Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-merge.c
49621 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Functions related to segment and merge handling
4
*/
5
#include <linux/kernel.h>
6
#include <linux/module.h>
7
#include <linux/bio.h>
8
#include <linux/blkdev.h>
9
#include <linux/blk-integrity.h>
10
#include <linux/part_stat.h>
11
#include <linux/blk-cgroup.h>
12
13
#include <trace/events/block.h>
14
15
#include "blk.h"
16
#include "blk-mq-sched.h"
17
#include "blk-rq-qos.h"
18
#include "blk-throttle.h"
19
20
static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
21
{
22
*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
23
}
24
25
static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
26
{
27
struct bvec_iter iter = bio->bi_iter;
28
int idx;
29
30
bio_get_first_bvec(bio, bv);
31
if (bv->bv_len == bio->bi_iter.bi_size)
32
return; /* this bio only has a single bvec */
33
34
bio_advance_iter(bio, &iter, iter.bi_size);
35
36
if (!iter.bi_bvec_done)
37
idx = iter.bi_idx - 1;
38
else /* in the middle of bvec */
39
idx = iter.bi_idx;
40
41
*bv = bio->bi_io_vec[idx];
42
43
/*
44
* iter.bi_bvec_done records actual length of the last bvec
45
* if this bio ends in the middle of one io vector
46
*/
47
if (iter.bi_bvec_done)
48
bv->bv_len = iter.bi_bvec_done;
49
}
50
51
static inline bool bio_will_gap(struct request_queue *q,
52
struct request *prev_rq, struct bio *prev, struct bio *next)
53
{
54
struct bio_vec pb, nb;
55
56
if (!bio_has_data(prev) || !queue_virt_boundary(q))
57
return false;
58
59
/*
60
* Don't merge if the 1st bio starts with non-zero offset, otherwise it
61
* is quite difficult to respect the sg gap limit. We work hard to
62
* merge a huge number of small single bios in case of mkfs.
63
*/
64
if (prev_rq)
65
bio_get_first_bvec(prev_rq->bio, &pb);
66
else
67
bio_get_first_bvec(prev, &pb);
68
if (pb.bv_offset & queue_virt_boundary(q))
69
return true;
70
71
/*
72
* We don't need to worry about the situation that the merged segment
73
* ends in unaligned virt boundary:
74
*
75
* - if 'pb' ends aligned, the merged segment ends aligned
76
* - if 'pb' ends unaligned, the next bio must include
77
* one single bvec of 'nb', otherwise the 'nb' can't
78
* merge with 'pb'
79
*/
80
bio_get_last_bvec(prev, &pb);
81
bio_get_first_bvec(next, &nb);
82
if (biovec_phys_mergeable(q, &pb, &nb))
83
return false;
84
return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
85
}
86
87
static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
88
{
89
return bio_will_gap(req->q, req, req->biotail, bio);
90
}
91
92
static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
93
{
94
return bio_will_gap(req->q, NULL, bio, req->bio);
95
}
96
97
/*
98
* The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
99
* is defined as 'unsigned int', meantime it has to be aligned to with the
100
* logical block size, which is the minimum accepted unit by hardware.
101
*/
102
static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
103
{
104
return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
105
}
106
107
/*
108
* bio_submit_split_bioset - Submit a bio, splitting it at a designated sector
109
* @bio: the original bio to be submitted and split
110
* @split_sectors: the sector count at which to split
111
* @bs: the bio set used for allocating the new split bio
112
*
113
* The original bio is modified to contain the remaining sectors and submitted.
114
* The caller is responsible for submitting the returned bio.
115
*
116
* If succeed, the newly allocated bio representing the initial part will be
117
* returned, on failure NULL will be returned and original bio will fail.
118
*/
119
struct bio *bio_submit_split_bioset(struct bio *bio, unsigned int split_sectors,
120
struct bio_set *bs)
121
{
122
struct bio *split = bio_split(bio, split_sectors, GFP_NOIO, bs);
123
124
if (IS_ERR(split)) {
125
bio->bi_status = errno_to_blk_status(PTR_ERR(split));
126
bio_endio(bio);
127
return NULL;
128
}
129
130
bio_chain(split, bio);
131
trace_block_split(split, bio->bi_iter.bi_sector);
132
WARN_ON_ONCE(bio_zone_write_plugging(bio));
133
134
if (should_fail_bio(bio))
135
bio_io_error(bio);
136
else if (!blk_throtl_bio(bio))
137
submit_bio_noacct_nocheck(bio, true);
138
139
return split;
140
}
141
EXPORT_SYMBOL_GPL(bio_submit_split_bioset);
142
143
static struct bio *bio_submit_split(struct bio *bio, int split_sectors)
144
{
145
if (unlikely(split_sectors < 0)) {
146
bio->bi_status = errno_to_blk_status(split_sectors);
147
bio_endio(bio);
148
return NULL;
149
}
150
151
if (split_sectors) {
152
bio = bio_submit_split_bioset(bio, split_sectors,
153
&bio->bi_bdev->bd_disk->bio_split);
154
if (bio)
155
bio->bi_opf |= REQ_NOMERGE;
156
}
157
158
return bio;
159
}
160
161
struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
162
unsigned *nsegs)
163
{
164
unsigned int max_discard_sectors, granularity;
165
sector_t tmp;
166
unsigned split_sectors;
167
168
*nsegs = 1;
169
170
granularity = max(lim->discard_granularity >> 9, 1U);
171
172
max_discard_sectors =
173
min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
174
max_discard_sectors -= max_discard_sectors % granularity;
175
if (unlikely(!max_discard_sectors))
176
return bio;
177
178
if (bio_sectors(bio) <= max_discard_sectors)
179
return bio;
180
181
split_sectors = max_discard_sectors;
182
183
/*
184
* If the next starting sector would be misaligned, stop the discard at
185
* the previous aligned sector.
186
*/
187
tmp = bio->bi_iter.bi_sector + split_sectors -
188
((lim->discard_alignment >> 9) % granularity);
189
tmp = sector_div(tmp, granularity);
190
191
if (split_sectors > tmp)
192
split_sectors -= tmp;
193
194
return bio_submit_split(bio, split_sectors);
195
}
196
197
static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
198
bool is_atomic)
199
{
200
/*
201
* chunk_sectors must be a multiple of atomic_write_boundary_sectors if
202
* both non-zero.
203
*/
204
if (is_atomic && lim->atomic_write_boundary_sectors)
205
return lim->atomic_write_boundary_sectors;
206
207
return lim->chunk_sectors;
208
}
209
210
/*
211
* Return the maximum number of sectors from the start of a bio that may be
212
* submitted as a single request to a block device. If enough sectors remain,
213
* align the end to the physical block size. Otherwise align the end to the
214
* logical block size. This approach minimizes the number of non-aligned
215
* requests that are submitted to a block device if the start of a bio is not
216
* aligned to a physical block boundary.
217
*/
218
static inline unsigned get_max_io_size(struct bio *bio,
219
const struct queue_limits *lim)
220
{
221
unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
222
unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
223
bool is_atomic = bio->bi_opf & REQ_ATOMIC;
224
unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic);
225
unsigned max_sectors, start, end;
226
227
/*
228
* We ignore lim->max_sectors for atomic writes because it may less
229
* than the actual bio size, which we cannot tolerate.
230
*/
231
if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
232
max_sectors = lim->max_write_zeroes_sectors;
233
else if (is_atomic)
234
max_sectors = lim->atomic_write_max_sectors;
235
else
236
max_sectors = lim->max_sectors;
237
238
if (boundary_sectors) {
239
max_sectors = min(max_sectors,
240
blk_boundary_sectors_left(bio->bi_iter.bi_sector,
241
boundary_sectors));
242
}
243
244
start = bio->bi_iter.bi_sector & (pbs - 1);
245
end = (start + max_sectors) & ~(pbs - 1);
246
if (end > start)
247
return end - start;
248
return max_sectors & ~(lbs - 1);
249
}
250
251
/**
252
* bvec_split_segs - verify whether or not a bvec should be split in the middle
253
* @lim: [in] queue limits to split based on
254
* @bv: [in] bvec to examine
255
* @nsegs: [in,out] Number of segments in the bio being built. Incremented
256
* by the number of segments from @bv that may be appended to that
257
* bio without exceeding @max_segs
258
* @bytes: [in,out] Number of bytes in the bio being built. Incremented
259
* by the number of bytes from @bv that may be appended to that
260
* bio without exceeding @max_bytes
261
* @max_segs: [in] upper bound for *@nsegs
262
* @max_bytes: [in] upper bound for *@bytes
263
*
264
* When splitting a bio, it can happen that a bvec is encountered that is too
265
* big to fit in a single segment and hence that it has to be split in the
266
* middle. This function verifies whether or not that should happen. The value
267
* %true is returned if and only if appending the entire @bv to a bio with
268
* *@nsegs segments and *@sectors sectors would make that bio unacceptable for
269
* the block driver.
270
*/
271
static bool bvec_split_segs(const struct queue_limits *lim,
272
const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
273
unsigned max_segs, unsigned max_bytes)
274
{
275
unsigned max_len = max_bytes - *bytes;
276
unsigned len = min(bv->bv_len, max_len);
277
unsigned total_len = 0;
278
unsigned seg_size = 0;
279
280
while (len && *nsegs < max_segs) {
281
seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len);
282
283
(*nsegs)++;
284
total_len += seg_size;
285
len -= seg_size;
286
287
if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
288
break;
289
}
290
291
*bytes += total_len;
292
293
/* tell the caller to split the bvec if it is too big to fit */
294
return len > 0 || bv->bv_len > max_len;
295
}
296
297
static unsigned int bio_split_alignment(struct bio *bio,
298
const struct queue_limits *lim)
299
{
300
if (op_is_write(bio_op(bio)) && lim->zone_write_granularity)
301
return lim->zone_write_granularity;
302
return lim->logical_block_size;
303
}
304
305
static inline unsigned int bvec_seg_gap(struct bio_vec *bvprv,
306
struct bio_vec *bv)
307
{
308
return bv->bv_offset | (bvprv->bv_offset + bvprv->bv_len);
309
}
310
311
/**
312
* bio_split_io_at - check if and where to split a bio
313
* @bio: [in] bio to be split
314
* @lim: [in] queue limits to split based on
315
* @segs: [out] number of segments in the bio with the first half of the sectors
316
* @max_bytes: [in] maximum number of bytes per bio
317
* @len_align_mask: [in] length alignment mask for each vector
318
*
319
* Find out if @bio needs to be split to fit the queue limits in @lim and a
320
* maximum size of @max_bytes. Returns a negative error number if @bio can't be
321
* split, 0 if the bio doesn't have to be split, or a positive sector offset if
322
* @bio needs to be split.
323
*/
324
int bio_split_io_at(struct bio *bio, const struct queue_limits *lim,
325
unsigned *segs, unsigned max_bytes, unsigned len_align_mask)
326
{
327
struct bio_vec bv, bvprv, *bvprvp = NULL;
328
unsigned nsegs = 0, bytes = 0, gaps = 0;
329
struct bvec_iter iter;
330
331
bio_for_each_bvec(bv, bio, iter) {
332
if (bv.bv_offset & lim->dma_alignment ||
333
bv.bv_len & len_align_mask)
334
return -EINVAL;
335
336
/*
337
* If the queue doesn't support SG gaps and adding this
338
* offset would create a gap, disallow it.
339
*/
340
if (bvprvp) {
341
if (bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
342
goto split;
343
gaps |= bvec_seg_gap(bvprvp, &bv);
344
}
345
346
if (nsegs < lim->max_segments &&
347
bytes + bv.bv_len <= max_bytes &&
348
bv.bv_offset + bv.bv_len <= lim->max_fast_segment_size) {
349
nsegs++;
350
bytes += bv.bv_len;
351
} else {
352
if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
353
lim->max_segments, max_bytes))
354
goto split;
355
}
356
357
bvprv = bv;
358
bvprvp = &bvprv;
359
}
360
361
*segs = nsegs;
362
bio->bi_bvec_gap_bit = ffs(gaps);
363
return 0;
364
split:
365
if (bio->bi_opf & REQ_ATOMIC)
366
return -EINVAL;
367
368
/*
369
* We can't sanely support splitting for a REQ_NOWAIT bio. End it
370
* with EAGAIN if splitting is required and return an error pointer.
371
*/
372
if (bio->bi_opf & REQ_NOWAIT)
373
return -EAGAIN;
374
375
*segs = nsegs;
376
377
/*
378
* Individual bvecs might not be logical block aligned. Round down the
379
* split size so that each bio is properly block size aligned, even if
380
* we do not use the full hardware limits.
381
*
382
* It is possible to submit a bio that can't be split into a valid io:
383
* there may either be too many discontiguous vectors for the max
384
* segments limit, or contain virtual boundary gaps without having a
385
* valid block sized split. A zero byte result means one of those
386
* conditions occured.
387
*/
388
bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim));
389
if (!bytes)
390
return -EINVAL;
391
392
/*
393
* Bio splitting may cause subtle trouble such as hang when doing sync
394
* iopoll in direct IO routine. Given performance gain of iopoll for
395
* big IO can be trival, disable iopoll when split needed.
396
*/
397
bio_clear_polled(bio);
398
bio->bi_bvec_gap_bit = ffs(gaps);
399
return bytes >> SECTOR_SHIFT;
400
}
401
EXPORT_SYMBOL_GPL(bio_split_io_at);
402
403
struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
404
unsigned *nr_segs)
405
{
406
return bio_submit_split(bio,
407
bio_split_rw_at(bio, lim, nr_segs,
408
get_max_io_size(bio, lim) << SECTOR_SHIFT));
409
}
410
411
/*
412
* REQ_OP_ZONE_APPEND bios must never be split by the block layer.
413
*
414
* But we want the nr_segs calculation provided by bio_split_rw_at, and having
415
* a good sanity check that the submitter built the bio correctly is nice to
416
* have as well.
417
*/
418
struct bio *bio_split_zone_append(struct bio *bio,
419
const struct queue_limits *lim, unsigned *nr_segs)
420
{
421
int split_sectors;
422
423
split_sectors = bio_split_rw_at(bio, lim, nr_segs,
424
lim->max_zone_append_sectors << SECTOR_SHIFT);
425
if (WARN_ON_ONCE(split_sectors > 0))
426
split_sectors = -EINVAL;
427
return bio_submit_split(bio, split_sectors);
428
}
429
430
struct bio *bio_split_write_zeroes(struct bio *bio,
431
const struct queue_limits *lim, unsigned *nsegs)
432
{
433
unsigned int max_sectors = get_max_io_size(bio, lim);
434
435
*nsegs = 0;
436
437
/*
438
* An unset limit should normally not happen, as bio submission is keyed
439
* off having a non-zero limit. But SCSI can clear the limit in the
440
* I/O completion handler, and we can race and see this. Splitting to a
441
* zero limit obviously doesn't make sense, so band-aid it here.
442
*/
443
if (!max_sectors)
444
return bio;
445
if (bio_sectors(bio) <= max_sectors)
446
return bio;
447
return bio_submit_split(bio, max_sectors);
448
}
449
450
/**
451
* bio_split_to_limits - split a bio to fit the queue limits
452
* @bio: bio to be split
453
*
454
* Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
455
* if so split off a bio fitting the limits from the beginning of @bio and
456
* return it. @bio is shortened to the remainder and re-submitted.
457
*
458
* The split bio is allocated from @q->bio_split, which is provided by the
459
* block layer.
460
*/
461
struct bio *bio_split_to_limits(struct bio *bio)
462
{
463
unsigned int nr_segs;
464
465
return __bio_split_to_limits(bio, bdev_limits(bio->bi_bdev), &nr_segs);
466
}
467
EXPORT_SYMBOL(bio_split_to_limits);
468
469
unsigned int blk_recalc_rq_segments(struct request *rq)
470
{
471
unsigned int nr_phys_segs = 0;
472
unsigned int bytes = 0;
473
struct req_iterator iter;
474
struct bio_vec bv;
475
476
if (!rq->bio)
477
return 0;
478
479
switch (bio_op(rq->bio)) {
480
case REQ_OP_DISCARD:
481
case REQ_OP_SECURE_ERASE:
482
if (queue_max_discard_segments(rq->q) > 1) {
483
struct bio *bio = rq->bio;
484
485
for_each_bio(bio)
486
nr_phys_segs++;
487
return nr_phys_segs;
488
}
489
return 1;
490
case REQ_OP_WRITE_ZEROES:
491
return 0;
492
default:
493
break;
494
}
495
496
rq_for_each_bvec(bv, rq, iter)
497
bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
498
UINT_MAX, UINT_MAX);
499
return nr_phys_segs;
500
}
501
502
static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
503
sector_t offset)
504
{
505
struct request_queue *q = rq->q;
506
struct queue_limits *lim = &q->limits;
507
unsigned int max_sectors, boundary_sectors;
508
bool is_atomic = rq->cmd_flags & REQ_ATOMIC;
509
510
if (blk_rq_is_passthrough(rq))
511
return q->limits.max_hw_sectors;
512
513
boundary_sectors = blk_boundary_sectors(lim, is_atomic);
514
max_sectors = blk_queue_get_max_sectors(rq);
515
516
if (!boundary_sectors ||
517
req_op(rq) == REQ_OP_DISCARD ||
518
req_op(rq) == REQ_OP_SECURE_ERASE)
519
return max_sectors;
520
return min(max_sectors,
521
blk_boundary_sectors_left(offset, boundary_sectors));
522
}
523
524
static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
525
unsigned int nr_phys_segs)
526
{
527
if (!blk_cgroup_mergeable(req, bio))
528
goto no_merge;
529
530
if (blk_integrity_merge_bio(req->q, req, bio) == false)
531
goto no_merge;
532
533
/* discard request merge won't add new segment */
534
if (req_op(req) == REQ_OP_DISCARD)
535
return 1;
536
537
if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
538
goto no_merge;
539
540
/*
541
* This will form the start of a new hw segment. Bump both
542
* counters.
543
*/
544
req->nr_phys_segments += nr_phys_segs;
545
if (bio_integrity(bio))
546
req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q,
547
bio);
548
return 1;
549
550
no_merge:
551
req_set_nomerge(req->q, req);
552
return 0;
553
}
554
555
int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
556
{
557
if (req_gap_back_merge(req, bio))
558
return 0;
559
if (blk_integrity_rq(req) &&
560
integrity_req_gap_back_merge(req, bio))
561
return 0;
562
if (!bio_crypt_ctx_back_mergeable(req, bio))
563
return 0;
564
if (blk_rq_sectors(req) + bio_sectors(bio) >
565
blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
566
req_set_nomerge(req->q, req);
567
return 0;
568
}
569
570
return ll_new_hw_segment(req, bio, nr_segs);
571
}
572
573
static int ll_front_merge_fn(struct request *req, struct bio *bio,
574
unsigned int nr_segs)
575
{
576
if (req_gap_front_merge(req, bio))
577
return 0;
578
if (blk_integrity_rq(req) &&
579
integrity_req_gap_front_merge(req, bio))
580
return 0;
581
if (!bio_crypt_ctx_front_mergeable(req, bio))
582
return 0;
583
if (blk_rq_sectors(req) + bio_sectors(bio) >
584
blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
585
req_set_nomerge(req->q, req);
586
return 0;
587
}
588
589
return ll_new_hw_segment(req, bio, nr_segs);
590
}
591
592
static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
593
struct request *next)
594
{
595
unsigned short segments = blk_rq_nr_discard_segments(req);
596
597
if (segments >= queue_max_discard_segments(q))
598
goto no_merge;
599
if (blk_rq_sectors(req) + bio_sectors(next->bio) >
600
blk_rq_get_max_sectors(req, blk_rq_pos(req)))
601
goto no_merge;
602
603
req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
604
return true;
605
no_merge:
606
req_set_nomerge(q, req);
607
return false;
608
}
609
610
static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
611
struct request *next)
612
{
613
int total_phys_segments;
614
615
if (req_gap_back_merge(req, next->bio))
616
return 0;
617
618
/*
619
* Will it become too large?
620
*/
621
if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
622
blk_rq_get_max_sectors(req, blk_rq_pos(req)))
623
return 0;
624
625
total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
626
if (total_phys_segments > blk_rq_get_max_segments(req))
627
return 0;
628
629
if (!blk_cgroup_mergeable(req, next->bio))
630
return 0;
631
632
if (blk_integrity_merge_rq(q, req, next) == false)
633
return 0;
634
635
if (!bio_crypt_ctx_merge_rq(req, next))
636
return 0;
637
638
/* Merge is OK... */
639
req->nr_phys_segments = total_phys_segments;
640
req->nr_integrity_segments += next->nr_integrity_segments;
641
return 1;
642
}
643
644
/**
645
* blk_rq_set_mixed_merge - mark a request as mixed merge
646
* @rq: request to mark as mixed merge
647
*
648
* Description:
649
* @rq is about to be mixed merged. Make sure the attributes
650
* which can be mixed are set in each bio and mark @rq as mixed
651
* merged.
652
*/
653
static void blk_rq_set_mixed_merge(struct request *rq)
654
{
655
blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
656
struct bio *bio;
657
658
if (rq->rq_flags & RQF_MIXED_MERGE)
659
return;
660
661
/*
662
* @rq will no longer represent mixable attributes for all the
663
* contained bios. It will just track those of the first one.
664
* Distributes the attributs to each bio.
665
*/
666
for (bio = rq->bio; bio; bio = bio->bi_next) {
667
WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
668
(bio->bi_opf & REQ_FAILFAST_MASK) != ff);
669
bio->bi_opf |= ff;
670
}
671
rq->rq_flags |= RQF_MIXED_MERGE;
672
}
673
674
static inline blk_opf_t bio_failfast(const struct bio *bio)
675
{
676
if (bio->bi_opf & REQ_RAHEAD)
677
return REQ_FAILFAST_MASK;
678
679
return bio->bi_opf & REQ_FAILFAST_MASK;
680
}
681
682
/*
683
* After we are marked as MIXED_MERGE, any new RA bio has to be updated
684
* as failfast, and request's failfast has to be updated in case of
685
* front merge.
686
*/
687
static inline void blk_update_mixed_merge(struct request *req,
688
struct bio *bio, bool front_merge)
689
{
690
if (req->rq_flags & RQF_MIXED_MERGE) {
691
if (bio->bi_opf & REQ_RAHEAD)
692
bio->bi_opf |= REQ_FAILFAST_MASK;
693
694
if (front_merge) {
695
req->cmd_flags &= ~REQ_FAILFAST_MASK;
696
req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
697
}
698
}
699
}
700
701
static void blk_account_io_merge_request(struct request *req)
702
{
703
if (req->rq_flags & RQF_IO_STAT) {
704
part_stat_lock();
705
part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
706
part_stat_local_dec(req->part,
707
in_flight[op_is_write(req_op(req))]);
708
part_stat_unlock();
709
}
710
}
711
712
static enum elv_merge blk_try_req_merge(struct request *req,
713
struct request *next)
714
{
715
if (blk_discard_mergable(req))
716
return ELEVATOR_DISCARD_MERGE;
717
else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
718
return ELEVATOR_BACK_MERGE;
719
720
return ELEVATOR_NO_MERGE;
721
}
722
723
static bool blk_atomic_write_mergeable_rq_bio(struct request *rq,
724
struct bio *bio)
725
{
726
return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC);
727
}
728
729
static bool blk_atomic_write_mergeable_rqs(struct request *rq,
730
struct request *next)
731
{
732
return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC);
733
}
734
735
u8 bio_seg_gap(struct request_queue *q, struct bio *prev, struct bio *next,
736
u8 gaps_bit)
737
{
738
struct bio_vec pb, nb;
739
740
if (!bio_has_data(prev))
741
return 0;
742
743
gaps_bit = min_not_zero(gaps_bit, prev->bi_bvec_gap_bit);
744
gaps_bit = min_not_zero(gaps_bit, next->bi_bvec_gap_bit);
745
746
bio_get_last_bvec(prev, &pb);
747
bio_get_first_bvec(next, &nb);
748
if (!biovec_phys_mergeable(q, &pb, &nb))
749
gaps_bit = min_not_zero(gaps_bit, ffs(bvec_seg_gap(&pb, &nb)));
750
return gaps_bit;
751
}
752
753
/*
754
* For non-mq, this has to be called with the request spinlock acquired.
755
* For mq with scheduling, the appropriate queue wide lock should be held.
756
*/
757
static struct request *attempt_merge(struct request_queue *q,
758
struct request *req, struct request *next)
759
{
760
if (!rq_mergeable(req) || !rq_mergeable(next))
761
return NULL;
762
763
if (req_op(req) != req_op(next))
764
return NULL;
765
766
if (req->bio->bi_write_hint != next->bio->bi_write_hint)
767
return NULL;
768
if (req->bio->bi_write_stream != next->bio->bi_write_stream)
769
return NULL;
770
if (req->bio->bi_ioprio != next->bio->bi_ioprio)
771
return NULL;
772
if (!blk_atomic_write_mergeable_rqs(req, next))
773
return NULL;
774
775
/*
776
* If we are allowed to merge, then append bio list
777
* from next to rq and release next. merge_requests_fn
778
* will have updated segment counts, update sector
779
* counts here. Handle DISCARDs separately, as they
780
* have separate settings.
781
*/
782
783
switch (blk_try_req_merge(req, next)) {
784
case ELEVATOR_DISCARD_MERGE:
785
if (!req_attempt_discard_merge(q, req, next))
786
return NULL;
787
break;
788
case ELEVATOR_BACK_MERGE:
789
if (!ll_merge_requests_fn(q, req, next))
790
return NULL;
791
break;
792
default:
793
return NULL;
794
}
795
796
/*
797
* If failfast settings disagree or any of the two is already
798
* a mixed merge, mark both as mixed before proceeding. This
799
* makes sure that all involved bios have mixable attributes
800
* set properly.
801
*/
802
if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
803
(req->cmd_flags & REQ_FAILFAST_MASK) !=
804
(next->cmd_flags & REQ_FAILFAST_MASK)) {
805
blk_rq_set_mixed_merge(req);
806
blk_rq_set_mixed_merge(next);
807
}
808
809
/*
810
* At this point we have either done a back merge or front merge. We
811
* need the smaller start_time_ns of the merged requests to be the
812
* current request for accounting purposes.
813
*/
814
if (next->start_time_ns < req->start_time_ns)
815
req->start_time_ns = next->start_time_ns;
816
817
req->phys_gap_bit = bio_seg_gap(req->q, req->biotail, next->bio,
818
min_not_zero(next->phys_gap_bit,
819
req->phys_gap_bit));
820
req->biotail->bi_next = next->bio;
821
req->biotail = next->biotail;
822
823
req->__data_len += blk_rq_bytes(next);
824
825
if (!blk_discard_mergable(req))
826
elv_merge_requests(q, req, next);
827
828
blk_crypto_rq_put_keyslot(next);
829
830
/*
831
* 'next' is going away, so update stats accordingly
832
*/
833
blk_account_io_merge_request(next);
834
835
trace_block_rq_merge(next);
836
837
/*
838
* ownership of bio passed from next to req, return 'next' for
839
* the caller to free
840
*/
841
next->bio = NULL;
842
return next;
843
}
844
845
static struct request *attempt_back_merge(struct request_queue *q,
846
struct request *rq)
847
{
848
struct request *next = elv_latter_request(q, rq);
849
850
if (next)
851
return attempt_merge(q, rq, next);
852
853
return NULL;
854
}
855
856
static struct request *attempt_front_merge(struct request_queue *q,
857
struct request *rq)
858
{
859
struct request *prev = elv_former_request(q, rq);
860
861
if (prev)
862
return attempt_merge(q, prev, rq);
863
864
return NULL;
865
}
866
867
/*
868
* Try to merge 'next' into 'rq'. Return true if the merge happened, false
869
* otherwise. The caller is responsible for freeing 'next' if the merge
870
* happened.
871
*/
872
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
873
struct request *next)
874
{
875
return attempt_merge(q, rq, next);
876
}
877
878
bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
879
{
880
if (!rq_mergeable(rq) || !bio_mergeable(bio))
881
return false;
882
883
if (req_op(rq) != bio_op(bio))
884
return false;
885
886
if (!blk_cgroup_mergeable(rq, bio))
887
return false;
888
if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
889
return false;
890
if (!bio_crypt_rq_ctx_compatible(rq, bio))
891
return false;
892
if (rq->bio->bi_write_hint != bio->bi_write_hint)
893
return false;
894
if (rq->bio->bi_write_stream != bio->bi_write_stream)
895
return false;
896
if (rq->bio->bi_ioprio != bio->bi_ioprio)
897
return false;
898
if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false)
899
return false;
900
901
return true;
902
}
903
904
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
905
{
906
if (blk_discard_mergable(rq))
907
return ELEVATOR_DISCARD_MERGE;
908
else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
909
return ELEVATOR_BACK_MERGE;
910
else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
911
return ELEVATOR_FRONT_MERGE;
912
return ELEVATOR_NO_MERGE;
913
}
914
915
static void blk_account_io_merge_bio(struct request *req)
916
{
917
if (req->rq_flags & RQF_IO_STAT) {
918
part_stat_lock();
919
part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
920
part_stat_unlock();
921
}
922
}
923
924
enum bio_merge_status bio_attempt_back_merge(struct request *req,
925
struct bio *bio, unsigned int nr_segs)
926
{
927
const blk_opf_t ff = bio_failfast(bio);
928
929
if (!ll_back_merge_fn(req, bio, nr_segs))
930
return BIO_MERGE_FAILED;
931
932
trace_block_bio_backmerge(bio);
933
rq_qos_merge(req->q, req, bio);
934
935
if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
936
blk_rq_set_mixed_merge(req);
937
938
blk_update_mixed_merge(req, bio, false);
939
940
if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
941
blk_zone_write_plug_bio_merged(bio);
942
943
req->phys_gap_bit = bio_seg_gap(req->q, req->biotail, bio,
944
req->phys_gap_bit);
945
req->biotail->bi_next = bio;
946
req->biotail = bio;
947
req->__data_len += bio->bi_iter.bi_size;
948
949
bio_crypt_free_ctx(bio);
950
951
blk_account_io_merge_bio(req);
952
return BIO_MERGE_OK;
953
}
954
955
static enum bio_merge_status bio_attempt_front_merge(struct request *req,
956
struct bio *bio, unsigned int nr_segs)
957
{
958
const blk_opf_t ff = bio_failfast(bio);
959
960
/*
961
* A front merge for writes to sequential zones of a zoned block device
962
* can happen only if the user submitted writes out of order. Do not
963
* merge such write to let it fail.
964
*/
965
if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
966
return BIO_MERGE_FAILED;
967
968
if (!ll_front_merge_fn(req, bio, nr_segs))
969
return BIO_MERGE_FAILED;
970
971
trace_block_bio_frontmerge(bio);
972
rq_qos_merge(req->q, req, bio);
973
974
if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
975
blk_rq_set_mixed_merge(req);
976
977
blk_update_mixed_merge(req, bio, true);
978
979
req->phys_gap_bit = bio_seg_gap(req->q, bio, req->bio,
980
req->phys_gap_bit);
981
bio->bi_next = req->bio;
982
req->bio = bio;
983
984
req->__sector = bio->bi_iter.bi_sector;
985
req->__data_len += bio->bi_iter.bi_size;
986
987
bio_crypt_do_front_merge(req, bio);
988
989
blk_account_io_merge_bio(req);
990
return BIO_MERGE_OK;
991
}
992
993
static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
994
struct request *req, struct bio *bio)
995
{
996
unsigned short segments = blk_rq_nr_discard_segments(req);
997
998
if (segments >= queue_max_discard_segments(q))
999
goto no_merge;
1000
if (blk_rq_sectors(req) + bio_sectors(bio) >
1001
blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1002
goto no_merge;
1003
1004
rq_qos_merge(q, req, bio);
1005
1006
req->biotail->bi_next = bio;
1007
req->biotail = bio;
1008
req->__data_len += bio->bi_iter.bi_size;
1009
req->nr_phys_segments = segments + 1;
1010
1011
blk_account_io_merge_bio(req);
1012
return BIO_MERGE_OK;
1013
no_merge:
1014
req_set_nomerge(q, req);
1015
return BIO_MERGE_FAILED;
1016
}
1017
1018
static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1019
struct request *rq,
1020
struct bio *bio,
1021
unsigned int nr_segs,
1022
bool sched_allow_merge)
1023
{
1024
if (!blk_rq_merge_ok(rq, bio))
1025
return BIO_MERGE_NONE;
1026
1027
switch (blk_try_merge(rq, bio)) {
1028
case ELEVATOR_BACK_MERGE:
1029
if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1030
return bio_attempt_back_merge(rq, bio, nr_segs);
1031
break;
1032
case ELEVATOR_FRONT_MERGE:
1033
if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1034
return bio_attempt_front_merge(rq, bio, nr_segs);
1035
break;
1036
case ELEVATOR_DISCARD_MERGE:
1037
return bio_attempt_discard_merge(q, rq, bio);
1038
default:
1039
return BIO_MERGE_NONE;
1040
}
1041
1042
return BIO_MERGE_FAILED;
1043
}
1044
1045
/**
1046
* blk_attempt_plug_merge - try to merge with %current's plugged list
1047
* @q: request_queue new bio is being queued at
1048
* @bio: new bio being queued
1049
* @nr_segs: number of segments in @bio
1050
* from the passed in @q already in the plug list
1051
*
1052
* Determine whether @bio being queued on @q can be merged with the previous
1053
* request on %current's plugged list. Returns %true if merge was successful,
1054
* otherwise %false.
1055
*
1056
* Plugging coalesces IOs from the same issuer for the same purpose without
1057
* going through @q->queue_lock. As such it's more of an issuing mechanism
1058
* than scheduling, and the request, while may have elvpriv data, is not
1059
* added on the elevator at this point. In addition, we don't have
1060
* reliable access to the elevator outside queue lock. Only check basic
1061
* merging parameters without querying the elevator.
1062
*
1063
* Caller must ensure !blk_queue_nomerges(q) beforehand.
1064
*/
1065
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1066
unsigned int nr_segs)
1067
{
1068
struct blk_plug *plug = current->plug;
1069
struct request *rq;
1070
1071
if (!plug || rq_list_empty(&plug->mq_list))
1072
return false;
1073
1074
rq = plug->mq_list.tail;
1075
if (rq->q == q)
1076
return blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1077
BIO_MERGE_OK;
1078
else if (!plug->multiple_queues)
1079
return false;
1080
1081
rq_list_for_each(&plug->mq_list, rq) {
1082
if (rq->q != q)
1083
continue;
1084
if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1085
BIO_MERGE_OK)
1086
return true;
1087
break;
1088
}
1089
return false;
1090
}
1091
1092
/*
1093
* Iterate list of requests and see if we can merge this bio with any
1094
* of them.
1095
*/
1096
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1097
struct bio *bio, unsigned int nr_segs)
1098
{
1099
struct request *rq;
1100
int checked = 8;
1101
1102
list_for_each_entry_reverse(rq, list, queuelist) {
1103
if (!checked--)
1104
break;
1105
1106
switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1107
case BIO_MERGE_NONE:
1108
continue;
1109
case BIO_MERGE_OK:
1110
return true;
1111
case BIO_MERGE_FAILED:
1112
return false;
1113
}
1114
1115
}
1116
1117
return false;
1118
}
1119
EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1120
1121
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1122
unsigned int nr_segs, struct request **merged_request)
1123
{
1124
struct request *rq;
1125
1126
switch (elv_merge(q, &rq, bio)) {
1127
case ELEVATOR_BACK_MERGE:
1128
if (!blk_mq_sched_allow_merge(q, rq, bio))
1129
return false;
1130
if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1131
return false;
1132
*merged_request = attempt_back_merge(q, rq);
1133
if (!*merged_request)
1134
elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1135
return true;
1136
case ELEVATOR_FRONT_MERGE:
1137
if (!blk_mq_sched_allow_merge(q, rq, bio))
1138
return false;
1139
if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1140
return false;
1141
*merged_request = attempt_front_merge(q, rq);
1142
if (!*merged_request)
1143
elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1144
return true;
1145
case ELEVATOR_DISCARD_MERGE:
1146
return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1147
default:
1148
return false;
1149
}
1150
}
1151
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1152
1153