the same information twice and incurring overhead when no
1129
* cgroups are defined. For that reason, css_rstat_flush in
1130
* blkcg_print_stat does not actually fill out the iostat in the root
1131
* cgroup's blkcg_gq.
1132
*
1133
* However, we would like to re-use the printing code between the root and
1134
* non-root cgroups to the extent possible. For that reason, we simulate
1135
* flushing the root cgroup's stats by explicitly filling in the iostat
1136
* with disk level statistics.
1137
*/
1138
static void blkcg_fill_root_iostats(void)
1139
{
1140
struct class_dev_iter iter;
1141
struct device *dev;
1142
1143
class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1144
while ((dev = class_dev_iter_next(&iter))) {
1145
struct block_device *bdev = dev_to_bdev(dev);
1146
struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1147
struct blkg_iostat tmp;
1148
int cpu;
1149
unsigned long flags;
1150
1151
memset(&tmp, 0, sizeof(tmp));
1152
for_each_possible_cpu(cpu) {
1153
struct disk_stats *cpu_dkstats;
1154
1155
cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1156
tmp.ios[BLKG_IOSTAT_READ] +=
1157
cpu_dkstats->ios[STAT_READ];
1158
tmp.ios[BLKG_IOSTAT_WRITE] +=
1159
cpu_dkstats->ios[STAT_WRITE];
1160
tmp.ios[BLKG_IOSTAT_DISCARD] +=
1161
cpu_dkstats->ios[STAT_DISCARD];
1162
// convert sectors to bytes
1163
tmp.bytes[BLKG_IOSTAT_READ] +=
1164
cpu_dkstats->sectors[STAT_READ] << 9;
1165
tmp.bytes[BLKG_IOSTAT_WRITE] +=
1166
cpu_dkstats->sectors[STAT_WRITE] << 9;
1167
tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1168
cpu_dkstats->sectors[STAT_DISCARD] << 9;
1169
}
1170
1171
flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1172
blkg_iostat_set(&blkg->iostat.cur, &tmp);
1173
u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1174
}
1175
class_dev_iter_exit(&iter);
1176
}
1177
1178
static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1179
{
1180
struct blkg_iostat_set *bis = &blkg->iostat;
1181
u64 rbytes, wbytes, rios, wios, dbytes, dios;
1182
const char *dname;
1183
unsigned seq;
1184
int i;
1185
1186
if (!blkg->online)
1187
return;
1188
1189
dname = blkg_dev_name(blkg);
1190
if (!dname)
1191
return;
1192
1193
seq_printf(s, "%s ", dname);
1194
1195
do {
1196
seq = u64_stats_fetch_begin(&bis->sync);
1197
1198
rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1199
wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1200
dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1201
rios = bis->cur.ios[BLKG_IOSTAT_READ];
1202
wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1203
dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1204
} while (u64_stats_fetch_retry(&bis->sync, seq));
1205
1206
if (rbytes || wbytes || rios || wios) {
1207
seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1208
rbytes, wbytes, rios, wios,
1209
dbytes, dios);
1210
}
1211
1212
if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1213
seq_printf(s, " use_delay=%d delay_nsec=%llu",
1214
atomic_read(&blkg->use_delay),
1215
atomic64_read(&blkg->delay_nsec));
1216
}
1217
1218
for (i = 0; i < BLKCG_MAX_POLS; i++) {
1219
struct blkcg_policy *pol = blkcg_policy[i];
1220
1221
if (!blkg->pd[i] || !pol->pd_stat_fn)
1222
continue;
1223
1224
pol->pd_stat_fn(blkg->pd[i], s);
1225
}
1226
1227
seq_puts(s, "\n");
1228
}
1229
1230
static int blkcg_print_stat(struct seq_file *sf, void *v)
1231
{
1232
struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1233
struct blkcg_gq *blkg;
1234
1235
if (!seq_css(sf)->parent)
1236
blkcg_fill_root_iostats();
1237
else
1238
css_rstat_flush(&blkcg->css);
1239
1240
rcu_read_lock();
1241
hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1242
spin_lock_irq(&blkg->q->queue_lock);
1243
blkcg_print_one_stat(blkg, sf);
1244
spin_unlock_irq(&blkg->q->queue_lock);
1245
}
1246
rcu_read_unlock();
1247
return 0;
1248
}
1249
1250
static struct cftype blkcg_files[] = {
1251
{
1252
.name = "stat",
1253
.seq_show = blkcg_print_stat,
1254
},
1255
{ } /* terminate */
1256
};
1257
1258
static struct cftype blkcg_legacy_files[] = {
1259
{
1260
.name = "reset_stats",
1261
.write_u64 = blkcg_reset_stats,
1262
},
1263
{ } /* terminate */
1264
};
1265
1266
#ifdef CONFIG_CGROUP_WRITEBACK
1267
struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1268
{
1269
return &css_to_blkcg(css)->cgwb_list;
1270
}
1271
#endif
1272
1273
/*
1274
* blkcg destruction is a three-stage process.
1275
*
1276
* 1. Destruction starts. The blkcg_css_offline() callback is invoked
1277
* which offlines writeback. Here we tie the next stage of blkg destruction
1278
* to the completion of writeback associated with the blkcg. This lets us
1279
* avoid punting potentially large amounts of outstanding writeback to root
1280
* while maintaining any ongoing policies. The next stage is triggered when
1281
* the nr_cgwbs count goes to zero.
1282
*
1283
* 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1284
* and handles the destruction of blkgs. Here the css reference held by
1285
* the blkg is put back eventually allowing blkcg_css_free() to be called.
1286
* This work may occur in cgwb_release_workfn() on the cgwb_release
1287
* workqueue. Any submitted ios that fail to get the blkg ref will be
1288
* punted to the root_blkg.
1289
*
1290
* 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1291
* This finally frees the blkcg.
1292
*/
1293
1294
/**
1295
* blkcg_destroy_blkgs - responsible for shooting down blkgs
1296
* @blkcg: blkcg of interest
1297
*
1298
* blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1299
* is nested inside q lock, this function performs reverse double lock dancing.
1300
* Destroying the blkgs releases the reference held on the blkcg's css allowing
1301
* blkcg_css_free to eventually be called.
1302
*
1303
* This is the blkcg counterpart of ioc_release_fn().
1304
*/
1305
static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1306
{
1307
might_sleep();
1308
1309
spin_lock_irq(&blkcg->lock);
1310
1311
while (!hlist_empty(&blkcg->blkg_list)) {
1312
struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1313
struct blkcg_gq, blkcg_node);
1314
struct request_queue *q = blkg->q;
1315
1316
if (need_resched() || !spin_trylock(&q->queue_lock)) {
1317
/*
1318
* Given that the system can accumulate a huge number
1319
* of blkgs in pathological cases, check to see if we
1320
* need to rescheduling to avoid softlockup.
1321
*/
1322
spin_unlock_irq(&blkcg->lock);
1323
cond_resched();
1324
spin_lock_irq(&blkcg->lock);
1325
continue;
1326
}
1327
1328
blkg_destroy(blkg);
1329
spin_unlock(&q->queue_lock);
1330
}
1331
1332
spin_unlock_irq(&blkcg->lock);
1333
}
1334
1335
/**
1336
* blkcg_pin_online - pin online state
1337
* @blkcg_css: blkcg of interest
1338
*
1339
* While pinned, a blkcg is kept online. This is primarily used to
1340
* impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1341
* while an associated cgwb is still active.
1342
*/
1343
void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1344
{
1345
refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1346
}
1347
1348
/**
1349
* blkcg_unpin_online - unpin online state
1350
* @blkcg_css: blkcg of interest
1351
*
1352
* This is primarily used to impedance-match blkg and cgwb lifetimes so
1353
* that blkg doesn't go offline while an associated cgwb is still active.
1354
* When this count goes to zero, all active cgwbs have finished so the
1355
* blkcg can continue destruction by calling blkcg_destroy_blkgs().
1356
*/
1357
void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1358
{
1359
struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1360
1361
do {
1362
struct blkcg *parent;
1363
1364
if (!refcount_dec_and_test(&blkcg->online_pin))
1365
break;
1366
1367
parent = blkcg_parent(blkcg);
1368
blkcg_destroy_blkgs(blkcg);
1369
blkcg = parent;
1370
} while (blkcg);
1371
}
1372
1373
/**
1374
* blkcg_css_offline - cgroup css_offline callback
1375
* @css: css of interest
1376
*
1377
* This function is called when @css is about to go away. Here the cgwbs are
1378
* offlined first and only once writeback associated with the blkcg has
1379
* finished do we start step 2 (see above).
1380
*/
1381
static void blkcg_css_offline(struct cgroup_subsys_state *css)
1382
{
1383
/* this prevents anyone from attaching or migrating to this blkcg */
1384
wb_blkcg_offline(css);
1385
1386
/* put the base online pin allowing step 2 to be triggered */
1387
blkcg_unpin_online(css);
1388
}
1389
1390
static void blkcg_css_free(struct cgroup_subsys_state *css)
1391
{
1392
struct blkcg *blkcg = css_to_blkcg(css);
1393
int i;
1394
1395
mutex_lock(&blkcg_pol_mutex);
1396
1397
list_del(&blkcg->all_blkcgs_node);
1398
1399
for (i = 0; i < BLKCG_MAX_POLS; i++)
1400
if (blkcg->cpd[i])
1401
blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1402
1403
mutex_unlock(&blkcg_pol_mutex);
1404
1405
free_percpu(blkcg->lhead);
1406
kfree(blkcg);
1407
}
1408
1409
static struct cgroup_subsys_state *
1410
blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1411
{
1412
struct blkcg *blkcg;
1413
int i;
1414
1415
mutex_lock(&blkcg_pol_mutex);
1416
1417
if (!parent_css) {
1418
blkcg = &blkcg_root;
1419
} else {
1420
blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1421
if (!blkcg)
1422
goto unlock;
1423
}
1424
1425
if (init_blkcg_llists(blkcg))
1426
goto free_blkcg;
1427
1428
for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1429
struct blkcg_policy *pol = blkcg_policy[i];
1430
struct blkcg_policy_data *cpd;
1431
1432
/*
1433
* If the policy hasn't been attached yet, wait for it
1434
* to be attached before doing anything else. Otherwise,
1435
* check if the policy requires any specific per-cgroup
1436
* data: if it does, allocate and initialize it.
1437
*/
1438
if (!pol || !pol->cpd_alloc_fn)
1439
continue;
1440
1441
cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1442
if (!cpd)
1443
goto free_pd_blkcg;
1444
1445
blkcg->cpd[i] = cpd;
1446
cpd->blkcg = blkcg;
1447
cpd->plid = i;
1448
}
1449
1450
spin_lock_init(&blkcg->lock);
1451
refcount_set(&blkcg->online_pin, 1);
1452
INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT);
1453
INIT_HLIST_HEAD(&blkcg->blkg_list);
1454
#ifdef CONFIG_CGROUP_WRITEBACK
1455
INIT_LIST_HEAD(&blkcg->cgwb_list);
1456
#endif
1457
list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1458
1459
mutex_unlock(&blkcg_pol_mutex);
1460
return &blkcg->css;
1461
1462
free_pd_blkcg:
1463
for (i--; i >= 0; i--)
1464
if (blkcg->cpd[i])
1465
blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1466
free_percpu(blkcg->lhead);
1467
free_blkcg:
1468
if (blkcg != &blkcg_root)
1469
kfree(blkcg);
1470
unlock:
1471
mutex_unlock(&blkcg_pol_mutex);
1472
return ERR_PTR(-ENOMEM);
1473
}
1474
1475
static int blkcg_css_online(struct cgroup_subsys_state *css)
1476
{
1477
struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1478
1479
/*
1480
* blkcg_pin_online() is used to delay blkcg offline so that blkgs
1481
* don't go offline while cgwbs are still active on them. Pin the
1482
* parent so that offline always happens towards the root.
1483
*/
1484
if (parent)
1485
blkcg_pin_online(&parent->css);
1486
return 0;
1487
}
1488
1489
void blkg_init_queue(struct request_queue *q)
1490
{
1491
INIT_LIST_HEAD(&q->blkg_list);
1492
mutex_init(&q->blkcg_mutex);
1493
}
1494
1495
int blkcg_init_disk(struct gendisk *disk)
1496
{
1497
struct request_queue *q = disk->queue;
1498
struct blkcg_gq *new_blkg, *blkg;
1499
bool preloaded;
1500
1501
new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1502
if (!new_blkg)
1503
return -ENOMEM;
1504
1505
preloaded = !radix_tree_preload(GFP_KERNEL);
1506
1507
/* Make sure the root blkg exists. */
1508
/* spin_lock_irq can serve as RCU read-side critical section. */
1509
spin_lock_irq(&q->queue_lock);
1510
blkg = blkg_create(&blkcg_root, disk, new_blkg);
1511
if (IS_ERR(blkg))
1512
goto err_unlock;
1513
q->root_blkg = blkg;
1514
spin_unlock_irq(&q->queue_lock);
1515
1516
if (preloaded)
1517
radix_tree_preload_end();
1518
1519
return 0;
1520
1521
err_unlock:
1522
spin_unlock_irq(&q->queue_lock);
1523
if (preloaded)
1524
radix_tree_preload_end();
1525
return PTR_ERR(blkg);
1526
}
1527
1528
void blkcg_exit_disk(struct gendisk *disk)
1529
{
1530
blkg_destroy_all(disk);
1531
blk_throtl_exit(disk);
1532
}
1533
1534
static void blkcg_exit(struct task_struct *tsk)
1535
{
1536
if (tsk->throttle_disk)
1537
put_disk(tsk->throttle_disk);
1538
tsk->throttle_disk = NULL;
1539
}
1540
1541
struct cgroup_subsys io_cgrp_subsys = {
1542
.css_alloc = blkcg_css_alloc,
1543
.css_online = blkcg_css_online,
1544
.css_offline = blkcg_css_offline,
1545
.css_free = blkcg_css_free,
1546
.css_rstat_flush = blkcg_rstat_flush,
1547
.dfl_cftypes = blkcg_files,
1548
.legacy_cftypes = blkcg_legacy_files,
1549
.legacy_name = "blkio",
1550
.exit = blkcg_exit,
1551
#ifdef CONFIG_MEMCG
1552
/*
1553
* This ensures that, if available, memcg is automatically enabled
1554
* together on the default hierarchy so that the owner cgroup can
1555
* be retrieved from writeback pages.
1556
*/
1557
.depends_on = 1 << memory_cgrp_id,
1558
#endif
1559
};
1560
EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1561
1562
/**
1563
* blkcg_activate_policy - activate a blkcg policy on a gendisk
1564
* @disk: gendisk of interest
1565
* @pol: blkcg policy to activate
1566
*
1567
* Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1568
* bypass mode to populate its blkgs with policy_data for @pol.
1569
*
1570
* Activation happens with @disk bypassed, so nobody would be accessing blkgs
1571
* from IO path. Update of each blkg is protected by both queue and blkcg
1572
* locks so that holding either lock and testing blkcg_policy_enabled() is
1573
* always enough for dereferencing policy data.
1574
*
1575
* The caller is responsible for synchronizing [de]activations and policy
1576
* [un]registerations. Returns 0 on success, -errno on failure.
1577
*/
1578
int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1579
{
1580
struct request_queue *q = disk->queue;
1581
struct blkg_policy_data *pd_prealloc = NULL;
1582
struct blkcg_gq *blkg, *pinned_blkg = NULL;
1583
unsigned int memflags;
1584
int ret;
1585
1586
if (blkcg_policy_enabled(q, pol))
1587
return 0;
1588
1589
/*
1590
* Policy is allowed to be registered without pd_alloc_fn/pd_free_fn,
1591
* for example, ioprio. Such policy will work on blkcg level, not disk
1592
* level, and don't need to be activated.
1593
*/
1594
if (WARN_ON_ONCE(!pol->pd_alloc_fn || !pol->pd_free_fn))
1595
return -EINVAL;
1596
1597
if (queue_is_mq(q))
1598
memflags = blk_mq_freeze_queue(q);
1599
retry:
1600
spin_lock_irq(&q->queue_lock);
1601
1602
/* blkg_list is pushed at the head, reverse walk to initialize parents first */
1603
list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1604
struct blkg_policy_data *pd;
1605
1606
if (blkg->pd[pol->plid])
1607
continue;
1608
1609
/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1610
if (blkg == pinned_blkg) {
1611
pd = pd_prealloc;
1612
pd_prealloc = NULL;
1613
} else {
1614
pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1615
GFP_NOWAIT);
1616
}
1617
1618
if (!pd) {
1619
/*
1620
* GFP_NOWAIT failed. Free the existing one and
1621
* prealloc for @blkg w/ GFP_KERNEL.
1622
*/
1623
if (pinned_blkg)
1624
blkg_put(pinned_blkg);
1625
blkg_get(blkg);
1626
pinned_blkg = blkg;
1627
1628
spin_unlock_irq(&q->queue_lock);
1629
1630
if (pd_prealloc)
1631
pol->pd_free_fn(pd_prealloc);
1632
pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1633
GFP_KERNEL);
1634
if (pd_prealloc)
1635
goto retry;
1636
else
1637
goto enomem;
1638
}
1639
1640
spin_lock(&blkg->blkcg->lock);
1641
1642
pd->blkg = blkg;
1643
pd->plid = pol->plid;
1644
blkg->pd[pol->plid] = pd;
1645
1646
if (pol->pd_init_fn)
1647
pol->pd_init_fn(pd);
1648
1649
if (pol->pd_online_fn)
1650
pol->pd_online_fn(pd);
1651
pd->online = true;
1652
1653
spin_unlock(&blkg->blkcg->lock);
1654
}
1655
1656
__set_bit(pol->plid, q->blkcg_pols);
1657
ret = 0;
1658
1659
spin_unlock_irq(&q->queue_lock);
1660
out:
1661
if (queue_is_mq(q))
1662
blk_mq_unfreeze_queue(q, memflags);
1663
if (pinned_blkg)
1664
blkg_put(pinned_blkg);
1665
if (pd_prealloc)
1666
pol->pd_free_fn(pd_prealloc);
1667
return ret;
1668
1669
enomem:
1670
/* alloc failed, take down everything */
1671
spin_lock_irq(&q->queue_lock);
1672
list_for_each_entry(blkg, &q->blkg_list, q_node) {
1673
struct blkcg *blkcg = blkg->blkcg;
1674
struct blkg_policy_data *pd;
1675
1676
spin_lock(&blkcg->lock);
1677
pd = blkg->pd[pol->plid];
1678
if (pd) {
1679
if (pd->online && pol->pd_offline_fn)
1680
pol->pd_offline_fn(pd);
1681
pd->online = false;
1682
pol->pd_free_fn(pd);
1683
blkg->pd[pol->plid] = NULL;
1684
}
1685
spin_unlock(&blkcg->lock);
1686
}
1687
spin_unlock_irq(&q->queue_lock);
1688
ret = -ENOMEM;
1689
goto out;
1690
}
1691
EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1692
1693
/**
1694
* blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1695
* @disk: gendisk of interest
1696
* @pol: blkcg policy to deactivate
1697
*
1698
* Deactivate @pol on @disk. Follows the same synchronization rules as
1699
* blkcg_activate_policy().
1700
*/
1701
void blkcg_deactivate_policy(struct gendisk *disk,
1702
const struct blkcg_policy *pol)
1703
{
1704
struct request_queue *q = disk->queue;
1705
struct blkcg_gq *blkg;
1706
unsigned int memflags;
1707
1708
if (!blkcg_policy_enabled(q, pol))
1709
return;
1710
1711
if (queue_is_mq(q))
1712
memflags = blk_mq_freeze_queue(q);
1713
1714
mutex_lock(&q->blkcg_mutex);
1715
spin_lock_irq(&q->queue_lock);
1716
1717
__clear_bit(pol->plid, q->blkcg_pols);
1718
1719
list_for_each_entry(blkg, &q->blkg_list, q_node) {
1720
struct blkcg *blkcg = blkg->blkcg;
1721
1722
spin_lock(&blkcg->lock);
1723
if (blkg->pd[pol->plid]) {
1724
if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1725
pol->pd_offline_fn(blkg->pd[pol->plid]);
1726
pol->pd_free_fn(blkg->pd[pol->plid]);
1727
blkg->pd[pol->plid] = NULL;
1728
}
1729
spin_unlock(&blkcg->lock);
1730
}
1731
1732
spin_unlock_irq(&q->queue_lock);
1733
mutex_unlock(&q->blkcg_mutex);
1734
1735
if (queue_is_mq(q))
1736
blk_mq_unfreeze_queue(q, memflags);
1737
}
1738
EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1739
1740
static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1741
{
1742
struct blkcg *blkcg;
1743
1744
list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1745
if (blkcg->cpd[pol->plid]) {
1746
pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1747
blkcg->cpd[pol->plid] = NULL;
1748
}
1749
}
1750
}
1751
1752
/**
1753
* blkcg_policy_register - register a blkcg policy
1754
* @pol: blkcg policy to register
1755
*
1756
* Register @pol with blkcg core. Might sleep and @pol may be modified on
1757
* successful registration. Returns 0 on success and -errno on failure.
1758
*/
1759
int blkcg_policy_register(struct blkcg_policy *pol)
1760
{
1761
struct blkcg *blkcg;
1762
int i, ret;
1763
1764
/*
1765
* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs, and policy
1766
* without pd_alloc_fn/pd_free_fn can't be activated.
1767
*/
1768
if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1769
(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1770
return -EINVAL;
1771
1772
mutex_lock(&blkcg_pol_register_mutex);
1773
mutex_lock(&blkcg_pol_mutex);
1774
1775
/* find an empty slot */
1776
for (i = 0; i < BLKCG_MAX_POLS; i++)
1777
if (!blkcg_policy[i])
1778
break;
1779
if (i >= BLKCG_MAX_POLS) {
1780
pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1781
ret = -ENOSPC;
1782
goto err_unlock;
1783
}
1784
1785
/* register @pol */
1786
pol->plid = i;
1787
blkcg_policy[pol->plid] = pol;
1788
1789
/* allocate and install cpd's */
1790
if (pol->cpd_alloc_fn) {
1791
list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1792
struct blkcg_policy_data *cpd;
1793
1794
cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1795
if (!cpd) {
1796
ret = -ENOMEM;
1797
goto err_free_cpds;
1798
}
1799
1800
blkcg->cpd[pol->plid] = cpd;
1801
cpd->blkcg = blkcg;
1802
cpd->plid = pol->plid;
1803
}
1804
}
1805
1806
mutex_unlock(&blkcg_pol_mutex);
1807
1808
/* everything is in place, add intf files for the new policy */
1809
if (pol->dfl_cftypes == pol->legacy_cftypes) {
1810
WARN_ON(cgroup_add_cftypes(&io_cgrp_subsys,
1811
pol->dfl_cftypes));
1812
} else {
1813
WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1814
pol->dfl_cftypes));
1815
WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1816
pol->legacy_cftypes));
1817
}
1818
mutex_unlock(&blkcg_pol_register_mutex);
1819
return 0;
1820
1821
err_free_cpds:
1822
if (pol->cpd_free_fn)
1823
blkcg_free_all_cpd(pol);
1824
1825
blkcg_policy[pol->plid] = NULL;
1826
err_unlock:
1827
mutex_unlock(&blkcg_pol_mutex);
1828
mutex_unlock(&blkcg_pol_register_mutex);
1829
return ret;
1830
}
1831
EXPORT_SYMBOL_GPL(blkcg_policy_register);
1832
1833
/**
1834
* blkcg_policy_unregister - unregister a blkcg policy
1835
* @pol: blkcg policy to unregister
1836
*
1837
* Undo blkcg_policy_register(@pol). Might sleep.
1838
*/
1839
void blkcg_policy_unregister(struct blkcg_policy *pol)
1840
{
1841
mutex_lock(&blkcg_pol_register_mutex);
1842
1843
if (WARN_ON(blkcg_policy[pol->plid] != pol))
1844
goto out_unlock;
1845
1846
/* kill the intf files first */
1847
if (pol->dfl_cftypes)
1848
cgroup_rm_cftypes(pol->dfl_cftypes);
1849
if (pol->legacy_cftypes)
1850
cgroup_rm_cftypes(pol->legacy_cftypes);
1851
1852
/* remove cpds and unregister */
1853
mutex_lock(&blkcg_pol_mutex);
1854
1855
if (pol->cpd_free_fn)
1856
blkcg_free_all_cpd(pol);
1857
1858
blkcg_policy[pol->plid] = NULL;
1859
1860
mutex_unlock(&blkcg_pol_mutex);
1861
out_unlock:
1862
mutex_unlock(&blkcg_pol_register_mutex);
1863
}
1864
EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1865
1866
/*
1867
* Scale the accumulated delay based on how long it has been since we updated
1868
* the delay. We only call this when we are adding delay, in case it's been a
1869
* while since we added delay, and when we are checking to see if we need to
1870
* delay a task, to account for any delays that may have occurred.
1871
*/
1872
static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1873
{
1874
u64 old = atomic64_read(&blkg->delay_start);
1875
1876
/* negative use_delay means no scaling, see blkcg_set_delay() */
1877
if (atomic_read(&blkg->use_delay) < 0)
1878
return;
1879
1880
/*
1881
* We only want to scale down every second. The idea here is that we
1882
* want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1883
* time window. We only want to throttle tasks for recent delay that
1884
* has occurred, in 1 second time windows since that's the maximum
1885
* things can be throttled. We save the current delay window in
1886
* blkg->last_delay so we know what amount is still left to be charged
1887
* to the blkg from this point onward. blkg->last_use keeps track of
1888
* the use_delay counter. The idea is if we're unthrottling the blkg we
1889
* are ok with whatever is happening now, and we can take away more of
1890
* the accumulated delay as we've already throttled enough that
1891
* everybody is happy with their IO latencies.
1892
*/
1893
if (time_before64(old + NSEC_PER_SEC, now) &&
1894
atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1895
u64 cur = atomic64_read(&blkg->delay_nsec);
1896
u64 sub = min_t(u64, blkg->last_delay, now - old);
1897
int cur_use = atomic_read(&blkg->use_delay);
1898
1899
/*
1900
* We've been unthrottled, subtract a larger chunk of our
1901
* accumulated delay.
1902
*/
1903
if (cur_use < blkg->last_use)
1904
sub = max_t(u64, sub, blkg->last_delay >> 1);
1905
1906
/*
1907
* This shouldn't happen, but handle it anyway. Our delay_nsec
1908
* should only ever be growing except here where we subtract out
1909
* min(last_delay, 1 second), but lord knows bugs happen and I'd
1910
* rather not end up with negative numbers.
1911
*/
1912
if (unlikely(cur < sub)) {
1913
atomic64_set(&blkg->delay_nsec, 0);
1914
blkg->last_delay = 0;
1915
} else {
1916
atomic64_sub(sub, &blkg->delay_nsec);
1917
blkg->last_delay = cur - sub;
1918
}
1919
blkg->last_use = cur_use;
1920
}
1921
}
1922
1923
/*
1924
* This is called when we want to actually walk up the hierarchy and check to
1925
* see if we need to throttle, and then actually throttle if there is some
1926
* accumulated delay. This should only be called upon return to user space so
1927
* we're not holding some lock that would induce a priority inversion.
1928
*/
1929
static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1930
{
1931
unsigned long pflags;
1932
bool clamp;
1933
u64 now = blk_time_get_ns();
1934
u64 exp;
1935
u64 delay_nsec = 0;
1936
int tok;
1937
1938
while (blkg->parent) {
1939
int use_delay = atomic_read(&blkg->use_delay);
1940
1941
if (use_delay) {
1942
u64 this_delay;
1943
1944
blkcg_scale_delay(blkg, now);
1945
this_delay = atomic64_read(&blkg->delay_nsec);
1946
if (this_delay > delay_nsec) {
1947
delay_nsec = this_delay;
1948
clamp = use_delay > 0;
1949
}
1950
}
1951
blkg = blkg->parent;
1952
}
1953
1954
if (!delay_nsec)
1955
return;
1956
1957
/*
1958
* Let's not sleep for all eternity if we've amassed a huge delay.
1959
* Swapping or metadata IO can accumulate 10's of seconds worth of
1960
* delay, and we want userspace to be able to do _something_ so cap the
1961
* delays at 0.25s. If there's 10's of seconds worth of delay then the
1962
* tasks will be delayed for 0.25 second for every syscall. If
1963
* blkcg_set_delay() was used as indicated by negative use_delay, the
1964
* caller is responsible for regulating the range.
1965
*/
1966
if (clamp)
1967
delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1968
1969
if (use_memdelay)
1970
psi_memstall_enter(&pflags);
1971
1972
exp = ktime_add_ns(now, delay_nsec);
1973
tok = io_schedule_prepare();
1974
do {
1975
__set_current_state(TASK_KILLABLE);
1976
if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1977
break;
1978
} while (!fatal_signal_pending(current));
1979
io_schedule_finish(tok);
1980
1981
if (use_memdelay)
1982
psi_memstall_leave(&pflags);
1983
}
1984
1985
/**
1986
* blkcg_maybe_throttle_current - throttle the current task if it has been marked
1987
*
1988
* This is only called if we've been marked with set_notify_resume(). Obviously
1989
* we can be set_notify_resume() for reasons other than blkcg throttling, so we
1990
* check to see if current->throttle_disk is set and if not this doesn't do
1991
* anything. This should only ever be called by the resume code, it's not meant
1992
* to be called by people willy-nilly as it will actually do the work to
1993
* throttle the task if it is setup for throttling.
1994
*/
1995
void blkcg_maybe_throttle_current(void)
1996
{
1997
struct gendisk *disk = current->throttle_disk;
1998
struct blkcg *blkcg;
1999
struct blkcg_gq *blkg;
2000
bool use_memdelay = current->use_memdelay;
2001
2002
if (!disk)
2003
return;
2004
2005
current->throttle_disk = NULL;
2006
current->use_memdelay = false;
2007
2008
rcu_read_lock();
2009
blkcg = css_to_blkcg(blkcg_css());
2010
if (!blkcg)
2011
goto out;
2012
blkg = blkg_lookup(blkcg, disk->queue);
2013
if (!blkg)
2014
goto out;
2015
if (!blkg_tryget(blkg))
2016
goto out;
2017
rcu_read_unlock();
2018
2019
blkcg_maybe_throttle_blkg(blkg, use_memdelay);
2020
blkg_put(blkg);
2021
put_disk(disk);
2022
return;
2023
out:
2024
rcu_read_unlock();
2025
}
2026
2027
/**
2028
* blkcg_schedule_throttle - this task needs to check for throttling
2029
* @disk: disk to throttle
2030
* @use_memdelay: do we charge this to memory delay for PSI
2031
*
2032
* This is called by the IO controller when we know there's delay accumulated
2033
* for the blkg for this task. We do not pass the blkg because there are places
2034
* we call this that may not have that information, the swapping code for
2035
* instance will only have a block_device at that point. This set's the
2036
* notify_resume for the task to check and see if it requires throttling before
2037
* returning to user space.
2038
*
2039
* We will only schedule once per syscall. You can call this over and over
2040
* again and it will only do the check once upon return to user space, and only
2041
* throttle once. If the task needs to be throttled again it'll need to be
2042
* re-set at the next time we see the task.
2043
*/
2044
void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
2045
{
2046
if (unlikely(current->flags & PF_KTHREAD))
2047
return;
2048
2049
if (current->throttle_disk != disk) {
2050
if (test_bit(GD_DEAD, &disk->state))
2051
return;
2052
get_device(disk_to_dev(disk));
2053
2054
if (current->throttle_disk)
2055
put_disk(current->throttle_disk);
2056
current->throttle_disk = disk;
2057
}
2058
2059
if (use_memdelay)
2060
current->use_memdelay = use_memdelay;
2061
set_notify_resume(current);
2062
}
2063
2064
/**
2065
* blkcg_add_delay - add delay to this blkg
2066
* @blkg: blkg of interest
2067
* @now: the current time in nanoseconds
2068
* @delta: how many nanoseconds of delay to add
2069
*
2070
* Charge @delta to the blkg's current delay accumulation. This is used to
2071
* throttle tasks if an IO controller thinks we need more throttling.
2072
*/
2073
void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
2074
{
2075
if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
2076
return;
2077
blkcg_scale_delay(blkg, now);
2078
atomic64_add(delta, &blkg->delay_nsec);
2079
}
2080
2081
/**
2082
* blkg_tryget_closest - try and get a blkg ref on the closet blkg
2083
* @bio: target bio
2084
* @css: target css
2085
*
2086
* As the failure mode here is to walk up the blkg tree, this ensure that the
2087
* blkg->parent pointers are always valid. This returns the blkg that it ended
2088
* up taking a reference on or %NULL if no reference was taken.
2089
*/
2090
static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2091
struct cgroup_subsys_state *css)
2092
{
2093
struct blkcg_gq *blkg, *ret_blkg = NULL;
2094
2095
rcu_read_lock();
2096
blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2097
while (blkg) {
2098
if (blkg_tryget(blkg)) {
2099
ret_blkg = blkg;
2100
break;
2101
}
2102
blkg = blkg->parent;
2103
}
2104
rcu_read_unlock();
2105
2106
return ret_blkg;
2107
}
2108
2109
/**
2110
* bio_associate_blkg_from_css - associate a bio with a specified css
2111
* @bio: target bio
2112
* @css: target css
2113
*
2114
* Associate @bio with the blkg found by combining the css's blkg and the
2115
* request_queue of the @bio. An association failure is handled by walking up
2116
* the blkg tree. Therefore, the blkg associated can be anything between @blkg
2117
* and q->root_blkg. This situation only happens when a cgroup is dying and
2118
* then the remaining bios will spill to the closest alive blkg.
2119
*
2120
* A reference will be taken on the blkg and will be released when @bio is
2121
* freed.
2122
*/
2123
void bio_associate_blkg_from_css(struct bio *bio,
2124
struct cgroup_subsys_state *css)
2125
{
2126
if (bio->bi_blkg)
2127
blkg_put(bio->bi_blkg);
2128
2129
if (css && css->parent) {
2130
bio->bi_blkg = blkg_tryget_closest(bio, css);
2131
} else {
2132
blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2133
bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2134
}
2135
}
2136
EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2137
2138
/**
2139
* bio_associate_blkg - associate a bio with a blkg
2140
* @bio: target bio
2141
*
2142
* Associate @bio with the blkg found from the bio's css and request_queue.
2143
* If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2144
* already associated, the css is reused and association redone as the
2145
* request_queue may have changed.
2146
*/
2147
void bio_associate_blkg(struct bio *bio)
2148
{
2149
struct cgroup_subsys_state *css;
2150
2151
if (blk_op_is_passthrough(bio->bi_opf))
2152
return;
2153
2154
rcu_read_lock();
2155
2156
if (bio->bi_blkg)
2157
css = bio_blkcg_css(bio);
2158
else
2159
css = blkcg_css();
2160
2161
bio_associate_blkg_from_css(bio, css);
2162
2163
rcu_read_unlock();
2164
}
2165
EXPORT_SYMBOL_GPL(bio_associate_blkg);
2166
2167
/**
2168
* bio_clone_blkg_association - clone blkg association from src to dst bio
2169
* @dst: destination bio
2170
* @src: source bio
2171
*/
2172
void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2173
{
2174
if (src->bi_blkg)
2175
bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2176
}
2177
EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2178
2179
static int blk_cgroup_io_type(struct bio *bio)
2180
{
2181
if (op_is_discard(bio->bi_opf))
2182
return BLKG_IOSTAT_DISCARD;
2183
if (op_is_write(bio->bi_opf))
2184
return BLKG_IOSTAT_WRITE;
2185
return BLKG_IOSTAT_READ;
2186
}
2187
2188
void blk_cgroup_bio_start(struct bio *bio)
2189
{
2190
struct blkcg *blkcg = bio->bi_blkg->blkcg;
2191
int rwd = blk_cgroup_io_type(bio), cpu;
2192
struct blkg_iostat_set *bis;
2193
unsigned long flags;
2194
2195
if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2196
return;
2197
2198
/* Root-level stats are sourced from system-wide IO stats */
2199
if (!cgroup_parent(blkcg->css.cgroup))
2200
return;
2201
2202
cpu = get_cpu();
2203
bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2204
flags = u64_stats_update_begin_irqsave(&bis->sync);
2205
2206
/*
2207
* If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2208
* bio and we would have already accounted for the size of the bio.
2209
*/
2210
if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2211
bio_set_flag(bio, BIO_CGROUP_ACCT);
2212
bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2213
}
2214
bis->cur.ios[rwd]++;
2215
2216
/*
2217
* If the iostat_cpu isn't in a lockless list, put it into the
2218
* list to indicate that a stat update is pending.
2219
*/
2220
if (!READ_ONCE(bis->lqueued)) {
2221
struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2222
2223
llist_add(&bis->lnode, lhead);
2224
WRITE_ONCE(bis->lqueued, true);
2225
}
2226
2227
u64_stats_update_end_irqrestore(&bis->sync, flags);
2228
css_rstat_updated(&blkcg->css, cpu);
2229
put_cpu();
2230
}
2231
2232
bool blk_cgroup_congested(void)
2233
{
2234
struct blkcg *blkcg;
2235
bool ret = false;
2236
2237
rcu_read_lock();
2238
for (blkcg = css_to_blkcg(blkcg_css()); blkcg;
2239
blkcg = blkcg_parent(blkcg)) {
2240
if (atomic_read(&blkcg->congestion_count)) {
2241
ret = true;
2242
break;
2243
}
2244
}
2245
rcu_read_unlock();
2246
return ret;
2247
}
2248
2249
module_param(blkcg_debug_stats, bool, 0644);
2250
MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2251
2252