Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-crypto-fallback.c
26242 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright 2019 Google LLC
4
*/
5
6
/*
7
* Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8
*/
9
10
#define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11
12
#include <crypto/skcipher.h>
13
#include <linux/blk-crypto.h>
14
#include <linux/blk-crypto-profile.h>
15
#include <linux/blkdev.h>
16
#include <linux/crypto.h>
17
#include <linux/mempool.h>
18
#include <linux/module.h>
19
#include <linux/random.h>
20
#include <linux/scatterlist.h>
21
22
#include "blk-cgroup.h"
23
#include "blk-crypto-internal.h"
24
25
static unsigned int num_prealloc_bounce_pg = 32;
26
module_param(num_prealloc_bounce_pg, uint, 0);
27
MODULE_PARM_DESC(num_prealloc_bounce_pg,
28
"Number of preallocated bounce pages for the blk-crypto crypto API fallback");
29
30
static unsigned int blk_crypto_num_keyslots = 100;
31
module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
32
MODULE_PARM_DESC(num_keyslots,
33
"Number of keyslots for the blk-crypto crypto API fallback");
34
35
static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
36
module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
37
MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
38
"Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
39
40
struct bio_fallback_crypt_ctx {
41
struct bio_crypt_ctx crypt_ctx;
42
/*
43
* Copy of the bvec_iter when this bio was submitted.
44
* We only want to en/decrypt the part of the bio as described by the
45
* bvec_iter upon submission because bio might be split before being
46
* resubmitted
47
*/
48
struct bvec_iter crypt_iter;
49
union {
50
struct {
51
struct work_struct work;
52
struct bio *bio;
53
};
54
struct {
55
void *bi_private_orig;
56
bio_end_io_t *bi_end_io_orig;
57
};
58
};
59
};
60
61
static struct kmem_cache *bio_fallback_crypt_ctx_cache;
62
static mempool_t *bio_fallback_crypt_ctx_pool;
63
64
/*
65
* Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
66
* all of a mode's tfms when that mode starts being used. Since each mode may
67
* need all the keyslots at some point, each mode needs its own tfm for each
68
* keyslot; thus, a keyslot may contain tfms for multiple modes. However, to
69
* match the behavior of real inline encryption hardware (which only supports a
70
* single encryption context per keyslot), we only allow one tfm per keyslot to
71
* be used at a time - the rest of the unused tfms have their keys cleared.
72
*/
73
static DEFINE_MUTEX(tfms_init_lock);
74
static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
75
76
static struct blk_crypto_fallback_keyslot {
77
enum blk_crypto_mode_num crypto_mode;
78
struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
79
} *blk_crypto_keyslots;
80
81
static struct blk_crypto_profile *blk_crypto_fallback_profile;
82
static struct workqueue_struct *blk_crypto_wq;
83
static mempool_t *blk_crypto_bounce_page_pool;
84
static struct bio_set crypto_bio_split;
85
86
/*
87
* This is the key we set when evicting a keyslot. This *should* be the all 0's
88
* key, but AES-XTS rejects that key, so we use some random bytes instead.
89
*/
90
static u8 blank_key[BLK_CRYPTO_MAX_RAW_KEY_SIZE];
91
92
static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
93
{
94
struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
95
enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
96
int err;
97
98
WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
99
100
/* Clear the key in the skcipher */
101
err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
102
blk_crypto_modes[crypto_mode].keysize);
103
WARN_ON(err);
104
slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
105
}
106
107
static int
108
blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile,
109
const struct blk_crypto_key *key,
110
unsigned int slot)
111
{
112
struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
113
const enum blk_crypto_mode_num crypto_mode =
114
key->crypto_cfg.crypto_mode;
115
int err;
116
117
if (crypto_mode != slotp->crypto_mode &&
118
slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
119
blk_crypto_fallback_evict_keyslot(slot);
120
121
slotp->crypto_mode = crypto_mode;
122
err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->bytes,
123
key->size);
124
if (err) {
125
blk_crypto_fallback_evict_keyslot(slot);
126
return err;
127
}
128
return 0;
129
}
130
131
static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile,
132
const struct blk_crypto_key *key,
133
unsigned int slot)
134
{
135
blk_crypto_fallback_evict_keyslot(slot);
136
return 0;
137
}
138
139
static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = {
140
.keyslot_program = blk_crypto_fallback_keyslot_program,
141
.keyslot_evict = blk_crypto_fallback_keyslot_evict,
142
};
143
144
static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
145
{
146
struct bio *src_bio = enc_bio->bi_private;
147
int i;
148
149
for (i = 0; i < enc_bio->bi_vcnt; i++)
150
mempool_free(enc_bio->bi_io_vec[i].bv_page,
151
blk_crypto_bounce_page_pool);
152
153
src_bio->bi_status = enc_bio->bi_status;
154
155
bio_uninit(enc_bio);
156
kfree(enc_bio);
157
bio_endio(src_bio);
158
}
159
160
static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
161
{
162
unsigned int nr_segs = bio_segments(bio_src);
163
struct bvec_iter iter;
164
struct bio_vec bv;
165
struct bio *bio;
166
167
bio = bio_kmalloc(nr_segs, GFP_NOIO);
168
if (!bio)
169
return NULL;
170
bio_init(bio, bio_src->bi_bdev, bio->bi_inline_vecs, nr_segs,
171
bio_src->bi_opf);
172
if (bio_flagged(bio_src, BIO_REMAPPED))
173
bio_set_flag(bio, BIO_REMAPPED);
174
bio->bi_ioprio = bio_src->bi_ioprio;
175
bio->bi_write_hint = bio_src->bi_write_hint;
176
bio->bi_write_stream = bio_src->bi_write_stream;
177
bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
178
bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
179
180
bio_for_each_segment(bv, bio_src, iter)
181
bio->bi_io_vec[bio->bi_vcnt++] = bv;
182
183
bio_clone_blkg_association(bio, bio_src);
184
185
return bio;
186
}
187
188
static bool
189
blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot,
190
struct skcipher_request **ciph_req_ret,
191
struct crypto_wait *wait)
192
{
193
struct skcipher_request *ciph_req;
194
const struct blk_crypto_fallback_keyslot *slotp;
195
int keyslot_idx = blk_crypto_keyslot_index(slot);
196
197
slotp = &blk_crypto_keyslots[keyslot_idx];
198
ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
199
GFP_NOIO);
200
if (!ciph_req)
201
return false;
202
203
skcipher_request_set_callback(ciph_req,
204
CRYPTO_TFM_REQ_MAY_BACKLOG |
205
CRYPTO_TFM_REQ_MAY_SLEEP,
206
crypto_req_done, wait);
207
*ciph_req_ret = ciph_req;
208
209
return true;
210
}
211
212
static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr)
213
{
214
struct bio *bio = *bio_ptr;
215
unsigned int i = 0;
216
unsigned int num_sectors = 0;
217
struct bio_vec bv;
218
struct bvec_iter iter;
219
220
bio_for_each_segment(bv, bio, iter) {
221
num_sectors += bv.bv_len >> SECTOR_SHIFT;
222
if (++i == BIO_MAX_VECS)
223
break;
224
}
225
if (num_sectors < bio_sectors(bio)) {
226
struct bio *split_bio;
227
228
split_bio = bio_split(bio, num_sectors, GFP_NOIO,
229
&crypto_bio_split);
230
if (IS_ERR(split_bio)) {
231
bio->bi_status = BLK_STS_RESOURCE;
232
return false;
233
}
234
bio_chain(split_bio, bio);
235
submit_bio_noacct(bio);
236
*bio_ptr = split_bio;
237
}
238
239
return true;
240
}
241
242
union blk_crypto_iv {
243
__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
244
u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
245
};
246
247
static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
248
union blk_crypto_iv *iv)
249
{
250
int i;
251
252
for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
253
iv->dun[i] = cpu_to_le64(dun[i]);
254
}
255
256
/*
257
* The crypto API fallback's encryption routine.
258
* Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
259
* and replace *bio_ptr with the bounce bio. May split input bio if it's too
260
* large. Returns true on success. Returns false and sets bio->bi_status on
261
* error.
262
*/
263
static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
264
{
265
struct bio *src_bio, *enc_bio;
266
struct bio_crypt_ctx *bc;
267
struct blk_crypto_keyslot *slot;
268
int data_unit_size;
269
struct skcipher_request *ciph_req = NULL;
270
DECLARE_CRYPTO_WAIT(wait);
271
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
272
struct scatterlist src, dst;
273
union blk_crypto_iv iv;
274
unsigned int i, j;
275
bool ret = false;
276
blk_status_t blk_st;
277
278
/* Split the bio if it's too big for single page bvec */
279
if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr))
280
return false;
281
282
src_bio = *bio_ptr;
283
bc = src_bio->bi_crypt_context;
284
data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
285
286
/* Allocate bounce bio for encryption */
287
enc_bio = blk_crypto_fallback_clone_bio(src_bio);
288
if (!enc_bio) {
289
src_bio->bi_status = BLK_STS_RESOURCE;
290
return false;
291
}
292
293
/*
294
* Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
295
* this bio's algorithm and key.
296
*/
297
blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
298
bc->bc_key, &slot);
299
if (blk_st != BLK_STS_OK) {
300
src_bio->bi_status = blk_st;
301
goto out_put_enc_bio;
302
}
303
304
/* and then allocate an skcipher_request for it */
305
if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
306
src_bio->bi_status = BLK_STS_RESOURCE;
307
goto out_release_keyslot;
308
}
309
310
memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
311
sg_init_table(&src, 1);
312
sg_init_table(&dst, 1);
313
314
skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
315
iv.bytes);
316
317
/* Encrypt each page in the bounce bio */
318
for (i = 0; i < enc_bio->bi_vcnt; i++) {
319
struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
320
struct page *plaintext_page = enc_bvec->bv_page;
321
struct page *ciphertext_page =
322
mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
323
324
enc_bvec->bv_page = ciphertext_page;
325
326
if (!ciphertext_page) {
327
src_bio->bi_status = BLK_STS_RESOURCE;
328
goto out_free_bounce_pages;
329
}
330
331
sg_set_page(&src, plaintext_page, data_unit_size,
332
enc_bvec->bv_offset);
333
sg_set_page(&dst, ciphertext_page, data_unit_size,
334
enc_bvec->bv_offset);
335
336
/* Encrypt each data unit in this page */
337
for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
338
blk_crypto_dun_to_iv(curr_dun, &iv);
339
if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
340
&wait)) {
341
i++;
342
src_bio->bi_status = BLK_STS_IOERR;
343
goto out_free_bounce_pages;
344
}
345
bio_crypt_dun_increment(curr_dun, 1);
346
src.offset += data_unit_size;
347
dst.offset += data_unit_size;
348
}
349
}
350
351
enc_bio->bi_private = src_bio;
352
enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
353
*bio_ptr = enc_bio;
354
ret = true;
355
356
enc_bio = NULL;
357
goto out_free_ciph_req;
358
359
out_free_bounce_pages:
360
while (i > 0)
361
mempool_free(enc_bio->bi_io_vec[--i].bv_page,
362
blk_crypto_bounce_page_pool);
363
out_free_ciph_req:
364
skcipher_request_free(ciph_req);
365
out_release_keyslot:
366
blk_crypto_put_keyslot(slot);
367
out_put_enc_bio:
368
if (enc_bio)
369
bio_uninit(enc_bio);
370
kfree(enc_bio);
371
return ret;
372
}
373
374
/*
375
* The crypto API fallback's main decryption routine.
376
* Decrypts input bio in place, and calls bio_endio on the bio.
377
*/
378
static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
379
{
380
struct bio_fallback_crypt_ctx *f_ctx =
381
container_of(work, struct bio_fallback_crypt_ctx, work);
382
struct bio *bio = f_ctx->bio;
383
struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
384
struct blk_crypto_keyslot *slot;
385
struct skcipher_request *ciph_req = NULL;
386
DECLARE_CRYPTO_WAIT(wait);
387
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
388
union blk_crypto_iv iv;
389
struct scatterlist sg;
390
struct bio_vec bv;
391
struct bvec_iter iter;
392
const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
393
unsigned int i;
394
blk_status_t blk_st;
395
396
/*
397
* Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
398
* this bio's algorithm and key.
399
*/
400
blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
401
bc->bc_key, &slot);
402
if (blk_st != BLK_STS_OK) {
403
bio->bi_status = blk_st;
404
goto out_no_keyslot;
405
}
406
407
/* and then allocate an skcipher_request for it */
408
if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
409
bio->bi_status = BLK_STS_RESOURCE;
410
goto out;
411
}
412
413
memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
414
sg_init_table(&sg, 1);
415
skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
416
iv.bytes);
417
418
/* Decrypt each segment in the bio */
419
__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
420
struct page *page = bv.bv_page;
421
422
sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
423
424
/* Decrypt each data unit in the segment */
425
for (i = 0; i < bv.bv_len; i += data_unit_size) {
426
blk_crypto_dun_to_iv(curr_dun, &iv);
427
if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
428
&wait)) {
429
bio->bi_status = BLK_STS_IOERR;
430
goto out;
431
}
432
bio_crypt_dun_increment(curr_dun, 1);
433
sg.offset += data_unit_size;
434
}
435
}
436
437
out:
438
skcipher_request_free(ciph_req);
439
blk_crypto_put_keyslot(slot);
440
out_no_keyslot:
441
mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
442
bio_endio(bio);
443
}
444
445
/**
446
* blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
447
*
448
* @bio: the bio to queue
449
*
450
* Restore bi_private and bi_end_io, and queue the bio for decryption into a
451
* workqueue, since this function will be called from an atomic context.
452
*/
453
static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
454
{
455
struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
456
457
bio->bi_private = f_ctx->bi_private_orig;
458
bio->bi_end_io = f_ctx->bi_end_io_orig;
459
460
/* If there was an IO error, don't queue for decrypt. */
461
if (bio->bi_status) {
462
mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
463
bio_endio(bio);
464
return;
465
}
466
467
INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
468
f_ctx->bio = bio;
469
queue_work(blk_crypto_wq, &f_ctx->work);
470
}
471
472
/**
473
* blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
474
*
475
* @bio_ptr: pointer to the bio to prepare
476
*
477
* If bio is doing a WRITE operation, this splits the bio into two parts if it's
478
* too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a
479
* bounce bio for the first part, encrypts it, and updates bio_ptr to point to
480
* the bounce bio.
481
*
482
* For a READ operation, we mark the bio for decryption by using bi_private and
483
* bi_end_io.
484
*
485
* In either case, this function will make the bio look like a regular bio (i.e.
486
* as if no encryption context was ever specified) for the purposes of the rest
487
* of the stack except for blk-integrity (blk-integrity and blk-crypto are not
488
* currently supported together).
489
*
490
* Return: true on success. Sets bio->bi_status and returns false on error.
491
*/
492
bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
493
{
494
struct bio *bio = *bio_ptr;
495
struct bio_crypt_ctx *bc = bio->bi_crypt_context;
496
struct bio_fallback_crypt_ctx *f_ctx;
497
498
if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
499
/* User didn't call blk_crypto_start_using_key() first */
500
bio->bi_status = BLK_STS_IOERR;
501
return false;
502
}
503
504
if (!__blk_crypto_cfg_supported(blk_crypto_fallback_profile,
505
&bc->bc_key->crypto_cfg)) {
506
bio->bi_status = BLK_STS_NOTSUPP;
507
return false;
508
}
509
510
if (bio_data_dir(bio) == WRITE)
511
return blk_crypto_fallback_encrypt_bio(bio_ptr);
512
513
/*
514
* bio READ case: Set up a f_ctx in the bio's bi_private and set the
515
* bi_end_io appropriately to trigger decryption when the bio is ended.
516
*/
517
f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
518
f_ctx->crypt_ctx = *bc;
519
f_ctx->crypt_iter = bio->bi_iter;
520
f_ctx->bi_private_orig = bio->bi_private;
521
f_ctx->bi_end_io_orig = bio->bi_end_io;
522
bio->bi_private = (void *)f_ctx;
523
bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
524
bio_crypt_free_ctx(bio);
525
526
return true;
527
}
528
529
int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
530
{
531
return __blk_crypto_evict_key(blk_crypto_fallback_profile, key);
532
}
533
534
static bool blk_crypto_fallback_inited;
535
static int blk_crypto_fallback_init(void)
536
{
537
int i;
538
int err;
539
540
if (blk_crypto_fallback_inited)
541
return 0;
542
543
get_random_bytes(blank_key, sizeof(blank_key));
544
545
err = bioset_init(&crypto_bio_split, 64, 0, 0);
546
if (err)
547
goto out;
548
549
/* Dynamic allocation is needed because of lockdep_register_key(). */
550
blk_crypto_fallback_profile =
551
kzalloc(sizeof(*blk_crypto_fallback_profile), GFP_KERNEL);
552
if (!blk_crypto_fallback_profile) {
553
err = -ENOMEM;
554
goto fail_free_bioset;
555
}
556
557
err = blk_crypto_profile_init(blk_crypto_fallback_profile,
558
blk_crypto_num_keyslots);
559
if (err)
560
goto fail_free_profile;
561
err = -ENOMEM;
562
563
blk_crypto_fallback_profile->ll_ops = blk_crypto_fallback_ll_ops;
564
blk_crypto_fallback_profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
565
blk_crypto_fallback_profile->key_types_supported = BLK_CRYPTO_KEY_TYPE_RAW;
566
567
/* All blk-crypto modes have a crypto API fallback. */
568
for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
569
blk_crypto_fallback_profile->modes_supported[i] = 0xFFFFFFFF;
570
blk_crypto_fallback_profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
571
572
blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
573
WQ_UNBOUND | WQ_HIGHPRI |
574
WQ_MEM_RECLAIM, num_online_cpus());
575
if (!blk_crypto_wq)
576
goto fail_destroy_profile;
577
578
blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
579
sizeof(blk_crypto_keyslots[0]),
580
GFP_KERNEL);
581
if (!blk_crypto_keyslots)
582
goto fail_free_wq;
583
584
blk_crypto_bounce_page_pool =
585
mempool_create_page_pool(num_prealloc_bounce_pg, 0);
586
if (!blk_crypto_bounce_page_pool)
587
goto fail_free_keyslots;
588
589
bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
590
if (!bio_fallback_crypt_ctx_cache)
591
goto fail_free_bounce_page_pool;
592
593
bio_fallback_crypt_ctx_pool =
594
mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
595
bio_fallback_crypt_ctx_cache);
596
if (!bio_fallback_crypt_ctx_pool)
597
goto fail_free_crypt_ctx_cache;
598
599
blk_crypto_fallback_inited = true;
600
601
return 0;
602
fail_free_crypt_ctx_cache:
603
kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
604
fail_free_bounce_page_pool:
605
mempool_destroy(blk_crypto_bounce_page_pool);
606
fail_free_keyslots:
607
kfree(blk_crypto_keyslots);
608
fail_free_wq:
609
destroy_workqueue(blk_crypto_wq);
610
fail_destroy_profile:
611
blk_crypto_profile_destroy(blk_crypto_fallback_profile);
612
fail_free_profile:
613
kfree(blk_crypto_fallback_profile);
614
fail_free_bioset:
615
bioset_exit(&crypto_bio_split);
616
out:
617
return err;
618
}
619
620
/*
621
* Prepare blk-crypto-fallback for the specified crypto mode.
622
* Returns -ENOPKG if the needed crypto API support is missing.
623
*/
624
int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
625
{
626
const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
627
struct blk_crypto_fallback_keyslot *slotp;
628
unsigned int i;
629
int err = 0;
630
631
/*
632
* Fast path
633
* Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
634
* for each i are visible before we try to access them.
635
*/
636
if (likely(smp_load_acquire(&tfms_inited[mode_num])))
637
return 0;
638
639
mutex_lock(&tfms_init_lock);
640
if (tfms_inited[mode_num])
641
goto out;
642
643
err = blk_crypto_fallback_init();
644
if (err)
645
goto out;
646
647
for (i = 0; i < blk_crypto_num_keyslots; i++) {
648
slotp = &blk_crypto_keyslots[i];
649
slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
650
if (IS_ERR(slotp->tfms[mode_num])) {
651
err = PTR_ERR(slotp->tfms[mode_num]);
652
if (err == -ENOENT) {
653
pr_warn_once("Missing crypto API support for \"%s\"\n",
654
cipher_str);
655
err = -ENOPKG;
656
}
657
slotp->tfms[mode_num] = NULL;
658
goto out_free_tfms;
659
}
660
661
crypto_skcipher_set_flags(slotp->tfms[mode_num],
662
CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
663
}
664
665
/*
666
* Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
667
* for each i are visible before we set tfms_inited[mode_num].
668
*/
669
smp_store_release(&tfms_inited[mode_num], true);
670
goto out;
671
672
out_free_tfms:
673
for (i = 0; i < blk_crypto_num_keyslots; i++) {
674
slotp = &blk_crypto_keyslots[i];
675
crypto_free_skcipher(slotp->tfms[mode_num]);
676
slotp->tfms[mode_num] = NULL;
677
}
678
out:
679
mutex_unlock(&tfms_init_lock);
680
return err;
681
}
682
683