Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-cgroup.c
26242 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Common Block IO controller cgroup interface
4
*
5
* Based on ideas and code from CFQ, CFS and BFQ:
6
* Copyright (C) 2003 Jens Axboe <[email protected]>
7
*
8
* Copyright (C) 2008 Fabio Checconi <[email protected]>
9
* Paolo Valente <[email protected]>
10
*
11
* Copyright (C) 2009 Vivek Goyal <[email protected]>
12
* Nauman Rafique <[email protected]>
13
*
14
* For policy-specific per-blkcg data:
15
* Copyright (C) 2015 Paolo Valente <[email protected]>
16
* Arianna Avanzini <[email protected]>
17
*/
18
#include <linux/ioprio.h>
19
#include <linux/kdev_t.h>
20
#include <linux/module.h>
21
#include <linux/sched/signal.h>
22
#include <linux/err.h>
23
#include <linux/blkdev.h>
24
#include <linux/backing-dev.h>
25
#include <linux/slab.h>
26
#include <linux/delay.h>
27
#include <linux/atomic.h>
28
#include <linux/ctype.h>
29
#include <linux/resume_user_mode.h>
30
#include <linux/psi.h>
31
#include <linux/part_stat.h>
32
#include "blk.h"
33
#include "blk-cgroup.h"
34
#include "blk-ioprio.h"
35
#include "blk-throttle.h"
36
37
static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39
/*
40
* blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41
* blkcg_pol_register_mutex nests outside of it and synchronizes entire
42
* policy [un]register operations including cgroup file additions /
43
* removals. Putting cgroup file registration outside blkcg_pol_mutex
44
* allows grabbing it from cgroup callbacks.
45
*/
46
static DEFINE_MUTEX(blkcg_pol_register_mutex);
47
static DEFINE_MUTEX(blkcg_pol_mutex);
48
49
struct blkcg blkcg_root;
50
EXPORT_SYMBOL_GPL(blkcg_root);
51
52
struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53
EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55
static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57
static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58
59
bool blkcg_debug_stats = false;
60
61
static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63
#define BLKG_DESTROY_BATCH_SIZE 64
64
65
/*
66
* Lockless lists for tracking IO stats update
67
*
68
* New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69
* There are multiple blkg's (one for each block device) attached to each
70
* blkcg. The rstat code keeps track of which cpu has IO stats updated,
71
* but it doesn't know which blkg has the updated stats. If there are many
72
* block devices in a system, the cost of iterating all the blkg's to flush
73
* out the IO stats can be high. To reduce such overhead, a set of percpu
74
* lockless lists (lhead) per blkcg are used to track the set of recently
75
* updated iostat_cpu's since the last flush. An iostat_cpu will be put
76
* onto the lockless list on the update side [blk_cgroup_bio_start()] if
77
* not there yet and then removed when being flushed [blkcg_rstat_flush()].
78
* References to blkg are gotten and then put back in the process to
79
* protect against blkg removal.
80
*
81
* Return: 0 if successful or -ENOMEM if allocation fails.
82
*/
83
static int init_blkcg_llists(struct blkcg *blkcg)
84
{
85
int cpu;
86
87
blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88
if (!blkcg->lhead)
89
return -ENOMEM;
90
91
for_each_possible_cpu(cpu)
92
init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93
return 0;
94
}
95
96
/**
97
* blkcg_css - find the current css
98
*
99
* Find the css associated with either the kthread or the current task.
100
* This may return a dying css, so it is up to the caller to use tryget logic
101
* to confirm it is alive and well.
102
*/
103
static struct cgroup_subsys_state *blkcg_css(void)
104
{
105
struct cgroup_subsys_state *css;
106
107
css = kthread_blkcg();
108
if (css)
109
return css;
110
return task_css(current, io_cgrp_id);
111
}
112
113
static bool blkcg_policy_enabled(struct request_queue *q,
114
const struct blkcg_policy *pol)
115
{
116
return pol && test_bit(pol->plid, q->blkcg_pols);
117
}
118
119
static void blkg_free_workfn(struct work_struct *work)
120
{
121
struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122
free_work);
123
struct request_queue *q = blkg->q;
124
int i;
125
126
/*
127
* pd_free_fn() can also be called from blkcg_deactivate_policy(),
128
* in order to make sure pd_free_fn() is called in order, the deletion
129
* of the list blkg->q_node is delayed to here from blkg_destroy(), and
130
* blkcg_mutex is used to synchronize blkg_free_workfn() and
131
* blkcg_deactivate_policy().
132
*/
133
mutex_lock(&q->blkcg_mutex);
134
for (i = 0; i < BLKCG_MAX_POLS; i++)
135
if (blkg->pd[i])
136
blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137
if (blkg->parent)
138
blkg_put(blkg->parent);
139
spin_lock_irq(&q->queue_lock);
140
list_del_init(&blkg->q_node);
141
spin_unlock_irq(&q->queue_lock);
142
mutex_unlock(&q->blkcg_mutex);
143
144
blk_put_queue(q);
145
free_percpu(blkg->iostat_cpu);
146
percpu_ref_exit(&blkg->refcnt);
147
kfree(blkg);
148
}
149
150
/**
151
* blkg_free - free a blkg
152
* @blkg: blkg to free
153
*
154
* Free @blkg which may be partially allocated.
155
*/
156
static void blkg_free(struct blkcg_gq *blkg)
157
{
158
if (!blkg)
159
return;
160
161
/*
162
* Both ->pd_free_fn() and request queue's release handler may
163
* sleep, so free us by scheduling one work func
164
*/
165
INIT_WORK(&blkg->free_work, blkg_free_workfn);
166
schedule_work(&blkg->free_work);
167
}
168
169
static void __blkg_release(struct rcu_head *rcu)
170
{
171
struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172
struct blkcg *blkcg = blkg->blkcg;
173
int cpu;
174
175
#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176
WARN_ON(!bio_list_empty(&blkg->async_bios));
177
#endif
178
/*
179
* Flush all the non-empty percpu lockless lists before releasing
180
* us, given these stat belongs to us.
181
*
182
* blkg_stat_lock is for serializing blkg stat update
183
*/
184
for_each_possible_cpu(cpu)
185
__blkcg_rstat_flush(blkcg, cpu);
186
187
/* release the blkcg and parent blkg refs this blkg has been holding */
188
css_put(&blkg->blkcg->css);
189
blkg_free(blkg);
190
}
191
192
/*
193
* A group is RCU protected, but having an rcu lock does not mean that one
194
* can access all the fields of blkg and assume these are valid. For
195
* example, don't try to follow throtl_data and request queue links.
196
*
197
* Having a reference to blkg under an rcu allows accesses to only values
198
* local to groups like group stats and group rate limits.
199
*/
200
static void blkg_release(struct percpu_ref *ref)
201
{
202
struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203
204
call_rcu(&blkg->rcu_head, __blkg_release);
205
}
206
207
#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208
static struct workqueue_struct *blkcg_punt_bio_wq;
209
210
static void blkg_async_bio_workfn(struct work_struct *work)
211
{
212
struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213
async_bio_work);
214
struct bio_list bios = BIO_EMPTY_LIST;
215
struct bio *bio;
216
struct blk_plug plug;
217
bool need_plug = false;
218
219
/* as long as there are pending bios, @blkg can't go away */
220
spin_lock(&blkg->async_bio_lock);
221
bio_list_merge_init(&bios, &blkg->async_bios);
222
spin_unlock(&blkg->async_bio_lock);
223
224
/* start plug only when bio_list contains at least 2 bios */
225
if (bios.head && bios.head->bi_next) {
226
need_plug = true;
227
blk_start_plug(&plug);
228
}
229
while ((bio = bio_list_pop(&bios)))
230
submit_bio(bio);
231
if (need_plug)
232
blk_finish_plug(&plug);
233
}
234
235
/*
236
* When a shared kthread issues a bio for a cgroup, doing so synchronously can
237
* lead to priority inversions as the kthread can be trapped waiting for that
238
* cgroup. Use this helper instead of submit_bio to punt the actual issuing to
239
* a dedicated per-blkcg work item to avoid such priority inversions.
240
*/
241
void blkcg_punt_bio_submit(struct bio *bio)
242
{
243
struct blkcg_gq *blkg = bio->bi_blkg;
244
245
if (blkg->parent) {
246
spin_lock(&blkg->async_bio_lock);
247
bio_list_add(&blkg->async_bios, bio);
248
spin_unlock(&blkg->async_bio_lock);
249
queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
250
} else {
251
/* never bounce for the root cgroup */
252
submit_bio(bio);
253
}
254
}
255
EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
256
257
static int __init blkcg_punt_bio_init(void)
258
{
259
blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
260
WQ_MEM_RECLAIM | WQ_FREEZABLE |
261
WQ_UNBOUND | WQ_SYSFS, 0);
262
if (!blkcg_punt_bio_wq)
263
return -ENOMEM;
264
return 0;
265
}
266
subsys_initcall(blkcg_punt_bio_init);
267
#endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
268
269
/**
270
* bio_blkcg_css - return the blkcg CSS associated with a bio
271
* @bio: target bio
272
*
273
* This returns the CSS for the blkcg associated with a bio, or %NULL if not
274
* associated. Callers are expected to either handle %NULL or know association
275
* has been done prior to calling this.
276
*/
277
struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
278
{
279
if (!bio || !bio->bi_blkg)
280
return NULL;
281
return &bio->bi_blkg->blkcg->css;
282
}
283
EXPORT_SYMBOL_GPL(bio_blkcg_css);
284
285
/**
286
* blkcg_parent - get the parent of a blkcg
287
* @blkcg: blkcg of interest
288
*
289
* Return the parent blkcg of @blkcg. Can be called anytime.
290
*/
291
static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
292
{
293
return css_to_blkcg(blkcg->css.parent);
294
}
295
296
/**
297
* blkg_alloc - allocate a blkg
298
* @blkcg: block cgroup the new blkg is associated with
299
* @disk: gendisk the new blkg is associated with
300
* @gfp_mask: allocation mask to use
301
*
302
* Allocate a new blkg associating @blkcg and @disk.
303
*/
304
static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
305
gfp_t gfp_mask)
306
{
307
struct blkcg_gq *blkg;
308
int i, cpu;
309
310
/* alloc and init base part */
311
blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
312
if (!blkg)
313
return NULL;
314
if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
315
goto out_free_blkg;
316
blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
317
if (!blkg->iostat_cpu)
318
goto out_exit_refcnt;
319
if (!blk_get_queue(disk->queue))
320
goto out_free_iostat;
321
322
blkg->q = disk->queue;
323
INIT_LIST_HEAD(&blkg->q_node);
324
blkg->blkcg = blkcg;
325
blkg->iostat.blkg = blkg;
326
#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
327
spin_lock_init(&blkg->async_bio_lock);
328
bio_list_init(&blkg->async_bios);
329
INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
330
#endif
331
332
u64_stats_init(&blkg->iostat.sync);
333
for_each_possible_cpu(cpu) {
334
u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
335
per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
336
}
337
338
for (i = 0; i < BLKCG_MAX_POLS; i++) {
339
struct blkcg_policy *pol = blkcg_policy[i];
340
struct blkg_policy_data *pd;
341
342
if (!blkcg_policy_enabled(disk->queue, pol))
343
continue;
344
345
/* alloc per-policy data and attach it to blkg */
346
pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
347
if (!pd)
348
goto out_free_pds;
349
blkg->pd[i] = pd;
350
pd->blkg = blkg;
351
pd->plid = i;
352
pd->online = false;
353
}
354
355
return blkg;
356
357
out_free_pds:
358
while (--i >= 0)
359
if (blkg->pd[i])
360
blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
361
blk_put_queue(disk->queue);
362
out_free_iostat:
363
free_percpu(blkg->iostat_cpu);
364
out_exit_refcnt:
365
percpu_ref_exit(&blkg->refcnt);
366
out_free_blkg:
367
kfree(blkg);
368
return NULL;
369
}
370
371
/*
372
* If @new_blkg is %NULL, this function tries to allocate a new one as
373
* necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
374
*/
375
static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
376
struct blkcg_gq *new_blkg)
377
{
378
struct blkcg_gq *blkg;
379
int i, ret;
380
381
lockdep_assert_held(&disk->queue->queue_lock);
382
383
/* request_queue is dying, do not create/recreate a blkg */
384
if (blk_queue_dying(disk->queue)) {
385
ret = -ENODEV;
386
goto err_free_blkg;
387
}
388
389
/* blkg holds a reference to blkcg */
390
if (!css_tryget_online(&blkcg->css)) {
391
ret = -ENODEV;
392
goto err_free_blkg;
393
}
394
395
/* allocate */
396
if (!new_blkg) {
397
new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT);
398
if (unlikely(!new_blkg)) {
399
ret = -ENOMEM;
400
goto err_put_css;
401
}
402
}
403
blkg = new_blkg;
404
405
/* link parent */
406
if (blkcg_parent(blkcg)) {
407
blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
408
if (WARN_ON_ONCE(!blkg->parent)) {
409
ret = -ENODEV;
410
goto err_put_css;
411
}
412
blkg_get(blkg->parent);
413
}
414
415
/* invoke per-policy init */
416
for (i = 0; i < BLKCG_MAX_POLS; i++) {
417
struct blkcg_policy *pol = blkcg_policy[i];
418
419
if (blkg->pd[i] && pol->pd_init_fn)
420
pol->pd_init_fn(blkg->pd[i]);
421
}
422
423
/* insert */
424
spin_lock(&blkcg->lock);
425
ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
426
if (likely(!ret)) {
427
hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
428
list_add(&blkg->q_node, &disk->queue->blkg_list);
429
430
for (i = 0; i < BLKCG_MAX_POLS; i++) {
431
struct blkcg_policy *pol = blkcg_policy[i];
432
433
if (blkg->pd[i]) {
434
if (pol->pd_online_fn)
435
pol->pd_online_fn(blkg->pd[i]);
436
blkg->pd[i]->online = true;
437
}
438
}
439
}
440
blkg->online = true;
441
spin_unlock(&blkcg->lock);
442
443
if (!ret)
444
return blkg;
445
446
/* @blkg failed fully initialized, use the usual release path */
447
blkg_put(blkg);
448
return ERR_PTR(ret);
449
450
err_put_css:
451
css_put(&blkcg->css);
452
err_free_blkg:
453
if (new_blkg)
454
blkg_free(new_blkg);
455
return ERR_PTR(ret);
456
}
457
458
/**
459
* blkg_lookup_create - lookup blkg, try to create one if not there
460
* @blkcg: blkcg of interest
461
* @disk: gendisk of interest
462
*
463
* Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
464
* create one. blkg creation is performed recursively from blkcg_root such
465
* that all non-root blkg's have access to the parent blkg. This function
466
* should be called under RCU read lock and takes @disk->queue->queue_lock.
467
*
468
* Returns the blkg or the closest blkg if blkg_create() fails as it walks
469
* down from root.
470
*/
471
static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
472
struct gendisk *disk)
473
{
474
struct request_queue *q = disk->queue;
475
struct blkcg_gq *blkg;
476
unsigned long flags;
477
478
WARN_ON_ONCE(!rcu_read_lock_held());
479
480
blkg = blkg_lookup(blkcg, q);
481
if (blkg)
482
return blkg;
483
484
spin_lock_irqsave(&q->queue_lock, flags);
485
blkg = blkg_lookup(blkcg, q);
486
if (blkg) {
487
if (blkcg != &blkcg_root &&
488
blkg != rcu_dereference(blkcg->blkg_hint))
489
rcu_assign_pointer(blkcg->blkg_hint, blkg);
490
goto found;
491
}
492
493
/*
494
* Create blkgs walking down from blkcg_root to @blkcg, so that all
495
* non-root blkgs have access to their parents. Returns the closest
496
* blkg to the intended blkg should blkg_create() fail.
497
*/
498
while (true) {
499
struct blkcg *pos = blkcg;
500
struct blkcg *parent = blkcg_parent(blkcg);
501
struct blkcg_gq *ret_blkg = q->root_blkg;
502
503
while (parent) {
504
blkg = blkg_lookup(parent, q);
505
if (blkg) {
506
/* remember closest blkg */
507
ret_blkg = blkg;
508
break;
509
}
510
pos = parent;
511
parent = blkcg_parent(parent);
512
}
513
514
blkg = blkg_create(pos, disk, NULL);
515
if (IS_ERR(blkg)) {
516
blkg = ret_blkg;
517
break;
518
}
519
if (pos == blkcg)
520
break;
521
}
522
523
found:
524
spin_unlock_irqrestore(&q->queue_lock, flags);
525
return blkg;
526
}
527
528
static void blkg_destroy(struct blkcg_gq *blkg)
529
{
530
struct blkcg *blkcg = blkg->blkcg;
531
int i;
532
533
lockdep_assert_held(&blkg->q->queue_lock);
534
lockdep_assert_held(&blkcg->lock);
535
536
/*
537
* blkg stays on the queue list until blkg_free_workfn(), see details in
538
* blkg_free_workfn(), hence this function can be called from
539
* blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
540
* blkg_free_workfn().
541
*/
542
if (hlist_unhashed(&blkg->blkcg_node))
543
return;
544
545
for (i = 0; i < BLKCG_MAX_POLS; i++) {
546
struct blkcg_policy *pol = blkcg_policy[i];
547
548
if (blkg->pd[i] && blkg->pd[i]->online) {
549
blkg->pd[i]->online = false;
550
if (pol->pd_offline_fn)
551
pol->pd_offline_fn(blkg->pd[i]);
552
}
553
}
554
555
blkg->online = false;
556
557
radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
558
hlist_del_init_rcu(&blkg->blkcg_node);
559
560
/*
561
* Both setting lookup hint to and clearing it from @blkg are done
562
* under queue_lock. If it's not pointing to @blkg now, it never
563
* will. Hint assignment itself can race safely.
564
*/
565
if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
566
rcu_assign_pointer(blkcg->blkg_hint, NULL);
567
568
/*
569
* Put the reference taken at the time of creation so that when all
570
* queues are gone, group can be destroyed.
571
*/
572
percpu_ref_kill(&blkg->refcnt);
573
}
574
575
static void blkg_destroy_all(struct gendisk *disk)
576
{
577
struct request_queue *q = disk->queue;
578
struct blkcg_gq *blkg;
579
int count = BLKG_DESTROY_BATCH_SIZE;
580
int i;
581
582
restart:
583
spin_lock_irq(&q->queue_lock);
584
list_for_each_entry(blkg, &q->blkg_list, q_node) {
585
struct blkcg *blkcg = blkg->blkcg;
586
587
if (hlist_unhashed(&blkg->blkcg_node))
588
continue;
589
590
spin_lock(&blkcg->lock);
591
blkg_destroy(blkg);
592
spin_unlock(&blkcg->lock);
593
594
/*
595
* in order to avoid holding the spin lock for too long, release
596
* it when a batch of blkgs are destroyed.
597
*/
598
if (!(--count)) {
599
count = BLKG_DESTROY_BATCH_SIZE;
600
spin_unlock_irq(&q->queue_lock);
601
cond_resched();
602
goto restart;
603
}
604
}
605
606
/*
607
* Mark policy deactivated since policy offline has been done, and
608
* the free is scheduled, so future blkcg_deactivate_policy() can
609
* be bypassed
610
*/
611
for (i = 0; i < BLKCG_MAX_POLS; i++) {
612
struct blkcg_policy *pol = blkcg_policy[i];
613
614
if (pol)
615
__clear_bit(pol->plid, q->blkcg_pols);
616
}
617
618
q->root_blkg = NULL;
619
spin_unlock_irq(&q->queue_lock);
620
}
621
622
static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
623
{
624
int i;
625
626
for (i = 0; i < BLKG_IOSTAT_NR; i++) {
627
dst->bytes[i] = src->bytes[i];
628
dst->ios[i] = src->ios[i];
629
}
630
}
631
632
static void __blkg_clear_stat(struct blkg_iostat_set *bis)
633
{
634
struct blkg_iostat cur = {0};
635
unsigned long flags;
636
637
flags = u64_stats_update_begin_irqsave(&bis->sync);
638
blkg_iostat_set(&bis->cur, &cur);
639
blkg_iostat_set(&bis->last, &cur);
640
u64_stats_update_end_irqrestore(&bis->sync, flags);
641
}
642
643
static void blkg_clear_stat(struct blkcg_gq *blkg)
644
{
645
int cpu;
646
647
for_each_possible_cpu(cpu) {
648
struct blkg_iostat_set *s = per_cpu_ptr(blkg->iostat_cpu, cpu);
649
650
__blkg_clear_stat(s);
651
}
652
__blkg_clear_stat(&blkg->iostat);
653
}
654
655
static int blkcg_reset_stats(struct cgroup_subsys_state *css,
656
struct cftype *cftype, u64 val)
657
{
658
struct blkcg *blkcg = css_to_blkcg(css);
659
struct blkcg_gq *blkg;
660
int i;
661
662
pr_info_once("blkio.%s is deprecated\n", cftype->name);
663
mutex_lock(&blkcg_pol_mutex);
664
spin_lock_irq(&blkcg->lock);
665
666
/*
667
* Note that stat reset is racy - it doesn't synchronize against
668
* stat updates. This is a debug feature which shouldn't exist
669
* anyway. If you get hit by a race, retry.
670
*/
671
hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
672
blkg_clear_stat(blkg);
673
for (i = 0; i < BLKCG_MAX_POLS; i++) {
674
struct blkcg_policy *pol = blkcg_policy[i];
675
676
if (blkg->pd[i] && pol->pd_reset_stats_fn)
677
pol->pd_reset_stats_fn(blkg->pd[i]);
678
}
679
}
680
681
spin_unlock_irq(&blkcg->lock);
682
mutex_unlock(&blkcg_pol_mutex);
683
return 0;
684
}
685
686
const char *blkg_dev_name(struct blkcg_gq *blkg)
687
{
688
if (!blkg->q->disk)
689
return NULL;
690
return bdi_dev_name(blkg->q->disk->bdi);
691
}
692
693
/**
694
* blkcg_print_blkgs - helper for printing per-blkg data
695
* @sf: seq_file to print to
696
* @blkcg: blkcg of interest
697
* @prfill: fill function to print out a blkg
698
* @pol: policy in question
699
* @data: data to be passed to @prfill
700
* @show_total: to print out sum of prfill return values or not
701
*
702
* This function invokes @prfill on each blkg of @blkcg if pd for the
703
* policy specified by @pol exists. @prfill is invoked with @sf, the
704
* policy data and @data and the matching queue lock held. If @show_total
705
* is %true, the sum of the return values from @prfill is printed with
706
* "Total" label at the end.
707
*
708
* This is to be used to construct print functions for
709
* cftype->read_seq_string method.
710
*/
711
void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
712
u64 (*prfill)(struct seq_file *,
713
struct blkg_policy_data *, int),
714
const struct blkcg_policy *pol, int data,
715
bool show_total)
716
{
717
struct blkcg_gq *blkg;
718
u64 total = 0;
719
720
rcu_read_lock();
721
hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
722
spin_lock_irq(&blkg->q->queue_lock);
723
if (blkcg_policy_enabled(blkg->q, pol))
724
total += prfill(sf, blkg->pd[pol->plid], data);
725
spin_unlock_irq(&blkg->q->queue_lock);
726
}
727
rcu_read_unlock();
728
729
if (show_total)
730
seq_printf(sf, "Total %llu\n", (unsigned long long)total);
731
}
732
EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
733
734
/**
735
* __blkg_prfill_u64 - prfill helper for a single u64 value
736
* @sf: seq_file to print to
737
* @pd: policy private data of interest
738
* @v: value to print
739
*
740
* Print @v to @sf for the device associated with @pd.
741
*/
742
u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
743
{
744
const char *dname = blkg_dev_name(pd->blkg);
745
746
if (!dname)
747
return 0;
748
749
seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
750
return v;
751
}
752
EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
753
754
/**
755
* blkg_conf_init - initialize a blkg_conf_ctx
756
* @ctx: blkg_conf_ctx to initialize
757
* @input: input string
758
*
759
* Initialize @ctx which can be used to parse blkg config input string @input.
760
* Once initialized, @ctx can be used with blkg_conf_open_bdev() and
761
* blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
762
*/
763
void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
764
{
765
*ctx = (struct blkg_conf_ctx){ .input = input };
766
}
767
EXPORT_SYMBOL_GPL(blkg_conf_init);
768
769
/**
770
* blkg_conf_open_bdev - parse and open bdev for per-blkg config update
771
* @ctx: blkg_conf_ctx initialized with blkg_conf_init()
772
*
773
* Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
774
* @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
775
* set to point past the device node prefix.
776
*
777
* This function may be called multiple times on @ctx and the extra calls become
778
* NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
779
* explicitly if bdev access is needed without resolving the blkcg / policy part
780
* of @ctx->input. Returns -errno on error.
781
*/
782
int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
783
{
784
char *input = ctx->input;
785
unsigned int major, minor;
786
struct block_device *bdev;
787
int key_len;
788
789
if (ctx->bdev)
790
return 0;
791
792
if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
793
return -EINVAL;
794
795
input += key_len;
796
if (!isspace(*input))
797
return -EINVAL;
798
input = skip_spaces(input);
799
800
bdev = blkdev_get_no_open(MKDEV(major, minor), false);
801
if (!bdev)
802
return -ENODEV;
803
if (bdev_is_partition(bdev)) {
804
blkdev_put_no_open(bdev);
805
return -ENODEV;
806
}
807
808
mutex_lock(&bdev->bd_queue->rq_qos_mutex);
809
if (!disk_live(bdev->bd_disk)) {
810
blkdev_put_no_open(bdev);
811
mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
812
return -ENODEV;
813
}
814
815
ctx->body = input;
816
ctx->bdev = bdev;
817
return 0;
818
}
819
/*
820
* Similar to blkg_conf_open_bdev, but additionally freezes the queue,
821
* acquires q->elevator_lock, and ensures the correct locking order
822
* between q->elevator_lock and q->rq_qos_mutex.
823
*
824
* This function returns negative error on failure. On success it returns
825
* memflags which must be saved and later passed to blkg_conf_exit_frozen
826
* for restoring the memalloc scope.
827
*/
828
unsigned long __must_check blkg_conf_open_bdev_frozen(struct blkg_conf_ctx *ctx)
829
{
830
int ret;
831
unsigned long memflags;
832
833
if (ctx->bdev)
834
return -EINVAL;
835
836
ret = blkg_conf_open_bdev(ctx);
837
if (ret < 0)
838
return ret;
839
/*
840
* At this point, we haven’t started protecting anything related to QoS,
841
* so we release q->rq_qos_mutex here, which was first acquired in blkg_
842
* conf_open_bdev. Later, we re-acquire q->rq_qos_mutex after freezing
843
* the queue and acquiring q->elevator_lock to maintain the correct
844
* locking order.
845
*/
846
mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
847
848
memflags = blk_mq_freeze_queue(ctx->bdev->bd_queue);
849
mutex_lock(&ctx->bdev->bd_queue->elevator_lock);
850
mutex_lock(&ctx->bdev->bd_queue->rq_qos_mutex);
851
852
return memflags;
853
}
854
855
/**
856
* blkg_conf_prep - parse and prepare for per-blkg config update
857
* @blkcg: target block cgroup
858
* @pol: target policy
859
* @ctx: blkg_conf_ctx initialized with blkg_conf_init()
860
*
861
* Parse per-blkg config update from @ctx->input and initialize @ctx
862
* accordingly. On success, @ctx->body points to the part of @ctx->input
863
* following MAJ:MIN, @ctx->bdev points to the target block device and
864
* @ctx->blkg to the blkg being configured.
865
*
866
* blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
867
* function returns with queue lock held and must be followed by
868
* blkg_conf_exit().
869
*/
870
int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
871
struct blkg_conf_ctx *ctx)
872
__acquires(&bdev->bd_queue->queue_lock)
873
{
874
struct gendisk *disk;
875
struct request_queue *q;
876
struct blkcg_gq *blkg;
877
int ret;
878
879
ret = blkg_conf_open_bdev(ctx);
880
if (ret)
881
return ret;
882
883
disk = ctx->bdev->bd_disk;
884
q = disk->queue;
885
886
/*
887
* blkcg_deactivate_policy() requires queue to be frozen, we can grab
888
* q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
889
*/
890
ret = blk_queue_enter(q, 0);
891
if (ret)
892
goto fail;
893
894
spin_lock_irq(&q->queue_lock);
895
896
if (!blkcg_policy_enabled(q, pol)) {
897
ret = -EOPNOTSUPP;
898
goto fail_unlock;
899
}
900
901
blkg = blkg_lookup(blkcg, q);
902
if (blkg)
903
goto success;
904
905
/*
906
* Create blkgs walking down from blkcg_root to @blkcg, so that all
907
* non-root blkgs have access to their parents.
908
*/
909
while (true) {
910
struct blkcg *pos = blkcg;
911
struct blkcg *parent;
912
struct blkcg_gq *new_blkg;
913
914
parent = blkcg_parent(blkcg);
915
while (parent && !blkg_lookup(parent, q)) {
916
pos = parent;
917
parent = blkcg_parent(parent);
918
}
919
920
/* Drop locks to do new blkg allocation with GFP_KERNEL. */
921
spin_unlock_irq(&q->queue_lock);
922
923
new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
924
if (unlikely(!new_blkg)) {
925
ret = -ENOMEM;
926
goto fail_exit_queue;
927
}
928
929
if (radix_tree_preload(GFP_KERNEL)) {
930
blkg_free(new_blkg);
931
ret = -ENOMEM;
932
goto fail_exit_queue;
933
}
934
935
spin_lock_irq(&q->queue_lock);
936
937
if (!blkcg_policy_enabled(q, pol)) {
938
blkg_free(new_blkg);
939
ret = -EOPNOTSUPP;
940
goto fail_preloaded;
941
}
942
943
blkg = blkg_lookup(pos, q);
944
if (blkg) {
945
blkg_free(new_blkg);
946
} else {
947
blkg = blkg_create(pos, disk, new_blkg);
948
if (IS_ERR(blkg)) {
949
ret = PTR_ERR(blkg);
950
goto fail_preloaded;
951
}
952
}
953
954
radix_tree_preload_end();
955
956
if (pos == blkcg)
957
goto success;
958
}
959
success:
960
blk_queue_exit(q);
961
ctx->blkg = blkg;
962
return 0;
963
964
fail_preloaded:
965
radix_tree_preload_end();
966
fail_unlock:
967
spin_unlock_irq(&q->queue_lock);
968
fail_exit_queue:
969
blk_queue_exit(q);
970
fail:
971
/*
972
* If queue was bypassing, we should retry. Do so after a
973
* short msleep(). It isn't strictly necessary but queue
974
* can be bypassing for some time and it's always nice to
975
* avoid busy looping.
976
*/
977
if (ret == -EBUSY) {
978
msleep(10);
979
ret = restart_syscall();
980
}
981
return ret;
982
}
983
EXPORT_SYMBOL_GPL(blkg_conf_prep);
984
985
/**
986
* blkg_conf_exit - clean up per-blkg config update
987
* @ctx: blkg_conf_ctx initialized with blkg_conf_init()
988
*
989
* Clean up after per-blkg config update. This function must be called on all
990
* blkg_conf_ctx's initialized with blkg_conf_init().
991
*/
992
void blkg_conf_exit(struct blkg_conf_ctx *ctx)
993
__releases(&ctx->bdev->bd_queue->queue_lock)
994
__releases(&ctx->bdev->bd_queue->rq_qos_mutex)
995
{
996
if (ctx->blkg) {
997
spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
998
ctx->blkg = NULL;
999
}
1000
1001
if (ctx->bdev) {
1002
mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
1003
blkdev_put_no_open(ctx->bdev);
1004
ctx->body = NULL;
1005
ctx->bdev = NULL;
1006
}
1007
}
1008
EXPORT_SYMBOL_GPL(blkg_conf_exit);
1009
1010
/*
1011
* Similar to blkg_conf_exit, but also unfreezes the queue and releases
1012
* q->elevator_lock. Should be used when blkg_conf_open_bdev_frozen
1013
* is used to open the bdev.
1014
*/
1015
void blkg_conf_exit_frozen(struct blkg_conf_ctx *ctx, unsigned long memflags)
1016
{
1017
if (ctx->bdev) {
1018
struct request_queue *q = ctx->bdev->bd_queue;
1019
1020
blkg_conf_exit(ctx);
1021
mutex_unlock(&q->elevator_lock);
1022
blk_mq_unfreeze_queue(q, memflags);
1023
}
1024
}
1025
1026
static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
1027
{
1028
int i;
1029
1030
for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1031
dst->bytes[i] += src->bytes[i];
1032
dst->ios[i] += src->ios[i];
1033
}
1034
}
1035
1036
static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
1037
{
1038
int i;
1039
1040
for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1041
dst->bytes[i] -= src->bytes[i];
1042
dst->ios[i] -= src->ios[i];
1043
}
1044
}
1045
1046
static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
1047
struct blkg_iostat *last)
1048
{
1049
struct blkg_iostat delta;
1050
unsigned long flags;
1051
1052
/* propagate percpu delta to global */
1053
flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1054
blkg_iostat_set(&delta, cur);
1055
blkg_iostat_sub(&delta, last);
1056
blkg_iostat_add(&blkg->iostat.cur, &delta);
1057
blkg_iostat_add(last, &delta);
1058
u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1059
}
1060
1061
static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
1062
{
1063
struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1064
struct llist_node *lnode;
1065
struct blkg_iostat_set *bisc, *next_bisc;
1066
unsigned long flags;
1067
1068
rcu_read_lock();
1069
1070
lnode = llist_del_all(lhead);
1071
if (!lnode)
1072
goto out;
1073
1074
/*
1075
* For covering concurrent parent blkg update from blkg_release().
1076
*
1077
* When flushing from cgroup, the subsystem rstat lock is always held,
1078
* so this lock won't cause contention most of time.
1079
*/
1080
raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1081
1082
/*
1083
* Iterate only the iostat_cpu's queued in the lockless list.
1084
*/
1085
llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1086
struct blkcg_gq *blkg = bisc->blkg;
1087
struct blkcg_gq *parent = blkg->parent;
1088
struct blkg_iostat cur;
1089
unsigned int seq;
1090
1091
/*
1092
* Order assignment of `next_bisc` from `bisc->lnode.next` in
1093
* llist_for_each_entry_safe and clearing `bisc->lqueued` for
1094
* avoiding to assign `next_bisc` with new next pointer added
1095
* in blk_cgroup_bio_start() in case of re-ordering.
1096
*
1097
* The pair barrier is implied in llist_add() in blk_cgroup_bio_start().
1098
*/
1099
smp_mb();
1100
1101
WRITE_ONCE(bisc->lqueued, false);
1102
if (bisc == &blkg->iostat)
1103
goto propagate_up; /* propagate up to parent only */
1104
1105
/* fetch the current per-cpu values */
1106
do {
1107
seq = u64_stats_fetch_begin(&bisc->sync);
1108
blkg_iostat_set(&cur, &bisc->cur);
1109
} while (u64_stats_fetch_retry(&bisc->sync, seq));
1110
1111
blkcg_iostat_update(blkg, &cur, &bisc->last);
1112
1113
propagate_up:
1114
/* propagate global delta to parent (unless that's root) */
1115
if (parent && parent->parent) {
1116
blkcg_iostat_update(parent, &blkg->iostat.cur,
1117
&blkg->iostat.last);
1118
/*
1119
* Queue parent->iostat to its blkcg's lockless
1120
* list to propagate up to the grandparent if the
1121
* iostat hasn't been queued yet.
1122
*/
1123
if (!parent->iostat.lqueued) {
1124
struct llist_head *plhead;
1125
1126
plhead = per_cpu_ptr(parent->blkcg->lhead, cpu);
1127
llist_add(&parent->iostat.lnode, plhead);
1128
parent->iostat.lqueued = true;
1129
}
1130
}
1131
}
1132
raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1133
out:
1134
rcu_read_unlock();
1135
}
1136
1137
static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1138
{
1139
/* Root-level stats are sourced from system-wide IO stats */
1140
if (cgroup_parent(css->cgroup))
1141
__blkcg_rstat_flush(css_to_blkcg(css), cpu);
1142
}
1143
1144
/*
1145
* We source root cgroup stats from the system-wide stats to avoid
1146
* tracking the same information twice and incurring overhead when no
1147
* cgroups are defined. For that reason, css_rstat_flush in
1148
* blkcg_print_stat does not actually fill out the iostat in the root
1149
* cgroup's blkcg_gq.
1150
*
1151
* However, we would like to re-use the printing code between the root and
1152
* non-root cgroups to the extent possible. For that reason, we simulate
1153
* flushing the root cgroup's stats by explicitly filling in the iostat
1154
* with disk level statistics.
1155
*/
1156
static void blkcg_fill_root_iostats(void)
1157
{
1158
struct class_dev_iter iter;
1159
struct device *dev;
1160
1161
class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1162
while ((dev = class_dev_iter_next(&iter))) {
1163
struct block_device *bdev = dev_to_bdev(dev);
1164
struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1165
struct blkg_iostat tmp;
1166
int cpu;
1167
unsigned long flags;
1168
1169
memset(&tmp, 0, sizeof(tmp));
1170
for_each_possible_cpu(cpu) {
1171
struct disk_stats *cpu_dkstats;
1172
1173
cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1174
tmp.ios[BLKG_IOSTAT_READ] +=
1175
cpu_dkstats->ios[STAT_READ];
1176
tmp.ios[BLKG_IOSTAT_WRITE] +=
1177
cpu_dkstats->ios[STAT_WRITE];
1178
tmp.ios[BLKG_IOSTAT_DISCARD] +=
1179
cpu_dkstats->ios[STAT_DISCARD];
1180
// convert sectors to bytes
1181
tmp.bytes[BLKG_IOSTAT_READ] +=
1182
cpu_dkstats->sectors[STAT_READ] << 9;
1183
tmp.bytes[BLKG_IOSTAT_WRITE] +=
1184
cpu_dkstats->sectors[STAT_WRITE] << 9;
1185
tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1186
cpu_dkstats->sectors[STAT_DISCARD] << 9;
1187
}
1188
1189
flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1190
blkg_iostat_set(&blkg->iostat.cur, &tmp);
1191
u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1192
}
1193
class_dev_iter_exit(&iter);
1194
}
1195
1196
static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1197
{
1198
struct blkg_iostat_set *bis = &blkg->iostat;
1199
u64 rbytes, wbytes, rios, wios, dbytes, dios;
1200
const char *dname;
1201
unsigned seq;
1202
int i;
1203
1204
if (!blkg->online)
1205
return;
1206
1207
dname = blkg_dev_name(blkg);
1208
if (!dname)
1209
return;
1210
1211
seq_printf(s, "%s ", dname);
1212
1213
do {
1214
seq = u64_stats_fetch_begin(&bis->sync);
1215
1216
rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1217
wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1218
dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1219
rios = bis->cur.ios[BLKG_IOSTAT_READ];
1220
wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1221
dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1222
} while (u64_stats_fetch_retry(&bis->sync, seq));
1223
1224
if (rbytes || wbytes || rios || wios) {
1225
seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1226
rbytes, wbytes, rios, wios,
1227
dbytes, dios);
1228
}
1229
1230
if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1231
seq_printf(s, " use_delay=%d delay_nsec=%llu",
1232
atomic_read(&blkg->use_delay),
1233
atomic64_read(&blkg->delay_nsec));
1234
}
1235
1236
for (i = 0; i < BLKCG_MAX_POLS; i++) {
1237
struct blkcg_policy *pol = blkcg_policy[i];
1238
1239
if (!blkg->pd[i] || !pol->pd_stat_fn)
1240
continue;
1241
1242
pol->pd_stat_fn(blkg->pd[i], s);
1243
}
1244
1245
seq_puts(s, "\n");
1246
}
1247
1248
static int blkcg_print_stat(struct seq_file *sf, void *v)
1249
{
1250
struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1251
struct blkcg_gq *blkg;
1252
1253
if (!seq_css(sf)->parent)
1254
blkcg_fill_root_iostats();
1255
else
1256
css_rstat_flush(&blkcg->css);
1257
1258
rcu_read_lock();
1259
hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1260
spin_lock_irq(&blkg->q->queue_lock);
1261
blkcg_print_one_stat(blkg, sf);
1262
spin_unlock_irq(&blkg->q->queue_lock);
1263
}
1264
rcu_read_unlock();
1265
return 0;
1266
}
1267
1268
static struct cftype blkcg_files[] = {
1269
{
1270
.name = "stat",
1271
.seq_show = blkcg_print_stat,
1272
},
1273
{ } /* terminate */
1274
};
1275
1276
static struct cftype blkcg_legacy_files[] = {
1277
{
1278
.name = "reset_stats",
1279
.write_u64 = blkcg_reset_stats,
1280
},
1281
{ } /* terminate */
1282
};
1283
1284
#ifdef CONFIG_CGROUP_WRITEBACK
1285
struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1286
{
1287
return &css_to_blkcg(css)->cgwb_list;
1288
}
1289
#endif
1290
1291
/*
1292
* blkcg destruction is a three-stage process.
1293
*
1294
* 1. Destruction starts. The blkcg_css_offline() callback is invoked
1295
* which offlines writeback. Here we tie the next stage of blkg destruction
1296
* to the completion of writeback associated with the blkcg. This lets us
1297
* avoid punting potentially large amounts of outstanding writeback to root
1298
* while maintaining any ongoing policies. The next stage is triggered when
1299
* the nr_cgwbs count goes to zero.
1300
*
1301
* 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1302
* and handles the destruction of blkgs. Here the css reference held by
1303
* the blkg is put back eventually allowing blkcg_css_free() to be called.
1304
* This work may occur in cgwb_release_workfn() on the cgwb_release
1305
* workqueue. Any submitted ios that fail to get the blkg ref will be
1306
* punted to the root_blkg.
1307
*
1308
* 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1309
* This finally frees the blkcg.
1310
*/
1311
1312
/**
1313
* blkcg_destroy_blkgs - responsible for shooting down blkgs
1314
* @blkcg: blkcg of interest
1315
*
1316
* blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1317
* is nested inside q lock, this function performs reverse double lock dancing.
1318
* Destroying the blkgs releases the reference held on the blkcg's css allowing
1319
* blkcg_css_free to eventually be called.
1320
*
1321
* This is the blkcg counterpart of ioc_release_fn().
1322
*/
1323
static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1324
{
1325
might_sleep();
1326
1327
spin_lock_irq(&blkcg->lock);
1328
1329
while (!hlist_empty(&blkcg->blkg_list)) {
1330
struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1331
struct blkcg_gq, blkcg_node);
1332
struct request_queue *q = blkg->q;
1333
1334
if (need_resched() || !spin_trylock(&q->queue_lock)) {
1335
/*
1336
* Given that the system can accumulate a huge number
1337
* of blkgs in pathological cases, check to see if we
1338
* need to rescheduling to avoid softlockup.
1339
*/
1340
spin_unlock_irq(&blkcg->lock);
1341
cond_resched();
1342
spin_lock_irq(&blkcg->lock);
1343
continue;
1344
}
1345
1346
blkg_destroy(blkg);
1347
spin_unlock(&q->queue_lock);
1348
}
1349
1350
spin_unlock_irq(&blkcg->lock);
1351
}
1352
1353
/**
1354
* blkcg_pin_online - pin online state
1355
* @blkcg_css: blkcg of interest
1356
*
1357
* While pinned, a blkcg is kept online. This is primarily used to
1358
* impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1359
* while an associated cgwb is still active.
1360
*/
1361
void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1362
{
1363
refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1364
}
1365
1366
/**
1367
* blkcg_unpin_online - unpin online state
1368
* @blkcg_css: blkcg of interest
1369
*
1370
* This is primarily used to impedance-match blkg and cgwb lifetimes so
1371
* that blkg doesn't go offline while an associated cgwb is still active.
1372
* When this count goes to zero, all active cgwbs have finished so the
1373
* blkcg can continue destruction by calling blkcg_destroy_blkgs().
1374
*/
1375
void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1376
{
1377
struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1378
1379
do {
1380
struct blkcg *parent;
1381
1382
if (!refcount_dec_and_test(&blkcg->online_pin))
1383
break;
1384
1385
parent = blkcg_parent(blkcg);
1386
blkcg_destroy_blkgs(blkcg);
1387
blkcg = parent;
1388
} while (blkcg);
1389
}
1390
1391
/**
1392
* blkcg_css_offline - cgroup css_offline callback
1393
* @css: css of interest
1394
*
1395
* This function is called when @css is about to go away. Here the cgwbs are
1396
* offlined first and only once writeback associated with the blkcg has
1397
* finished do we start step 2 (see above).
1398
*/
1399
static void blkcg_css_offline(struct cgroup_subsys_state *css)
1400
{
1401
/* this prevents anyone from attaching or migrating to this blkcg */
1402
wb_blkcg_offline(css);
1403
1404
/* put the base online pin allowing step 2 to be triggered */
1405
blkcg_unpin_online(css);
1406
}
1407
1408
static void blkcg_css_free(struct cgroup_subsys_state *css)
1409
{
1410
struct blkcg *blkcg = css_to_blkcg(css);
1411
int i;
1412
1413
mutex_lock(&blkcg_pol_mutex);
1414
1415
list_del(&blkcg->all_blkcgs_node);
1416
1417
for (i = 0; i < BLKCG_MAX_POLS; i++)
1418
if (blkcg->cpd[i])
1419
blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1420
1421
mutex_unlock(&blkcg_pol_mutex);
1422
1423
free_percpu(blkcg->lhead);
1424
kfree(blkcg);
1425
}
1426
1427
static struct cgroup_subsys_state *
1428
blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1429
{
1430
struct blkcg *blkcg;
1431
int i;
1432
1433
mutex_lock(&blkcg_pol_mutex);
1434
1435
if (!parent_css) {
1436
blkcg = &blkcg_root;
1437
} else {
1438
blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1439
if (!blkcg)
1440
goto unlock;
1441
}
1442
1443
if (init_blkcg_llists(blkcg))
1444
goto free_blkcg;
1445
1446
for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1447
struct blkcg_policy *pol = blkcg_policy[i];
1448
struct blkcg_policy_data *cpd;
1449
1450
/*
1451
* If the policy hasn't been attached yet, wait for it
1452
* to be attached before doing anything else. Otherwise,
1453
* check if the policy requires any specific per-cgroup
1454
* data: if it does, allocate and initialize it.
1455
*/
1456
if (!pol || !pol->cpd_alloc_fn)
1457
continue;
1458
1459
cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1460
if (!cpd)
1461
goto free_pd_blkcg;
1462
1463
blkcg->cpd[i] = cpd;
1464
cpd->blkcg = blkcg;
1465
cpd->plid = i;
1466
}
1467
1468
spin_lock_init(&blkcg->lock);
1469
refcount_set(&blkcg->online_pin, 1);
1470
INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT);
1471
INIT_HLIST_HEAD(&blkcg->blkg_list);
1472
#ifdef CONFIG_CGROUP_WRITEBACK
1473
INIT_LIST_HEAD(&blkcg->cgwb_list);
1474
#endif
1475
list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1476
1477
mutex_unlock(&blkcg_pol_mutex);
1478
return &blkcg->css;
1479
1480
free_pd_blkcg:
1481
for (i--; i >= 0; i--)
1482
if (blkcg->cpd[i])
1483
blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1484
free_percpu(blkcg->lhead);
1485
free_blkcg:
1486
if (blkcg != &blkcg_root)
1487
kfree(blkcg);
1488
unlock:
1489
mutex_unlock(&blkcg_pol_mutex);
1490
return ERR_PTR(-ENOMEM);
1491
}
1492
1493
static int blkcg_css_online(struct cgroup_subsys_state *css)
1494
{
1495
struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1496
1497
/*
1498
* blkcg_pin_online() is used to delay blkcg offline so that blkgs
1499
* don't go offline while cgwbs are still active on them. Pin the
1500
* parent so that offline always happens towards the root.
1501
*/
1502
if (parent)
1503
blkcg_pin_online(&parent->css);
1504
return 0;
1505
}
1506
1507
void blkg_init_queue(struct request_queue *q)
1508
{
1509
INIT_LIST_HEAD(&q->blkg_list);
1510
mutex_init(&q->blkcg_mutex);
1511
}
1512
1513
int blkcg_init_disk(struct gendisk *disk)
1514
{
1515
struct request_queue *q = disk->queue;
1516
struct blkcg_gq *new_blkg, *blkg;
1517
bool preloaded;
1518
1519
new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1520
if (!new_blkg)
1521
return -ENOMEM;
1522
1523
preloaded = !radix_tree_preload(GFP_KERNEL);
1524
1525
/* Make sure the root blkg exists. */
1526
/* spin_lock_irq can serve as RCU read-side critical section. */
1527
spin_lock_irq(&q->queue_lock);
1528
blkg = blkg_create(&blkcg_root, disk, new_blkg);
1529
if (IS_ERR(blkg))
1530
goto err_unlock;
1531
q->root_blkg = blkg;
1532
spin_unlock_irq(&q->queue_lock);
1533
1534
if (preloaded)
1535
radix_tree_preload_end();
1536
1537
return 0;
1538
1539
err_unlock:
1540
spin_unlock_irq(&q->queue_lock);
1541
if (preloaded)
1542
radix_tree_preload_end();
1543
return PTR_ERR(blkg);
1544
}
1545
1546
void blkcg_exit_disk(struct gendisk *disk)
1547
{
1548
blkg_destroy_all(disk);
1549
blk_throtl_exit(disk);
1550
}
1551
1552
static void blkcg_exit(struct task_struct *tsk)
1553
{
1554
if (tsk->throttle_disk)
1555
put_disk(tsk->throttle_disk);
1556
tsk->throttle_disk = NULL;
1557
}
1558
1559
struct cgroup_subsys io_cgrp_subsys = {
1560
.css_alloc = blkcg_css_alloc,
1561
.css_online = blkcg_css_online,
1562
.css_offline = blkcg_css_offline,
1563
.css_free = blkcg_css_free,
1564
.css_rstat_flush = blkcg_rstat_flush,
1565
.dfl_cftypes = blkcg_files,
1566
.legacy_cftypes = blkcg_legacy_files,
1567
.legacy_name = "blkio",
1568
.exit = blkcg_exit,
1569
#ifdef CONFIG_MEMCG
1570
/*
1571
* This ensures that, if available, memcg is automatically enabled
1572
* together on the default hierarchy so that the owner cgroup can
1573
* be retrieved from writeback pages.
1574
*/
1575
.depends_on = 1 << memory_cgrp_id,
1576
#endif
1577
};
1578
EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1579
1580
/**
1581
* blkcg_activate_policy - activate a blkcg policy on a gendisk
1582
* @disk: gendisk of interest
1583
* @pol: blkcg policy to activate
1584
*
1585
* Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1586
* bypass mode to populate its blkgs with policy_data for @pol.
1587
*
1588
* Activation happens with @disk bypassed, so nobody would be accessing blkgs
1589
* from IO path. Update of each blkg is protected by both queue and blkcg
1590
* locks so that holding either lock and testing blkcg_policy_enabled() is
1591
* always enough for dereferencing policy data.
1592
*
1593
* The caller is responsible for synchronizing [de]activations and policy
1594
* [un]registerations. Returns 0 on success, -errno on failure.
1595
*/
1596
int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1597
{
1598
struct request_queue *q = disk->queue;
1599
struct blkg_policy_data *pd_prealloc = NULL;
1600
struct blkcg_gq *blkg, *pinned_blkg = NULL;
1601
unsigned int memflags;
1602
int ret;
1603
1604
if (blkcg_policy_enabled(q, pol))
1605
return 0;
1606
1607
/*
1608
* Policy is allowed to be registered without pd_alloc_fn/pd_free_fn,
1609
* for example, ioprio. Such policy will work on blkcg level, not disk
1610
* level, and don't need to be activated.
1611
*/
1612
if (WARN_ON_ONCE(!pol->pd_alloc_fn || !pol->pd_free_fn))
1613
return -EINVAL;
1614
1615
if (queue_is_mq(q))
1616
memflags = blk_mq_freeze_queue(q);
1617
retry:
1618
spin_lock_irq(&q->queue_lock);
1619
1620
/* blkg_list is pushed at the head, reverse walk to initialize parents first */
1621
list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1622
struct blkg_policy_data *pd;
1623
1624
if (blkg->pd[pol->plid])
1625
continue;
1626
1627
/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1628
if (blkg == pinned_blkg) {
1629
pd = pd_prealloc;
1630
pd_prealloc = NULL;
1631
} else {
1632
pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1633
GFP_NOWAIT);
1634
}
1635
1636
if (!pd) {
1637
/*
1638
* GFP_NOWAIT failed. Free the existing one and
1639
* prealloc for @blkg w/ GFP_KERNEL.
1640
*/
1641
if (pinned_blkg)
1642
blkg_put(pinned_blkg);
1643
blkg_get(blkg);
1644
pinned_blkg = blkg;
1645
1646
spin_unlock_irq(&q->queue_lock);
1647
1648
if (pd_prealloc)
1649
pol->pd_free_fn(pd_prealloc);
1650
pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1651
GFP_KERNEL);
1652
if (pd_prealloc)
1653
goto retry;
1654
else
1655
goto enomem;
1656
}
1657
1658
spin_lock(&blkg->blkcg->lock);
1659
1660
pd->blkg = blkg;
1661
pd->plid = pol->plid;
1662
blkg->pd[pol->plid] = pd;
1663
1664
if (pol->pd_init_fn)
1665
pol->pd_init_fn(pd);
1666
1667
if (pol->pd_online_fn)
1668
pol->pd_online_fn(pd);
1669
pd->online = true;
1670
1671
spin_unlock(&blkg->blkcg->lock);
1672
}
1673
1674
__set_bit(pol->plid, q->blkcg_pols);
1675
ret = 0;
1676
1677
spin_unlock_irq(&q->queue_lock);
1678
out:
1679
if (queue_is_mq(q))
1680
blk_mq_unfreeze_queue(q, memflags);
1681
if (pinned_blkg)
1682
blkg_put(pinned_blkg);
1683
if (pd_prealloc)
1684
pol->pd_free_fn(pd_prealloc);
1685
return ret;
1686
1687
enomem:
1688
/* alloc failed, take down everything */
1689
spin_lock_irq(&q->queue_lock);
1690
list_for_each_entry(blkg, &q->blkg_list, q_node) {
1691
struct blkcg *blkcg = blkg->blkcg;
1692
struct blkg_policy_data *pd;
1693
1694
spin_lock(&blkcg->lock);
1695
pd = blkg->pd[pol->plid];
1696
if (pd) {
1697
if (pd->online && pol->pd_offline_fn)
1698
pol->pd_offline_fn(pd);
1699
pd->online = false;
1700
pol->pd_free_fn(pd);
1701
blkg->pd[pol->plid] = NULL;
1702
}
1703
spin_unlock(&blkcg->lock);
1704
}
1705
spin_unlock_irq(&q->queue_lock);
1706
ret = -ENOMEM;
1707
goto out;
1708
}
1709
EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1710
1711
/**
1712
* blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1713
* @disk: gendisk of interest
1714
* @pol: blkcg policy to deactivate
1715
*
1716
* Deactivate @pol on @disk. Follows the same synchronization rules as
1717
* blkcg_activate_policy().
1718
*/
1719
void blkcg_deactivate_policy(struct gendisk *disk,
1720
const struct blkcg_policy *pol)
1721
{
1722
struct request_queue *q = disk->queue;
1723
struct blkcg_gq *blkg;
1724
unsigned int memflags;
1725
1726
if (!blkcg_policy_enabled(q, pol))
1727
return;
1728
1729
if (queue_is_mq(q))
1730
memflags = blk_mq_freeze_queue(q);
1731
1732
mutex_lock(&q->blkcg_mutex);
1733
spin_lock_irq(&q->queue_lock);
1734
1735
__clear_bit(pol->plid, q->blkcg_pols);
1736
1737
list_for_each_entry(blkg, &q->blkg_list, q_node) {
1738
struct blkcg *blkcg = blkg->blkcg;
1739
1740
spin_lock(&blkcg->lock);
1741
if (blkg->pd[pol->plid]) {
1742
if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1743
pol->pd_offline_fn(blkg->pd[pol->plid]);
1744
pol->pd_free_fn(blkg->pd[pol->plid]);
1745
blkg->pd[pol->plid] = NULL;
1746
}
1747
spin_unlock(&blkcg->lock);
1748
}
1749
1750
spin_unlock_irq(&q->queue_lock);
1751
mutex_unlock(&q->blkcg_mutex);
1752
1753
if (queue_is_mq(q))
1754
blk_mq_unfreeze_queue(q, memflags);
1755
}
1756
EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1757
1758
static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1759
{
1760
struct blkcg *blkcg;
1761
1762
list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1763
if (blkcg->cpd[pol->plid]) {
1764
pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1765
blkcg->cpd[pol->plid] = NULL;
1766
}
1767
}
1768
}
1769
1770
/**
1771
* blkcg_policy_register - register a blkcg policy
1772
* @pol: blkcg policy to register
1773
*
1774
* Register @pol with blkcg core. Might sleep and @pol may be modified on
1775
* successful registration. Returns 0 on success and -errno on failure.
1776
*/
1777
int blkcg_policy_register(struct blkcg_policy *pol)
1778
{
1779
struct blkcg *blkcg;
1780
int i, ret;
1781
1782
/*
1783
* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs, and policy
1784
* without pd_alloc_fn/pd_free_fn can't be activated.
1785
*/
1786
if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1787
(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1788
return -EINVAL;
1789
1790
mutex_lock(&blkcg_pol_register_mutex);
1791
mutex_lock(&blkcg_pol_mutex);
1792
1793
/* find an empty slot */
1794
for (i = 0; i < BLKCG_MAX_POLS; i++)
1795
if (!blkcg_policy[i])
1796
break;
1797
if (i >= BLKCG_MAX_POLS) {
1798
pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1799
ret = -ENOSPC;
1800
goto err_unlock;
1801
}
1802
1803
/* register @pol */
1804
pol->plid = i;
1805
blkcg_policy[pol->plid] = pol;
1806
1807
/* allocate and install cpd's */
1808
if (pol->cpd_alloc_fn) {
1809
list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1810
struct blkcg_policy_data *cpd;
1811
1812
cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1813
if (!cpd) {
1814
ret = -ENOMEM;
1815
goto err_free_cpds;
1816
}
1817
1818
blkcg->cpd[pol->plid] = cpd;
1819
cpd->blkcg = blkcg;
1820
cpd->plid = pol->plid;
1821
}
1822
}
1823
1824
mutex_unlock(&blkcg_pol_mutex);
1825
1826
/* everything is in place, add intf files for the new policy */
1827
if (pol->dfl_cftypes == pol->legacy_cftypes) {
1828
WARN_ON(cgroup_add_cftypes(&io_cgrp_subsys,
1829
pol->dfl_cftypes));
1830
} else {
1831
WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1832
pol->dfl_cftypes));
1833
WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1834
pol->legacy_cftypes));
1835
}
1836
mutex_unlock(&blkcg_pol_register_mutex);
1837
return 0;
1838
1839
err_free_cpds:
1840
if (pol->cpd_free_fn)
1841
blkcg_free_all_cpd(pol);
1842
1843
blkcg_policy[pol->plid] = NULL;
1844
err_unlock:
1845
mutex_unlock(&blkcg_pol_mutex);
1846
mutex_unlock(&blkcg_pol_register_mutex);
1847
return ret;
1848
}
1849
EXPORT_SYMBOL_GPL(blkcg_policy_register);
1850
1851
/**
1852
* blkcg_policy_unregister - unregister a blkcg policy
1853
* @pol: blkcg policy to unregister
1854
*
1855
* Undo blkcg_policy_register(@pol). Might sleep.
1856
*/
1857
void blkcg_policy_unregister(struct blkcg_policy *pol)
1858
{
1859
mutex_lock(&blkcg_pol_register_mutex);
1860
1861
if (WARN_ON(blkcg_policy[pol->plid] != pol))
1862
goto out_unlock;
1863
1864
/* kill the intf files first */
1865
if (pol->dfl_cftypes)
1866
cgroup_rm_cftypes(pol->dfl_cftypes);
1867
if (pol->legacy_cftypes)
1868
cgroup_rm_cftypes(pol->legacy_cftypes);
1869
1870
/* remove cpds and unregister */
1871
mutex_lock(&blkcg_pol_mutex);
1872
1873
if (pol->cpd_free_fn)
1874
blkcg_free_all_cpd(pol);
1875
1876
blkcg_policy[pol->plid] = NULL;
1877
1878
mutex_unlock(&blkcg_pol_mutex);
1879
out_unlock:
1880
mutex_unlock(&blkcg_pol_register_mutex);
1881
}
1882
EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1883
1884
/*
1885
* Scale the accumulated delay based on how long it has been since we updated
1886
* the delay. We only call this when we are adding delay, in case it's been a
1887
* while since we added delay, and when we are checking to see if we need to
1888
* delay a task, to account for any delays that may have occurred.
1889
*/
1890
static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1891
{
1892
u64 old = atomic64_read(&blkg->delay_start);
1893
1894
/* negative use_delay means no scaling, see blkcg_set_delay() */
1895
if (atomic_read(&blkg->use_delay) < 0)
1896
return;
1897
1898
/*
1899
* We only want to scale down every second. The idea here is that we
1900
* want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1901
* time window. We only want to throttle tasks for recent delay that
1902
* has occurred, in 1 second time windows since that's the maximum
1903
* things can be throttled. We save the current delay window in
1904
* blkg->last_delay so we know what amount is still left to be charged
1905
* to the blkg from this point onward. blkg->last_use keeps track of
1906
* the use_delay counter. The idea is if we're unthrottling the blkg we
1907
* are ok with whatever is happening now, and we can take away more of
1908
* the accumulated delay as we've already throttled enough that
1909
* everybody is happy with their IO latencies.
1910
*/
1911
if (time_before64(old + NSEC_PER_SEC, now) &&
1912
atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1913
u64 cur = atomic64_read(&blkg->delay_nsec);
1914
u64 sub = min_t(u64, blkg->last_delay, now - old);
1915
int cur_use = atomic_read(&blkg->use_delay);
1916
1917
/*
1918
* We've been unthrottled, subtract a larger chunk of our
1919
* accumulated delay.
1920
*/
1921
if (cur_use < blkg->last_use)
1922
sub = max_t(u64, sub, blkg->last_delay >> 1);
1923
1924
/*
1925
* This shouldn't happen, but handle it anyway. Our delay_nsec
1926
* should only ever be growing except here where we subtract out
1927
* min(last_delay, 1 second), but lord knows bugs happen and I'd
1928
* rather not end up with negative numbers.
1929
*/
1930
if (unlikely(cur < sub)) {
1931
atomic64_set(&blkg->delay_nsec, 0);
1932
blkg->last_delay = 0;
1933
} else {
1934
atomic64_sub(sub, &blkg->delay_nsec);
1935
blkg->last_delay = cur - sub;
1936
}
1937
blkg->last_use = cur_use;
1938
}
1939
}
1940
1941
/*
1942
* This is called when we want to actually walk up the hierarchy and check to
1943
* see if we need to throttle, and then actually throttle if there is some
1944
* accumulated delay. This should only be called upon return to user space so
1945
* we're not holding some lock that would induce a priority inversion.
1946
*/
1947
static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1948
{
1949
unsigned long pflags;
1950
bool clamp;
1951
u64 now = blk_time_get_ns();
1952
u64 exp;
1953
u64 delay_nsec = 0;
1954
int tok;
1955
1956
while (blkg->parent) {
1957
int use_delay = atomic_read(&blkg->use_delay);
1958
1959
if (use_delay) {
1960
u64 this_delay;
1961
1962
blkcg_scale_delay(blkg, now);
1963
this_delay = atomic64_read(&blkg->delay_nsec);
1964
if (this_delay > delay_nsec) {
1965
delay_nsec = this_delay;
1966
clamp = use_delay > 0;
1967
}
1968
}
1969
blkg = blkg->parent;
1970
}
1971
1972
if (!delay_nsec)
1973
return;
1974
1975
/*
1976
* Let's not sleep for all eternity if we've amassed a huge delay.
1977
* Swapping or metadata IO can accumulate 10's of seconds worth of
1978
* delay, and we want userspace to be able to do _something_ so cap the
1979
* delays at 0.25s. If there's 10's of seconds worth of delay then the
1980
* tasks will be delayed for 0.25 second for every syscall. If
1981
* blkcg_set_delay() was used as indicated by negative use_delay, the
1982
* caller is responsible for regulating the range.
1983
*/
1984
if (clamp)
1985
delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1986
1987
if (use_memdelay)
1988
psi_memstall_enter(&pflags);
1989
1990
exp = ktime_add_ns(now, delay_nsec);
1991
tok = io_schedule_prepare();
1992
do {
1993
__set_current_state(TASK_KILLABLE);
1994
if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1995
break;
1996
} while (!fatal_signal_pending(current));
1997
io_schedule_finish(tok);
1998
1999
if (use_memdelay)
2000
psi_memstall_leave(&pflags);
2001
}
2002
2003
/**
2004
* blkcg_maybe_throttle_current - throttle the current task if it has been marked
2005
*
2006
* This is only called if we've been marked with set_notify_resume(). Obviously
2007
* we can be set_notify_resume() for reasons other than blkcg throttling, so we
2008
* check to see if current->throttle_disk is set and if not this doesn't do
2009
* anything. This should only ever be called by the resume code, it's not meant
2010
* to be called by people willy-nilly as it will actually do the work to
2011
* throttle the task if it is setup for throttling.
2012
*/
2013
void blkcg_maybe_throttle_current(void)
2014
{
2015
struct gendisk *disk = current->throttle_disk;
2016
struct blkcg *blkcg;
2017
struct blkcg_gq *blkg;
2018
bool use_memdelay = current->use_memdelay;
2019
2020
if (!disk)
2021
return;
2022
2023
current->throttle_disk = NULL;
2024
current->use_memdelay = false;
2025
2026
rcu_read_lock();
2027
blkcg = css_to_blkcg(blkcg_css());
2028
if (!blkcg)
2029
goto out;
2030
blkg = blkg_lookup(blkcg, disk->queue);
2031
if (!blkg)
2032
goto out;
2033
if (!blkg_tryget(blkg))
2034
goto out;
2035
rcu_read_unlock();
2036
2037
blkcg_maybe_throttle_blkg(blkg, use_memdelay);
2038
blkg_put(blkg);
2039
put_disk(disk);
2040
return;
2041
out:
2042
rcu_read_unlock();
2043
}
2044
2045
/**
2046
* blkcg_schedule_throttle - this task needs to check for throttling
2047
* @disk: disk to throttle
2048
* @use_memdelay: do we charge this to memory delay for PSI
2049
*
2050
* This is called by the IO controller when we know there's delay accumulated
2051
* for the blkg for this task. We do not pass the blkg because there are places
2052
* we call this that may not have that information, the swapping code for
2053
* instance will only have a block_device at that point. This set's the
2054
* notify_resume for the task to check and see if it requires throttling before
2055
* returning to user space.
2056
*
2057
* We will only schedule once per syscall. You can call this over and over
2058
* again and it will only do the check once upon return to user space, and only
2059
* throttle once. If the task needs to be throttled again it'll need to be
2060
* re-set at the next time we see the task.
2061
*/
2062
void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
2063
{
2064
if (unlikely(current->flags & PF_KTHREAD))
2065
return;
2066
2067
if (current->throttle_disk != disk) {
2068
if (test_bit(GD_DEAD, &disk->state))
2069
return;
2070
get_device(disk_to_dev(disk));
2071
2072
if (current->throttle_disk)
2073
put_disk(current->throttle_disk);
2074
current->throttle_disk = disk;
2075
}
2076
2077
if (use_memdelay)
2078
current->use_memdelay = use_memdelay;
2079
set_notify_resume(current);
2080
}
2081
2082
/**
2083
* blkcg_add_delay - add delay to this blkg
2084
* @blkg: blkg of interest
2085
* @now: the current time in nanoseconds
2086
* @delta: how many nanoseconds of delay to add
2087
*
2088
* Charge @delta to the blkg's current delay accumulation. This is used to
2089
* throttle tasks if an IO controller thinks we need more throttling.
2090
*/
2091
void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
2092
{
2093
if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
2094
return;
2095
blkcg_scale_delay(blkg, now);
2096
atomic64_add(delta, &blkg->delay_nsec);
2097
}
2098
2099
/**
2100
* blkg_tryget_closest - try and get a blkg ref on the closet blkg
2101
* @bio: target bio
2102
* @css: target css
2103
*
2104
* As the failure mode here is to walk up the blkg tree, this ensure that the
2105
* blkg->parent pointers are always valid. This returns the blkg that it ended
2106
* up taking a reference on or %NULL if no reference was taken.
2107
*/
2108
static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2109
struct cgroup_subsys_state *css)
2110
{
2111
struct blkcg_gq *blkg, *ret_blkg = NULL;
2112
2113
rcu_read_lock();
2114
blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2115
while (blkg) {
2116
if (blkg_tryget(blkg)) {
2117
ret_blkg = blkg;
2118
break;
2119
}
2120
blkg = blkg->parent;
2121
}
2122
rcu_read_unlock();
2123
2124
return ret_blkg;
2125
}
2126
2127
/**
2128
* bio_associate_blkg_from_css - associate a bio with a specified css
2129
* @bio: target bio
2130
* @css: target css
2131
*
2132
* Associate @bio with the blkg found by combining the css's blkg and the
2133
* request_queue of the @bio. An association failure is handled by walking up
2134
* the blkg tree. Therefore, the blkg associated can be anything between @blkg
2135
* and q->root_blkg. This situation only happens when a cgroup is dying and
2136
* then the remaining bios will spill to the closest alive blkg.
2137
*
2138
* A reference will be taken on the blkg and will be released when @bio is
2139
* freed.
2140
*/
2141
void bio_associate_blkg_from_css(struct bio *bio,
2142
struct cgroup_subsys_state *css)
2143
{
2144
if (bio->bi_blkg)
2145
blkg_put(bio->bi_blkg);
2146
2147
if (css && css->parent) {
2148
bio->bi_blkg = blkg_tryget_closest(bio, css);
2149
} else {
2150
blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2151
bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2152
}
2153
}
2154
EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2155
2156
/**
2157
* bio_associate_blkg - associate a bio with a blkg
2158
* @bio: target bio
2159
*
2160
* Associate @bio with the blkg found from the bio's css and request_queue.
2161
* If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2162
* already associated, the css is reused and association redone as the
2163
* request_queue may have changed.
2164
*/
2165
void bio_associate_blkg(struct bio *bio)
2166
{
2167
struct cgroup_subsys_state *css;
2168
2169
if (blk_op_is_passthrough(bio->bi_opf))
2170
return;
2171
2172
rcu_read_lock();
2173
2174
if (bio->bi_blkg)
2175
css = bio_blkcg_css(bio);
2176
else
2177
css = blkcg_css();
2178
2179
bio_associate_blkg_from_css(bio, css);
2180
2181
rcu_read_unlock();
2182
}
2183
EXPORT_SYMBOL_GPL(bio_associate_blkg);
2184
2185
/**
2186
* bio_clone_blkg_association - clone blkg association from src to dst bio
2187
* @dst: destination bio
2188
* @src: source bio
2189
*/
2190
void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2191
{
2192
if (src->bi_blkg)
2193
bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2194
}
2195
EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2196
2197
static int blk_cgroup_io_type(struct bio *bio)
2198
{
2199
if (op_is_discard(bio->bi_opf))
2200
return BLKG_IOSTAT_DISCARD;
2201
if (op_is_write(bio->bi_opf))
2202
return BLKG_IOSTAT_WRITE;
2203
return BLKG_IOSTAT_READ;
2204
}
2205
2206
void blk_cgroup_bio_start(struct bio *bio)
2207
{
2208
struct blkcg *blkcg = bio->bi_blkg->blkcg;
2209
int rwd = blk_cgroup_io_type(bio), cpu;
2210
struct blkg_iostat_set *bis;
2211
unsigned long flags;
2212
2213
if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2214
return;
2215
2216
/* Root-level stats are sourced from system-wide IO stats */
2217
if (!cgroup_parent(blkcg->css.cgroup))
2218
return;
2219
2220
cpu = get_cpu();
2221
bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2222
flags = u64_stats_update_begin_irqsave(&bis->sync);
2223
2224
/*
2225
* If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2226
* bio and we would have already accounted for the size of the bio.
2227
*/
2228
if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2229
bio_set_flag(bio, BIO_CGROUP_ACCT);
2230
bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2231
}
2232
bis->cur.ios[rwd]++;
2233
2234
/*
2235
* If the iostat_cpu isn't in a lockless list, put it into the
2236
* list to indicate that a stat update is pending.
2237
*/
2238
if (!READ_ONCE(bis->lqueued)) {
2239
struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2240
2241
llist_add(&bis->lnode, lhead);
2242
WRITE_ONCE(bis->lqueued, true);
2243
}
2244
2245
u64_stats_update_end_irqrestore(&bis->sync, flags);
2246
css_rstat_updated(&blkcg->css, cpu);
2247
put_cpu();
2248
}
2249
2250
bool blk_cgroup_congested(void)
2251
{
2252
struct blkcg *blkcg;
2253
bool ret = false;
2254
2255
rcu_read_lock();
2256
for (blkcg = css_to_blkcg(blkcg_css()); blkcg;
2257
blkcg = blkcg_parent(blkcg)) {
2258
if (atomic_read(&blkcg->congestion_count)) {
2259
ret = true;
2260
break;
2261
}
2262
}
2263
rcu_read_unlock();
2264
return ret;
2265
}
2266
2267
module_param(blkcg_debug_stats, bool, 0644);
2268
MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2269
2270