Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-merge.c
26242 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Functions related to segment and merge handling
4
*/
5
#include <linux/kernel.h>
6
#include <linux/module.h>
7
#include <linux/bio.h>
8
#include <linux/blkdev.h>
9
#include <linux/blk-integrity.h>
10
#include <linux/part_stat.h>
11
#include <linux/blk-cgroup.h>
12
13
#include <trace/events/block.h>
14
15
#include "blk.h"
16
#include "blk-mq-sched.h"
17
#include "blk-rq-qos.h"
18
#include "blk-throttle.h"
19
20
static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
21
{
22
*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
23
}
24
25
static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
26
{
27
struct bvec_iter iter = bio->bi_iter;
28
int idx;
29
30
bio_get_first_bvec(bio, bv);
31
if (bv->bv_len == bio->bi_iter.bi_size)
32
return; /* this bio only has a single bvec */
33
34
bio_advance_iter(bio, &iter, iter.bi_size);
35
36
if (!iter.bi_bvec_done)
37
idx = iter.bi_idx - 1;
38
else /* in the middle of bvec */
39
idx = iter.bi_idx;
40
41
*bv = bio->bi_io_vec[idx];
42
43
/*
44
* iter.bi_bvec_done records actual length of the last bvec
45
* if this bio ends in the middle of one io vector
46
*/
47
if (iter.bi_bvec_done)
48
bv->bv_len = iter.bi_bvec_done;
49
}
50
51
static inline bool bio_will_gap(struct request_queue *q,
52
struct request *prev_rq, struct bio *prev, struct bio *next)
53
{
54
struct bio_vec pb, nb;
55
56
if (!bio_has_data(prev) || !queue_virt_boundary(q))
57
return false;
58
59
/*
60
* Don't merge if the 1st bio starts with non-zero offset, otherwise it
61
* is quite difficult to respect the sg gap limit. We work hard to
62
* merge a huge number of small single bios in case of mkfs.
63
*/
64
if (prev_rq)
65
bio_get_first_bvec(prev_rq->bio, &pb);
66
else
67
bio_get_first_bvec(prev, &pb);
68
if (pb.bv_offset & queue_virt_boundary(q))
69
return true;
70
71
/*
72
* We don't need to worry about the situation that the merged segment
73
* ends in unaligned virt boundary:
74
*
75
* - if 'pb' ends aligned, the merged segment ends aligned
76
* - if 'pb' ends unaligned, the next bio must include
77
* one single bvec of 'nb', otherwise the 'nb' can't
78
* merge with 'pb'
79
*/
80
bio_get_last_bvec(prev, &pb);
81
bio_get_first_bvec(next, &nb);
82
if (biovec_phys_mergeable(q, &pb, &nb))
83
return false;
84
return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
85
}
86
87
static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
88
{
89
return bio_will_gap(req->q, req, req->biotail, bio);
90
}
91
92
static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
93
{
94
return bio_will_gap(req->q, NULL, bio, req->bio);
95
}
96
97
/*
98
* The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
99
* is defined as 'unsigned int', meantime it has to be aligned to with the
100
* logical block size, which is the minimum accepted unit by hardware.
101
*/
102
static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
103
{
104
return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
105
}
106
107
static struct bio *bio_submit_split(struct bio *bio, int split_sectors)
108
{
109
if (unlikely(split_sectors < 0))
110
goto error;
111
112
if (split_sectors) {
113
struct bio *split;
114
115
split = bio_split(bio, split_sectors, GFP_NOIO,
116
&bio->bi_bdev->bd_disk->bio_split);
117
if (IS_ERR(split)) {
118
split_sectors = PTR_ERR(split);
119
goto error;
120
}
121
split->bi_opf |= REQ_NOMERGE;
122
blkcg_bio_issue_init(split);
123
bio_chain(split, bio);
124
trace_block_split(split, bio->bi_iter.bi_sector);
125
WARN_ON_ONCE(bio_zone_write_plugging(bio));
126
submit_bio_noacct(bio);
127
return split;
128
}
129
130
return bio;
131
error:
132
bio->bi_status = errno_to_blk_status(split_sectors);
133
bio_endio(bio);
134
return NULL;
135
}
136
137
struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
138
unsigned *nsegs)
139
{
140
unsigned int max_discard_sectors, granularity;
141
sector_t tmp;
142
unsigned split_sectors;
143
144
*nsegs = 1;
145
146
granularity = max(lim->discard_granularity >> 9, 1U);
147
148
max_discard_sectors =
149
min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
150
max_discard_sectors -= max_discard_sectors % granularity;
151
if (unlikely(!max_discard_sectors))
152
return bio;
153
154
if (bio_sectors(bio) <= max_discard_sectors)
155
return bio;
156
157
split_sectors = max_discard_sectors;
158
159
/*
160
* If the next starting sector would be misaligned, stop the discard at
161
* the previous aligned sector.
162
*/
163
tmp = bio->bi_iter.bi_sector + split_sectors -
164
((lim->discard_alignment >> 9) % granularity);
165
tmp = sector_div(tmp, granularity);
166
167
if (split_sectors > tmp)
168
split_sectors -= tmp;
169
170
return bio_submit_split(bio, split_sectors);
171
}
172
173
static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
174
bool is_atomic)
175
{
176
/*
177
* chunk_sectors must be a multiple of atomic_write_boundary_sectors if
178
* both non-zero.
179
*/
180
if (is_atomic && lim->atomic_write_boundary_sectors)
181
return lim->atomic_write_boundary_sectors;
182
183
return lim->chunk_sectors;
184
}
185
186
/*
187
* Return the maximum number of sectors from the start of a bio that may be
188
* submitted as a single request to a block device. If enough sectors remain,
189
* align the end to the physical block size. Otherwise align the end to the
190
* logical block size. This approach minimizes the number of non-aligned
191
* requests that are submitted to a block device if the start of a bio is not
192
* aligned to a physical block boundary.
193
*/
194
static inline unsigned get_max_io_size(struct bio *bio,
195
const struct queue_limits *lim)
196
{
197
unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
198
unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
199
bool is_atomic = bio->bi_opf & REQ_ATOMIC;
200
unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic);
201
unsigned max_sectors, start, end;
202
203
/*
204
* We ignore lim->max_sectors for atomic writes because it may less
205
* than the actual bio size, which we cannot tolerate.
206
*/
207
if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
208
max_sectors = lim->max_write_zeroes_sectors;
209
else if (is_atomic)
210
max_sectors = lim->atomic_write_max_sectors;
211
else
212
max_sectors = lim->max_sectors;
213
214
if (boundary_sectors) {
215
max_sectors = min(max_sectors,
216
blk_boundary_sectors_left(bio->bi_iter.bi_sector,
217
boundary_sectors));
218
}
219
220
start = bio->bi_iter.bi_sector & (pbs - 1);
221
end = (start + max_sectors) & ~(pbs - 1);
222
if (end > start)
223
return end - start;
224
return max_sectors & ~(lbs - 1);
225
}
226
227
/**
228
* bvec_split_segs - verify whether or not a bvec should be split in the middle
229
* @lim: [in] queue limits to split based on
230
* @bv: [in] bvec to examine
231
* @nsegs: [in,out] Number of segments in the bio being built. Incremented
232
* by the number of segments from @bv that may be appended to that
233
* bio without exceeding @max_segs
234
* @bytes: [in,out] Number of bytes in the bio being built. Incremented
235
* by the number of bytes from @bv that may be appended to that
236
* bio without exceeding @max_bytes
237
* @max_segs: [in] upper bound for *@nsegs
238
* @max_bytes: [in] upper bound for *@bytes
239
*
240
* When splitting a bio, it can happen that a bvec is encountered that is too
241
* big to fit in a single segment and hence that it has to be split in the
242
* middle. This function verifies whether or not that should happen. The value
243
* %true is returned if and only if appending the entire @bv to a bio with
244
* *@nsegs segments and *@sectors sectors would make that bio unacceptable for
245
* the block driver.
246
*/
247
static bool bvec_split_segs(const struct queue_limits *lim,
248
const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
249
unsigned max_segs, unsigned max_bytes)
250
{
251
unsigned max_len = max_bytes - *bytes;
252
unsigned len = min(bv->bv_len, max_len);
253
unsigned total_len = 0;
254
unsigned seg_size = 0;
255
256
while (len && *nsegs < max_segs) {
257
seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len);
258
259
(*nsegs)++;
260
total_len += seg_size;
261
len -= seg_size;
262
263
if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
264
break;
265
}
266
267
*bytes += total_len;
268
269
/* tell the caller to split the bvec if it is too big to fit */
270
return len > 0 || bv->bv_len > max_len;
271
}
272
273
static unsigned int bio_split_alignment(struct bio *bio,
274
const struct queue_limits *lim)
275
{
276
if (op_is_write(bio_op(bio)) && lim->zone_write_granularity)
277
return lim->zone_write_granularity;
278
return lim->logical_block_size;
279
}
280
281
/**
282
* bio_split_rw_at - check if and where to split a read/write bio
283
* @bio: [in] bio to be split
284
* @lim: [in] queue limits to split based on
285
* @segs: [out] number of segments in the bio with the first half of the sectors
286
* @max_bytes: [in] maximum number of bytes per bio
287
*
288
* Find out if @bio needs to be split to fit the queue limits in @lim and a
289
* maximum size of @max_bytes. Returns a negative error number if @bio can't be
290
* split, 0 if the bio doesn't have to be split, or a positive sector offset if
291
* @bio needs to be split.
292
*/
293
int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
294
unsigned *segs, unsigned max_bytes)
295
{
296
struct bio_vec bv, bvprv, *bvprvp = NULL;
297
struct bvec_iter iter;
298
unsigned nsegs = 0, bytes = 0;
299
300
bio_for_each_bvec(bv, bio, iter) {
301
/*
302
* If the queue doesn't support SG gaps and adding this
303
* offset would create a gap, disallow it.
304
*/
305
if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
306
goto split;
307
308
if (nsegs < lim->max_segments &&
309
bytes + bv.bv_len <= max_bytes &&
310
bv.bv_offset + bv.bv_len <= lim->min_segment_size) {
311
nsegs++;
312
bytes += bv.bv_len;
313
} else {
314
if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
315
lim->max_segments, max_bytes))
316
goto split;
317
}
318
319
bvprv = bv;
320
bvprvp = &bvprv;
321
}
322
323
*segs = nsegs;
324
return 0;
325
split:
326
if (bio->bi_opf & REQ_ATOMIC)
327
return -EINVAL;
328
329
/*
330
* We can't sanely support splitting for a REQ_NOWAIT bio. End it
331
* with EAGAIN if splitting is required and return an error pointer.
332
*/
333
if (bio->bi_opf & REQ_NOWAIT)
334
return -EAGAIN;
335
336
*segs = nsegs;
337
338
/*
339
* Individual bvecs might not be logical block aligned. Round down the
340
* split size so that each bio is properly block size aligned, even if
341
* we do not use the full hardware limits.
342
*/
343
bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim));
344
345
/*
346
* Bio splitting may cause subtle trouble such as hang when doing sync
347
* iopoll in direct IO routine. Given performance gain of iopoll for
348
* big IO can be trival, disable iopoll when split needed.
349
*/
350
bio_clear_polled(bio);
351
return bytes >> SECTOR_SHIFT;
352
}
353
EXPORT_SYMBOL_GPL(bio_split_rw_at);
354
355
struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
356
unsigned *nr_segs)
357
{
358
return bio_submit_split(bio,
359
bio_split_rw_at(bio, lim, nr_segs,
360
get_max_io_size(bio, lim) << SECTOR_SHIFT));
361
}
362
363
/*
364
* REQ_OP_ZONE_APPEND bios must never be split by the block layer.
365
*
366
* But we want the nr_segs calculation provided by bio_split_rw_at, and having
367
* a good sanity check that the submitter built the bio correctly is nice to
368
* have as well.
369
*/
370
struct bio *bio_split_zone_append(struct bio *bio,
371
const struct queue_limits *lim, unsigned *nr_segs)
372
{
373
int split_sectors;
374
375
split_sectors = bio_split_rw_at(bio, lim, nr_segs,
376
lim->max_zone_append_sectors << SECTOR_SHIFT);
377
if (WARN_ON_ONCE(split_sectors > 0))
378
split_sectors = -EINVAL;
379
return bio_submit_split(bio, split_sectors);
380
}
381
382
struct bio *bio_split_write_zeroes(struct bio *bio,
383
const struct queue_limits *lim, unsigned *nsegs)
384
{
385
unsigned int max_sectors = get_max_io_size(bio, lim);
386
387
*nsegs = 0;
388
389
/*
390
* An unset limit should normally not happen, as bio submission is keyed
391
* off having a non-zero limit. But SCSI can clear the limit in the
392
* I/O completion handler, and we can race and see this. Splitting to a
393
* zero limit obviously doesn't make sense, so band-aid it here.
394
*/
395
if (!max_sectors)
396
return bio;
397
if (bio_sectors(bio) <= max_sectors)
398
return bio;
399
return bio_submit_split(bio, max_sectors);
400
}
401
402
/**
403
* bio_split_to_limits - split a bio to fit the queue limits
404
* @bio: bio to be split
405
*
406
* Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
407
* if so split off a bio fitting the limits from the beginning of @bio and
408
* return it. @bio is shortened to the remainder and re-submitted.
409
*
410
* The split bio is allocated from @q->bio_split, which is provided by the
411
* block layer.
412
*/
413
struct bio *bio_split_to_limits(struct bio *bio)
414
{
415
unsigned int nr_segs;
416
417
return __bio_split_to_limits(bio, bdev_limits(bio->bi_bdev), &nr_segs);
418
}
419
EXPORT_SYMBOL(bio_split_to_limits);
420
421
unsigned int blk_recalc_rq_segments(struct request *rq)
422
{
423
unsigned int nr_phys_segs = 0;
424
unsigned int bytes = 0;
425
struct req_iterator iter;
426
struct bio_vec bv;
427
428
if (!rq->bio)
429
return 0;
430
431
switch (bio_op(rq->bio)) {
432
case REQ_OP_DISCARD:
433
case REQ_OP_SECURE_ERASE:
434
if (queue_max_discard_segments(rq->q) > 1) {
435
struct bio *bio = rq->bio;
436
437
for_each_bio(bio)
438
nr_phys_segs++;
439
return nr_phys_segs;
440
}
441
return 1;
442
case REQ_OP_WRITE_ZEROES:
443
return 0;
444
default:
445
break;
446
}
447
448
rq_for_each_bvec(bv, rq, iter)
449
bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
450
UINT_MAX, UINT_MAX);
451
return nr_phys_segs;
452
}
453
454
static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
455
sector_t offset)
456
{
457
struct request_queue *q = rq->q;
458
struct queue_limits *lim = &q->limits;
459
unsigned int max_sectors, boundary_sectors;
460
bool is_atomic = rq->cmd_flags & REQ_ATOMIC;
461
462
if (blk_rq_is_passthrough(rq))
463
return q->limits.max_hw_sectors;
464
465
boundary_sectors = blk_boundary_sectors(lim, is_atomic);
466
max_sectors = blk_queue_get_max_sectors(rq);
467
468
if (!boundary_sectors ||
469
req_op(rq) == REQ_OP_DISCARD ||
470
req_op(rq) == REQ_OP_SECURE_ERASE)
471
return max_sectors;
472
return min(max_sectors,
473
blk_boundary_sectors_left(offset, boundary_sectors));
474
}
475
476
static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
477
unsigned int nr_phys_segs)
478
{
479
if (!blk_cgroup_mergeable(req, bio))
480
goto no_merge;
481
482
if (blk_integrity_merge_bio(req->q, req, bio) == false)
483
goto no_merge;
484
485
/* discard request merge won't add new segment */
486
if (req_op(req) == REQ_OP_DISCARD)
487
return 1;
488
489
if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
490
goto no_merge;
491
492
/*
493
* This will form the start of a new hw segment. Bump both
494
* counters.
495
*/
496
req->nr_phys_segments += nr_phys_segs;
497
if (bio_integrity(bio))
498
req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q,
499
bio);
500
return 1;
501
502
no_merge:
503
req_set_nomerge(req->q, req);
504
return 0;
505
}
506
507
int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
508
{
509
if (req_gap_back_merge(req, bio))
510
return 0;
511
if (blk_integrity_rq(req) &&
512
integrity_req_gap_back_merge(req, bio))
513
return 0;
514
if (!bio_crypt_ctx_back_mergeable(req, bio))
515
return 0;
516
if (blk_rq_sectors(req) + bio_sectors(bio) >
517
blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
518
req_set_nomerge(req->q, req);
519
return 0;
520
}
521
522
return ll_new_hw_segment(req, bio, nr_segs);
523
}
524
525
static int ll_front_merge_fn(struct request *req, struct bio *bio,
526
unsigned int nr_segs)
527
{
528
if (req_gap_front_merge(req, bio))
529
return 0;
530
if (blk_integrity_rq(req) &&
531
integrity_req_gap_front_merge(req, bio))
532
return 0;
533
if (!bio_crypt_ctx_front_mergeable(req, bio))
534
return 0;
535
if (blk_rq_sectors(req) + bio_sectors(bio) >
536
blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
537
req_set_nomerge(req->q, req);
538
return 0;
539
}
540
541
return ll_new_hw_segment(req, bio, nr_segs);
542
}
543
544
static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
545
struct request *next)
546
{
547
unsigned short segments = blk_rq_nr_discard_segments(req);
548
549
if (segments >= queue_max_discard_segments(q))
550
goto no_merge;
551
if (blk_rq_sectors(req) + bio_sectors(next->bio) >
552
blk_rq_get_max_sectors(req, blk_rq_pos(req)))
553
goto no_merge;
554
555
req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
556
return true;
557
no_merge:
558
req_set_nomerge(q, req);
559
return false;
560
}
561
562
static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
563
struct request *next)
564
{
565
int total_phys_segments;
566
567
if (req_gap_back_merge(req, next->bio))
568
return 0;
569
570
/*
571
* Will it become too large?
572
*/
573
if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
574
blk_rq_get_max_sectors(req, blk_rq_pos(req)))
575
return 0;
576
577
total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
578
if (total_phys_segments > blk_rq_get_max_segments(req))
579
return 0;
580
581
if (!blk_cgroup_mergeable(req, next->bio))
582
return 0;
583
584
if (blk_integrity_merge_rq(q, req, next) == false)
585
return 0;
586
587
if (!bio_crypt_ctx_merge_rq(req, next))
588
return 0;
589
590
/* Merge is OK... */
591
req->nr_phys_segments = total_phys_segments;
592
req->nr_integrity_segments += next->nr_integrity_segments;
593
return 1;
594
}
595
596
/**
597
* blk_rq_set_mixed_merge - mark a request as mixed merge
598
* @rq: request to mark as mixed merge
599
*
600
* Description:
601
* @rq is about to be mixed merged. Make sure the attributes
602
* which can be mixed are set in each bio and mark @rq as mixed
603
* merged.
604
*/
605
static void blk_rq_set_mixed_merge(struct request *rq)
606
{
607
blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
608
struct bio *bio;
609
610
if (rq->rq_flags & RQF_MIXED_MERGE)
611
return;
612
613
/*
614
* @rq will no longer represent mixable attributes for all the
615
* contained bios. It will just track those of the first one.
616
* Distributes the attributs to each bio.
617
*/
618
for (bio = rq->bio; bio; bio = bio->bi_next) {
619
WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
620
(bio->bi_opf & REQ_FAILFAST_MASK) != ff);
621
bio->bi_opf |= ff;
622
}
623
rq->rq_flags |= RQF_MIXED_MERGE;
624
}
625
626
static inline blk_opf_t bio_failfast(const struct bio *bio)
627
{
628
if (bio->bi_opf & REQ_RAHEAD)
629
return REQ_FAILFAST_MASK;
630
631
return bio->bi_opf & REQ_FAILFAST_MASK;
632
}
633
634
/*
635
* After we are marked as MIXED_MERGE, any new RA bio has to be updated
636
* as failfast, and request's failfast has to be updated in case of
637
* front merge.
638
*/
639
static inline void blk_update_mixed_merge(struct request *req,
640
struct bio *bio, bool front_merge)
641
{
642
if (req->rq_flags & RQF_MIXED_MERGE) {
643
if (bio->bi_opf & REQ_RAHEAD)
644
bio->bi_opf |= REQ_FAILFAST_MASK;
645
646
if (front_merge) {
647
req->cmd_flags &= ~REQ_FAILFAST_MASK;
648
req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
649
}
650
}
651
}
652
653
static void blk_account_io_merge_request(struct request *req)
654
{
655
if (req->rq_flags & RQF_IO_STAT) {
656
part_stat_lock();
657
part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
658
part_stat_local_dec(req->part,
659
in_flight[op_is_write(req_op(req))]);
660
part_stat_unlock();
661
}
662
}
663
664
static enum elv_merge blk_try_req_merge(struct request *req,
665
struct request *next)
666
{
667
if (blk_discard_mergable(req))
668
return ELEVATOR_DISCARD_MERGE;
669
else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
670
return ELEVATOR_BACK_MERGE;
671
672
return ELEVATOR_NO_MERGE;
673
}
674
675
static bool blk_atomic_write_mergeable_rq_bio(struct request *rq,
676
struct bio *bio)
677
{
678
return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC);
679
}
680
681
static bool blk_atomic_write_mergeable_rqs(struct request *rq,
682
struct request *next)
683
{
684
return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC);
685
}
686
687
/*
688
* For non-mq, this has to be called with the request spinlock acquired.
689
* For mq with scheduling, the appropriate queue wide lock should be held.
690
*/
691
static struct request *attempt_merge(struct request_queue *q,
692
struct request *req, struct request *next)
693
{
694
if (!rq_mergeable(req) || !rq_mergeable(next))
695
return NULL;
696
697
if (req_op(req) != req_op(next))
698
return NULL;
699
700
if (req->bio->bi_write_hint != next->bio->bi_write_hint)
701
return NULL;
702
if (req->bio->bi_write_stream != next->bio->bi_write_stream)
703
return NULL;
704
if (req->bio->bi_ioprio != next->bio->bi_ioprio)
705
return NULL;
706
if (!blk_atomic_write_mergeable_rqs(req, next))
707
return NULL;
708
709
/*
710
* If we are allowed to merge, then append bio list
711
* from next to rq and release next. merge_requests_fn
712
* will have updated segment counts, update sector
713
* counts here. Handle DISCARDs separately, as they
714
* have separate settings.
715
*/
716
717
switch (blk_try_req_merge(req, next)) {
718
case ELEVATOR_DISCARD_MERGE:
719
if (!req_attempt_discard_merge(q, req, next))
720
return NULL;
721
break;
722
case ELEVATOR_BACK_MERGE:
723
if (!ll_merge_requests_fn(q, req, next))
724
return NULL;
725
break;
726
default:
727
return NULL;
728
}
729
730
/*
731
* If failfast settings disagree or any of the two is already
732
* a mixed merge, mark both as mixed before proceeding. This
733
* makes sure that all involved bios have mixable attributes
734
* set properly.
735
*/
736
if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
737
(req->cmd_flags & REQ_FAILFAST_MASK) !=
738
(next->cmd_flags & REQ_FAILFAST_MASK)) {
739
blk_rq_set_mixed_merge(req);
740
blk_rq_set_mixed_merge(next);
741
}
742
743
/*
744
* At this point we have either done a back merge or front merge. We
745
* need the smaller start_time_ns of the merged requests to be the
746
* current request for accounting purposes.
747
*/
748
if (next->start_time_ns < req->start_time_ns)
749
req->start_time_ns = next->start_time_ns;
750
751
req->biotail->bi_next = next->bio;
752
req->biotail = next->biotail;
753
754
req->__data_len += blk_rq_bytes(next);
755
756
if (!blk_discard_mergable(req))
757
elv_merge_requests(q, req, next);
758
759
blk_crypto_rq_put_keyslot(next);
760
761
/*
762
* 'next' is going away, so update stats accordingly
763
*/
764
blk_account_io_merge_request(next);
765
766
trace_block_rq_merge(next);
767
768
/*
769
* ownership of bio passed from next to req, return 'next' for
770
* the caller to free
771
*/
772
next->bio = NULL;
773
return next;
774
}
775
776
static struct request *attempt_back_merge(struct request_queue *q,
777
struct request *rq)
778
{
779
struct request *next = elv_latter_request(q, rq);
780
781
if (next)
782
return attempt_merge(q, rq, next);
783
784
return NULL;
785
}
786
787
static struct request *attempt_front_merge(struct request_queue *q,
788
struct request *rq)
789
{
790
struct request *prev = elv_former_request(q, rq);
791
792
if (prev)
793
return attempt_merge(q, prev, rq);
794
795
return NULL;
796
}
797
798
/*
799
* Try to merge 'next' into 'rq'. Return true if the merge happened, false
800
* otherwise. The caller is responsible for freeing 'next' if the merge
801
* happened.
802
*/
803
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
804
struct request *next)
805
{
806
return attempt_merge(q, rq, next);
807
}
808
809
bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
810
{
811
if (!rq_mergeable(rq) || !bio_mergeable(bio))
812
return false;
813
814
if (req_op(rq) != bio_op(bio))
815
return false;
816
817
if (!blk_cgroup_mergeable(rq, bio))
818
return false;
819
if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
820
return false;
821
if (!bio_crypt_rq_ctx_compatible(rq, bio))
822
return false;
823
if (rq->bio->bi_write_hint != bio->bi_write_hint)
824
return false;
825
if (rq->bio->bi_write_stream != bio->bi_write_stream)
826
return false;
827
if (rq->bio->bi_ioprio != bio->bi_ioprio)
828
return false;
829
if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false)
830
return false;
831
832
return true;
833
}
834
835
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
836
{
837
if (blk_discard_mergable(rq))
838
return ELEVATOR_DISCARD_MERGE;
839
else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
840
return ELEVATOR_BACK_MERGE;
841
else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
842
return ELEVATOR_FRONT_MERGE;
843
return ELEVATOR_NO_MERGE;
844
}
845
846
static void blk_account_io_merge_bio(struct request *req)
847
{
848
if (req->rq_flags & RQF_IO_STAT) {
849
part_stat_lock();
850
part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
851
part_stat_unlock();
852
}
853
}
854
855
enum bio_merge_status bio_attempt_back_merge(struct request *req,
856
struct bio *bio, unsigned int nr_segs)
857
{
858
const blk_opf_t ff = bio_failfast(bio);
859
860
if (!ll_back_merge_fn(req, bio, nr_segs))
861
return BIO_MERGE_FAILED;
862
863
trace_block_bio_backmerge(bio);
864
rq_qos_merge(req->q, req, bio);
865
866
if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
867
blk_rq_set_mixed_merge(req);
868
869
blk_update_mixed_merge(req, bio, false);
870
871
if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
872
blk_zone_write_plug_bio_merged(bio);
873
874
req->biotail->bi_next = bio;
875
req->biotail = bio;
876
req->__data_len += bio->bi_iter.bi_size;
877
878
bio_crypt_free_ctx(bio);
879
880
blk_account_io_merge_bio(req);
881
return BIO_MERGE_OK;
882
}
883
884
static enum bio_merge_status bio_attempt_front_merge(struct request *req,
885
struct bio *bio, unsigned int nr_segs)
886
{
887
const blk_opf_t ff = bio_failfast(bio);
888
889
/*
890
* A front merge for writes to sequential zones of a zoned block device
891
* can happen only if the user submitted writes out of order. Do not
892
* merge such write to let it fail.
893
*/
894
if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
895
return BIO_MERGE_FAILED;
896
897
if (!ll_front_merge_fn(req, bio, nr_segs))
898
return BIO_MERGE_FAILED;
899
900
trace_block_bio_frontmerge(bio);
901
rq_qos_merge(req->q, req, bio);
902
903
if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
904
blk_rq_set_mixed_merge(req);
905
906
blk_update_mixed_merge(req, bio, true);
907
908
bio->bi_next = req->bio;
909
req->bio = bio;
910
911
req->__sector = bio->bi_iter.bi_sector;
912
req->__data_len += bio->bi_iter.bi_size;
913
914
bio_crypt_do_front_merge(req, bio);
915
916
blk_account_io_merge_bio(req);
917
return BIO_MERGE_OK;
918
}
919
920
static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
921
struct request *req, struct bio *bio)
922
{
923
unsigned short segments = blk_rq_nr_discard_segments(req);
924
925
if (segments >= queue_max_discard_segments(q))
926
goto no_merge;
927
if (blk_rq_sectors(req) + bio_sectors(bio) >
928
blk_rq_get_max_sectors(req, blk_rq_pos(req)))
929
goto no_merge;
930
931
rq_qos_merge(q, req, bio);
932
933
req->biotail->bi_next = bio;
934
req->biotail = bio;
935
req->__data_len += bio->bi_iter.bi_size;
936
req->nr_phys_segments = segments + 1;
937
938
blk_account_io_merge_bio(req);
939
return BIO_MERGE_OK;
940
no_merge:
941
req_set_nomerge(q, req);
942
return BIO_MERGE_FAILED;
943
}
944
945
static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
946
struct request *rq,
947
struct bio *bio,
948
unsigned int nr_segs,
949
bool sched_allow_merge)
950
{
951
if (!blk_rq_merge_ok(rq, bio))
952
return BIO_MERGE_NONE;
953
954
switch (blk_try_merge(rq, bio)) {
955
case ELEVATOR_BACK_MERGE:
956
if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
957
return bio_attempt_back_merge(rq, bio, nr_segs);
958
break;
959
case ELEVATOR_FRONT_MERGE:
960
if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
961
return bio_attempt_front_merge(rq, bio, nr_segs);
962
break;
963
case ELEVATOR_DISCARD_MERGE:
964
return bio_attempt_discard_merge(q, rq, bio);
965
default:
966
return BIO_MERGE_NONE;
967
}
968
969
return BIO_MERGE_FAILED;
970
}
971
972
/**
973
* blk_attempt_plug_merge - try to merge with %current's plugged list
974
* @q: request_queue new bio is being queued at
975
* @bio: new bio being queued
976
* @nr_segs: number of segments in @bio
977
* from the passed in @q already in the plug list
978
*
979
* Determine whether @bio being queued on @q can be merged with the previous
980
* request on %current's plugged list. Returns %true if merge was successful,
981
* otherwise %false.
982
*
983
* Plugging coalesces IOs from the same issuer for the same purpose without
984
* going through @q->queue_lock. As such it's more of an issuing mechanism
985
* than scheduling, and the request, while may have elvpriv data, is not
986
* added on the elevator at this point. In addition, we don't have
987
* reliable access to the elevator outside queue lock. Only check basic
988
* merging parameters without querying the elevator.
989
*
990
* Caller must ensure !blk_queue_nomerges(q) beforehand.
991
*/
992
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
993
unsigned int nr_segs)
994
{
995
struct blk_plug *plug = current->plug;
996
struct request *rq;
997
998
if (!plug || rq_list_empty(&plug->mq_list))
999
return false;
1000
1001
rq = plug->mq_list.tail;
1002
if (rq->q == q)
1003
return blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1004
BIO_MERGE_OK;
1005
else if (!plug->multiple_queues)
1006
return false;
1007
1008
rq_list_for_each(&plug->mq_list, rq) {
1009
if (rq->q != q)
1010
continue;
1011
if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1012
BIO_MERGE_OK)
1013
return true;
1014
break;
1015
}
1016
return false;
1017
}
1018
1019
/*
1020
* Iterate list of requests and see if we can merge this bio with any
1021
* of them.
1022
*/
1023
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1024
struct bio *bio, unsigned int nr_segs)
1025
{
1026
struct request *rq;
1027
int checked = 8;
1028
1029
list_for_each_entry_reverse(rq, list, queuelist) {
1030
if (!checked--)
1031
break;
1032
1033
switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1034
case BIO_MERGE_NONE:
1035
continue;
1036
case BIO_MERGE_OK:
1037
return true;
1038
case BIO_MERGE_FAILED:
1039
return false;
1040
}
1041
1042
}
1043
1044
return false;
1045
}
1046
EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1047
1048
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1049
unsigned int nr_segs, struct request **merged_request)
1050
{
1051
struct request *rq;
1052
1053
switch (elv_merge(q, &rq, bio)) {
1054
case ELEVATOR_BACK_MERGE:
1055
if (!blk_mq_sched_allow_merge(q, rq, bio))
1056
return false;
1057
if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1058
return false;
1059
*merged_request = attempt_back_merge(q, rq);
1060
if (!*merged_request)
1061
elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1062
return true;
1063
case ELEVATOR_FRONT_MERGE:
1064
if (!blk_mq_sched_allow_merge(q, rq, bio))
1065
return false;
1066
if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1067
return false;
1068
*merged_request = attempt_front_merge(q, rq);
1069
if (!*merged_request)
1070
elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1071
return true;
1072
case ELEVATOR_DISCARD_MERGE:
1073
return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1074
default:
1075
return false;
1076
}
1077
}
1078
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1079
1080