Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-map.c
26242 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Functions related to mapping data to requests
4
*/
5
#include <linux/kernel.h>
6
#include <linux/sched/task_stack.h>
7
#include <linux/module.h>
8
#include <linux/bio.h>
9
#include <linux/blkdev.h>
10
#include <linux/uio.h>
11
12
#include "blk.h"
13
14
struct bio_map_data {
15
bool is_our_pages : 1;
16
bool is_null_mapped : 1;
17
struct iov_iter iter;
18
struct iovec iov[];
19
};
20
21
static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22
gfp_t gfp_mask)
23
{
24
struct bio_map_data *bmd;
25
26
if (data->nr_segs > UIO_MAXIOV)
27
return NULL;
28
29
bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30
if (!bmd)
31
return NULL;
32
bmd->iter = *data;
33
if (iter_is_iovec(data)) {
34
memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs);
35
bmd->iter.__iov = bmd->iov;
36
}
37
return bmd;
38
}
39
40
/**
41
* bio_copy_from_iter - copy all pages from iov_iter to bio
42
* @bio: The &struct bio which describes the I/O as destination
43
* @iter: iov_iter as source
44
*
45
* Copy all pages from iov_iter to bio.
46
* Returns 0 on success, or error on failure.
47
*/
48
static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
49
{
50
struct bio_vec *bvec;
51
struct bvec_iter_all iter_all;
52
53
bio_for_each_segment_all(bvec, bio, iter_all) {
54
ssize_t ret;
55
56
ret = copy_page_from_iter(bvec->bv_page,
57
bvec->bv_offset,
58
bvec->bv_len,
59
iter);
60
61
if (!iov_iter_count(iter))
62
break;
63
64
if (ret < bvec->bv_len)
65
return -EFAULT;
66
}
67
68
return 0;
69
}
70
71
/**
72
* bio_copy_to_iter - copy all pages from bio to iov_iter
73
* @bio: The &struct bio which describes the I/O as source
74
* @iter: iov_iter as destination
75
*
76
* Copy all pages from bio to iov_iter.
77
* Returns 0 on success, or error on failure.
78
*/
79
static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
80
{
81
struct bio_vec *bvec;
82
struct bvec_iter_all iter_all;
83
84
bio_for_each_segment_all(bvec, bio, iter_all) {
85
ssize_t ret;
86
87
ret = copy_page_to_iter(bvec->bv_page,
88
bvec->bv_offset,
89
bvec->bv_len,
90
&iter);
91
92
if (!iov_iter_count(&iter))
93
break;
94
95
if (ret < bvec->bv_len)
96
return -EFAULT;
97
}
98
99
return 0;
100
}
101
102
/**
103
* bio_uncopy_user - finish previously mapped bio
104
* @bio: bio being terminated
105
*
106
* Free pages allocated from bio_copy_user_iov() and write back data
107
* to user space in case of a read.
108
*/
109
static int bio_uncopy_user(struct bio *bio)
110
{
111
struct bio_map_data *bmd = bio->bi_private;
112
int ret = 0;
113
114
if (!bmd->is_null_mapped) {
115
/*
116
* if we're in a workqueue, the request is orphaned, so
117
* don't copy into a random user address space, just free
118
* and return -EINTR so user space doesn't expect any data.
119
*/
120
if (!current->mm)
121
ret = -EINTR;
122
else if (bio_data_dir(bio) == READ)
123
ret = bio_copy_to_iter(bio, bmd->iter);
124
if (bmd->is_our_pages)
125
bio_free_pages(bio);
126
}
127
kfree(bmd);
128
return ret;
129
}
130
131
static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
132
struct iov_iter *iter, gfp_t gfp_mask)
133
{
134
struct bio_map_data *bmd;
135
struct page *page;
136
struct bio *bio;
137
int i = 0, ret;
138
int nr_pages;
139
unsigned int len = iter->count;
140
unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
141
142
bmd = bio_alloc_map_data(iter, gfp_mask);
143
if (!bmd)
144
return -ENOMEM;
145
146
/*
147
* We need to do a deep copy of the iov_iter including the iovecs.
148
* The caller provided iov might point to an on-stack or otherwise
149
* shortlived one.
150
*/
151
bmd->is_our_pages = !map_data;
152
bmd->is_null_mapped = (map_data && map_data->null_mapped);
153
154
nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
155
156
ret = -ENOMEM;
157
bio = bio_kmalloc(nr_pages, gfp_mask);
158
if (!bio)
159
goto out_bmd;
160
bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
161
162
if (map_data) {
163
nr_pages = 1U << map_data->page_order;
164
i = map_data->offset / PAGE_SIZE;
165
}
166
while (len) {
167
unsigned int bytes = PAGE_SIZE;
168
169
bytes -= offset;
170
171
if (bytes > len)
172
bytes = len;
173
174
if (map_data) {
175
if (i == map_data->nr_entries * nr_pages) {
176
ret = -ENOMEM;
177
goto cleanup;
178
}
179
180
page = map_data->pages[i / nr_pages];
181
page += (i % nr_pages);
182
183
i++;
184
} else {
185
page = alloc_page(GFP_NOIO | gfp_mask);
186
if (!page) {
187
ret = -ENOMEM;
188
goto cleanup;
189
}
190
}
191
192
if (bio_add_page(bio, page, bytes, offset) < bytes) {
193
if (!map_data)
194
__free_page(page);
195
break;
196
}
197
198
len -= bytes;
199
offset = 0;
200
}
201
202
if (map_data)
203
map_data->offset += bio->bi_iter.bi_size;
204
205
/*
206
* success
207
*/
208
if (iov_iter_rw(iter) == WRITE &&
209
(!map_data || !map_data->null_mapped)) {
210
ret = bio_copy_from_iter(bio, iter);
211
if (ret)
212
goto cleanup;
213
} else if (map_data && map_data->from_user) {
214
struct iov_iter iter2 = *iter;
215
216
/* This is the copy-in part of SG_DXFER_TO_FROM_DEV. */
217
iter2.data_source = ITER_SOURCE;
218
ret = bio_copy_from_iter(bio, &iter2);
219
if (ret)
220
goto cleanup;
221
} else {
222
if (bmd->is_our_pages)
223
zero_fill_bio(bio);
224
iov_iter_advance(iter, bio->bi_iter.bi_size);
225
}
226
227
bio->bi_private = bmd;
228
229
ret = blk_rq_append_bio(rq, bio);
230
if (ret)
231
goto cleanup;
232
return 0;
233
cleanup:
234
if (!map_data)
235
bio_free_pages(bio);
236
bio_uninit(bio);
237
kfree(bio);
238
out_bmd:
239
kfree(bmd);
240
return ret;
241
}
242
243
static void blk_mq_map_bio_put(struct bio *bio)
244
{
245
if (bio->bi_opf & REQ_ALLOC_CACHE) {
246
bio_put(bio);
247
} else {
248
bio_uninit(bio);
249
kfree(bio);
250
}
251
}
252
253
static struct bio *blk_rq_map_bio_alloc(struct request *rq,
254
unsigned int nr_vecs, gfp_t gfp_mask)
255
{
256
struct bio *bio;
257
258
if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) {
259
bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask,
260
&fs_bio_set);
261
if (!bio)
262
return NULL;
263
} else {
264
bio = bio_kmalloc(nr_vecs, gfp_mask);
265
if (!bio)
266
return NULL;
267
bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
268
}
269
return bio;
270
}
271
272
static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
273
gfp_t gfp_mask)
274
{
275
unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
276
struct bio *bio;
277
int ret;
278
279
if (!iov_iter_count(iter))
280
return -EINVAL;
281
282
bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
283
if (!bio)
284
return -ENOMEM;
285
ret = bio_iov_iter_get_pages(bio, iter);
286
if (ret)
287
goto out_put;
288
ret = blk_rq_append_bio(rq, bio);
289
if (ret)
290
goto out_release;
291
return 0;
292
293
out_release:
294
bio_release_pages(bio, false);
295
out_put:
296
blk_mq_map_bio_put(bio);
297
return ret;
298
}
299
300
static void bio_invalidate_vmalloc_pages(struct bio *bio)
301
{
302
#ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
303
if (bio->bi_private && !op_is_write(bio_op(bio))) {
304
unsigned long i, len = 0;
305
306
for (i = 0; i < bio->bi_vcnt; i++)
307
len += bio->bi_io_vec[i].bv_len;
308
invalidate_kernel_vmap_range(bio->bi_private, len);
309
}
310
#endif
311
}
312
313
static void bio_map_kern_endio(struct bio *bio)
314
{
315
bio_invalidate_vmalloc_pages(bio);
316
bio_uninit(bio);
317
kfree(bio);
318
}
319
320
static struct bio *bio_map_kern(void *data, unsigned int len, enum req_op op,
321
gfp_t gfp_mask)
322
{
323
unsigned int nr_vecs = bio_add_max_vecs(data, len);
324
struct bio *bio;
325
326
bio = bio_kmalloc(nr_vecs, gfp_mask);
327
if (!bio)
328
return ERR_PTR(-ENOMEM);
329
bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, op);
330
if (is_vmalloc_addr(data)) {
331
bio->bi_private = data;
332
if (!bio_add_vmalloc(bio, data, len)) {
333
bio_uninit(bio);
334
kfree(bio);
335
return ERR_PTR(-EINVAL);
336
}
337
} else {
338
bio_add_virt_nofail(bio, data, len);
339
}
340
bio->bi_end_io = bio_map_kern_endio;
341
return bio;
342
}
343
344
static void bio_copy_kern_endio(struct bio *bio)
345
{
346
bio_free_pages(bio);
347
bio_uninit(bio);
348
kfree(bio);
349
}
350
351
static void bio_copy_kern_endio_read(struct bio *bio)
352
{
353
char *p = bio->bi_private;
354
struct bio_vec *bvec;
355
struct bvec_iter_all iter_all;
356
357
bio_for_each_segment_all(bvec, bio, iter_all) {
358
memcpy_from_bvec(p, bvec);
359
p += bvec->bv_len;
360
}
361
362
bio_copy_kern_endio(bio);
363
}
364
365
/**
366
* bio_copy_kern - copy kernel address into bio
367
* @data: pointer to buffer to copy
368
* @len: length in bytes
369
* @op: bio/request operation
370
* @gfp_mask: allocation flags for bio and page allocation
371
*
372
* copy the kernel address into a bio suitable for io to a block
373
* device. Returns an error pointer in case of error.
374
*/
375
static struct bio *bio_copy_kern(void *data, unsigned int len, enum req_op op,
376
gfp_t gfp_mask)
377
{
378
unsigned long kaddr = (unsigned long)data;
379
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
380
unsigned long start = kaddr >> PAGE_SHIFT;
381
struct bio *bio;
382
void *p = data;
383
int nr_pages = 0;
384
385
/*
386
* Overflow, abort
387
*/
388
if (end < start)
389
return ERR_PTR(-EINVAL);
390
391
nr_pages = end - start;
392
bio = bio_kmalloc(nr_pages, gfp_mask);
393
if (!bio)
394
return ERR_PTR(-ENOMEM);
395
bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, op);
396
397
while (len) {
398
struct page *page;
399
unsigned int bytes = PAGE_SIZE;
400
401
if (bytes > len)
402
bytes = len;
403
404
page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
405
if (!page)
406
goto cleanup;
407
408
if (op_is_write(op))
409
memcpy(page_address(page), p, bytes);
410
411
if (bio_add_page(bio, page, bytes, 0) < bytes)
412
break;
413
414
len -= bytes;
415
p += bytes;
416
}
417
418
if (op_is_write(op)) {
419
bio->bi_end_io = bio_copy_kern_endio;
420
} else {
421
bio->bi_end_io = bio_copy_kern_endio_read;
422
bio->bi_private = data;
423
}
424
425
return bio;
426
427
cleanup:
428
bio_free_pages(bio);
429
bio_uninit(bio);
430
kfree(bio);
431
return ERR_PTR(-ENOMEM);
432
}
433
434
/*
435
* Append a bio to a passthrough request. Only works if the bio can be merged
436
* into the request based on the driver constraints.
437
*/
438
int blk_rq_append_bio(struct request *rq, struct bio *bio)
439
{
440
const struct queue_limits *lim = &rq->q->limits;
441
unsigned int max_bytes = lim->max_hw_sectors << SECTOR_SHIFT;
442
unsigned int nr_segs = 0;
443
int ret;
444
445
/* check that the data layout matches the hardware restrictions */
446
ret = bio_split_rw_at(bio, lim, &nr_segs, max_bytes);
447
if (ret) {
448
/* if we would have to split the bio, copy instead */
449
if (ret > 0)
450
ret = -EREMOTEIO;
451
return ret;
452
}
453
454
if (rq->bio) {
455
if (!ll_back_merge_fn(rq, bio, nr_segs))
456
return -EINVAL;
457
rq->biotail->bi_next = bio;
458
rq->biotail = bio;
459
rq->__data_len += bio->bi_iter.bi_size;
460
bio_crypt_free_ctx(bio);
461
return 0;
462
}
463
464
rq->nr_phys_segments = nr_segs;
465
rq->bio = rq->biotail = bio;
466
rq->__data_len = bio->bi_iter.bi_size;
467
return 0;
468
}
469
EXPORT_SYMBOL(blk_rq_append_bio);
470
471
/* Prepare bio for passthrough IO given ITER_BVEC iter */
472
static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
473
{
474
unsigned int max_bytes = rq->q->limits.max_hw_sectors << SECTOR_SHIFT;
475
struct bio *bio;
476
int ret;
477
478
if (!iov_iter_count(iter) || iov_iter_count(iter) > max_bytes)
479
return -EINVAL;
480
481
/* reuse the bvecs from the iterator instead of allocating new ones */
482
bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
483
if (!bio)
484
return -ENOMEM;
485
bio_iov_bvec_set(bio, iter);
486
487
ret = blk_rq_append_bio(rq, bio);
488
if (ret)
489
blk_mq_map_bio_put(bio);
490
return ret;
491
}
492
493
/**
494
* blk_rq_map_user_iov - map user data to a request, for passthrough requests
495
* @q: request queue where request should be inserted
496
* @rq: request to map data to
497
* @map_data: pointer to the rq_map_data holding pages (if necessary)
498
* @iter: iovec iterator
499
* @gfp_mask: memory allocation flags
500
*
501
* Description:
502
* Data will be mapped directly for zero copy I/O, if possible. Otherwise
503
* a kernel bounce buffer is used.
504
*
505
* A matching blk_rq_unmap_user() must be issued at the end of I/O, while
506
* still in process context.
507
*/
508
int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
509
struct rq_map_data *map_data,
510
const struct iov_iter *iter, gfp_t gfp_mask)
511
{
512
bool copy = false, map_bvec = false;
513
unsigned long align = blk_lim_dma_alignment_and_pad(&q->limits);
514
struct bio *bio = NULL;
515
struct iov_iter i;
516
int ret = -EINVAL;
517
518
if (map_data)
519
copy = true;
520
else if (iov_iter_alignment(iter) & align)
521
copy = true;
522
else if (iov_iter_is_bvec(iter))
523
map_bvec = true;
524
else if (!user_backed_iter(iter))
525
copy = true;
526
else if (queue_virt_boundary(q))
527
copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
528
529
if (map_bvec) {
530
ret = blk_rq_map_user_bvec(rq, iter);
531
if (!ret)
532
return 0;
533
if (ret != -EREMOTEIO)
534
goto fail;
535
/* fall back to copying the data on limits mismatches */
536
copy = true;
537
}
538
539
i = *iter;
540
do {
541
if (copy)
542
ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
543
else
544
ret = bio_map_user_iov(rq, &i, gfp_mask);
545
if (ret) {
546
if (ret == -EREMOTEIO)
547
ret = -EINVAL;
548
goto unmap_rq;
549
}
550
if (!bio)
551
bio = rq->bio;
552
} while (iov_iter_count(&i));
553
554
return 0;
555
556
unmap_rq:
557
blk_rq_unmap_user(bio);
558
fail:
559
rq->bio = NULL;
560
return ret;
561
}
562
EXPORT_SYMBOL(blk_rq_map_user_iov);
563
564
int blk_rq_map_user(struct request_queue *q, struct request *rq,
565
struct rq_map_data *map_data, void __user *ubuf,
566
unsigned long len, gfp_t gfp_mask)
567
{
568
struct iov_iter i;
569
int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i);
570
571
if (unlikely(ret < 0))
572
return ret;
573
574
return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
575
}
576
EXPORT_SYMBOL(blk_rq_map_user);
577
578
int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
579
void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
580
bool vec, int iov_count, bool check_iter_count, int rw)
581
{
582
int ret = 0;
583
584
if (vec) {
585
struct iovec fast_iov[UIO_FASTIOV];
586
struct iovec *iov = fast_iov;
587
struct iov_iter iter;
588
589
ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
590
UIO_FASTIOV, &iov, &iter);
591
if (ret < 0)
592
return ret;
593
594
if (iov_count) {
595
/* SG_IO howto says that the shorter of the two wins */
596
iov_iter_truncate(&iter, buf_len);
597
if (check_iter_count && !iov_iter_count(&iter)) {
598
kfree(iov);
599
return -EINVAL;
600
}
601
}
602
603
ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
604
gfp_mask);
605
kfree(iov);
606
} else if (buf_len) {
607
ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
608
gfp_mask);
609
}
610
return ret;
611
}
612
EXPORT_SYMBOL(blk_rq_map_user_io);
613
614
/**
615
* blk_rq_unmap_user - unmap a request with user data
616
* @bio: start of bio list
617
*
618
* Description:
619
* Unmap a rq previously mapped by blk_rq_map_user(). The caller must
620
* supply the original rq->bio from the blk_rq_map_user() return, since
621
* the I/O completion may have changed rq->bio.
622
*/
623
int blk_rq_unmap_user(struct bio *bio)
624
{
625
struct bio *next_bio;
626
int ret = 0, ret2;
627
628
while (bio) {
629
if (bio->bi_private) {
630
ret2 = bio_uncopy_user(bio);
631
if (ret2 && !ret)
632
ret = ret2;
633
} else {
634
bio_release_pages(bio, bio_data_dir(bio) == READ);
635
}
636
637
if (bio_integrity(bio))
638
bio_integrity_unmap_user(bio);
639
640
next_bio = bio;
641
bio = bio->bi_next;
642
blk_mq_map_bio_put(next_bio);
643
}
644
645
return ret;
646
}
647
EXPORT_SYMBOL(blk_rq_unmap_user);
648
649
/**
650
* blk_rq_map_kern - map kernel data to a request, for passthrough requests
651
* @rq: request to fill
652
* @kbuf: the kernel buffer
653
* @len: length of user data
654
* @gfp_mask: memory allocation flags
655
*
656
* Description:
657
* Data will be mapped directly if possible. Otherwise a bounce
658
* buffer is used. Can be called multiple times to append multiple
659
* buffers.
660
*/
661
int blk_rq_map_kern(struct request *rq, void *kbuf, unsigned int len,
662
gfp_t gfp_mask)
663
{
664
unsigned long addr = (unsigned long) kbuf;
665
struct bio *bio;
666
int ret;
667
668
if (len > (queue_max_hw_sectors(rq->q) << SECTOR_SHIFT))
669
return -EINVAL;
670
if (!len || !kbuf)
671
return -EINVAL;
672
673
if (!blk_rq_aligned(rq->q, addr, len) || object_is_on_stack(kbuf))
674
bio = bio_copy_kern(kbuf, len, req_op(rq), gfp_mask);
675
else
676
bio = bio_map_kern(kbuf, len, req_op(rq), gfp_mask);
677
678
if (IS_ERR(bio))
679
return PTR_ERR(bio);
680
681
ret = blk_rq_append_bio(rq, bio);
682
if (unlikely(ret)) {
683
bio_uninit(bio);
684
kfree(bio);
685
}
686
return ret;
687
}
688
EXPORT_SYMBOL(blk_rq_map_kern);
689
690