Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-core.c
26242 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 1991, 1992 Linus Torvalds
4
* Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5
* Elevator latency, (C) 2000 Andrea Arcangeli <[email protected]> SuSE
6
* Queue request tables / lock, selectable elevator, Jens Axboe <[email protected]>
7
* kernel-doc documentation started by NeilBrown <[email protected]>
8
* - July2000
9
* bio rewrite, highmem i/o, etc, Jens Axboe <[email protected]> - may 2001
10
*/
11
12
/*
13
* This handles all read/write requests to block devices
14
*/
15
#include <linux/kernel.h>
16
#include <linux/module.h>
17
#include <linux/bio.h>
18
#include <linux/blkdev.h>
19
#include <linux/blk-pm.h>
20
#include <linux/blk-integrity.h>
21
#include <linux/highmem.h>
22
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kernel_stat.h>
25
#include <linux/string.h>
26
#include <linux/init.h>
27
#include <linux/completion.h>
28
#include <linux/slab.h>
29
#include <linux/swap.h>
30
#include <linux/writeback.h>
31
#include <linux/task_io_accounting_ops.h>
32
#include <linux/fault-inject.h>
33
#include <linux/list_sort.h>
34
#include <linux/delay.h>
35
#include <linux/ratelimit.h>
36
#include <linux/pm_runtime.h>
37
#include <linux/t10-pi.h>
38
#include <linux/debugfs.h>
39
#include <linux/bpf.h>
40
#include <linux/part_stat.h>
41
#include <linux/sched/sysctl.h>
42
#include <linux/blk-crypto.h>
43
44
#define CREATE_TRACE_POINTS
45
#include <trace/events/block.h>
46
47
#include "blk.h"
48
#include "blk-mq-sched.h"
49
#include "blk-pm.h"
50
#include "blk-cgroup.h"
51
#include "blk-throttle.h"
52
#include "blk-ioprio.h"
53
54
struct dentry *blk_debugfs_root;
55
56
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59
EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60
EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62
63
static DEFINE_IDA(blk_queue_ida);
64
65
/*
66
* For queue allocation
67
*/
68
static struct kmem_cache *blk_requestq_cachep;
69
70
/*
71
* Controlling structure to kblockd
72
*/
73
static struct workqueue_struct *kblockd_workqueue;
74
75
/**
76
* blk_queue_flag_set - atomically set a queue flag
77
* @flag: flag to be set
78
* @q: request queue
79
*/
80
void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81
{
82
set_bit(flag, &q->queue_flags);
83
}
84
EXPORT_SYMBOL(blk_queue_flag_set);
85
86
/**
87
* blk_queue_flag_clear - atomically clear a queue flag
88
* @flag: flag to be cleared
89
* @q: request queue
90
*/
91
void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92
{
93
clear_bit(flag, &q->queue_flags);
94
}
95
EXPORT_SYMBOL(blk_queue_flag_clear);
96
97
#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
98
static const char *const blk_op_name[] = {
99
REQ_OP_NAME(READ),
100
REQ_OP_NAME(WRITE),
101
REQ_OP_NAME(FLUSH),
102
REQ_OP_NAME(DISCARD),
103
REQ_OP_NAME(SECURE_ERASE),
104
REQ_OP_NAME(ZONE_RESET),
105
REQ_OP_NAME(ZONE_RESET_ALL),
106
REQ_OP_NAME(ZONE_OPEN),
107
REQ_OP_NAME(ZONE_CLOSE),
108
REQ_OP_NAME(ZONE_FINISH),
109
REQ_OP_NAME(ZONE_APPEND),
110
REQ_OP_NAME(WRITE_ZEROES),
111
REQ_OP_NAME(DRV_IN),
112
REQ_OP_NAME(DRV_OUT),
113
};
114
#undef REQ_OP_NAME
115
116
/**
117
* blk_op_str - Return string XXX in the REQ_OP_XXX.
118
* @op: REQ_OP_XXX.
119
*
120
* Description: Centralize block layer function to convert REQ_OP_XXX into
121
* string format. Useful in the debugging and tracing bio or request. For
122
* invalid REQ_OP_XXX it returns string "UNKNOWN".
123
*/
124
inline const char *blk_op_str(enum req_op op)
125
{
126
const char *op_str = "UNKNOWN";
127
128
if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
129
op_str = blk_op_name[op];
130
131
return op_str;
132
}
133
EXPORT_SYMBOL_GPL(blk_op_str);
134
135
static const struct {
136
int errno;
137
const char *name;
138
} blk_errors[] = {
139
[BLK_STS_OK] = { 0, "" },
140
[BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
141
[BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
142
[BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
143
[BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
144
[BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
145
[BLK_STS_RESV_CONFLICT] = { -EBADE, "reservation conflict" },
146
[BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
147
[BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
148
[BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
149
[BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
150
[BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
151
[BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
152
153
/* device mapper special case, should not leak out: */
154
[BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
155
156
/* zone device specific errors */
157
[BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
158
[BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
159
160
/* Command duration limit device-side timeout */
161
[BLK_STS_DURATION_LIMIT] = { -ETIME, "duration limit exceeded" },
162
163
[BLK_STS_INVAL] = { -EINVAL, "invalid" },
164
165
/* everything else not covered above: */
166
[BLK_STS_IOERR] = { -EIO, "I/O" },
167
};
168
169
blk_status_t errno_to_blk_status(int errno)
170
{
171
int i;
172
173
for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
174
if (blk_errors[i].errno == errno)
175
return (__force blk_status_t)i;
176
}
177
178
return BLK_STS_IOERR;
179
}
180
EXPORT_SYMBOL_GPL(errno_to_blk_status);
181
182
int blk_status_to_errno(blk_status_t status)
183
{
184
int idx = (__force int)status;
185
186
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
187
return -EIO;
188
return blk_errors[idx].errno;
189
}
190
EXPORT_SYMBOL_GPL(blk_status_to_errno);
191
192
const char *blk_status_to_str(blk_status_t status)
193
{
194
int idx = (__force int)status;
195
196
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
197
return "<null>";
198
return blk_errors[idx].name;
199
}
200
EXPORT_SYMBOL_GPL(blk_status_to_str);
201
202
/**
203
* blk_sync_queue - cancel any pending callbacks on a queue
204
* @q: the queue
205
*
206
* Description:
207
* The block layer may perform asynchronous callback activity
208
* on a queue, such as calling the unplug function after a timeout.
209
* A block device may call blk_sync_queue to ensure that any
210
* such activity is cancelled, thus allowing it to release resources
211
* that the callbacks might use. The caller must already have made sure
212
* that its ->submit_bio will not re-add plugging prior to calling
213
* this function.
214
*
215
* This function does not cancel any asynchronous activity arising
216
* out of elevator or throttling code. That would require elevator_exit()
217
* and blkcg_exit_queue() to be called with queue lock initialized.
218
*
219
*/
220
void blk_sync_queue(struct request_queue *q)
221
{
222
timer_delete_sync(&q->timeout);
223
cancel_work_sync(&q->timeout_work);
224
}
225
EXPORT_SYMBOL(blk_sync_queue);
226
227
/**
228
* blk_set_pm_only - increment pm_only counter
229
* @q: request queue pointer
230
*/
231
void blk_set_pm_only(struct request_queue *q)
232
{
233
atomic_inc(&q->pm_only);
234
}
235
EXPORT_SYMBOL_GPL(blk_set_pm_only);
236
237
void blk_clear_pm_only(struct request_queue *q)
238
{
239
int pm_only;
240
241
pm_only = atomic_dec_return(&q->pm_only);
242
WARN_ON_ONCE(pm_only < 0);
243
if (pm_only == 0)
244
wake_up_all(&q->mq_freeze_wq);
245
}
246
EXPORT_SYMBOL_GPL(blk_clear_pm_only);
247
248
static void blk_free_queue_rcu(struct rcu_head *rcu_head)
249
{
250
struct request_queue *q = container_of(rcu_head,
251
struct request_queue, rcu_head);
252
253
percpu_ref_exit(&q->q_usage_counter);
254
kmem_cache_free(blk_requestq_cachep, q);
255
}
256
257
static void blk_free_queue(struct request_queue *q)
258
{
259
blk_free_queue_stats(q->stats);
260
if (queue_is_mq(q))
261
blk_mq_release(q);
262
263
ida_free(&blk_queue_ida, q->id);
264
lockdep_unregister_key(&q->io_lock_cls_key);
265
lockdep_unregister_key(&q->q_lock_cls_key);
266
call_rcu(&q->rcu_head, blk_free_queue_rcu);
267
}
268
269
/**
270
* blk_put_queue - decrement the request_queue refcount
271
* @q: the request_queue structure to decrement the refcount for
272
*
273
* Decrements the refcount of the request_queue and free it when the refcount
274
* reaches 0.
275
*/
276
void blk_put_queue(struct request_queue *q)
277
{
278
if (refcount_dec_and_test(&q->refs))
279
blk_free_queue(q);
280
}
281
EXPORT_SYMBOL(blk_put_queue);
282
283
bool blk_queue_start_drain(struct request_queue *q)
284
{
285
/*
286
* When queue DYING flag is set, we need to block new req
287
* entering queue, so we call blk_freeze_queue_start() to
288
* prevent I/O from crossing blk_queue_enter().
289
*/
290
bool freeze = __blk_freeze_queue_start(q, current);
291
if (queue_is_mq(q))
292
blk_mq_wake_waiters(q);
293
/* Make blk_queue_enter() reexamine the DYING flag. */
294
wake_up_all(&q->mq_freeze_wq);
295
296
return freeze;
297
}
298
299
/**
300
* blk_queue_enter() - try to increase q->q_usage_counter
301
* @q: request queue pointer
302
* @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
303
*/
304
int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
305
{
306
const bool pm = flags & BLK_MQ_REQ_PM;
307
308
while (!blk_try_enter_queue(q, pm)) {
309
if (flags & BLK_MQ_REQ_NOWAIT)
310
return -EAGAIN;
311
312
/*
313
* read pair of barrier in blk_freeze_queue_start(), we need to
314
* order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
315
* reading .mq_freeze_depth or queue dying flag, otherwise the
316
* following wait may never return if the two reads are
317
* reordered.
318
*/
319
smp_rmb();
320
wait_event(q->mq_freeze_wq,
321
(!q->mq_freeze_depth &&
322
blk_pm_resume_queue(pm, q)) ||
323
blk_queue_dying(q));
324
if (blk_queue_dying(q))
325
return -ENODEV;
326
}
327
328
rwsem_acquire_read(&q->q_lockdep_map, 0, 0, _RET_IP_);
329
rwsem_release(&q->q_lockdep_map, _RET_IP_);
330
return 0;
331
}
332
333
int __bio_queue_enter(struct request_queue *q, struct bio *bio)
334
{
335
while (!blk_try_enter_queue(q, false)) {
336
struct gendisk *disk = bio->bi_bdev->bd_disk;
337
338
if (bio->bi_opf & REQ_NOWAIT) {
339
if (test_bit(GD_DEAD, &disk->state))
340
goto dead;
341
bio_wouldblock_error(bio);
342
return -EAGAIN;
343
}
344
345
/*
346
* read pair of barrier in blk_freeze_queue_start(), we need to
347
* order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
348
* reading .mq_freeze_depth or queue dying flag, otherwise the
349
* following wait may never return if the two reads are
350
* reordered.
351
*/
352
smp_rmb();
353
wait_event(q->mq_freeze_wq,
354
(!q->mq_freeze_depth &&
355
blk_pm_resume_queue(false, q)) ||
356
test_bit(GD_DEAD, &disk->state));
357
if (test_bit(GD_DEAD, &disk->state))
358
goto dead;
359
}
360
361
rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
362
rwsem_release(&q->io_lockdep_map, _RET_IP_);
363
return 0;
364
dead:
365
bio_io_error(bio);
366
return -ENODEV;
367
}
368
369
void blk_queue_exit(struct request_queue *q)
370
{
371
percpu_ref_put(&q->q_usage_counter);
372
}
373
374
static void blk_queue_usage_counter_release(struct percpu_ref *ref)
375
{
376
struct request_queue *q =
377
container_of(ref, struct request_queue, q_usage_counter);
378
379
wake_up_all(&q->mq_freeze_wq);
380
}
381
382
static void blk_rq_timed_out_timer(struct timer_list *t)
383
{
384
struct request_queue *q = timer_container_of(q, t, timeout);
385
386
kblockd_schedule_work(&q->timeout_work);
387
}
388
389
static void blk_timeout_work(struct work_struct *work)
390
{
391
}
392
393
struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
394
{
395
struct request_queue *q;
396
int error;
397
398
q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
399
node_id);
400
if (!q)
401
return ERR_PTR(-ENOMEM);
402
403
q->last_merge = NULL;
404
405
q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
406
if (q->id < 0) {
407
error = q->id;
408
goto fail_q;
409
}
410
411
q->stats = blk_alloc_queue_stats();
412
if (!q->stats) {
413
error = -ENOMEM;
414
goto fail_id;
415
}
416
417
error = blk_set_default_limits(lim);
418
if (error)
419
goto fail_stats;
420
q->limits = *lim;
421
422
q->node = node_id;
423
424
atomic_set(&q->nr_active_requests_shared_tags, 0);
425
426
timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
427
INIT_WORK(&q->timeout_work, blk_timeout_work);
428
INIT_LIST_HEAD(&q->icq_list);
429
430
refcount_set(&q->refs, 1);
431
mutex_init(&q->debugfs_mutex);
432
mutex_init(&q->elevator_lock);
433
mutex_init(&q->sysfs_lock);
434
mutex_init(&q->limits_lock);
435
mutex_init(&q->rq_qos_mutex);
436
spin_lock_init(&q->queue_lock);
437
438
init_waitqueue_head(&q->mq_freeze_wq);
439
mutex_init(&q->mq_freeze_lock);
440
441
blkg_init_queue(q);
442
443
/*
444
* Init percpu_ref in atomic mode so that it's faster to shutdown.
445
* See blk_register_queue() for details.
446
*/
447
error = percpu_ref_init(&q->q_usage_counter,
448
blk_queue_usage_counter_release,
449
PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
450
if (error)
451
goto fail_stats;
452
lockdep_register_key(&q->io_lock_cls_key);
453
lockdep_register_key(&q->q_lock_cls_key);
454
lockdep_init_map(&q->io_lockdep_map, "&q->q_usage_counter(io)",
455
&q->io_lock_cls_key, 0);
456
lockdep_init_map(&q->q_lockdep_map, "&q->q_usage_counter(queue)",
457
&q->q_lock_cls_key, 0);
458
459
/* Teach lockdep about lock ordering (reclaim WRT queue freeze lock). */
460
fs_reclaim_acquire(GFP_KERNEL);
461
rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
462
rwsem_release(&q->io_lockdep_map, _RET_IP_);
463
fs_reclaim_release(GFP_KERNEL);
464
465
q->nr_requests = BLKDEV_DEFAULT_RQ;
466
467
return q;
468
469
fail_stats:
470
blk_free_queue_stats(q->stats);
471
fail_id:
472
ida_free(&blk_queue_ida, q->id);
473
fail_q:
474
kmem_cache_free(blk_requestq_cachep, q);
475
return ERR_PTR(error);
476
}
477
478
/**
479
* blk_get_queue - increment the request_queue refcount
480
* @q: the request_queue structure to increment the refcount for
481
*
482
* Increment the refcount of the request_queue kobject.
483
*
484
* Context: Any context.
485
*/
486
bool blk_get_queue(struct request_queue *q)
487
{
488
if (unlikely(blk_queue_dying(q)))
489
return false;
490
refcount_inc(&q->refs);
491
return true;
492
}
493
EXPORT_SYMBOL(blk_get_queue);
494
495
#ifdef CONFIG_FAIL_MAKE_REQUEST
496
497
static DECLARE_FAULT_ATTR(fail_make_request);
498
499
static int __init setup_fail_make_request(char *str)
500
{
501
return setup_fault_attr(&fail_make_request, str);
502
}
503
__setup("fail_make_request=", setup_fail_make_request);
504
505
bool should_fail_request(struct block_device *part, unsigned int bytes)
506
{
507
return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
508
should_fail(&fail_make_request, bytes);
509
}
510
511
static int __init fail_make_request_debugfs(void)
512
{
513
struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
514
NULL, &fail_make_request);
515
516
return PTR_ERR_OR_ZERO(dir);
517
}
518
519
late_initcall(fail_make_request_debugfs);
520
#endif /* CONFIG_FAIL_MAKE_REQUEST */
521
522
static inline void bio_check_ro(struct bio *bio)
523
{
524
if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
525
if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
526
return;
527
528
if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
529
return;
530
531
bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
532
533
/*
534
* Use ioctl to set underlying disk of raid/dm to read-only
535
* will trigger this.
536
*/
537
pr_warn("Trying to write to read-only block-device %pg\n",
538
bio->bi_bdev);
539
}
540
}
541
542
static noinline int should_fail_bio(struct bio *bio)
543
{
544
if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
545
return -EIO;
546
return 0;
547
}
548
ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
549
550
/*
551
* Check whether this bio extends beyond the end of the device or partition.
552
* This may well happen - the kernel calls bread() without checking the size of
553
* the device, e.g., when mounting a file system.
554
*/
555
static inline int bio_check_eod(struct bio *bio)
556
{
557
sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
558
unsigned int nr_sectors = bio_sectors(bio);
559
560
if (nr_sectors && maxsector &&
561
(nr_sectors > maxsector ||
562
bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
563
pr_info_ratelimited("%s: attempt to access beyond end of device\n"
564
"%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
565
current->comm, bio->bi_bdev, bio->bi_opf,
566
bio->bi_iter.bi_sector, nr_sectors, maxsector);
567
return -EIO;
568
}
569
return 0;
570
}
571
572
/*
573
* Remap block n of partition p to block n+start(p) of the disk.
574
*/
575
static int blk_partition_remap(struct bio *bio)
576
{
577
struct block_device *p = bio->bi_bdev;
578
579
if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
580
return -EIO;
581
if (bio_sectors(bio)) {
582
bio->bi_iter.bi_sector += p->bd_start_sect;
583
trace_block_bio_remap(bio, p->bd_dev,
584
bio->bi_iter.bi_sector -
585
p->bd_start_sect);
586
}
587
bio_set_flag(bio, BIO_REMAPPED);
588
return 0;
589
}
590
591
/*
592
* Check write append to a zoned block device.
593
*/
594
static inline blk_status_t blk_check_zone_append(struct request_queue *q,
595
struct bio *bio)
596
{
597
int nr_sectors = bio_sectors(bio);
598
599
/* Only applicable to zoned block devices */
600
if (!bdev_is_zoned(bio->bi_bdev))
601
return BLK_STS_NOTSUPP;
602
603
/* The bio sector must point to the start of a sequential zone */
604
if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
605
return BLK_STS_IOERR;
606
607
/*
608
* Not allowed to cross zone boundaries. Otherwise, the BIO will be
609
* split and could result in non-contiguous sectors being written in
610
* different zones.
611
*/
612
if (nr_sectors > q->limits.chunk_sectors)
613
return BLK_STS_IOERR;
614
615
/* Make sure the BIO is small enough and will not get split */
616
if (nr_sectors > q->limits.max_zone_append_sectors)
617
return BLK_STS_IOERR;
618
619
bio->bi_opf |= REQ_NOMERGE;
620
621
return BLK_STS_OK;
622
}
623
624
static void __submit_bio(struct bio *bio)
625
{
626
/* If plug is not used, add new plug here to cache nsecs time. */
627
struct blk_plug plug;
628
629
if (unlikely(!blk_crypto_bio_prep(&bio)))
630
return;
631
632
blk_start_plug(&plug);
633
634
if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
635
blk_mq_submit_bio(bio);
636
} else if (likely(bio_queue_enter(bio) == 0)) {
637
struct gendisk *disk = bio->bi_bdev->bd_disk;
638
639
if ((bio->bi_opf & REQ_POLLED) &&
640
!(disk->queue->limits.features & BLK_FEAT_POLL)) {
641
bio->bi_status = BLK_STS_NOTSUPP;
642
bio_endio(bio);
643
} else {
644
disk->fops->submit_bio(bio);
645
}
646
blk_queue_exit(disk->queue);
647
}
648
649
blk_finish_plug(&plug);
650
}
651
652
/*
653
* The loop in this function may be a bit non-obvious, and so deserves some
654
* explanation:
655
*
656
* - Before entering the loop, bio->bi_next is NULL (as all callers ensure
657
* that), so we have a list with a single bio.
658
* - We pretend that we have just taken it off a longer list, so we assign
659
* bio_list to a pointer to the bio_list_on_stack, thus initialising the
660
* bio_list of new bios to be added. ->submit_bio() may indeed add some more
661
* bios through a recursive call to submit_bio_noacct. If it did, we find a
662
* non-NULL value in bio_list and re-enter the loop from the top.
663
* - In this case we really did just take the bio of the top of the list (no
664
* pretending) and so remove it from bio_list, and call into ->submit_bio()
665
* again.
666
*
667
* bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
668
* bio_list_on_stack[1] contains bios that were submitted before the current
669
* ->submit_bio, but that haven't been processed yet.
670
*/
671
static void __submit_bio_noacct(struct bio *bio)
672
{
673
struct bio_list bio_list_on_stack[2];
674
675
BUG_ON(bio->bi_next);
676
677
bio_list_init(&bio_list_on_stack[0]);
678
current->bio_list = bio_list_on_stack;
679
680
do {
681
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
682
struct bio_list lower, same;
683
684
/*
685
* Create a fresh bio_list for all subordinate requests.
686
*/
687
bio_list_on_stack[1] = bio_list_on_stack[0];
688
bio_list_init(&bio_list_on_stack[0]);
689
690
__submit_bio(bio);
691
692
/*
693
* Sort new bios into those for a lower level and those for the
694
* same level.
695
*/
696
bio_list_init(&lower);
697
bio_list_init(&same);
698
while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
699
if (q == bdev_get_queue(bio->bi_bdev))
700
bio_list_add(&same, bio);
701
else
702
bio_list_add(&lower, bio);
703
704
/*
705
* Now assemble so we handle the lowest level first.
706
*/
707
bio_list_merge(&bio_list_on_stack[0], &lower);
708
bio_list_merge(&bio_list_on_stack[0], &same);
709
bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
710
} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
711
712
current->bio_list = NULL;
713
}
714
715
static void __submit_bio_noacct_mq(struct bio *bio)
716
{
717
struct bio_list bio_list[2] = { };
718
719
current->bio_list = bio_list;
720
721
do {
722
__submit_bio(bio);
723
} while ((bio = bio_list_pop(&bio_list[0])));
724
725
current->bio_list = NULL;
726
}
727
728
void submit_bio_noacct_nocheck(struct bio *bio)
729
{
730
blk_cgroup_bio_start(bio);
731
blkcg_bio_issue_init(bio);
732
733
if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
734
trace_block_bio_queue(bio);
735
/*
736
* Now that enqueuing has been traced, we need to trace
737
* completion as well.
738
*/
739
bio_set_flag(bio, BIO_TRACE_COMPLETION);
740
}
741
742
/*
743
* We only want one ->submit_bio to be active at a time, else stack
744
* usage with stacked devices could be a problem. Use current->bio_list
745
* to collect a list of requests submited by a ->submit_bio method while
746
* it is active, and then process them after it returned.
747
*/
748
if (current->bio_list)
749
bio_list_add(&current->bio_list[0], bio);
750
else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO))
751
__submit_bio_noacct_mq(bio);
752
else
753
__submit_bio_noacct(bio);
754
}
755
756
static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
757
struct bio *bio)
758
{
759
if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
760
return BLK_STS_INVAL;
761
762
if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
763
return BLK_STS_INVAL;
764
765
return BLK_STS_OK;
766
}
767
768
/**
769
* submit_bio_noacct - re-submit a bio to the block device layer for I/O
770
* @bio: The bio describing the location in memory and on the device.
771
*
772
* This is a version of submit_bio() that shall only be used for I/O that is
773
* resubmitted to lower level drivers by stacking block drivers. All file
774
* systems and other upper level users of the block layer should use
775
* submit_bio() instead.
776
*/
777
void submit_bio_noacct(struct bio *bio)
778
{
779
struct block_device *bdev = bio->bi_bdev;
780
struct request_queue *q = bdev_get_queue(bdev);
781
blk_status_t status = BLK_STS_IOERR;
782
783
might_sleep();
784
785
/*
786
* For a REQ_NOWAIT based request, return -EOPNOTSUPP
787
* if queue does not support NOWAIT.
788
*/
789
if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
790
goto not_supported;
791
792
if (should_fail_bio(bio))
793
goto end_io;
794
bio_check_ro(bio);
795
if (!bio_flagged(bio, BIO_REMAPPED)) {
796
if (unlikely(bio_check_eod(bio)))
797
goto end_io;
798
if (bdev_is_partition(bdev) &&
799
unlikely(blk_partition_remap(bio)))
800
goto end_io;
801
}
802
803
/*
804
* Filter flush bio's early so that bio based drivers without flush
805
* support don't have to worry about them.
806
*/
807
if (op_is_flush(bio->bi_opf)) {
808
if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
809
bio_op(bio) != REQ_OP_ZONE_APPEND))
810
goto end_io;
811
if (!bdev_write_cache(bdev)) {
812
bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
813
if (!bio_sectors(bio)) {
814
status = BLK_STS_OK;
815
goto end_io;
816
}
817
}
818
}
819
820
switch (bio_op(bio)) {
821
case REQ_OP_READ:
822
break;
823
case REQ_OP_WRITE:
824
if (bio->bi_opf & REQ_ATOMIC) {
825
status = blk_validate_atomic_write_op_size(q, bio);
826
if (status != BLK_STS_OK)
827
goto end_io;
828
}
829
break;
830
case REQ_OP_FLUSH:
831
/*
832
* REQ_OP_FLUSH can't be submitted through bios, it is only
833
* synthetized in struct request by the flush state machine.
834
*/
835
goto not_supported;
836
case REQ_OP_DISCARD:
837
if (!bdev_max_discard_sectors(bdev))
838
goto not_supported;
839
break;
840
case REQ_OP_SECURE_ERASE:
841
if (!bdev_max_secure_erase_sectors(bdev))
842
goto not_supported;
843
break;
844
case REQ_OP_ZONE_APPEND:
845
status = blk_check_zone_append(q, bio);
846
if (status != BLK_STS_OK)
847
goto end_io;
848
break;
849
case REQ_OP_WRITE_ZEROES:
850
if (!q->limits.max_write_zeroes_sectors)
851
goto not_supported;
852
break;
853
case REQ_OP_ZONE_RESET:
854
case REQ_OP_ZONE_OPEN:
855
case REQ_OP_ZONE_CLOSE:
856
case REQ_OP_ZONE_FINISH:
857
case REQ_OP_ZONE_RESET_ALL:
858
if (!bdev_is_zoned(bio->bi_bdev))
859
goto not_supported;
860
break;
861
case REQ_OP_DRV_IN:
862
case REQ_OP_DRV_OUT:
863
/*
864
* Driver private operations are only used with passthrough
865
* requests.
866
*/
867
fallthrough;
868
default:
869
goto not_supported;
870
}
871
872
if (blk_throtl_bio(bio))
873
return;
874
submit_bio_noacct_nocheck(bio);
875
return;
876
877
not_supported:
878
status = BLK_STS_NOTSUPP;
879
end_io:
880
bio->bi_status = status;
881
bio_endio(bio);
882
}
883
EXPORT_SYMBOL(submit_bio_noacct);
884
885
static void bio_set_ioprio(struct bio *bio)
886
{
887
/* Nobody set ioprio so far? Initialize it based on task's nice value */
888
if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
889
bio->bi_ioprio = get_current_ioprio();
890
blkcg_set_ioprio(bio);
891
}
892
893
/**
894
* submit_bio - submit a bio to the block device layer for I/O
895
* @bio: The &struct bio which describes the I/O
896
*
897
* submit_bio() is used to submit I/O requests to block devices. It is passed a
898
* fully set up &struct bio that describes the I/O that needs to be done. The
899
* bio will be send to the device described by the bi_bdev field.
900
*
901
* The success/failure status of the request, along with notification of
902
* completion, is delivered asynchronously through the ->bi_end_io() callback
903
* in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
904
* been called.
905
*/
906
void submit_bio(struct bio *bio)
907
{
908
if (bio_op(bio) == REQ_OP_READ) {
909
task_io_account_read(bio->bi_iter.bi_size);
910
count_vm_events(PGPGIN, bio_sectors(bio));
911
} else if (bio_op(bio) == REQ_OP_WRITE) {
912
count_vm_events(PGPGOUT, bio_sectors(bio));
913
}
914
915
bio_set_ioprio(bio);
916
submit_bio_noacct(bio);
917
}
918
EXPORT_SYMBOL(submit_bio);
919
920
/**
921
* bio_poll - poll for BIO completions
922
* @bio: bio to poll for
923
* @iob: batches of IO
924
* @flags: BLK_POLL_* flags that control the behavior
925
*
926
* Poll for completions on queue associated with the bio. Returns number of
927
* completed entries found.
928
*
929
* Note: the caller must either be the context that submitted @bio, or
930
* be in a RCU critical section to prevent freeing of @bio.
931
*/
932
int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
933
{
934
blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
935
struct block_device *bdev;
936
struct request_queue *q;
937
int ret = 0;
938
939
bdev = READ_ONCE(bio->bi_bdev);
940
if (!bdev)
941
return 0;
942
943
q = bdev_get_queue(bdev);
944
if (cookie == BLK_QC_T_NONE)
945
return 0;
946
947
blk_flush_plug(current->plug, false);
948
949
/*
950
* We need to be able to enter a frozen queue, similar to how
951
* timeouts also need to do that. If that is blocked, then we can
952
* have pending IO when a queue freeze is started, and then the
953
* wait for the freeze to finish will wait for polled requests to
954
* timeout as the poller is preventer from entering the queue and
955
* completing them. As long as we prevent new IO from being queued,
956
* that should be all that matters.
957
*/
958
if (!percpu_ref_tryget(&q->q_usage_counter))
959
return 0;
960
if (queue_is_mq(q)) {
961
ret = blk_mq_poll(q, cookie, iob, flags);
962
} else {
963
struct gendisk *disk = q->disk;
964
965
if ((q->limits.features & BLK_FEAT_POLL) && disk &&
966
disk->fops->poll_bio)
967
ret = disk->fops->poll_bio(bio, iob, flags);
968
}
969
blk_queue_exit(q);
970
return ret;
971
}
972
EXPORT_SYMBOL_GPL(bio_poll);
973
974
/*
975
* Helper to implement file_operations.iopoll. Requires the bio to be stored
976
* in iocb->private, and cleared before freeing the bio.
977
*/
978
int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
979
unsigned int flags)
980
{
981
struct bio *bio;
982
int ret = 0;
983
984
/*
985
* Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
986
* point to a freshly allocated bio at this point. If that happens
987
* we have a few cases to consider:
988
*
989
* 1) the bio is beeing initialized and bi_bdev is NULL. We can just
990
* simply nothing in this case
991
* 2) the bio points to a not poll enabled device. bio_poll will catch
992
* this and return 0
993
* 3) the bio points to a poll capable device, including but not
994
* limited to the one that the original bio pointed to. In this
995
* case we will call into the actual poll method and poll for I/O,
996
* even if we don't need to, but it won't cause harm either.
997
*
998
* For cases 2) and 3) above the RCU grace period ensures that bi_bdev
999
* is still allocated. Because partitions hold a reference to the whole
1000
* device bdev and thus disk, the disk is also still valid. Grabbing
1001
* a reference to the queue in bio_poll() ensures the hctxs and requests
1002
* are still valid as well.
1003
*/
1004
rcu_read_lock();
1005
bio = READ_ONCE(kiocb->private);
1006
if (bio)
1007
ret = bio_poll(bio, iob, flags);
1008
rcu_read_unlock();
1009
1010
return ret;
1011
}
1012
EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1013
1014
void update_io_ticks(struct block_device *part, unsigned long now, bool end)
1015
{
1016
unsigned long stamp;
1017
again:
1018
stamp = READ_ONCE(part->bd_stamp);
1019
if (unlikely(time_after(now, stamp)) &&
1020
likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
1021
(end || bdev_count_inflight(part)))
1022
__part_stat_add(part, io_ticks, now - stamp);
1023
1024
if (bdev_is_partition(part)) {
1025
part = bdev_whole(part);
1026
goto again;
1027
}
1028
}
1029
1030
unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1031
unsigned long start_time)
1032
{
1033
part_stat_lock();
1034
update_io_ticks(bdev, start_time, false);
1035
part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1036
part_stat_unlock();
1037
1038
return start_time;
1039
}
1040
EXPORT_SYMBOL(bdev_start_io_acct);
1041
1042
/**
1043
* bio_start_io_acct - start I/O accounting for bio based drivers
1044
* @bio: bio to start account for
1045
*
1046
* Returns the start time that should be passed back to bio_end_io_acct().
1047
*/
1048
unsigned long bio_start_io_acct(struct bio *bio)
1049
{
1050
return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1051
}
1052
EXPORT_SYMBOL_GPL(bio_start_io_acct);
1053
1054
void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1055
unsigned int sectors, unsigned long start_time)
1056
{
1057
const int sgrp = op_stat_group(op);
1058
unsigned long now = READ_ONCE(jiffies);
1059
unsigned long duration = now - start_time;
1060
1061
part_stat_lock();
1062
update_io_ticks(bdev, now, true);
1063
part_stat_inc(bdev, ios[sgrp]);
1064
part_stat_add(bdev, sectors[sgrp], sectors);
1065
part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1066
part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1067
part_stat_unlock();
1068
}
1069
EXPORT_SYMBOL(bdev_end_io_acct);
1070
1071
void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1072
struct block_device *orig_bdev)
1073
{
1074
bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1075
}
1076
EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1077
1078
/**
1079
* blk_lld_busy - Check if underlying low-level drivers of a device are busy
1080
* @q : the queue of the device being checked
1081
*
1082
* Description:
1083
* Check if underlying low-level drivers of a device are busy.
1084
* If the drivers want to export their busy state, they must set own
1085
* exporting function using blk_queue_lld_busy() first.
1086
*
1087
* Basically, this function is used only by request stacking drivers
1088
* to stop dispatching requests to underlying devices when underlying
1089
* devices are busy. This behavior helps more I/O merging on the queue
1090
* of the request stacking driver and prevents I/O throughput regression
1091
* on burst I/O load.
1092
*
1093
* Return:
1094
* 0 - Not busy (The request stacking driver should dispatch request)
1095
* 1 - Busy (The request stacking driver should stop dispatching request)
1096
*/
1097
int blk_lld_busy(struct request_queue *q)
1098
{
1099
if (queue_is_mq(q) && q->mq_ops->busy)
1100
return q->mq_ops->busy(q);
1101
1102
return 0;
1103
}
1104
EXPORT_SYMBOL_GPL(blk_lld_busy);
1105
1106
int kblockd_schedule_work(struct work_struct *work)
1107
{
1108
return queue_work(kblockd_workqueue, work);
1109
}
1110
EXPORT_SYMBOL(kblockd_schedule_work);
1111
1112
int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1113
unsigned long delay)
1114
{
1115
return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1116
}
1117
EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1118
1119
void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1120
{
1121
struct task_struct *tsk = current;
1122
1123
/*
1124
* If this is a nested plug, don't actually assign it.
1125
*/
1126
if (tsk->plug)
1127
return;
1128
1129
plug->cur_ktime = 0;
1130
rq_list_init(&plug->mq_list);
1131
rq_list_init(&plug->cached_rqs);
1132
plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1133
plug->rq_count = 0;
1134
plug->multiple_queues = false;
1135
plug->has_elevator = false;
1136
INIT_LIST_HEAD(&plug->cb_list);
1137
1138
/*
1139
* Store ordering should not be needed here, since a potential
1140
* preempt will imply a full memory barrier
1141
*/
1142
tsk->plug = plug;
1143
}
1144
1145
/**
1146
* blk_start_plug - initialize blk_plug and track it inside the task_struct
1147
* @plug: The &struct blk_plug that needs to be initialized
1148
*
1149
* Description:
1150
* blk_start_plug() indicates to the block layer an intent by the caller
1151
* to submit multiple I/O requests in a batch. The block layer may use
1152
* this hint to defer submitting I/Os from the caller until blk_finish_plug()
1153
* is called. However, the block layer may choose to submit requests
1154
* before a call to blk_finish_plug() if the number of queued I/Os
1155
* exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1156
* %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1157
* the task schedules (see below).
1158
*
1159
* Tracking blk_plug inside the task_struct will help with auto-flushing the
1160
* pending I/O should the task end up blocking between blk_start_plug() and
1161
* blk_finish_plug(). This is important from a performance perspective, but
1162
* also ensures that we don't deadlock. For instance, if the task is blocking
1163
* for a memory allocation, memory reclaim could end up wanting to free a
1164
* page belonging to that request that is currently residing in our private
1165
* plug. By flushing the pending I/O when the process goes to sleep, we avoid
1166
* this kind of deadlock.
1167
*/
1168
void blk_start_plug(struct blk_plug *plug)
1169
{
1170
blk_start_plug_nr_ios(plug, 1);
1171
}
1172
EXPORT_SYMBOL(blk_start_plug);
1173
1174
static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1175
{
1176
LIST_HEAD(callbacks);
1177
1178
while (!list_empty(&plug->cb_list)) {
1179
list_splice_init(&plug->cb_list, &callbacks);
1180
1181
while (!list_empty(&callbacks)) {
1182
struct blk_plug_cb *cb = list_first_entry(&callbacks,
1183
struct blk_plug_cb,
1184
list);
1185
list_del(&cb->list);
1186
cb->callback(cb, from_schedule);
1187
}
1188
}
1189
}
1190
1191
struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1192
int size)
1193
{
1194
struct blk_plug *plug = current->plug;
1195
struct blk_plug_cb *cb;
1196
1197
if (!plug)
1198
return NULL;
1199
1200
list_for_each_entry(cb, &plug->cb_list, list)
1201
if (cb->callback == unplug && cb->data == data)
1202
return cb;
1203
1204
/* Not currently on the callback list */
1205
BUG_ON(size < sizeof(*cb));
1206
cb = kzalloc(size, GFP_ATOMIC);
1207
if (cb) {
1208
cb->data = data;
1209
cb->callback = unplug;
1210
list_add(&cb->list, &plug->cb_list);
1211
}
1212
return cb;
1213
}
1214
EXPORT_SYMBOL(blk_check_plugged);
1215
1216
void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1217
{
1218
if (!list_empty(&plug->cb_list))
1219
flush_plug_callbacks(plug, from_schedule);
1220
blk_mq_flush_plug_list(plug, from_schedule);
1221
/*
1222
* Unconditionally flush out cached requests, even if the unplug
1223
* event came from schedule. Since we know hold references to the
1224
* queue for cached requests, we don't want a blocked task holding
1225
* up a queue freeze/quiesce event.
1226
*/
1227
if (unlikely(!rq_list_empty(&plug->cached_rqs)))
1228
blk_mq_free_plug_rqs(plug);
1229
1230
plug->cur_ktime = 0;
1231
current->flags &= ~PF_BLOCK_TS;
1232
}
1233
1234
/**
1235
* blk_finish_plug - mark the end of a batch of submitted I/O
1236
* @plug: The &struct blk_plug passed to blk_start_plug()
1237
*
1238
* Description:
1239
* Indicate that a batch of I/O submissions is complete. This function
1240
* must be paired with an initial call to blk_start_plug(). The intent
1241
* is to allow the block layer to optimize I/O submission. See the
1242
* documentation for blk_start_plug() for more information.
1243
*/
1244
void blk_finish_plug(struct blk_plug *plug)
1245
{
1246
if (plug == current->plug) {
1247
__blk_flush_plug(plug, false);
1248
current->plug = NULL;
1249
}
1250
}
1251
EXPORT_SYMBOL(blk_finish_plug);
1252
1253
void blk_io_schedule(void)
1254
{
1255
/* Prevent hang_check timer from firing at us during very long I/O */
1256
unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1257
1258
if (timeout)
1259
io_schedule_timeout(timeout);
1260
else
1261
io_schedule();
1262
}
1263
EXPORT_SYMBOL_GPL(blk_io_schedule);
1264
1265
int __init blk_dev_init(void)
1266
{
1267
BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1268
BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1269
sizeof_field(struct request, cmd_flags));
1270
BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1271
sizeof_field(struct bio, bi_opf));
1272
1273
/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1274
kblockd_workqueue = alloc_workqueue("kblockd",
1275
WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1276
if (!kblockd_workqueue)
1277
panic("Failed to create kblockd\n");
1278
1279
blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
1280
1281
blk_debugfs_root = debugfs_create_dir("block", NULL);
1282
1283
return 0;
1284
}
1285
1286