Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-mq.c
49356 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Block multiqueue core code
4
*
5
* Copyright (C) 2013-2014 Jens Axboe
6
* Copyright (C) 2013-2014 Christoph Hellwig
7
*/
8
#include <linux/kernel.h>
9
#include <linux/module.h>
10
#include <linux/backing-dev.h>
11
#include <linux/bio.h>
12
#include <linux/blkdev.h>
13
#include <linux/blk-integrity.h>
14
#include <linux/kmemleak.h>
15
#include <linux/mm.h>
16
#include <linux/init.h>
17
#include <linux/slab.h>
18
#include <linux/workqueue.h>
19
#include <linux/smp.h>
20
#include <linux/interrupt.h>
21
#include <linux/llist.h>
22
#include <linux/cpu.h>
23
#include <linux/cache.h>
24
#include <linux/sched/topology.h>
25
#include <linux/sched/signal.h>
26
#include <linux/suspend.h>
27
#include <linux/delay.h>
28
#include <linux/crash_dump.h>
29
#include <linux/prefetch.h>
30
#include <linux/blk-crypto.h>
31
#include <linux/part_stat.h>
32
#include <linux/sched/isolation.h>
33
34
#include <trace/events/block.h>
35
36
#include <linux/t10-pi.h>
37
#include "blk.h"
38
#include "blk-mq.h"
39
#include "blk-mq-debugfs.h"
40
#include "blk-pm.h"
41
#include "blk-stat.h"
42
#include "blk-mq-sched.h"
43
#include "blk-rq-qos.h"
44
45
static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
static DEFINE_MUTEX(blk_mq_cpuhp_lock);
48
49
static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
50
static void blk_mq_request_bypass_insert(struct request *rq,
51
blk_insert_t flags);
52
static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
53
struct list_head *list);
54
static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
55
struct io_comp_batch *iob, unsigned int flags);
56
57
/*
58
* Check if any of the ctx, dispatch list or elevator
59
* have pending work in this hardware queue.
60
*/
61
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
62
{
63
return !list_empty_careful(&hctx->dispatch) ||
64
sbitmap_any_bit_set(&hctx->ctx_map) ||
65
blk_mq_sched_has_work(hctx);
66
}
67
68
/*
69
* Mark this ctx as having pending work in this hardware queue
70
*/
71
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
72
struct blk_mq_ctx *ctx)
73
{
74
const int bit = ctx->index_hw[hctx->type];
75
76
if (!sbitmap_test_bit(&hctx->ctx_map, bit))
77
sbitmap_set_bit(&hctx->ctx_map, bit);
78
}
79
80
static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81
struct blk_mq_ctx *ctx)
82
{
83
const int bit = ctx->index_hw[hctx->type];
84
85
sbitmap_clear_bit(&hctx->ctx_map, bit);
86
}
87
88
struct mq_inflight {
89
struct block_device *part;
90
unsigned int inflight[2];
91
};
92
93
static bool blk_mq_check_in_driver(struct request *rq, void *priv)
94
{
95
struct mq_inflight *mi = priv;
96
97
if (rq->rq_flags & RQF_IO_STAT &&
98
(!bdev_is_partition(mi->part) || rq->part == mi->part) &&
99
blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
100
mi->inflight[rq_data_dir(rq)]++;
101
102
return true;
103
}
104
105
void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2])
106
{
107
struct mq_inflight mi = { .part = part };
108
109
blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver,
110
&mi);
111
inflight[READ] = mi.inflight[READ];
112
inflight[WRITE] = mi.inflight[WRITE];
113
}
114
115
#ifdef CONFIG_LOCKDEP
116
static bool blk_freeze_set_owner(struct request_queue *q,
117
struct task_struct *owner)
118
{
119
if (!owner)
120
return false;
121
122
if (!q->mq_freeze_depth) {
123
q->mq_freeze_owner = owner;
124
q->mq_freeze_owner_depth = 1;
125
q->mq_freeze_disk_dead = !q->disk ||
126
test_bit(GD_DEAD, &q->disk->state) ||
127
!blk_queue_registered(q);
128
q->mq_freeze_queue_dying = blk_queue_dying(q);
129
return true;
130
}
131
132
if (owner == q->mq_freeze_owner)
133
q->mq_freeze_owner_depth += 1;
134
return false;
135
}
136
137
/* verify the last unfreeze in owner context */
138
static bool blk_unfreeze_check_owner(struct request_queue *q)
139
{
140
if (q->mq_freeze_owner != current)
141
return false;
142
if (--q->mq_freeze_owner_depth == 0) {
143
q->mq_freeze_owner = NULL;
144
return true;
145
}
146
return false;
147
}
148
149
#else
150
151
static bool blk_freeze_set_owner(struct request_queue *q,
152
struct task_struct *owner)
153
{
154
return false;
155
}
156
157
static bool blk_unfreeze_check_owner(struct request_queue *q)
158
{
159
return false;
160
}
161
#endif
162
163
bool __blk_freeze_queue_start(struct request_queue *q,
164
struct task_struct *owner)
165
{
166
bool freeze;
167
168
mutex_lock(&q->mq_freeze_lock);
169
freeze = blk_freeze_set_owner(q, owner);
170
if (++q->mq_freeze_depth == 1) {
171
percpu_ref_kill(&q->q_usage_counter);
172
mutex_unlock(&q->mq_freeze_lock);
173
if (queue_is_mq(q))
174
blk_mq_run_hw_queues(q, false);
175
} else {
176
mutex_unlock(&q->mq_freeze_lock);
177
}
178
179
return freeze;
180
}
181
182
void blk_freeze_queue_start(struct request_queue *q)
183
{
184
if (__blk_freeze_queue_start(q, current))
185
blk_freeze_acquire_lock(q);
186
}
187
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
188
189
void blk_mq_freeze_queue_wait(struct request_queue *q)
190
{
191
wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
192
}
193
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
194
195
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
196
unsigned long timeout)
197
{
198
return wait_event_timeout(q->mq_freeze_wq,
199
percpu_ref_is_zero(&q->q_usage_counter),
200
timeout);
201
}
202
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
203
204
void blk_mq_freeze_queue_nomemsave(struct request_queue *q)
205
{
206
blk_freeze_queue_start(q);
207
blk_mq_freeze_queue_wait(q);
208
}
209
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave);
210
211
bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
212
{
213
bool unfreeze;
214
215
mutex_lock(&q->mq_freeze_lock);
216
if (force_atomic)
217
q->q_usage_counter.data->force_atomic = true;
218
q->mq_freeze_depth--;
219
WARN_ON_ONCE(q->mq_freeze_depth < 0);
220
if (!q->mq_freeze_depth) {
221
percpu_ref_resurrect(&q->q_usage_counter);
222
wake_up_all(&q->mq_freeze_wq);
223
}
224
unfreeze = blk_unfreeze_check_owner(q);
225
mutex_unlock(&q->mq_freeze_lock);
226
227
return unfreeze;
228
}
229
230
void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q)
231
{
232
if (__blk_mq_unfreeze_queue(q, false))
233
blk_unfreeze_release_lock(q);
234
}
235
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore);
236
237
/*
238
* non_owner variant of blk_freeze_queue_start
239
*
240
* Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
241
* by the same task. This is fragile and should not be used if at all
242
* possible.
243
*/
244
void blk_freeze_queue_start_non_owner(struct request_queue *q)
245
{
246
__blk_freeze_queue_start(q, NULL);
247
}
248
EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
249
250
/* non_owner variant of blk_mq_unfreeze_queue */
251
void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
252
{
253
__blk_mq_unfreeze_queue(q, false);
254
}
255
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
256
257
/*
258
* FIXME: replace the scsi_internal_device_*block_nowait() calls in the
259
* mpt3sas driver such that this function can be removed.
260
*/
261
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
262
{
263
unsigned long flags;
264
265
spin_lock_irqsave(&q->queue_lock, flags);
266
if (!q->quiesce_depth++)
267
blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
268
spin_unlock_irqrestore(&q->queue_lock, flags);
269
}
270
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
271
272
/**
273
* blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
274
* @set: tag_set to wait on
275
*
276
* Note: it is driver's responsibility for making sure that quiesce has
277
* been started on or more of the request_queues of the tag_set. This
278
* function only waits for the quiesce on those request_queues that had
279
* the quiesce flag set using blk_mq_quiesce_queue_nowait.
280
*/
281
void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
282
{
283
if (set->flags & BLK_MQ_F_BLOCKING)
284
synchronize_srcu(set->srcu);
285
else
286
synchronize_rcu();
287
}
288
EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
289
290
/**
291
* blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
292
* @q: request queue.
293
*
294
* Note: this function does not prevent that the struct request end_io()
295
* callback function is invoked. Once this function is returned, we make
296
* sure no dispatch can happen until the queue is unquiesced via
297
* blk_mq_unquiesce_queue().
298
*/
299
void blk_mq_quiesce_queue(struct request_queue *q)
300
{
301
blk_mq_quiesce_queue_nowait(q);
302
/* nothing to wait for non-mq queues */
303
if (queue_is_mq(q))
304
blk_mq_wait_quiesce_done(q->tag_set);
305
}
306
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
307
308
/*
309
* blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
310
* @q: request queue.
311
*
312
* This function recovers queue into the state before quiescing
313
* which is done by blk_mq_quiesce_queue.
314
*/
315
void blk_mq_unquiesce_queue(struct request_queue *q)
316
{
317
unsigned long flags;
318
bool run_queue = false;
319
320
spin_lock_irqsave(&q->queue_lock, flags);
321
if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
322
;
323
} else if (!--q->quiesce_depth) {
324
blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
325
run_queue = true;
326
}
327
spin_unlock_irqrestore(&q->queue_lock, flags);
328
329
/* dispatch requests which are inserted during quiescing */
330
if (run_queue)
331
blk_mq_run_hw_queues(q, true);
332
}
333
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
334
335
void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
336
{
337
struct request_queue *q;
338
339
rcu_read_lock();
340
list_for_each_entry_rcu(q, &set->tag_list, tag_set_list) {
341
if (!blk_queue_skip_tagset_quiesce(q))
342
blk_mq_quiesce_queue_nowait(q);
343
}
344
rcu_read_unlock();
345
346
blk_mq_wait_quiesce_done(set);
347
}
348
EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
349
350
void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
351
{
352
struct request_queue *q;
353
354
rcu_read_lock();
355
list_for_each_entry_rcu(q, &set->tag_list, tag_set_list) {
356
if (!blk_queue_skip_tagset_quiesce(q))
357
blk_mq_unquiesce_queue(q);
358
}
359
rcu_read_unlock();
360
}
361
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
362
363
void blk_mq_wake_waiters(struct request_queue *q)
364
{
365
struct blk_mq_hw_ctx *hctx;
366
unsigned long i;
367
368
queue_for_each_hw_ctx(q, hctx, i)
369
if (blk_mq_hw_queue_mapped(hctx))
370
blk_mq_tag_wakeup_all(hctx->tags, true);
371
}
372
373
void blk_rq_init(struct request_queue *q, struct request *rq)
374
{
375
memset(rq, 0, sizeof(*rq));
376
377
INIT_LIST_HEAD(&rq->queuelist);
378
rq->q = q;
379
rq->__sector = (sector_t) -1;
380
rq->phys_gap_bit = 0;
381
INIT_HLIST_NODE(&rq->hash);
382
RB_CLEAR_NODE(&rq->rb_node);
383
rq->tag = BLK_MQ_NO_TAG;
384
rq->internal_tag = BLK_MQ_NO_TAG;
385
rq->start_time_ns = blk_time_get_ns();
386
blk_crypto_rq_set_defaults(rq);
387
}
388
EXPORT_SYMBOL(blk_rq_init);
389
390
/* Set start and alloc time when the allocated request is actually used */
391
static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
392
{
393
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
394
if (blk_queue_rq_alloc_time(rq->q))
395
rq->alloc_time_ns = alloc_time_ns;
396
else
397
rq->alloc_time_ns = 0;
398
#endif
399
}
400
401
static inline void blk_mq_bio_issue_init(struct request_queue *q,
402
struct bio *bio)
403
{
404
#ifdef CONFIG_BLK_CGROUP
405
if (test_bit(QUEUE_FLAG_BIO_ISSUE_TIME, &q->queue_flags))
406
bio->issue_time_ns = blk_time_get_ns();
407
#endif
408
}
409
410
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
411
struct blk_mq_tags *tags, unsigned int tag)
412
{
413
struct blk_mq_ctx *ctx = data->ctx;
414
struct blk_mq_hw_ctx *hctx = data->hctx;
415
struct request_queue *q = data->q;
416
struct request *rq = tags->static_rqs[tag];
417
418
rq->q = q;
419
rq->mq_ctx = ctx;
420
rq->mq_hctx = hctx;
421
rq->cmd_flags = data->cmd_flags;
422
423
if (data->flags & BLK_MQ_REQ_PM)
424
data->rq_flags |= RQF_PM;
425
rq->rq_flags = data->rq_flags;
426
427
if (data->rq_flags & RQF_SCHED_TAGS) {
428
rq->tag = BLK_MQ_NO_TAG;
429
rq->internal_tag = tag;
430
} else {
431
rq->tag = tag;
432
rq->internal_tag = BLK_MQ_NO_TAG;
433
}
434
rq->timeout = 0;
435
436
rq->part = NULL;
437
rq->io_start_time_ns = 0;
438
rq->stats_sectors = 0;
439
rq->nr_phys_segments = 0;
440
rq->nr_integrity_segments = 0;
441
rq->end_io = NULL;
442
rq->end_io_data = NULL;
443
444
blk_crypto_rq_set_defaults(rq);
445
INIT_LIST_HEAD(&rq->queuelist);
446
/* tag was already set */
447
WRITE_ONCE(rq->deadline, 0);
448
req_ref_set(rq, 1);
449
450
if (rq->rq_flags & RQF_USE_SCHED) {
451
struct elevator_queue *e = data->q->elevator;
452
453
INIT_HLIST_NODE(&rq->hash);
454
RB_CLEAR_NODE(&rq->rb_node);
455
456
if (e->type->ops.prepare_request)
457
e->type->ops.prepare_request(rq);
458
}
459
460
return rq;
461
}
462
463
static inline struct request *
464
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
465
{
466
unsigned int tag, tag_offset;
467
struct blk_mq_tags *tags;
468
struct request *rq;
469
unsigned long tag_mask;
470
int i, nr = 0;
471
472
do {
473
tag_mask = blk_mq_get_tags(data, data->nr_tags - nr, &tag_offset);
474
if (unlikely(!tag_mask)) {
475
if (nr == 0)
476
return NULL;
477
break;
478
}
479
tags = blk_mq_tags_from_data(data);
480
for (i = 0; tag_mask; i++) {
481
if (!(tag_mask & (1UL << i)))
482
continue;
483
tag = tag_offset + i;
484
prefetch(tags->static_rqs[tag]);
485
tag_mask &= ~(1UL << i);
486
rq = blk_mq_rq_ctx_init(data, tags, tag);
487
rq_list_add_head(data->cached_rqs, rq);
488
nr++;
489
}
490
} while (data->nr_tags > nr);
491
492
if (!(data->rq_flags & RQF_SCHED_TAGS))
493
blk_mq_add_active_requests(data->hctx, nr);
494
/* caller already holds a reference, add for remainder */
495
percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
496
data->nr_tags -= nr;
497
498
return rq_list_pop(data->cached_rqs);
499
}
500
501
static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
502
{
503
struct request_queue *q = data->q;
504
u64 alloc_time_ns = 0;
505
struct request *rq;
506
unsigned int tag;
507
508
/* alloc_time includes depth and tag waits */
509
if (blk_queue_rq_alloc_time(q))
510
alloc_time_ns = blk_time_get_ns();
511
512
if (data->cmd_flags & REQ_NOWAIT)
513
data->flags |= BLK_MQ_REQ_NOWAIT;
514
515
retry:
516
data->ctx = blk_mq_get_ctx(q);
517
data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx);
518
519
if (q->elevator) {
520
/*
521
* All requests use scheduler tags when an I/O scheduler is
522
* enabled for the queue.
523
*/
524
data->rq_flags |= RQF_SCHED_TAGS;
525
526
/*
527
* Flush/passthrough requests are special and go directly to the
528
* dispatch list.
529
*/
530
if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
531
!blk_op_is_passthrough(data->cmd_flags)) {
532
struct elevator_mq_ops *ops = &q->elevator->type->ops;
533
534
WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
535
536
data->rq_flags |= RQF_USE_SCHED;
537
if (ops->limit_depth)
538
ops->limit_depth(data->cmd_flags, data);
539
}
540
} else {
541
blk_mq_tag_busy(data->hctx);
542
}
543
544
if (data->flags & BLK_MQ_REQ_RESERVED)
545
data->rq_flags |= RQF_RESV;
546
547
/*
548
* Try batched alloc if we want more than 1 tag.
549
*/
550
if (data->nr_tags > 1) {
551
rq = __blk_mq_alloc_requests_batch(data);
552
if (rq) {
553
blk_mq_rq_time_init(rq, alloc_time_ns);
554
return rq;
555
}
556
data->nr_tags = 1;
557
}
558
559
/*
560
* Waiting allocations only fail because of an inactive hctx. In that
561
* case just retry the hctx assignment and tag allocation as CPU hotplug
562
* should have migrated us to an online CPU by now.
563
*/
564
tag = blk_mq_get_tag(data);
565
if (tag == BLK_MQ_NO_TAG) {
566
if (data->flags & BLK_MQ_REQ_NOWAIT)
567
return NULL;
568
/*
569
* Give up the CPU and sleep for a random short time to
570
* ensure that thread using a realtime scheduling class
571
* are migrated off the CPU, and thus off the hctx that
572
* is going away.
573
*/
574
msleep(3);
575
goto retry;
576
}
577
578
if (!(data->rq_flags & RQF_SCHED_TAGS))
579
blk_mq_inc_active_requests(data->hctx);
580
rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
581
blk_mq_rq_time_init(rq, alloc_time_ns);
582
return rq;
583
}
584
585
static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
586
struct blk_plug *plug,
587
blk_opf_t opf,
588
blk_mq_req_flags_t flags)
589
{
590
struct blk_mq_alloc_data data = {
591
.q = q,
592
.flags = flags,
593
.shallow_depth = 0,
594
.cmd_flags = opf,
595
.rq_flags = 0,
596
.nr_tags = plug->nr_ios,
597
.cached_rqs = &plug->cached_rqs,
598
.ctx = NULL,
599
.hctx = NULL
600
};
601
struct request *rq;
602
603
if (blk_queue_enter(q, flags))
604
return NULL;
605
606
plug->nr_ios = 1;
607
608
rq = __blk_mq_alloc_requests(&data);
609
if (unlikely(!rq))
610
blk_queue_exit(q);
611
return rq;
612
}
613
614
static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
615
blk_opf_t opf,
616
blk_mq_req_flags_t flags)
617
{
618
struct blk_plug *plug = current->plug;
619
struct request *rq;
620
621
if (!plug)
622
return NULL;
623
624
if (rq_list_empty(&plug->cached_rqs)) {
625
if (plug->nr_ios == 1)
626
return NULL;
627
rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
628
if (!rq)
629
return NULL;
630
} else {
631
rq = rq_list_peek(&plug->cached_rqs);
632
if (!rq || rq->q != q)
633
return NULL;
634
635
if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
636
return NULL;
637
if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
638
return NULL;
639
640
rq_list_pop(&plug->cached_rqs);
641
blk_mq_rq_time_init(rq, blk_time_get_ns());
642
}
643
644
rq->cmd_flags = opf;
645
INIT_LIST_HEAD(&rq->queuelist);
646
return rq;
647
}
648
649
struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
650
blk_mq_req_flags_t flags)
651
{
652
struct request *rq;
653
654
rq = blk_mq_alloc_cached_request(q, opf, flags);
655
if (!rq) {
656
struct blk_mq_alloc_data data = {
657
.q = q,
658
.flags = flags,
659
.shallow_depth = 0,
660
.cmd_flags = opf,
661
.rq_flags = 0,
662
.nr_tags = 1,
663
.cached_rqs = NULL,
664
.ctx = NULL,
665
.hctx = NULL
666
};
667
int ret;
668
669
ret = blk_queue_enter(q, flags);
670
if (ret)
671
return ERR_PTR(ret);
672
673
rq = __blk_mq_alloc_requests(&data);
674
if (!rq)
675
goto out_queue_exit;
676
}
677
rq->__data_len = 0;
678
rq->phys_gap_bit = 0;
679
rq->__sector = (sector_t) -1;
680
rq->bio = rq->biotail = NULL;
681
return rq;
682
out_queue_exit:
683
blk_queue_exit(q);
684
return ERR_PTR(-EWOULDBLOCK);
685
}
686
EXPORT_SYMBOL(blk_mq_alloc_request);
687
688
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
689
blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
690
{
691
struct blk_mq_alloc_data data = {
692
.q = q,
693
.flags = flags,
694
.shallow_depth = 0,
695
.cmd_flags = opf,
696
.rq_flags = 0,
697
.nr_tags = 1,
698
.cached_rqs = NULL,
699
.ctx = NULL,
700
.hctx = NULL
701
};
702
u64 alloc_time_ns = 0;
703
struct request *rq;
704
unsigned int cpu;
705
unsigned int tag;
706
int ret;
707
708
/* alloc_time includes depth and tag waits */
709
if (blk_queue_rq_alloc_time(q))
710
alloc_time_ns = blk_time_get_ns();
711
712
/*
713
* If the tag allocator sleeps we could get an allocation for a
714
* different hardware context. No need to complicate the low level
715
* allocator for this for the rare use case of a command tied to
716
* a specific queue.
717
*/
718
if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
719
WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
720
return ERR_PTR(-EINVAL);
721
722
if (hctx_idx >= q->nr_hw_queues)
723
return ERR_PTR(-EIO);
724
725
ret = blk_queue_enter(q, flags);
726
if (ret)
727
return ERR_PTR(ret);
728
729
/*
730
* Check if the hardware context is actually mapped to anything.
731
* If not tell the caller that it should skip this queue.
732
*/
733
ret = -EXDEV;
734
data.hctx = q->queue_hw_ctx[hctx_idx];
735
if (!blk_mq_hw_queue_mapped(data.hctx))
736
goto out_queue_exit;
737
cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
738
if (cpu >= nr_cpu_ids)
739
goto out_queue_exit;
740
data.ctx = __blk_mq_get_ctx(q, cpu);
741
742
if (q->elevator)
743
data.rq_flags |= RQF_SCHED_TAGS;
744
else
745
blk_mq_tag_busy(data.hctx);
746
747
if (flags & BLK_MQ_REQ_RESERVED)
748
data.rq_flags |= RQF_RESV;
749
750
ret = -EWOULDBLOCK;
751
tag = blk_mq_get_tag(&data);
752
if (tag == BLK_MQ_NO_TAG)
753
goto out_queue_exit;
754
if (!(data.rq_flags & RQF_SCHED_TAGS))
755
blk_mq_inc_active_requests(data.hctx);
756
rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
757
blk_mq_rq_time_init(rq, alloc_time_ns);
758
rq->__data_len = 0;
759
rq->phys_gap_bit = 0;
760
rq->__sector = (sector_t) -1;
761
rq->bio = rq->biotail = NULL;
762
return rq;
763
764
out_queue_exit:
765
blk_queue_exit(q);
766
return ERR_PTR(ret);
767
}
768
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
769
770
static void blk_mq_finish_request(struct request *rq)
771
{
772
struct request_queue *q = rq->q;
773
774
blk_zone_finish_request(rq);
775
776
if (rq->rq_flags & RQF_USE_SCHED) {
777
q->elevator->type->ops.finish_request(rq);
778
/*
779
* For postflush request that may need to be
780
* completed twice, we should clear this flag
781
* to avoid double finish_request() on the rq.
782
*/
783
rq->rq_flags &= ~RQF_USE_SCHED;
784
}
785
}
786
787
static void __blk_mq_free_request(struct request *rq)
788
{
789
struct request_queue *q = rq->q;
790
struct blk_mq_ctx *ctx = rq->mq_ctx;
791
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
792
const int sched_tag = rq->internal_tag;
793
794
blk_crypto_free_request(rq);
795
blk_pm_mark_last_busy(rq);
796
rq->mq_hctx = NULL;
797
798
if (rq->tag != BLK_MQ_NO_TAG) {
799
blk_mq_dec_active_requests(hctx);
800
blk_mq_put_tag(hctx->tags, ctx, rq->tag);
801
}
802
if (sched_tag != BLK_MQ_NO_TAG)
803
blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
804
blk_mq_sched_restart(hctx);
805
blk_queue_exit(q);
806
}
807
808
void blk_mq_free_request(struct request *rq)
809
{
810
struct request_queue *q = rq->q;
811
812
blk_mq_finish_request(rq);
813
814
if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
815
laptop_io_completion(q->disk->bdi);
816
817
rq_qos_done(q, rq);
818
819
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
820
if (req_ref_put_and_test(rq))
821
__blk_mq_free_request(rq);
822
}
823
EXPORT_SYMBOL_GPL(blk_mq_free_request);
824
825
void blk_mq_free_plug_rqs(struct blk_plug *plug)
826
{
827
struct request *rq;
828
829
while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
830
blk_mq_free_request(rq);
831
}
832
833
void blk_dump_rq_flags(struct request *rq, char *msg)
834
{
835
printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
836
rq->q->disk ? rq->q->disk->disk_name : "?",
837
(__force unsigned long long) rq->cmd_flags);
838
839
printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
840
(unsigned long long)blk_rq_pos(rq),
841
blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
842
printk(KERN_INFO " bio %p, biotail %p, len %u\n",
843
rq->bio, rq->biotail, blk_rq_bytes(rq));
844
}
845
EXPORT_SYMBOL(blk_dump_rq_flags);
846
847
static void blk_account_io_completion(struct request *req, unsigned int bytes)
848
{
849
if (req->rq_flags & RQF_IO_STAT) {
850
const int sgrp = op_stat_group(req_op(req));
851
852
part_stat_lock();
853
part_stat_add(req->part, sectors[sgrp], bytes >> 9);
854
part_stat_unlock();
855
}
856
}
857
858
static void blk_print_req_error(struct request *req, blk_status_t status)
859
{
860
printk_ratelimited(KERN_ERR
861
"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
862
"phys_seg %u prio class %u\n",
863
blk_status_to_str(status),
864
req->q->disk ? req->q->disk->disk_name : "?",
865
blk_rq_pos(req), (__force u32)req_op(req),
866
blk_op_str(req_op(req)),
867
(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
868
req->nr_phys_segments,
869
IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
870
}
871
872
/*
873
* Fully end IO on a request. Does not support partial completions, or
874
* errors.
875
*/
876
static void blk_complete_request(struct request *req)
877
{
878
const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
879
int total_bytes = blk_rq_bytes(req);
880
struct bio *bio = req->bio;
881
882
trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
883
884
if (!bio)
885
return;
886
887
if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
888
blk_integrity_complete(req, total_bytes);
889
890
/*
891
* Upper layers may call blk_crypto_evict_key() anytime after the last
892
* bio_endio(). Therefore, the keyslot must be released before that.
893
*/
894
blk_crypto_rq_put_keyslot(req);
895
896
blk_account_io_completion(req, total_bytes);
897
898
do {
899
struct bio *next = bio->bi_next;
900
901
/* Completion has already been traced */
902
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
903
904
if (blk_req_bio_is_zone_append(req, bio))
905
blk_zone_append_update_request_bio(req, bio);
906
907
if (!is_flush)
908
bio_endio(bio);
909
bio = next;
910
} while (bio);
911
912
/*
913
* Reset counters so that the request stacking driver
914
* can find how many bytes remain in the request
915
* later.
916
*/
917
if (!req->end_io) {
918
req->bio = NULL;
919
req->__data_len = 0;
920
}
921
}
922
923
/**
924
* blk_update_request - Complete multiple bytes without completing the request
925
* @req: the request being processed
926
* @error: block status code
927
* @nr_bytes: number of bytes to complete for @req
928
*
929
* Description:
930
* Ends I/O on a number of bytes attached to @req, but doesn't complete
931
* the request structure even if @req doesn't have leftover.
932
* If @req has leftover, sets it up for the next range of segments.
933
*
934
* Passing the result of blk_rq_bytes() as @nr_bytes guarantees
935
* %false return from this function.
936
*
937
* Note:
938
* The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
939
* except in the consistency check at the end of this function.
940
*
941
* Return:
942
* %false - this request doesn't have any more data
943
* %true - this request has more data
944
**/
945
bool blk_update_request(struct request *req, blk_status_t error,
946
unsigned int nr_bytes)
947
{
948
bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
949
bool quiet = req->rq_flags & RQF_QUIET;
950
int total_bytes;
951
952
trace_block_rq_complete(req, error, nr_bytes);
953
954
if (!req->bio)
955
return false;
956
957
if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
958
error == BLK_STS_OK)
959
blk_integrity_complete(req, nr_bytes);
960
961
/*
962
* Upper layers may call blk_crypto_evict_key() anytime after the last
963
* bio_endio(). Therefore, the keyslot must be released before that.
964
*/
965
if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
966
__blk_crypto_rq_put_keyslot(req);
967
968
if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
969
!test_bit(GD_DEAD, &req->q->disk->state)) {
970
blk_print_req_error(req, error);
971
trace_block_rq_error(req, error, nr_bytes);
972
}
973
974
blk_account_io_completion(req, nr_bytes);
975
976
total_bytes = 0;
977
while (req->bio) {
978
struct bio *bio = req->bio;
979
unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
980
981
if (unlikely(error))
982
bio->bi_status = error;
983
984
if (bio_bytes == bio->bi_iter.bi_size) {
985
req->bio = bio->bi_next;
986
} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
987
/*
988
* Partial zone append completions cannot be supported
989
* as the BIO fragments may end up not being written
990
* sequentially.
991
*/
992
bio->bi_status = BLK_STS_IOERR;
993
}
994
995
/* Completion has already been traced */
996
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
997
if (unlikely(quiet))
998
bio_set_flag(bio, BIO_QUIET);
999
1000
bio_advance(bio, bio_bytes);
1001
1002
/* Don't actually finish bio if it's part of flush sequence */
1003
if (!bio->bi_iter.bi_size) {
1004
if (blk_req_bio_is_zone_append(req, bio))
1005
blk_zone_append_update_request_bio(req, bio);
1006
if (!is_flush)
1007
bio_endio(bio);
1008
}
1009
1010
total_bytes += bio_bytes;
1011
nr_bytes -= bio_bytes;
1012
1013
if (!nr_bytes)
1014
break;
1015
}
1016
1017
/*
1018
* completely done
1019
*/
1020
if (!req->bio) {
1021
/*
1022
* Reset counters so that the request stacking driver
1023
* can find how many bytes remain in the request
1024
* later.
1025
*/
1026
req->__data_len = 0;
1027
return false;
1028
}
1029
1030
req->__data_len -= total_bytes;
1031
1032
/* update sector only for requests with clear definition of sector */
1033
if (!blk_rq_is_passthrough(req))
1034
req->__sector += total_bytes >> 9;
1035
1036
/* mixed attributes always follow the first bio */
1037
if (req->rq_flags & RQF_MIXED_MERGE) {
1038
req->cmd_flags &= ~REQ_FAILFAST_MASK;
1039
req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1040
}
1041
1042
if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1043
/*
1044
* If total number of sectors is less than the first segment
1045
* size, something has gone terribly wrong.
1046
*/
1047
if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1048
blk_dump_rq_flags(req, "request botched");
1049
req->__data_len = blk_rq_cur_bytes(req);
1050
}
1051
1052
/* recalculate the number of segments */
1053
req->nr_phys_segments = blk_recalc_rq_segments(req);
1054
}
1055
1056
return true;
1057
}
1058
EXPORT_SYMBOL_GPL(blk_update_request);
1059
1060
static inline void blk_account_io_done(struct request *req, u64 now)
1061
{
1062
trace_block_io_done(req);
1063
1064
/*
1065
* Account IO completion. flush_rq isn't accounted as a
1066
* normal IO on queueing nor completion. Accounting the
1067
* containing request is enough.
1068
*/
1069
if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1070
const int sgrp = op_stat_group(req_op(req));
1071
1072
part_stat_lock();
1073
update_io_ticks(req->part, jiffies, true);
1074
part_stat_inc(req->part, ios[sgrp]);
1075
part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1076
part_stat_local_dec(req->part,
1077
in_flight[op_is_write(req_op(req))]);
1078
part_stat_unlock();
1079
}
1080
}
1081
1082
static inline bool blk_rq_passthrough_stats(struct request *req)
1083
{
1084
struct bio *bio = req->bio;
1085
1086
if (!blk_queue_passthrough_stat(req->q))
1087
return false;
1088
1089
/* Requests without a bio do not transfer data. */
1090
if (!bio)
1091
return false;
1092
1093
/*
1094
* Stats are accumulated in the bdev, so must have one attached to a
1095
* bio to track stats. Most drivers do not set the bdev for passthrough
1096
* requests, but nvme is one that will set it.
1097
*/
1098
if (!bio->bi_bdev)
1099
return false;
1100
1101
/*
1102
* We don't know what a passthrough command does, but we know the
1103
* payload size and data direction. Ensuring the size is aligned to the
1104
* block size filters out most commands with payloads that don't
1105
* represent sector access.
1106
*/
1107
if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1108
return false;
1109
return true;
1110
}
1111
1112
static inline void blk_account_io_start(struct request *req)
1113
{
1114
trace_block_io_start(req);
1115
1116
if (!blk_queue_io_stat(req->q))
1117
return;
1118
if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1119
return;
1120
1121
req->rq_flags |= RQF_IO_STAT;
1122
req->start_time_ns = blk_time_get_ns();
1123
1124
/*
1125
* All non-passthrough requests are created from a bio with one
1126
* exception: when a flush command that is part of a flush sequence
1127
* generated by the state machine in blk-flush.c is cloned onto the
1128
* lower device by dm-multipath we can get here without a bio.
1129
*/
1130
if (req->bio)
1131
req->part = req->bio->bi_bdev;
1132
else
1133
req->part = req->q->disk->part0;
1134
1135
part_stat_lock();
1136
update_io_ticks(req->part, jiffies, false);
1137
part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1138
part_stat_unlock();
1139
}
1140
1141
static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1142
{
1143
if (rq->rq_flags & RQF_STATS)
1144
blk_stat_add(rq, now);
1145
1146
blk_mq_sched_completed_request(rq, now);
1147
blk_account_io_done(rq, now);
1148
}
1149
1150
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1151
{
1152
if (blk_mq_need_time_stamp(rq))
1153
__blk_mq_end_request_acct(rq, blk_time_get_ns());
1154
1155
blk_mq_finish_request(rq);
1156
1157
if (rq->end_io) {
1158
rq_qos_done(rq->q, rq);
1159
if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1160
blk_mq_free_request(rq);
1161
} else {
1162
blk_mq_free_request(rq);
1163
}
1164
}
1165
EXPORT_SYMBOL(__blk_mq_end_request);
1166
1167
void blk_mq_end_request(struct request *rq, blk_status_t error)
1168
{
1169
if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1170
BUG();
1171
__blk_mq_end_request(rq, error);
1172
}
1173
EXPORT_SYMBOL(blk_mq_end_request);
1174
1175
#define TAG_COMP_BATCH 32
1176
1177
static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1178
int *tag_array, int nr_tags)
1179
{
1180
struct request_queue *q = hctx->queue;
1181
1182
blk_mq_sub_active_requests(hctx, nr_tags);
1183
1184
blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1185
percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1186
}
1187
1188
void blk_mq_end_request_batch(struct io_comp_batch *iob)
1189
{
1190
int tags[TAG_COMP_BATCH], nr_tags = 0;
1191
struct blk_mq_hw_ctx *cur_hctx = NULL;
1192
struct request *rq;
1193
u64 now = 0;
1194
1195
if (iob->need_ts)
1196
now = blk_time_get_ns();
1197
1198
while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1199
prefetch(rq->bio);
1200
prefetch(rq->rq_next);
1201
1202
blk_complete_request(rq);
1203
if (iob->need_ts)
1204
__blk_mq_end_request_acct(rq, now);
1205
1206
blk_mq_finish_request(rq);
1207
1208
rq_qos_done(rq->q, rq);
1209
1210
/*
1211
* If end_io handler returns NONE, then it still has
1212
* ownership of the request.
1213
*/
1214
if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1215
continue;
1216
1217
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1218
if (!req_ref_put_and_test(rq))
1219
continue;
1220
1221
blk_crypto_free_request(rq);
1222
blk_pm_mark_last_busy(rq);
1223
1224
if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1225
if (cur_hctx)
1226
blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1227
nr_tags = 0;
1228
cur_hctx = rq->mq_hctx;
1229
}
1230
tags[nr_tags++] = rq->tag;
1231
}
1232
1233
if (nr_tags)
1234
blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1235
}
1236
EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1237
1238
static void blk_complete_reqs(struct llist_head *list)
1239
{
1240
struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1241
struct request *rq, *next;
1242
1243
llist_for_each_entry_safe(rq, next, entry, ipi_list)
1244
rq->q->mq_ops->complete(rq);
1245
}
1246
1247
static __latent_entropy void blk_done_softirq(void)
1248
{
1249
blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1250
}
1251
1252
static int blk_softirq_cpu_dead(unsigned int cpu)
1253
{
1254
blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1255
return 0;
1256
}
1257
1258
static void __blk_mq_complete_request_remote(void *data)
1259
{
1260
__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1261
}
1262
1263
static inline bool blk_mq_complete_need_ipi(struct request *rq)
1264
{
1265
int cpu = raw_smp_processor_id();
1266
1267
if (!IS_ENABLED(CONFIG_SMP) ||
1268
!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1269
return false;
1270
/*
1271
* With force threaded interrupts enabled, raising softirq from an SMP
1272
* function call will always result in waking the ksoftirqd thread.
1273
* This is probably worse than completing the request on a different
1274
* cache domain.
1275
*/
1276
if (force_irqthreads())
1277
return false;
1278
1279
/* same CPU or cache domain and capacity? Complete locally */
1280
if (cpu == rq->mq_ctx->cpu ||
1281
(!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1282
cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1283
cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1284
return false;
1285
1286
/* don't try to IPI to an offline CPU */
1287
return cpu_online(rq->mq_ctx->cpu);
1288
}
1289
1290
static void blk_mq_complete_send_ipi(struct request *rq)
1291
{
1292
unsigned int cpu;
1293
1294
cpu = rq->mq_ctx->cpu;
1295
if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1296
smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1297
}
1298
1299
static void blk_mq_raise_softirq(struct request *rq)
1300
{
1301
struct llist_head *list;
1302
1303
preempt_disable();
1304
list = this_cpu_ptr(&blk_cpu_done);
1305
if (llist_add(&rq->ipi_list, list))
1306
raise_softirq(BLOCK_SOFTIRQ);
1307
preempt_enable();
1308
}
1309
1310
bool blk_mq_complete_request_remote(struct request *rq)
1311
{
1312
WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1313
1314
/*
1315
* For request which hctx has only one ctx mapping,
1316
* or a polled request, always complete locally,
1317
* it's pointless to redirect the completion.
1318
*/
1319
if ((rq->mq_hctx->nr_ctx == 1 &&
1320
rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1321
rq->cmd_flags & REQ_POLLED)
1322
return false;
1323
1324
if (blk_mq_complete_need_ipi(rq)) {
1325
blk_mq_complete_send_ipi(rq);
1326
return true;
1327
}
1328
1329
if (rq->q->nr_hw_queues == 1) {
1330
blk_mq_raise_softirq(rq);
1331
return true;
1332
}
1333
return false;
1334
}
1335
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1336
1337
/**
1338
* blk_mq_complete_request - end I/O on a request
1339
* @rq: the request being processed
1340
*
1341
* Description:
1342
* Complete a request by scheduling the ->complete_rq operation.
1343
**/
1344
void blk_mq_complete_request(struct request *rq)
1345
{
1346
if (!blk_mq_complete_request_remote(rq))
1347
rq->q->mq_ops->complete(rq);
1348
}
1349
EXPORT_SYMBOL(blk_mq_complete_request);
1350
1351
/**
1352
* blk_mq_start_request - Start processing a request
1353
* @rq: Pointer to request to be started
1354
*
1355
* Function used by device drivers to notify the block layer that a request
1356
* is going to be processed now, so blk layer can do proper initializations
1357
* such as starting the timeout timer.
1358
*/
1359
void blk_mq_start_request(struct request *rq)
1360
{
1361
struct request_queue *q = rq->q;
1362
1363
trace_block_rq_issue(rq);
1364
1365
if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1366
!blk_rq_is_passthrough(rq)) {
1367
rq->io_start_time_ns = blk_time_get_ns();
1368
rq->stats_sectors = blk_rq_sectors(rq);
1369
rq->rq_flags |= RQF_STATS;
1370
rq_qos_issue(q, rq);
1371
}
1372
1373
WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1374
1375
blk_add_timer(rq);
1376
WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1377
rq->mq_hctx->tags->rqs[rq->tag] = rq;
1378
1379
if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1380
blk_integrity_prepare(rq);
1381
1382
if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1383
WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1384
}
1385
EXPORT_SYMBOL(blk_mq_start_request);
1386
1387
/*
1388
* Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1389
* queues. This is important for md arrays to benefit from merging
1390
* requests.
1391
*/
1392
static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1393
{
1394
if (plug->multiple_queues)
1395
return BLK_MAX_REQUEST_COUNT * 2;
1396
return BLK_MAX_REQUEST_COUNT;
1397
}
1398
1399
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1400
{
1401
struct request *last = rq_list_peek(&plug->mq_list);
1402
1403
if (!plug->rq_count) {
1404
trace_block_plug(rq->q);
1405
} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1406
(!blk_queue_nomerges(rq->q) &&
1407
blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1408
blk_mq_flush_plug_list(plug, false);
1409
last = NULL;
1410
trace_block_plug(rq->q);
1411
}
1412
1413
if (!plug->multiple_queues && last && last->q != rq->q)
1414
plug->multiple_queues = true;
1415
/*
1416
* Any request allocated from sched tags can't be issued to
1417
* ->queue_rqs() directly
1418
*/
1419
if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1420
plug->has_elevator = true;
1421
rq_list_add_tail(&plug->mq_list, rq);
1422
plug->rq_count++;
1423
}
1424
1425
/**
1426
* blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1427
* @rq: request to insert
1428
* @at_head: insert request at head or tail of queue
1429
*
1430
* Description:
1431
* Insert a fully prepared request at the back of the I/O scheduler queue
1432
* for execution. Don't wait for completion.
1433
*
1434
* Note:
1435
* This function will invoke @done directly if the queue is dead.
1436
*/
1437
void blk_execute_rq_nowait(struct request *rq, bool at_head)
1438
{
1439
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1440
1441
WARN_ON(irqs_disabled());
1442
WARN_ON(!blk_rq_is_passthrough(rq));
1443
1444
blk_account_io_start(rq);
1445
1446
if (current->plug && !at_head) {
1447
blk_add_rq_to_plug(current->plug, rq);
1448
return;
1449
}
1450
1451
blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1452
blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1453
}
1454
EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1455
1456
struct blk_rq_wait {
1457
struct completion done;
1458
blk_status_t ret;
1459
};
1460
1461
static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1462
{
1463
struct blk_rq_wait *wait = rq->end_io_data;
1464
1465
wait->ret = ret;
1466
complete(&wait->done);
1467
return RQ_END_IO_NONE;
1468
}
1469
1470
bool blk_rq_is_poll(struct request *rq)
1471
{
1472
if (!rq->mq_hctx)
1473
return false;
1474
if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1475
return false;
1476
return true;
1477
}
1478
EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1479
1480
static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1481
{
1482
do {
1483
blk_hctx_poll(rq->q, rq->mq_hctx, NULL, BLK_POLL_ONESHOT);
1484
cond_resched();
1485
} while (!completion_done(wait));
1486
}
1487
1488
/**
1489
* blk_execute_rq - insert a request into queue for execution
1490
* @rq: request to insert
1491
* @at_head: insert request at head or tail of queue
1492
*
1493
* Description:
1494
* Insert a fully prepared request at the back of the I/O scheduler queue
1495
* for execution and wait for completion.
1496
* Return: The blk_status_t result provided to blk_mq_end_request().
1497
*/
1498
blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1499
{
1500
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1501
struct blk_rq_wait wait = {
1502
.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1503
};
1504
1505
WARN_ON(irqs_disabled());
1506
WARN_ON(!blk_rq_is_passthrough(rq));
1507
1508
rq->end_io_data = &wait;
1509
rq->end_io = blk_end_sync_rq;
1510
1511
blk_account_io_start(rq);
1512
blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1513
blk_mq_run_hw_queue(hctx, false);
1514
1515
if (blk_rq_is_poll(rq))
1516
blk_rq_poll_completion(rq, &wait.done);
1517
else
1518
blk_wait_io(&wait.done);
1519
1520
return wait.ret;
1521
}
1522
EXPORT_SYMBOL(blk_execute_rq);
1523
1524
static void __blk_mq_requeue_request(struct request *rq)
1525
{
1526
struct request_queue *q = rq->q;
1527
1528
blk_mq_put_driver_tag(rq);
1529
1530
trace_block_rq_requeue(rq);
1531
rq_qos_requeue(q, rq);
1532
1533
if (blk_mq_request_started(rq)) {
1534
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1535
rq->rq_flags &= ~RQF_TIMED_OUT;
1536
}
1537
}
1538
1539
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1540
{
1541
struct request_queue *q = rq->q;
1542
unsigned long flags;
1543
1544
__blk_mq_requeue_request(rq);
1545
1546
/* this request will be re-inserted to io scheduler queue */
1547
blk_mq_sched_requeue_request(rq);
1548
1549
spin_lock_irqsave(&q->requeue_lock, flags);
1550
list_add_tail(&rq->queuelist, &q->requeue_list);
1551
spin_unlock_irqrestore(&q->requeue_lock, flags);
1552
1553
if (kick_requeue_list)
1554
blk_mq_kick_requeue_list(q);
1555
}
1556
EXPORT_SYMBOL(blk_mq_requeue_request);
1557
1558
static void blk_mq_requeue_work(struct work_struct *work)
1559
{
1560
struct request_queue *q =
1561
container_of(work, struct request_queue, requeue_work.work);
1562
LIST_HEAD(rq_list);
1563
LIST_HEAD(flush_list);
1564
struct request *rq;
1565
1566
spin_lock_irq(&q->requeue_lock);
1567
list_splice_init(&q->requeue_list, &rq_list);
1568
list_splice_init(&q->flush_list, &flush_list);
1569
spin_unlock_irq(&q->requeue_lock);
1570
1571
while (!list_empty(&rq_list)) {
1572
rq = list_entry(rq_list.next, struct request, queuelist);
1573
list_del_init(&rq->queuelist);
1574
/*
1575
* If RQF_DONTPREP is set, the request has been started by the
1576
* driver already and might have driver-specific data allocated
1577
* already. Insert it into the hctx dispatch list to avoid
1578
* block layer merges for the request.
1579
*/
1580
if (rq->rq_flags & RQF_DONTPREP)
1581
blk_mq_request_bypass_insert(rq, 0);
1582
else
1583
blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1584
}
1585
1586
while (!list_empty(&flush_list)) {
1587
rq = list_entry(flush_list.next, struct request, queuelist);
1588
list_del_init(&rq->queuelist);
1589
blk_mq_insert_request(rq, 0);
1590
}
1591
1592
blk_mq_run_hw_queues(q, false);
1593
}
1594
1595
void blk_mq_kick_requeue_list(struct request_queue *q)
1596
{
1597
kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1598
}
1599
EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1600
1601
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1602
unsigned long msecs)
1603
{
1604
kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1605
msecs_to_jiffies(msecs));
1606
}
1607
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1608
1609
static bool blk_is_flush_data_rq(struct request *rq)
1610
{
1611
return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1612
}
1613
1614
static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1615
{
1616
/*
1617
* If we find a request that isn't idle we know the queue is busy
1618
* as it's checked in the iter.
1619
* Return false to stop the iteration.
1620
*
1621
* In case of queue quiesce, if one flush data request is completed,
1622
* don't count it as inflight given the flush sequence is suspended,
1623
* and the original flush data request is invisible to driver, just
1624
* like other pending requests because of quiesce
1625
*/
1626
if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1627
blk_is_flush_data_rq(rq) &&
1628
blk_mq_request_completed(rq))) {
1629
bool *busy = priv;
1630
1631
*busy = true;
1632
return false;
1633
}
1634
1635
return true;
1636
}
1637
1638
bool blk_mq_queue_inflight(struct request_queue *q)
1639
{
1640
bool busy = false;
1641
1642
blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1643
return busy;
1644
}
1645
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1646
1647
static void blk_mq_rq_timed_out(struct request *req)
1648
{
1649
req->rq_flags |= RQF_TIMED_OUT;
1650
if (req->q->mq_ops->timeout) {
1651
enum blk_eh_timer_return ret;
1652
1653
ret = req->q->mq_ops->timeout(req);
1654
if (ret == BLK_EH_DONE)
1655
return;
1656
WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1657
}
1658
1659
blk_add_timer(req);
1660
}
1661
1662
struct blk_expired_data {
1663
bool has_timedout_rq;
1664
unsigned long next;
1665
unsigned long timeout_start;
1666
};
1667
1668
static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1669
{
1670
unsigned long deadline;
1671
1672
if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1673
return false;
1674
if (rq->rq_flags & RQF_TIMED_OUT)
1675
return false;
1676
1677
deadline = READ_ONCE(rq->deadline);
1678
if (time_after_eq(expired->timeout_start, deadline))
1679
return true;
1680
1681
if (expired->next == 0)
1682
expired->next = deadline;
1683
else if (time_after(expired->next, deadline))
1684
expired->next = deadline;
1685
return false;
1686
}
1687
1688
void blk_mq_put_rq_ref(struct request *rq)
1689
{
1690
if (is_flush_rq(rq)) {
1691
if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1692
blk_mq_free_request(rq);
1693
} else if (req_ref_put_and_test(rq)) {
1694
__blk_mq_free_request(rq);
1695
}
1696
}
1697
1698
static bool blk_mq_check_expired(struct request *rq, void *priv)
1699
{
1700
struct blk_expired_data *expired = priv;
1701
1702
/*
1703
* blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1704
* be reallocated underneath the timeout handler's processing, then
1705
* the expire check is reliable. If the request is not expired, then
1706
* it was completed and reallocated as a new request after returning
1707
* from blk_mq_check_expired().
1708
*/
1709
if (blk_mq_req_expired(rq, expired)) {
1710
expired->has_timedout_rq = true;
1711
return false;
1712
}
1713
return true;
1714
}
1715
1716
static bool blk_mq_handle_expired(struct request *rq, void *priv)
1717
{
1718
struct blk_expired_data *expired = priv;
1719
1720
if (blk_mq_req_expired(rq, expired))
1721
blk_mq_rq_timed_out(rq);
1722
return true;
1723
}
1724
1725
static void blk_mq_timeout_work(struct work_struct *work)
1726
{
1727
struct request_queue *q =
1728
container_of(work, struct request_queue, timeout_work);
1729
struct blk_expired_data expired = {
1730
.timeout_start = jiffies,
1731
};
1732
struct blk_mq_hw_ctx *hctx;
1733
unsigned long i;
1734
1735
/* A deadlock might occur if a request is stuck requiring a
1736
* timeout at the same time a queue freeze is waiting
1737
* completion, since the timeout code would not be able to
1738
* acquire the queue reference here.
1739
*
1740
* That's why we don't use blk_queue_enter here; instead, we use
1741
* percpu_ref_tryget directly, because we need to be able to
1742
* obtain a reference even in the short window between the queue
1743
* starting to freeze, by dropping the first reference in
1744
* blk_freeze_queue_start, and the moment the last request is
1745
* consumed, marked by the instant q_usage_counter reaches
1746
* zero.
1747
*/
1748
if (!percpu_ref_tryget(&q->q_usage_counter))
1749
return;
1750
1751
/* check if there is any timed-out request */
1752
blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1753
if (expired.has_timedout_rq) {
1754
/*
1755
* Before walking tags, we must ensure any submit started
1756
* before the current time has finished. Since the submit
1757
* uses srcu or rcu, wait for a synchronization point to
1758
* ensure all running submits have finished
1759
*/
1760
blk_mq_wait_quiesce_done(q->tag_set);
1761
1762
expired.next = 0;
1763
blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1764
}
1765
1766
if (expired.next != 0) {
1767
mod_timer(&q->timeout, expired.next);
1768
} else {
1769
/*
1770
* Request timeouts are handled as a forward rolling timer. If
1771
* we end up here it means that no requests are pending and
1772
* also that no request has been pending for a while. Mark
1773
* each hctx as idle.
1774
*/
1775
queue_for_each_hw_ctx(q, hctx, i) {
1776
/* the hctx may be unmapped, so check it here */
1777
if (blk_mq_hw_queue_mapped(hctx))
1778
blk_mq_tag_idle(hctx);
1779
}
1780
}
1781
blk_queue_exit(q);
1782
}
1783
1784
struct flush_busy_ctx_data {
1785
struct blk_mq_hw_ctx *hctx;
1786
struct list_head *list;
1787
};
1788
1789
static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1790
{
1791
struct flush_busy_ctx_data *flush_data = data;
1792
struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1793
struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1794
enum hctx_type type = hctx->type;
1795
1796
spin_lock(&ctx->lock);
1797
list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1798
sbitmap_clear_bit(sb, bitnr);
1799
spin_unlock(&ctx->lock);
1800
return true;
1801
}
1802
1803
/*
1804
* Process software queues that have been marked busy, splicing them
1805
* to the for-dispatch
1806
*/
1807
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1808
{
1809
struct flush_busy_ctx_data data = {
1810
.hctx = hctx,
1811
.list = list,
1812
};
1813
1814
sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1815
}
1816
1817
struct dispatch_rq_data {
1818
struct blk_mq_hw_ctx *hctx;
1819
struct request *rq;
1820
};
1821
1822
static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1823
void *data)
1824
{
1825
struct dispatch_rq_data *dispatch_data = data;
1826
struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1827
struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1828
enum hctx_type type = hctx->type;
1829
1830
spin_lock(&ctx->lock);
1831
if (!list_empty(&ctx->rq_lists[type])) {
1832
dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1833
list_del_init(&dispatch_data->rq->queuelist);
1834
if (list_empty(&ctx->rq_lists[type]))
1835
sbitmap_clear_bit(sb, bitnr);
1836
}
1837
spin_unlock(&ctx->lock);
1838
1839
return !dispatch_data->rq;
1840
}
1841
1842
struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1843
struct blk_mq_ctx *start)
1844
{
1845
unsigned off = start ? start->index_hw[hctx->type] : 0;
1846
struct dispatch_rq_data data = {
1847
.hctx = hctx,
1848
.rq = NULL,
1849
};
1850
1851
__sbitmap_for_each_set(&hctx->ctx_map, off,
1852
dispatch_rq_from_ctx, &data);
1853
1854
return data.rq;
1855
}
1856
1857
bool __blk_mq_alloc_driver_tag(struct request *rq)
1858
{
1859
struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1860
unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1861
int tag;
1862
1863
blk_mq_tag_busy(rq->mq_hctx);
1864
1865
if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1866
bt = &rq->mq_hctx->tags->breserved_tags;
1867
tag_offset = 0;
1868
} else {
1869
if (!hctx_may_queue(rq->mq_hctx, bt))
1870
return false;
1871
}
1872
1873
tag = __sbitmap_queue_get(bt);
1874
if (tag == BLK_MQ_NO_TAG)
1875
return false;
1876
1877
rq->tag = tag + tag_offset;
1878
blk_mq_inc_active_requests(rq->mq_hctx);
1879
return true;
1880
}
1881
1882
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1883
int flags, void *key)
1884
{
1885
struct blk_mq_hw_ctx *hctx;
1886
1887
hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1888
1889
spin_lock(&hctx->dispatch_wait_lock);
1890
if (!list_empty(&wait->entry)) {
1891
struct sbitmap_queue *sbq;
1892
1893
list_del_init(&wait->entry);
1894
sbq = &hctx->tags->bitmap_tags;
1895
atomic_dec(&sbq->ws_active);
1896
}
1897
spin_unlock(&hctx->dispatch_wait_lock);
1898
1899
blk_mq_run_hw_queue(hctx, true);
1900
return 1;
1901
}
1902
1903
/*
1904
* Mark us waiting for a tag. For shared tags, this involves hooking us into
1905
* the tag wakeups. For non-shared tags, we can simply mark us needing a
1906
* restart. For both cases, take care to check the condition again after
1907
* marking us as waiting.
1908
*/
1909
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1910
struct request *rq)
1911
{
1912
struct sbitmap_queue *sbq;
1913
struct wait_queue_head *wq;
1914
wait_queue_entry_t *wait;
1915
bool ret;
1916
1917
if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1918
!(blk_mq_is_shared_tags(hctx->flags))) {
1919
blk_mq_sched_mark_restart_hctx(hctx);
1920
1921
/*
1922
* It's possible that a tag was freed in the window between the
1923
* allocation failure and adding the hardware queue to the wait
1924
* queue.
1925
*
1926
* Don't clear RESTART here, someone else could have set it.
1927
* At most this will cost an extra queue run.
1928
*/
1929
return blk_mq_get_driver_tag(rq);
1930
}
1931
1932
wait = &hctx->dispatch_wait;
1933
if (!list_empty_careful(&wait->entry))
1934
return false;
1935
1936
if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1937
sbq = &hctx->tags->breserved_tags;
1938
else
1939
sbq = &hctx->tags->bitmap_tags;
1940
wq = &bt_wait_ptr(sbq, hctx)->wait;
1941
1942
spin_lock_irq(&wq->lock);
1943
spin_lock(&hctx->dispatch_wait_lock);
1944
if (!list_empty(&wait->entry)) {
1945
spin_unlock(&hctx->dispatch_wait_lock);
1946
spin_unlock_irq(&wq->lock);
1947
return false;
1948
}
1949
1950
atomic_inc(&sbq->ws_active);
1951
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1952
__add_wait_queue(wq, wait);
1953
1954
/*
1955
* Add one explicit barrier since blk_mq_get_driver_tag() may
1956
* not imply barrier in case of failure.
1957
*
1958
* Order adding us to wait queue and allocating driver tag.
1959
*
1960
* The pair is the one implied in sbitmap_queue_wake_up() which
1961
* orders clearing sbitmap tag bits and waitqueue_active() in
1962
* __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1963
*
1964
* Otherwise, re-order of adding wait queue and getting driver tag
1965
* may cause __sbitmap_queue_wake_up() to wake up nothing because
1966
* the waitqueue_active() may not observe us in wait queue.
1967
*/
1968
smp_mb();
1969
1970
/*
1971
* It's possible that a tag was freed in the window between the
1972
* allocation failure and adding the hardware queue to the wait
1973
* queue.
1974
*/
1975
ret = blk_mq_get_driver_tag(rq);
1976
if (!ret) {
1977
spin_unlock(&hctx->dispatch_wait_lock);
1978
spin_unlock_irq(&wq->lock);
1979
return false;
1980
}
1981
1982
/*
1983
* We got a tag, remove ourselves from the wait queue to ensure
1984
* someone else gets the wakeup.
1985
*/
1986
list_del_init(&wait->entry);
1987
atomic_dec(&sbq->ws_active);
1988
spin_unlock(&hctx->dispatch_wait_lock);
1989
spin_unlock_irq(&wq->lock);
1990
1991
return true;
1992
}
1993
1994
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1995
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1996
/*
1997
* Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1998
* - EWMA is one simple way to compute running average value
1999
* - weight(7/8 and 1/8) is applied so that it can decrease exponentially
2000
* - take 4 as factor for avoiding to get too small(0) result, and this
2001
* factor doesn't matter because EWMA decreases exponentially
2002
*/
2003
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
2004
{
2005
unsigned int ewma;
2006
2007
ewma = hctx->dispatch_busy;
2008
2009
if (!ewma && !busy)
2010
return;
2011
2012
ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
2013
if (busy)
2014
ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
2015
ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
2016
2017
hctx->dispatch_busy = ewma;
2018
}
2019
2020
#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
2021
2022
static void blk_mq_handle_dev_resource(struct request *rq,
2023
struct list_head *list)
2024
{
2025
list_add(&rq->queuelist, list);
2026
__blk_mq_requeue_request(rq);
2027
}
2028
2029
enum prep_dispatch {
2030
PREP_DISPATCH_OK,
2031
PREP_DISPATCH_NO_TAG,
2032
PREP_DISPATCH_NO_BUDGET,
2033
};
2034
2035
static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2036
bool need_budget)
2037
{
2038
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2039
int budget_token = -1;
2040
2041
if (need_budget) {
2042
budget_token = blk_mq_get_dispatch_budget(rq->q);
2043
if (budget_token < 0) {
2044
blk_mq_put_driver_tag(rq);
2045
return PREP_DISPATCH_NO_BUDGET;
2046
}
2047
blk_mq_set_rq_budget_token(rq, budget_token);
2048
}
2049
2050
if (!blk_mq_get_driver_tag(rq)) {
2051
/*
2052
* The initial allocation attempt failed, so we need to
2053
* rerun the hardware queue when a tag is freed. The
2054
* waitqueue takes care of that. If the queue is run
2055
* before we add this entry back on the dispatch list,
2056
* we'll re-run it below.
2057
*/
2058
if (!blk_mq_mark_tag_wait(hctx, rq)) {
2059
/*
2060
* All budgets not got from this function will be put
2061
* together during handling partial dispatch
2062
*/
2063
if (need_budget)
2064
blk_mq_put_dispatch_budget(rq->q, budget_token);
2065
return PREP_DISPATCH_NO_TAG;
2066
}
2067
}
2068
2069
return PREP_DISPATCH_OK;
2070
}
2071
2072
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2073
static void blk_mq_release_budgets(struct request_queue *q,
2074
struct list_head *list)
2075
{
2076
struct request *rq;
2077
2078
list_for_each_entry(rq, list, queuelist) {
2079
int budget_token = blk_mq_get_rq_budget_token(rq);
2080
2081
if (budget_token >= 0)
2082
blk_mq_put_dispatch_budget(q, budget_token);
2083
}
2084
}
2085
2086
/*
2087
* blk_mq_commit_rqs will notify driver using bd->last that there is no
2088
* more requests. (See comment in struct blk_mq_ops for commit_rqs for
2089
* details)
2090
* Attention, we should explicitly call this in unusual cases:
2091
* 1) did not queue everything initially scheduled to queue
2092
* 2) the last attempt to queue a request failed
2093
*/
2094
static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2095
bool from_schedule)
2096
{
2097
if (hctx->queue->mq_ops->commit_rqs && queued) {
2098
trace_block_unplug(hctx->queue, queued, !from_schedule);
2099
hctx->queue->mq_ops->commit_rqs(hctx);
2100
}
2101
}
2102
2103
/*
2104
* Returns true if we did some work AND can potentially do more.
2105
*/
2106
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2107
bool get_budget)
2108
{
2109
enum prep_dispatch prep;
2110
struct request_queue *q = hctx->queue;
2111
struct request *rq;
2112
int queued;
2113
blk_status_t ret = BLK_STS_OK;
2114
bool needs_resource = false;
2115
2116
if (list_empty(list))
2117
return false;
2118
2119
/*
2120
* Now process all the entries, sending them to the driver.
2121
*/
2122
queued = 0;
2123
do {
2124
struct blk_mq_queue_data bd;
2125
2126
rq = list_first_entry(list, struct request, queuelist);
2127
2128
WARN_ON_ONCE(hctx != rq->mq_hctx);
2129
prep = blk_mq_prep_dispatch_rq(rq, get_budget);
2130
if (prep != PREP_DISPATCH_OK)
2131
break;
2132
2133
list_del_init(&rq->queuelist);
2134
2135
bd.rq = rq;
2136
bd.last = list_empty(list);
2137
2138
ret = q->mq_ops->queue_rq(hctx, &bd);
2139
switch (ret) {
2140
case BLK_STS_OK:
2141
queued++;
2142
break;
2143
case BLK_STS_RESOURCE:
2144
needs_resource = true;
2145
fallthrough;
2146
case BLK_STS_DEV_RESOURCE:
2147
blk_mq_handle_dev_resource(rq, list);
2148
goto out;
2149
default:
2150
blk_mq_end_request(rq, ret);
2151
}
2152
} while (!list_empty(list));
2153
out:
2154
/* If we didn't flush the entire list, we could have told the driver
2155
* there was more coming, but that turned out to be a lie.
2156
*/
2157
if (!list_empty(list) || ret != BLK_STS_OK)
2158
blk_mq_commit_rqs(hctx, queued, false);
2159
2160
/*
2161
* Any items that need requeuing? Stuff them into hctx->dispatch,
2162
* that is where we will continue on next queue run.
2163
*/
2164
if (!list_empty(list)) {
2165
bool needs_restart;
2166
/* For non-shared tags, the RESTART check will suffice */
2167
bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2168
((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2169
blk_mq_is_shared_tags(hctx->flags));
2170
2171
/*
2172
* If the caller allocated budgets, free the budgets of the
2173
* requests that have not yet been passed to the block driver.
2174
*/
2175
if (!get_budget)
2176
blk_mq_release_budgets(q, list);
2177
2178
spin_lock(&hctx->lock);
2179
list_splice_tail_init(list, &hctx->dispatch);
2180
spin_unlock(&hctx->lock);
2181
2182
/*
2183
* Order adding requests to hctx->dispatch and checking
2184
* SCHED_RESTART flag. The pair of this smp_mb() is the one
2185
* in blk_mq_sched_restart(). Avoid restart code path to
2186
* miss the new added requests to hctx->dispatch, meantime
2187
* SCHED_RESTART is observed here.
2188
*/
2189
smp_mb();
2190
2191
/*
2192
* If SCHED_RESTART was set by the caller of this function and
2193
* it is no longer set that means that it was cleared by another
2194
* thread and hence that a queue rerun is needed.
2195
*
2196
* If 'no_tag' is set, that means that we failed getting
2197
* a driver tag with an I/O scheduler attached. If our dispatch
2198
* waitqueue is no longer active, ensure that we run the queue
2199
* AFTER adding our entries back to the list.
2200
*
2201
* If no I/O scheduler has been configured it is possible that
2202
* the hardware queue got stopped and restarted before requests
2203
* were pushed back onto the dispatch list. Rerun the queue to
2204
* avoid starvation. Notes:
2205
* - blk_mq_run_hw_queue() checks whether or not a queue has
2206
* been stopped before rerunning a queue.
2207
* - Some but not all block drivers stop a queue before
2208
* returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2209
* and dm-rq.
2210
*
2211
* If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2212
* bit is set, run queue after a delay to avoid IO stalls
2213
* that could otherwise occur if the queue is idle. We'll do
2214
* similar if we couldn't get budget or couldn't lock a zone
2215
* and SCHED_RESTART is set.
2216
*/
2217
needs_restart = blk_mq_sched_needs_restart(hctx);
2218
if (prep == PREP_DISPATCH_NO_BUDGET)
2219
needs_resource = true;
2220
if (!needs_restart ||
2221
(no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2222
blk_mq_run_hw_queue(hctx, true);
2223
else if (needs_resource)
2224
blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2225
2226
blk_mq_update_dispatch_busy(hctx, true);
2227
return false;
2228
}
2229
2230
blk_mq_update_dispatch_busy(hctx, false);
2231
return true;
2232
}
2233
2234
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2235
{
2236
int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2237
2238
if (cpu >= nr_cpu_ids)
2239
cpu = cpumask_first(hctx->cpumask);
2240
return cpu;
2241
}
2242
2243
/*
2244
* ->next_cpu is always calculated from hctx->cpumask, so simply use
2245
* it for speeding up the check
2246
*/
2247
static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2248
{
2249
return hctx->next_cpu >= nr_cpu_ids;
2250
}
2251
2252
/*
2253
* It'd be great if the workqueue API had a way to pass
2254
* in a mask and had some smarts for more clever placement.
2255
* For now we just round-robin here, switching for every
2256
* BLK_MQ_CPU_WORK_BATCH queued items.
2257
*/
2258
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2259
{
2260
bool tried = false;
2261
int next_cpu = hctx->next_cpu;
2262
2263
/* Switch to unbound if no allowable CPUs in this hctx */
2264
if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2265
return WORK_CPU_UNBOUND;
2266
2267
if (--hctx->next_cpu_batch <= 0) {
2268
select_cpu:
2269
next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2270
cpu_online_mask);
2271
if (next_cpu >= nr_cpu_ids)
2272
next_cpu = blk_mq_first_mapped_cpu(hctx);
2273
hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2274
}
2275
2276
/*
2277
* Do unbound schedule if we can't find a online CPU for this hctx,
2278
* and it should only happen in the path of handling CPU DEAD.
2279
*/
2280
if (!cpu_online(next_cpu)) {
2281
if (!tried) {
2282
tried = true;
2283
goto select_cpu;
2284
}
2285
2286
/*
2287
* Make sure to re-select CPU next time once after CPUs
2288
* in hctx->cpumask become online again.
2289
*/
2290
hctx->next_cpu = next_cpu;
2291
hctx->next_cpu_batch = 1;
2292
return WORK_CPU_UNBOUND;
2293
}
2294
2295
hctx->next_cpu = next_cpu;
2296
return next_cpu;
2297
}
2298
2299
/**
2300
* blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2301
* @hctx: Pointer to the hardware queue to run.
2302
* @msecs: Milliseconds of delay to wait before running the queue.
2303
*
2304
* Run a hardware queue asynchronously with a delay of @msecs.
2305
*/
2306
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2307
{
2308
if (unlikely(blk_mq_hctx_stopped(hctx)))
2309
return;
2310
kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2311
msecs_to_jiffies(msecs));
2312
}
2313
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2314
2315
static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2316
{
2317
bool need_run;
2318
2319
/*
2320
* When queue is quiesced, we may be switching io scheduler, or
2321
* updating nr_hw_queues, or other things, and we can't run queue
2322
* any more, even blk_mq_hctx_has_pending() can't be called safely.
2323
*
2324
* And queue will be rerun in blk_mq_unquiesce_queue() if it is
2325
* quiesced.
2326
*/
2327
__blk_mq_run_dispatch_ops(hctx->queue, false,
2328
need_run = !blk_queue_quiesced(hctx->queue) &&
2329
blk_mq_hctx_has_pending(hctx));
2330
return need_run;
2331
}
2332
2333
/**
2334
* blk_mq_run_hw_queue - Start to run a hardware queue.
2335
* @hctx: Pointer to the hardware queue to run.
2336
* @async: If we want to run the queue asynchronously.
2337
*
2338
* Check if the request queue is not in a quiesced state and if there are
2339
* pending requests to be sent. If this is true, run the queue to send requests
2340
* to hardware.
2341
*/
2342
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2343
{
2344
bool need_run;
2345
2346
/*
2347
* We can't run the queue inline with interrupts disabled.
2348
*/
2349
WARN_ON_ONCE(!async && in_interrupt());
2350
2351
might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2352
2353
need_run = blk_mq_hw_queue_need_run(hctx);
2354
if (!need_run) {
2355
unsigned long flags;
2356
2357
/*
2358
* Synchronize with blk_mq_unquiesce_queue(), because we check
2359
* if hw queue is quiesced locklessly above, we need the use
2360
* ->queue_lock to make sure we see the up-to-date status to
2361
* not miss rerunning the hw queue.
2362
*/
2363
spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2364
need_run = blk_mq_hw_queue_need_run(hctx);
2365
spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2366
2367
if (!need_run)
2368
return;
2369
}
2370
2371
if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2372
blk_mq_delay_run_hw_queue(hctx, 0);
2373
return;
2374
}
2375
2376
blk_mq_run_dispatch_ops(hctx->queue,
2377
blk_mq_sched_dispatch_requests(hctx));
2378
}
2379
EXPORT_SYMBOL(blk_mq_run_hw_queue);
2380
2381
/*
2382
* Return prefered queue to dispatch from (if any) for non-mq aware IO
2383
* scheduler.
2384
*/
2385
static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2386
{
2387
struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2388
/*
2389
* If the IO scheduler does not respect hardware queues when
2390
* dispatching, we just don't bother with multiple HW queues and
2391
* dispatch from hctx for the current CPU since running multiple queues
2392
* just causes lock contention inside the scheduler and pointless cache
2393
* bouncing.
2394
*/
2395
struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2396
2397
if (!blk_mq_hctx_stopped(hctx))
2398
return hctx;
2399
return NULL;
2400
}
2401
2402
/**
2403
* blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2404
* @q: Pointer to the request queue to run.
2405
* @async: If we want to run the queue asynchronously.
2406
*/
2407
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2408
{
2409
struct blk_mq_hw_ctx *hctx, *sq_hctx;
2410
unsigned long i;
2411
2412
sq_hctx = NULL;
2413
if (blk_queue_sq_sched(q))
2414
sq_hctx = blk_mq_get_sq_hctx(q);
2415
queue_for_each_hw_ctx(q, hctx, i) {
2416
if (blk_mq_hctx_stopped(hctx))
2417
continue;
2418
/*
2419
* Dispatch from this hctx either if there's no hctx preferred
2420
* by IO scheduler or if it has requests that bypass the
2421
* scheduler.
2422
*/
2423
if (!sq_hctx || sq_hctx == hctx ||
2424
!list_empty_careful(&hctx->dispatch))
2425
blk_mq_run_hw_queue(hctx, async);
2426
}
2427
}
2428
EXPORT_SYMBOL(blk_mq_run_hw_queues);
2429
2430
/**
2431
* blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2432
* @q: Pointer to the request queue to run.
2433
* @msecs: Milliseconds of delay to wait before running the queues.
2434
*/
2435
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2436
{
2437
struct blk_mq_hw_ctx *hctx, *sq_hctx;
2438
unsigned long i;
2439
2440
sq_hctx = NULL;
2441
if (blk_queue_sq_sched(q))
2442
sq_hctx = blk_mq_get_sq_hctx(q);
2443
queue_for_each_hw_ctx(q, hctx, i) {
2444
if (blk_mq_hctx_stopped(hctx))
2445
continue;
2446
/*
2447
* If there is already a run_work pending, leave the
2448
* pending delay untouched. Otherwise, a hctx can stall
2449
* if another hctx is re-delaying the other's work
2450
* before the work executes.
2451
*/
2452
if (delayed_work_pending(&hctx->run_work))
2453
continue;
2454
/*
2455
* Dispatch from this hctx either if there's no hctx preferred
2456
* by IO scheduler or if it has requests that bypass the
2457
* scheduler.
2458
*/
2459
if (!sq_hctx || sq_hctx == hctx ||
2460
!list_empty_careful(&hctx->dispatch))
2461
blk_mq_delay_run_hw_queue(hctx, msecs);
2462
}
2463
}
2464
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2465
2466
/*
2467
* This function is often used for pausing .queue_rq() by driver when
2468
* there isn't enough resource or some conditions aren't satisfied, and
2469
* BLK_STS_RESOURCE is usually returned.
2470
*
2471
* We do not guarantee that dispatch can be drained or blocked
2472
* after blk_mq_stop_hw_queue() returns. Please use
2473
* blk_mq_quiesce_queue() for that requirement.
2474
*/
2475
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2476
{
2477
cancel_delayed_work(&hctx->run_work);
2478
2479
set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2480
}
2481
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2482
2483
/*
2484
* This function is often used for pausing .queue_rq() by driver when
2485
* there isn't enough resource or some conditions aren't satisfied, and
2486
* BLK_STS_RESOURCE is usually returned.
2487
*
2488
* We do not guarantee that dispatch can be drained or blocked
2489
* after blk_mq_stop_hw_queues() returns. Please use
2490
* blk_mq_quiesce_queue() for that requirement.
2491
*/
2492
void blk_mq_stop_hw_queues(struct request_queue *q)
2493
{
2494
struct blk_mq_hw_ctx *hctx;
2495
unsigned long i;
2496
2497
queue_for_each_hw_ctx(q, hctx, i)
2498
blk_mq_stop_hw_queue(hctx);
2499
}
2500
EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2501
2502
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2503
{
2504
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2505
2506
blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2507
}
2508
EXPORT_SYMBOL(blk_mq_start_hw_queue);
2509
2510
void blk_mq_start_hw_queues(struct request_queue *q)
2511
{
2512
struct blk_mq_hw_ctx *hctx;
2513
unsigned long i;
2514
2515
queue_for_each_hw_ctx(q, hctx, i)
2516
blk_mq_start_hw_queue(hctx);
2517
}
2518
EXPORT_SYMBOL(blk_mq_start_hw_queues);
2519
2520
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2521
{
2522
if (!blk_mq_hctx_stopped(hctx))
2523
return;
2524
2525
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2526
/*
2527
* Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2528
* clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2529
* list in the subsequent routine.
2530
*/
2531
smp_mb__after_atomic();
2532
blk_mq_run_hw_queue(hctx, async);
2533
}
2534
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2535
2536
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2537
{
2538
struct blk_mq_hw_ctx *hctx;
2539
unsigned long i;
2540
2541
queue_for_each_hw_ctx(q, hctx, i)
2542
blk_mq_start_stopped_hw_queue(hctx, async ||
2543
(hctx->flags & BLK_MQ_F_BLOCKING));
2544
}
2545
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2546
2547
static void blk_mq_run_work_fn(struct work_struct *work)
2548
{
2549
struct blk_mq_hw_ctx *hctx =
2550
container_of(work, struct blk_mq_hw_ctx, run_work.work);
2551
2552
blk_mq_run_dispatch_ops(hctx->queue,
2553
blk_mq_sched_dispatch_requests(hctx));
2554
}
2555
2556
/**
2557
* blk_mq_request_bypass_insert - Insert a request at dispatch list.
2558
* @rq: Pointer to request to be inserted.
2559
* @flags: BLK_MQ_INSERT_*
2560
*
2561
* Should only be used carefully, when the caller knows we want to
2562
* bypass a potential IO scheduler on the target device.
2563
*/
2564
static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2565
{
2566
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2567
2568
spin_lock(&hctx->lock);
2569
if (flags & BLK_MQ_INSERT_AT_HEAD)
2570
list_add(&rq->queuelist, &hctx->dispatch);
2571
else
2572
list_add_tail(&rq->queuelist, &hctx->dispatch);
2573
spin_unlock(&hctx->lock);
2574
}
2575
2576
static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2577
struct blk_mq_ctx *ctx, struct list_head *list,
2578
bool run_queue_async)
2579
{
2580
struct request *rq;
2581
enum hctx_type type = hctx->type;
2582
2583
/*
2584
* Try to issue requests directly if the hw queue isn't busy to save an
2585
* extra enqueue & dequeue to the sw queue.
2586
*/
2587
if (!hctx->dispatch_busy && !run_queue_async) {
2588
blk_mq_run_dispatch_ops(hctx->queue,
2589
blk_mq_try_issue_list_directly(hctx, list));
2590
if (list_empty(list))
2591
goto out;
2592
}
2593
2594
/*
2595
* preemption doesn't flush plug list, so it's possible ctx->cpu is
2596
* offline now
2597
*/
2598
list_for_each_entry(rq, list, queuelist) {
2599
BUG_ON(rq->mq_ctx != ctx);
2600
trace_block_rq_insert(rq);
2601
if (rq->cmd_flags & REQ_NOWAIT)
2602
run_queue_async = true;
2603
}
2604
2605
spin_lock(&ctx->lock);
2606
list_splice_tail_init(list, &ctx->rq_lists[type]);
2607
blk_mq_hctx_mark_pending(hctx, ctx);
2608
spin_unlock(&ctx->lock);
2609
out:
2610
blk_mq_run_hw_queue(hctx, run_queue_async);
2611
}
2612
2613
static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2614
{
2615
struct request_queue *q = rq->q;
2616
struct blk_mq_ctx *ctx = rq->mq_ctx;
2617
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2618
2619
if (blk_rq_is_passthrough(rq)) {
2620
/*
2621
* Passthrough request have to be added to hctx->dispatch
2622
* directly. The device may be in a situation where it can't
2623
* handle FS request, and always returns BLK_STS_RESOURCE for
2624
* them, which gets them added to hctx->dispatch.
2625
*
2626
* If a passthrough request is required to unblock the queues,
2627
* and it is added to the scheduler queue, there is no chance to
2628
* dispatch it given we prioritize requests in hctx->dispatch.
2629
*/
2630
blk_mq_request_bypass_insert(rq, flags);
2631
} else if (req_op(rq) == REQ_OP_FLUSH) {
2632
/*
2633
* Firstly normal IO request is inserted to scheduler queue or
2634
* sw queue, meantime we add flush request to dispatch queue(
2635
* hctx->dispatch) directly and there is at most one in-flight
2636
* flush request for each hw queue, so it doesn't matter to add
2637
* flush request to tail or front of the dispatch queue.
2638
*
2639
* Secondly in case of NCQ, flush request belongs to non-NCQ
2640
* command, and queueing it will fail when there is any
2641
* in-flight normal IO request(NCQ command). When adding flush
2642
* rq to the front of hctx->dispatch, it is easier to introduce
2643
* extra time to flush rq's latency because of S_SCHED_RESTART
2644
* compared with adding to the tail of dispatch queue, then
2645
* chance of flush merge is increased, and less flush requests
2646
* will be issued to controller. It is observed that ~10% time
2647
* is saved in blktests block/004 on disk attached to AHCI/NCQ
2648
* drive when adding flush rq to the front of hctx->dispatch.
2649
*
2650
* Simply queue flush rq to the front of hctx->dispatch so that
2651
* intensive flush workloads can benefit in case of NCQ HW.
2652
*/
2653
blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2654
} else if (q->elevator) {
2655
LIST_HEAD(list);
2656
2657
WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2658
2659
list_add(&rq->queuelist, &list);
2660
q->elevator->type->ops.insert_requests(hctx, &list, flags);
2661
} else {
2662
trace_block_rq_insert(rq);
2663
2664
spin_lock(&ctx->lock);
2665
if (flags & BLK_MQ_INSERT_AT_HEAD)
2666
list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2667
else
2668
list_add_tail(&rq->queuelist,
2669
&ctx->rq_lists[hctx->type]);
2670
blk_mq_hctx_mark_pending(hctx, ctx);
2671
spin_unlock(&ctx->lock);
2672
}
2673
}
2674
2675
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2676
unsigned int nr_segs)
2677
{
2678
int err;
2679
2680
if (bio->bi_opf & REQ_RAHEAD)
2681
rq->cmd_flags |= REQ_FAILFAST_MASK;
2682
2683
rq->bio = rq->biotail = bio;
2684
rq->__sector = bio->bi_iter.bi_sector;
2685
rq->__data_len = bio->bi_iter.bi_size;
2686
rq->phys_gap_bit = bio->bi_bvec_gap_bit;
2687
2688
rq->nr_phys_segments = nr_segs;
2689
if (bio_integrity(bio))
2690
rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2691
bio);
2692
2693
/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2694
err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2695
WARN_ON_ONCE(err);
2696
2697
blk_account_io_start(rq);
2698
}
2699
2700
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2701
struct request *rq, bool last)
2702
{
2703
struct request_queue *q = rq->q;
2704
struct blk_mq_queue_data bd = {
2705
.rq = rq,
2706
.last = last,
2707
};
2708
blk_status_t ret;
2709
2710
/*
2711
* For OK queue, we are done. For error, caller may kill it.
2712
* Any other error (busy), just add it to our list as we
2713
* previously would have done.
2714
*/
2715
ret = q->mq_ops->queue_rq(hctx, &bd);
2716
switch (ret) {
2717
case BLK_STS_OK:
2718
blk_mq_update_dispatch_busy(hctx, false);
2719
break;
2720
case BLK_STS_RESOURCE:
2721
case BLK_STS_DEV_RESOURCE:
2722
blk_mq_update_dispatch_busy(hctx, true);
2723
__blk_mq_requeue_request(rq);
2724
break;
2725
default:
2726
blk_mq_update_dispatch_busy(hctx, false);
2727
break;
2728
}
2729
2730
return ret;
2731
}
2732
2733
static bool blk_mq_get_budget_and_tag(struct request *rq)
2734
{
2735
int budget_token;
2736
2737
budget_token = blk_mq_get_dispatch_budget(rq->q);
2738
if (budget_token < 0)
2739
return false;
2740
blk_mq_set_rq_budget_token(rq, budget_token);
2741
if (!blk_mq_get_driver_tag(rq)) {
2742
blk_mq_put_dispatch_budget(rq->q, budget_token);
2743
return false;
2744
}
2745
return true;
2746
}
2747
2748
/**
2749
* blk_mq_try_issue_directly - Try to send a request directly to device driver.
2750
* @hctx: Pointer of the associated hardware queue.
2751
* @rq: Pointer to request to be sent.
2752
*
2753
* If the device has enough resources to accept a new request now, send the
2754
* request directly to device driver. Else, insert at hctx->dispatch queue, so
2755
* we can try send it another time in the future. Requests inserted at this
2756
* queue have higher priority.
2757
*/
2758
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2759
struct request *rq)
2760
{
2761
blk_status_t ret;
2762
2763
if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2764
blk_mq_insert_request(rq, 0);
2765
blk_mq_run_hw_queue(hctx, false);
2766
return;
2767
}
2768
2769
if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2770
blk_mq_insert_request(rq, 0);
2771
blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2772
return;
2773
}
2774
2775
ret = __blk_mq_issue_directly(hctx, rq, true);
2776
switch (ret) {
2777
case BLK_STS_OK:
2778
break;
2779
case BLK_STS_RESOURCE:
2780
case BLK_STS_DEV_RESOURCE:
2781
blk_mq_request_bypass_insert(rq, 0);
2782
blk_mq_run_hw_queue(hctx, false);
2783
break;
2784
default:
2785
blk_mq_end_request(rq, ret);
2786
break;
2787
}
2788
}
2789
2790
static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2791
{
2792
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2793
2794
if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2795
blk_mq_insert_request(rq, 0);
2796
blk_mq_run_hw_queue(hctx, false);
2797
return BLK_STS_OK;
2798
}
2799
2800
if (!blk_mq_get_budget_and_tag(rq))
2801
return BLK_STS_RESOURCE;
2802
return __blk_mq_issue_directly(hctx, rq, last);
2803
}
2804
2805
static void blk_mq_issue_direct(struct rq_list *rqs)
2806
{
2807
struct blk_mq_hw_ctx *hctx = NULL;
2808
struct request *rq;
2809
int queued = 0;
2810
blk_status_t ret = BLK_STS_OK;
2811
2812
while ((rq = rq_list_pop(rqs))) {
2813
bool last = rq_list_empty(rqs);
2814
2815
if (hctx != rq->mq_hctx) {
2816
if (hctx) {
2817
blk_mq_commit_rqs(hctx, queued, false);
2818
queued = 0;
2819
}
2820
hctx = rq->mq_hctx;
2821
}
2822
2823
ret = blk_mq_request_issue_directly(rq, last);
2824
switch (ret) {
2825
case BLK_STS_OK:
2826
queued++;
2827
break;
2828
case BLK_STS_RESOURCE:
2829
case BLK_STS_DEV_RESOURCE:
2830
blk_mq_request_bypass_insert(rq, 0);
2831
blk_mq_run_hw_queue(hctx, false);
2832
goto out;
2833
default:
2834
blk_mq_end_request(rq, ret);
2835
break;
2836
}
2837
}
2838
2839
out:
2840
if (ret != BLK_STS_OK)
2841
blk_mq_commit_rqs(hctx, queued, false);
2842
}
2843
2844
static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs)
2845
{
2846
if (blk_queue_quiesced(q))
2847
return;
2848
q->mq_ops->queue_rqs(rqs);
2849
}
2850
2851
static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs,
2852
struct rq_list *queue_rqs)
2853
{
2854
struct request *rq = rq_list_pop(rqs);
2855
struct request_queue *this_q = rq->q;
2856
struct request **prev = &rqs->head;
2857
struct rq_list matched_rqs = {};
2858
struct request *last = NULL;
2859
unsigned depth = 1;
2860
2861
rq_list_add_tail(&matched_rqs, rq);
2862
while ((rq = *prev)) {
2863
if (rq->q == this_q) {
2864
/* move rq from rqs to matched_rqs */
2865
*prev = rq->rq_next;
2866
rq_list_add_tail(&matched_rqs, rq);
2867
depth++;
2868
} else {
2869
/* leave rq in rqs */
2870
prev = &rq->rq_next;
2871
last = rq;
2872
}
2873
}
2874
2875
rqs->tail = last;
2876
*queue_rqs = matched_rqs;
2877
return depth;
2878
}
2879
2880
static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth)
2881
{
2882
struct request_queue *q = rq_list_peek(rqs)->q;
2883
2884
trace_block_unplug(q, depth, true);
2885
2886
/*
2887
* Peek first request and see if we have a ->queue_rqs() hook.
2888
* If we do, we can dispatch the whole list in one go.
2889
* We already know at this point that all requests belong to the
2890
* same queue, caller must ensure that's the case.
2891
*/
2892
if (q->mq_ops->queue_rqs) {
2893
blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs));
2894
if (rq_list_empty(rqs))
2895
return;
2896
}
2897
2898
blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs));
2899
}
2900
2901
static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched)
2902
{
2903
struct blk_mq_hw_ctx *this_hctx = NULL;
2904
struct blk_mq_ctx *this_ctx = NULL;
2905
struct rq_list requeue_list = {};
2906
unsigned int depth = 0;
2907
bool is_passthrough = false;
2908
LIST_HEAD(list);
2909
2910
do {
2911
struct request *rq = rq_list_pop(rqs);
2912
2913
if (!this_hctx) {
2914
this_hctx = rq->mq_hctx;
2915
this_ctx = rq->mq_ctx;
2916
is_passthrough = blk_rq_is_passthrough(rq);
2917
} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2918
is_passthrough != blk_rq_is_passthrough(rq)) {
2919
rq_list_add_tail(&requeue_list, rq);
2920
continue;
2921
}
2922
list_add_tail(&rq->queuelist, &list);
2923
depth++;
2924
} while (!rq_list_empty(rqs));
2925
2926
*rqs = requeue_list;
2927
trace_block_unplug(this_hctx->queue, depth, !from_sched);
2928
2929
percpu_ref_get(&this_hctx->queue->q_usage_counter);
2930
/* passthrough requests should never be issued to the I/O scheduler */
2931
if (is_passthrough) {
2932
spin_lock(&this_hctx->lock);
2933
list_splice_tail_init(&list, &this_hctx->dispatch);
2934
spin_unlock(&this_hctx->lock);
2935
blk_mq_run_hw_queue(this_hctx, from_sched);
2936
} else if (this_hctx->queue->elevator) {
2937
this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2938
&list, 0);
2939
blk_mq_run_hw_queue(this_hctx, from_sched);
2940
} else {
2941
blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2942
}
2943
percpu_ref_put(&this_hctx->queue->q_usage_counter);
2944
}
2945
2946
static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs)
2947
{
2948
do {
2949
struct rq_list queue_rqs;
2950
unsigned depth;
2951
2952
depth = blk_mq_extract_queue_requests(rqs, &queue_rqs);
2953
blk_mq_dispatch_queue_requests(&queue_rqs, depth);
2954
while (!rq_list_empty(&queue_rqs))
2955
blk_mq_dispatch_list(&queue_rqs, false);
2956
} while (!rq_list_empty(rqs));
2957
}
2958
2959
void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2960
{
2961
unsigned int depth;
2962
2963
/*
2964
* We may have been called recursively midway through handling
2965
* plug->mq_list via a schedule() in the driver's queue_rq() callback.
2966
* To avoid mq_list changing under our feet, clear rq_count early and
2967
* bail out specifically if rq_count is 0 rather than checking
2968
* whether the mq_list is empty.
2969
*/
2970
if (plug->rq_count == 0)
2971
return;
2972
depth = plug->rq_count;
2973
plug->rq_count = 0;
2974
2975
if (!plug->has_elevator && !from_schedule) {
2976
if (plug->multiple_queues) {
2977
blk_mq_dispatch_multiple_queue_requests(&plug->mq_list);
2978
return;
2979
}
2980
2981
blk_mq_dispatch_queue_requests(&plug->mq_list, depth);
2982
if (rq_list_empty(&plug->mq_list))
2983
return;
2984
}
2985
2986
do {
2987
blk_mq_dispatch_list(&plug->mq_list, from_schedule);
2988
} while (!rq_list_empty(&plug->mq_list));
2989
}
2990
2991
static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2992
struct list_head *list)
2993
{
2994
int queued = 0;
2995
blk_status_t ret = BLK_STS_OK;
2996
2997
while (!list_empty(list)) {
2998
struct request *rq = list_first_entry(list, struct request,
2999
queuelist);
3000
3001
list_del_init(&rq->queuelist);
3002
ret = blk_mq_request_issue_directly(rq, list_empty(list));
3003
switch (ret) {
3004
case BLK_STS_OK:
3005
queued++;
3006
break;
3007
case BLK_STS_RESOURCE:
3008
case BLK_STS_DEV_RESOURCE:
3009
blk_mq_request_bypass_insert(rq, 0);
3010
if (list_empty(list))
3011
blk_mq_run_hw_queue(hctx, false);
3012
goto out;
3013
default:
3014
blk_mq_end_request(rq, ret);
3015
break;
3016
}
3017
}
3018
3019
out:
3020
if (ret != BLK_STS_OK)
3021
blk_mq_commit_rqs(hctx, queued, false);
3022
}
3023
3024
static bool blk_mq_attempt_bio_merge(struct request_queue *q,
3025
struct bio *bio, unsigned int nr_segs)
3026
{
3027
if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
3028
if (blk_attempt_plug_merge(q, bio, nr_segs))
3029
return true;
3030
if (blk_mq_sched_bio_merge(q, bio, nr_segs))
3031
return true;
3032
}
3033
return false;
3034
}
3035
3036
static struct request *blk_mq_get_new_requests(struct request_queue *q,
3037
struct blk_plug *plug,
3038
struct bio *bio)
3039
{
3040
struct blk_mq_alloc_data data = {
3041
.q = q,
3042
.flags = 0,
3043
.shallow_depth = 0,
3044
.cmd_flags = bio->bi_opf,
3045
.rq_flags = 0,
3046
.nr_tags = 1,
3047
.cached_rqs = NULL,
3048
.ctx = NULL,
3049
.hctx = NULL
3050
};
3051
struct request *rq;
3052
3053
rq_qos_throttle(q, bio);
3054
3055
if (plug) {
3056
data.nr_tags = plug->nr_ios;
3057
plug->nr_ios = 1;
3058
data.cached_rqs = &plug->cached_rqs;
3059
}
3060
3061
rq = __blk_mq_alloc_requests(&data);
3062
if (unlikely(!rq))
3063
rq_qos_cleanup(q, bio);
3064
return rq;
3065
}
3066
3067
/*
3068
* Check if there is a suitable cached request and return it.
3069
*/
3070
static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
3071
struct request_queue *q, blk_opf_t opf)
3072
{
3073
enum hctx_type type = blk_mq_get_hctx_type(opf);
3074
struct request *rq;
3075
3076
if (!plug)
3077
return NULL;
3078
rq = rq_list_peek(&plug->cached_rqs);
3079
if (!rq || rq->q != q)
3080
return NULL;
3081
if (type != rq->mq_hctx->type &&
3082
(type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3083
return NULL;
3084
if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3085
return NULL;
3086
return rq;
3087
}
3088
3089
static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3090
struct bio *bio)
3091
{
3092
if (rq_list_pop(&plug->cached_rqs) != rq)
3093
WARN_ON_ONCE(1);
3094
3095
/*
3096
* If any qos ->throttle() end up blocking, we will have flushed the
3097
* plug and hence killed the cached_rq list as well. Pop this entry
3098
* before we throttle.
3099
*/
3100
rq_qos_throttle(rq->q, bio);
3101
3102
blk_mq_rq_time_init(rq, blk_time_get_ns());
3103
rq->cmd_flags = bio->bi_opf;
3104
INIT_LIST_HEAD(&rq->queuelist);
3105
}
3106
3107
static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3108
{
3109
unsigned int bs_mask = queue_logical_block_size(q) - 1;
3110
3111
/* .bi_sector of any zero sized bio need to be initialized */
3112
if ((bio->bi_iter.bi_size & bs_mask) ||
3113
((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3114
return true;
3115
return false;
3116
}
3117
3118
/**
3119
* blk_mq_submit_bio - Create and send a request to block device.
3120
* @bio: Bio pointer.
3121
*
3122
* Builds up a request structure from @q and @bio and send to the device. The
3123
* request may not be queued directly to hardware if:
3124
* * This request can be merged with another one
3125
* * We want to place request at plug queue for possible future merging
3126
* * There is an IO scheduler active at this queue
3127
*
3128
* It will not queue the request if there is an error with the bio, or at the
3129
* request creation.
3130
*/
3131
void blk_mq_submit_bio(struct bio *bio)
3132
{
3133
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3134
struct blk_plug *plug = current->plug;
3135
const int is_sync = op_is_sync(bio->bi_opf);
3136
struct blk_mq_hw_ctx *hctx;
3137
unsigned int nr_segs;
3138
struct request *rq;
3139
blk_status_t ret;
3140
3141
/*
3142
* If the plug has a cached request for this queue, try to use it.
3143
*/
3144
rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3145
3146
/*
3147
* A BIO that was released from a zone write plug has already been
3148
* through the preparation in this function, already holds a reference
3149
* on the queue usage counter, and is the only write BIO in-flight for
3150
* the target zone. Go straight to preparing a request for it.
3151
*/
3152
if (bio_zone_write_plugging(bio)) {
3153
nr_segs = bio->__bi_nr_segments;
3154
if (rq)
3155
blk_queue_exit(q);
3156
goto new_request;
3157
}
3158
3159
/*
3160
* The cached request already holds a q_usage_counter reference and we
3161
* don't have to acquire a new one if we use it.
3162
*/
3163
if (!rq) {
3164
if (unlikely(bio_queue_enter(bio)))
3165
return;
3166
}
3167
3168
/*
3169
* Device reconfiguration may change logical block size or reduce the
3170
* number of poll queues, so the checks for alignment and poll support
3171
* have to be done with queue usage counter held.
3172
*/
3173
if (unlikely(bio_unaligned(bio, q))) {
3174
bio_io_error(bio);
3175
goto queue_exit;
3176
}
3177
3178
if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3179
bio->bi_status = BLK_STS_NOTSUPP;
3180
bio_endio(bio);
3181
goto queue_exit;
3182
}
3183
3184
bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3185
if (!bio)
3186
goto queue_exit;
3187
3188
if (!bio_integrity_prep(bio))
3189
goto queue_exit;
3190
3191
blk_mq_bio_issue_init(q, bio);
3192
if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3193
goto queue_exit;
3194
3195
if (bio_needs_zone_write_plugging(bio)) {
3196
if (blk_zone_plug_bio(bio, nr_segs))
3197
goto queue_exit;
3198
}
3199
3200
new_request:
3201
if (rq) {
3202
blk_mq_use_cached_rq(rq, plug, bio);
3203
} else {
3204
rq = blk_mq_get_new_requests(q, plug, bio);
3205
if (unlikely(!rq)) {
3206
if (bio->bi_opf & REQ_NOWAIT)
3207
bio_wouldblock_error(bio);
3208
goto queue_exit;
3209
}
3210
}
3211
3212
trace_block_getrq(bio);
3213
3214
rq_qos_track(q, rq, bio);
3215
3216
blk_mq_bio_to_request(rq, bio, nr_segs);
3217
3218
ret = blk_crypto_rq_get_keyslot(rq);
3219
if (ret != BLK_STS_OK) {
3220
bio->bi_status = ret;
3221
bio_endio(bio);
3222
blk_mq_free_request(rq);
3223
return;
3224
}
3225
3226
if (bio_zone_write_plugging(bio))
3227
blk_zone_write_plug_init_request(rq);
3228
3229
if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3230
return;
3231
3232
if (plug) {
3233
blk_add_rq_to_plug(plug, rq);
3234
return;
3235
}
3236
3237
hctx = rq->mq_hctx;
3238
if ((rq->rq_flags & RQF_USE_SCHED) ||
3239
(hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3240
blk_mq_insert_request(rq, 0);
3241
blk_mq_run_hw_queue(hctx, true);
3242
} else {
3243
blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3244
}
3245
return;
3246
3247
queue_exit:
3248
/*
3249
* Don't drop the queue reference if we were trying to use a cached
3250
* request and thus didn't acquire one.
3251
*/
3252
if (!rq)
3253
blk_queue_exit(q);
3254
}
3255
3256
#ifdef CONFIG_BLK_MQ_STACKING
3257
/**
3258
* blk_insert_cloned_request - Helper for stacking drivers to submit a request
3259
* @rq: the request being queued
3260
*/
3261
blk_status_t blk_insert_cloned_request(struct request *rq)
3262
{
3263
struct request_queue *q = rq->q;
3264
unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3265
unsigned int max_segments = blk_rq_get_max_segments(rq);
3266
blk_status_t ret;
3267
3268
if (blk_rq_sectors(rq) > max_sectors) {
3269
/*
3270
* SCSI device does not have a good way to return if
3271
* Write Same/Zero is actually supported. If a device rejects
3272
* a non-read/write command (discard, write same,etc.) the
3273
* low-level device driver will set the relevant queue limit to
3274
* 0 to prevent blk-lib from issuing more of the offending
3275
* operations. Commands queued prior to the queue limit being
3276
* reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3277
* errors being propagated to upper layers.
3278
*/
3279
if (max_sectors == 0)
3280
return BLK_STS_NOTSUPP;
3281
3282
printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3283
__func__, blk_rq_sectors(rq), max_sectors);
3284
return BLK_STS_IOERR;
3285
}
3286
3287
/*
3288
* The queue settings related to segment counting may differ from the
3289
* original queue.
3290
*/
3291
rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3292
if (rq->nr_phys_segments > max_segments) {
3293
printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3294
__func__, rq->nr_phys_segments, max_segments);
3295
return BLK_STS_IOERR;
3296
}
3297
3298
if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3299
return BLK_STS_IOERR;
3300
3301
ret = blk_crypto_rq_get_keyslot(rq);
3302
if (ret != BLK_STS_OK)
3303
return ret;
3304
3305
blk_account_io_start(rq);
3306
3307
/*
3308
* Since we have a scheduler attached on the top device,
3309
* bypass a potential scheduler on the bottom device for
3310
* insert.
3311
*/
3312
blk_mq_run_dispatch_ops(q,
3313
ret = blk_mq_request_issue_directly(rq, true));
3314
if (ret)
3315
blk_account_io_done(rq, blk_time_get_ns());
3316
return ret;
3317
}
3318
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3319
3320
/**
3321
* blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3322
* @rq: the clone request to be cleaned up
3323
*
3324
* Description:
3325
* Free all bios in @rq for a cloned request.
3326
*/
3327
void blk_rq_unprep_clone(struct request *rq)
3328
{
3329
struct bio *bio;
3330
3331
while ((bio = rq->bio) != NULL) {
3332
rq->bio = bio->bi_next;
3333
3334
bio_put(bio);
3335
}
3336
}
3337
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3338
3339
/**
3340
* blk_rq_prep_clone - Helper function to setup clone request
3341
* @rq: the request to be setup
3342
* @rq_src: original request to be cloned
3343
* @bs: bio_set that bios for clone are allocated from
3344
* @gfp_mask: memory allocation mask for bio
3345
* @bio_ctr: setup function to be called for each clone bio.
3346
* Returns %0 for success, non %0 for failure.
3347
* @data: private data to be passed to @bio_ctr
3348
*
3349
* Description:
3350
* Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3351
* Also, pages which the original bios are pointing to are not copied
3352
* and the cloned bios just point same pages.
3353
* So cloned bios must be completed before original bios, which means
3354
* the caller must complete @rq before @rq_src.
3355
*/
3356
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3357
struct bio_set *bs, gfp_t gfp_mask,
3358
int (*bio_ctr)(struct bio *, struct bio *, void *),
3359
void *data)
3360
{
3361
struct bio *bio_src;
3362
3363
if (!bs)
3364
bs = &fs_bio_set;
3365
3366
__rq_for_each_bio(bio_src, rq_src) {
3367
struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src,
3368
gfp_mask, bs);
3369
if (!bio)
3370
goto free_and_out;
3371
3372
if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3373
bio_put(bio);
3374
goto free_and_out;
3375
}
3376
3377
if (rq->bio) {
3378
rq->biotail->bi_next = bio;
3379
rq->biotail = bio;
3380
} else {
3381
rq->bio = rq->biotail = bio;
3382
}
3383
}
3384
3385
/* Copy attributes of the original request to the clone request. */
3386
rq->__sector = blk_rq_pos(rq_src);
3387
rq->__data_len = blk_rq_bytes(rq_src);
3388
if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3389
rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3390
rq->special_vec = rq_src->special_vec;
3391
}
3392
rq->nr_phys_segments = rq_src->nr_phys_segments;
3393
rq->nr_integrity_segments = rq_src->nr_integrity_segments;
3394
rq->phys_gap_bit = rq_src->phys_gap_bit;
3395
3396
if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3397
goto free_and_out;
3398
3399
return 0;
3400
3401
free_and_out:
3402
blk_rq_unprep_clone(rq);
3403
3404
return -ENOMEM;
3405
}
3406
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3407
#endif /* CONFIG_BLK_MQ_STACKING */
3408
3409
/*
3410
* Steal bios from a request and add them to a bio list.
3411
* The request must not have been partially completed before.
3412
*/
3413
void blk_steal_bios(struct bio_list *list, struct request *rq)
3414
{
3415
if (rq->bio) {
3416
if (list->tail)
3417
list->tail->bi_next = rq->bio;
3418
else
3419
list->head = rq->bio;
3420
list->tail = rq->biotail;
3421
3422
rq->bio = NULL;
3423
rq->biotail = NULL;
3424
}
3425
3426
rq->__data_len = 0;
3427
}
3428
EXPORT_SYMBOL_GPL(blk_steal_bios);
3429
3430
static size_t order_to_size(unsigned int order)
3431
{
3432
return (size_t)PAGE_SIZE << order;
3433
}
3434
3435
/* called before freeing request pool in @tags */
3436
static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3437
struct blk_mq_tags *tags)
3438
{
3439
struct page *page;
3440
3441
/*
3442
* There is no need to clear mapping if driver tags is not initialized
3443
* or the mapping belongs to the driver tags.
3444
*/
3445
if (!drv_tags || drv_tags == tags)
3446
return;
3447
3448
list_for_each_entry(page, &tags->page_list, lru) {
3449
unsigned long start = (unsigned long)page_address(page);
3450
unsigned long end = start + order_to_size(page->private);
3451
int i;
3452
3453
for (i = 0; i < drv_tags->nr_tags; i++) {
3454
struct request *rq = drv_tags->rqs[i];
3455
unsigned long rq_addr = (unsigned long)rq;
3456
3457
if (rq_addr >= start && rq_addr < end) {
3458
WARN_ON_ONCE(req_ref_read(rq) != 0);
3459
cmpxchg(&drv_tags->rqs[i], rq, NULL);
3460
}
3461
}
3462
}
3463
}
3464
3465
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3466
unsigned int hctx_idx)
3467
{
3468
struct blk_mq_tags *drv_tags;
3469
3470
if (list_empty(&tags->page_list))
3471
return;
3472
3473
if (blk_mq_is_shared_tags(set->flags))
3474
drv_tags = set->shared_tags;
3475
else
3476
drv_tags = set->tags[hctx_idx];
3477
3478
if (tags->static_rqs && set->ops->exit_request) {
3479
int i;
3480
3481
for (i = 0; i < tags->nr_tags; i++) {
3482
struct request *rq = tags->static_rqs[i];
3483
3484
if (!rq)
3485
continue;
3486
set->ops->exit_request(set, rq, hctx_idx);
3487
tags->static_rqs[i] = NULL;
3488
}
3489
}
3490
3491
blk_mq_clear_rq_mapping(drv_tags, tags);
3492
/*
3493
* Free request pages in SRCU callback, which is called from
3494
* blk_mq_free_tags().
3495
*/
3496
}
3497
3498
void blk_mq_free_rq_map(struct blk_mq_tag_set *set, struct blk_mq_tags *tags)
3499
{
3500
kfree(tags->rqs);
3501
tags->rqs = NULL;
3502
kfree(tags->static_rqs);
3503
tags->static_rqs = NULL;
3504
3505
blk_mq_free_tags(set, tags);
3506
}
3507
3508
static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3509
unsigned int hctx_idx)
3510
{
3511
int i;
3512
3513
for (i = 0; i < set->nr_maps; i++) {
3514
unsigned int start = set->map[i].queue_offset;
3515
unsigned int end = start + set->map[i].nr_queues;
3516
3517
if (hctx_idx >= start && hctx_idx < end)
3518
break;
3519
}
3520
3521
if (i >= set->nr_maps)
3522
i = HCTX_TYPE_DEFAULT;
3523
3524
return i;
3525
}
3526
3527
static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3528
unsigned int hctx_idx)
3529
{
3530
enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3531
3532
return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3533
}
3534
3535
static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3536
unsigned int hctx_idx,
3537
unsigned int nr_tags,
3538
unsigned int reserved_tags)
3539
{
3540
int node = blk_mq_get_hctx_node(set, hctx_idx);
3541
struct blk_mq_tags *tags;
3542
3543
if (node == NUMA_NO_NODE)
3544
node = set->numa_node;
3545
3546
tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node);
3547
if (!tags)
3548
return NULL;
3549
3550
tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3551
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3552
node);
3553
if (!tags->rqs)
3554
goto err_free_tags;
3555
3556
tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3557
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3558
node);
3559
if (!tags->static_rqs)
3560
goto err_free_rqs;
3561
3562
return tags;
3563
3564
err_free_rqs:
3565
kfree(tags->rqs);
3566
err_free_tags:
3567
blk_mq_free_tags(set, tags);
3568
return NULL;
3569
}
3570
3571
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3572
unsigned int hctx_idx, int node)
3573
{
3574
int ret;
3575
3576
if (set->ops->init_request) {
3577
ret = set->ops->init_request(set, rq, hctx_idx, node);
3578
if (ret)
3579
return ret;
3580
}
3581
3582
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3583
return 0;
3584
}
3585
3586
static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3587
struct blk_mq_tags *tags,
3588
unsigned int hctx_idx, unsigned int depth)
3589
{
3590
unsigned int i, j, entries_per_page, max_order = 4;
3591
int node = blk_mq_get_hctx_node(set, hctx_idx);
3592
size_t rq_size, left;
3593
3594
if (node == NUMA_NO_NODE)
3595
node = set->numa_node;
3596
3597
/*
3598
* rq_size is the size of the request plus driver payload, rounded
3599
* to the cacheline size
3600
*/
3601
rq_size = round_up(sizeof(struct request) + set->cmd_size,
3602
cache_line_size());
3603
left = rq_size * depth;
3604
3605
for (i = 0; i < depth; ) {
3606
int this_order = max_order;
3607
struct page *page;
3608
int to_do;
3609
void *p;
3610
3611
while (this_order && left < order_to_size(this_order - 1))
3612
this_order--;
3613
3614
do {
3615
page = alloc_pages_node(node,
3616
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3617
this_order);
3618
if (page)
3619
break;
3620
if (!this_order--)
3621
break;
3622
if (order_to_size(this_order) < rq_size)
3623
break;
3624
} while (1);
3625
3626
if (!page)
3627
goto fail;
3628
3629
page->private = this_order;
3630
list_add_tail(&page->lru, &tags->page_list);
3631
3632
p = page_address(page);
3633
/*
3634
* Allow kmemleak to scan these pages as they contain pointers
3635
* to additional allocations like via ops->init_request().
3636
*/
3637
kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3638
entries_per_page = order_to_size(this_order) / rq_size;
3639
to_do = min(entries_per_page, depth - i);
3640
left -= to_do * rq_size;
3641
for (j = 0; j < to_do; j++) {
3642
struct request *rq = p;
3643
3644
tags->static_rqs[i] = rq;
3645
if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3646
tags->static_rqs[i] = NULL;
3647
goto fail;
3648
}
3649
3650
p += rq_size;
3651
i++;
3652
}
3653
}
3654
return 0;
3655
3656
fail:
3657
blk_mq_free_rqs(set, tags, hctx_idx);
3658
return -ENOMEM;
3659
}
3660
3661
struct rq_iter_data {
3662
struct blk_mq_hw_ctx *hctx;
3663
bool has_rq;
3664
};
3665
3666
static bool blk_mq_has_request(struct request *rq, void *data)
3667
{
3668
struct rq_iter_data *iter_data = data;
3669
3670
if (rq->mq_hctx != iter_data->hctx)
3671
return true;
3672
iter_data->has_rq = true;
3673
return false;
3674
}
3675
3676
static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3677
{
3678
struct blk_mq_tags *tags = hctx->sched_tags ?
3679
hctx->sched_tags : hctx->tags;
3680
struct rq_iter_data data = {
3681
.hctx = hctx,
3682
};
3683
int srcu_idx;
3684
3685
srcu_idx = srcu_read_lock(&hctx->queue->tag_set->tags_srcu);
3686
blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3687
srcu_read_unlock(&hctx->queue->tag_set->tags_srcu, srcu_idx);
3688
3689
return data.has_rq;
3690
}
3691
3692
static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3693
unsigned int this_cpu)
3694
{
3695
enum hctx_type type = hctx->type;
3696
int cpu;
3697
3698
/*
3699
* hctx->cpumask has to rule out isolated CPUs, but userspace still
3700
* might submit IOs on these isolated CPUs, so use the queue map to
3701
* check if all CPUs mapped to this hctx are offline
3702
*/
3703
for_each_online_cpu(cpu) {
3704
struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3705
type, cpu);
3706
3707
if (h != hctx)
3708
continue;
3709
3710
/* this hctx has at least one online CPU */
3711
if (this_cpu != cpu)
3712
return true;
3713
}
3714
3715
return false;
3716
}
3717
3718
static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3719
{
3720
struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3721
struct blk_mq_hw_ctx, cpuhp_online);
3722
int ret = 0;
3723
3724
if (!hctx->nr_ctx || blk_mq_hctx_has_online_cpu(hctx, cpu))
3725
return 0;
3726
3727
/*
3728
* Prevent new request from being allocated on the current hctx.
3729
*
3730
* The smp_mb__after_atomic() Pairs with the implied barrier in
3731
* test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3732
* seen once we return from the tag allocator.
3733
*/
3734
set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3735
smp_mb__after_atomic();
3736
3737
/*
3738
* Try to grab a reference to the queue and wait for any outstanding
3739
* requests. If we could not grab a reference the queue has been
3740
* frozen and there are no requests.
3741
*/
3742
if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3743
while (blk_mq_hctx_has_requests(hctx)) {
3744
/*
3745
* The wakeup capable IRQ handler of block device is
3746
* not called during suspend. Skip the loop by checking
3747
* pm_wakeup_pending to prevent the deadlock and improve
3748
* suspend latency.
3749
*/
3750
if (pm_wakeup_pending()) {
3751
clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3752
ret = -EBUSY;
3753
break;
3754
}
3755
msleep(5);
3756
}
3757
percpu_ref_put(&hctx->queue->q_usage_counter);
3758
}
3759
3760
return ret;
3761
}
3762
3763
/*
3764
* Check if one CPU is mapped to the specified hctx
3765
*
3766
* Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3767
* to be used for scheduling kworker only. For other usage, please call this
3768
* helper for checking if one CPU belongs to the specified hctx
3769
*/
3770
static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3771
const struct blk_mq_hw_ctx *hctx)
3772
{
3773
struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3774
hctx->type, cpu);
3775
3776
return mapped_hctx == hctx;
3777
}
3778
3779
static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3780
{
3781
struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3782
struct blk_mq_hw_ctx, cpuhp_online);
3783
3784
if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3785
clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3786
return 0;
3787
}
3788
3789
/*
3790
* 'cpu' is going away. splice any existing rq_list entries from this
3791
* software queue to the hw queue dispatch list, and ensure that it
3792
* gets run.
3793
*/
3794
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3795
{
3796
struct blk_mq_hw_ctx *hctx;
3797
struct blk_mq_ctx *ctx;
3798
LIST_HEAD(tmp);
3799
enum hctx_type type;
3800
3801
hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3802
if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3803
return 0;
3804
3805
ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3806
type = hctx->type;
3807
3808
spin_lock(&ctx->lock);
3809
if (!list_empty(&ctx->rq_lists[type])) {
3810
list_splice_init(&ctx->rq_lists[type], &tmp);
3811
blk_mq_hctx_clear_pending(hctx, ctx);
3812
}
3813
spin_unlock(&ctx->lock);
3814
3815
if (list_empty(&tmp))
3816
return 0;
3817
3818
spin_lock(&hctx->lock);
3819
list_splice_tail_init(&tmp, &hctx->dispatch);
3820
spin_unlock(&hctx->lock);
3821
3822
blk_mq_run_hw_queue(hctx, true);
3823
return 0;
3824
}
3825
3826
static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3827
{
3828
lockdep_assert_held(&blk_mq_cpuhp_lock);
3829
3830
if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3831
!hlist_unhashed(&hctx->cpuhp_online)) {
3832
cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3833
&hctx->cpuhp_online);
3834
INIT_HLIST_NODE(&hctx->cpuhp_online);
3835
}
3836
3837
if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3838
cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3839
&hctx->cpuhp_dead);
3840
INIT_HLIST_NODE(&hctx->cpuhp_dead);
3841
}
3842
}
3843
3844
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3845
{
3846
mutex_lock(&blk_mq_cpuhp_lock);
3847
__blk_mq_remove_cpuhp(hctx);
3848
mutex_unlock(&blk_mq_cpuhp_lock);
3849
}
3850
3851
static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3852
{
3853
lockdep_assert_held(&blk_mq_cpuhp_lock);
3854
3855
if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3856
hlist_unhashed(&hctx->cpuhp_online))
3857
cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3858
&hctx->cpuhp_online);
3859
3860
if (hlist_unhashed(&hctx->cpuhp_dead))
3861
cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3862
&hctx->cpuhp_dead);
3863
}
3864
3865
static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3866
{
3867
struct blk_mq_hw_ctx *hctx;
3868
3869
lockdep_assert_held(&blk_mq_cpuhp_lock);
3870
3871
list_for_each_entry(hctx, head, hctx_list)
3872
__blk_mq_remove_cpuhp(hctx);
3873
}
3874
3875
/*
3876
* Unregister cpuhp callbacks from exited hw queues
3877
*
3878
* Safe to call if this `request_queue` is live
3879
*/
3880
static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3881
{
3882
LIST_HEAD(hctx_list);
3883
3884
spin_lock(&q->unused_hctx_lock);
3885
list_splice_init(&q->unused_hctx_list, &hctx_list);
3886
spin_unlock(&q->unused_hctx_lock);
3887
3888
mutex_lock(&blk_mq_cpuhp_lock);
3889
__blk_mq_remove_cpuhp_list(&hctx_list);
3890
mutex_unlock(&blk_mq_cpuhp_lock);
3891
3892
spin_lock(&q->unused_hctx_lock);
3893
list_splice(&hctx_list, &q->unused_hctx_list);
3894
spin_unlock(&q->unused_hctx_lock);
3895
}
3896
3897
/*
3898
* Register cpuhp callbacks from all hw queues
3899
*
3900
* Safe to call if this `request_queue` is live
3901
*/
3902
static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3903
{
3904
struct blk_mq_hw_ctx *hctx;
3905
unsigned long i;
3906
3907
mutex_lock(&blk_mq_cpuhp_lock);
3908
queue_for_each_hw_ctx(q, hctx, i)
3909
__blk_mq_add_cpuhp(hctx);
3910
mutex_unlock(&blk_mq_cpuhp_lock);
3911
}
3912
3913
/*
3914
* Before freeing hw queue, clearing the flush request reference in
3915
* tags->rqs[] for avoiding potential UAF.
3916
*/
3917
static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3918
unsigned int queue_depth, struct request *flush_rq)
3919
{
3920
int i;
3921
3922
/* The hw queue may not be mapped yet */
3923
if (!tags)
3924
return;
3925
3926
WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3927
3928
for (i = 0; i < queue_depth; i++)
3929
cmpxchg(&tags->rqs[i], flush_rq, NULL);
3930
}
3931
3932
static void blk_free_flush_queue_callback(struct rcu_head *head)
3933
{
3934
struct blk_flush_queue *fq =
3935
container_of(head, struct blk_flush_queue, rcu_head);
3936
3937
blk_free_flush_queue(fq);
3938
}
3939
3940
/* hctx->ctxs will be freed in queue's release handler */
3941
static void blk_mq_exit_hctx(struct request_queue *q,
3942
struct blk_mq_tag_set *set,
3943
struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3944
{
3945
struct request *flush_rq = hctx->fq->flush_rq;
3946
3947
if (blk_mq_hw_queue_mapped(hctx))
3948
blk_mq_tag_idle(hctx);
3949
3950
if (blk_queue_init_done(q))
3951
blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3952
set->queue_depth, flush_rq);
3953
if (set->ops->exit_request)
3954
set->ops->exit_request(set, flush_rq, hctx_idx);
3955
3956
if (set->ops->exit_hctx)
3957
set->ops->exit_hctx(hctx, hctx_idx);
3958
3959
call_srcu(&set->tags_srcu, &hctx->fq->rcu_head,
3960
blk_free_flush_queue_callback);
3961
hctx->fq = NULL;
3962
3963
spin_lock(&q->unused_hctx_lock);
3964
list_add(&hctx->hctx_list, &q->unused_hctx_list);
3965
spin_unlock(&q->unused_hctx_lock);
3966
}
3967
3968
static void blk_mq_exit_hw_queues(struct request_queue *q,
3969
struct blk_mq_tag_set *set, int nr_queue)
3970
{
3971
struct blk_mq_hw_ctx *hctx;
3972
unsigned long i;
3973
3974
queue_for_each_hw_ctx(q, hctx, i) {
3975
if (i == nr_queue)
3976
break;
3977
blk_mq_remove_cpuhp(hctx);
3978
blk_mq_exit_hctx(q, set, hctx, i);
3979
}
3980
}
3981
3982
static int blk_mq_init_hctx(struct request_queue *q,
3983
struct blk_mq_tag_set *set,
3984
struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3985
{
3986
gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3987
3988
hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3989
if (!hctx->fq)
3990
goto fail;
3991
3992
hctx->queue_num = hctx_idx;
3993
3994
hctx->tags = set->tags[hctx_idx];
3995
3996
if (set->ops->init_hctx &&
3997
set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3998
goto fail_free_fq;
3999
4000
if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
4001
hctx->numa_node))
4002
goto exit_hctx;
4003
4004
return 0;
4005
4006
exit_hctx:
4007
if (set->ops->exit_hctx)
4008
set->ops->exit_hctx(hctx, hctx_idx);
4009
fail_free_fq:
4010
blk_free_flush_queue(hctx->fq);
4011
hctx->fq = NULL;
4012
fail:
4013
return -1;
4014
}
4015
4016
static struct blk_mq_hw_ctx *
4017
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
4018
int node)
4019
{
4020
struct blk_mq_hw_ctx *hctx;
4021
gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
4022
4023
hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
4024
if (!hctx)
4025
goto fail_alloc_hctx;
4026
4027
if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
4028
goto free_hctx;
4029
4030
atomic_set(&hctx->nr_active, 0);
4031
if (node == NUMA_NO_NODE)
4032
node = set->numa_node;
4033
hctx->numa_node = node;
4034
4035
INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
4036
spin_lock_init(&hctx->lock);
4037
INIT_LIST_HEAD(&hctx->dispatch);
4038
INIT_HLIST_NODE(&hctx->cpuhp_dead);
4039
INIT_HLIST_NODE(&hctx->cpuhp_online);
4040
hctx->queue = q;
4041
hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
4042
4043
INIT_LIST_HEAD(&hctx->hctx_list);
4044
4045
/*
4046
* Allocate space for all possible cpus to avoid allocation at
4047
* runtime
4048
*/
4049
hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
4050
gfp, node);
4051
if (!hctx->ctxs)
4052
goto free_cpumask;
4053
4054
if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
4055
gfp, node, false, false))
4056
goto free_ctxs;
4057
hctx->nr_ctx = 0;
4058
4059
spin_lock_init(&hctx->dispatch_wait_lock);
4060
init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
4061
INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
4062
4063
blk_mq_hctx_kobj_init(hctx);
4064
4065
return hctx;
4066
4067
free_ctxs:
4068
kfree(hctx->ctxs);
4069
free_cpumask:
4070
free_cpumask_var(hctx->cpumask);
4071
free_hctx:
4072
kfree(hctx);
4073
fail_alloc_hctx:
4074
return NULL;
4075
}
4076
4077
static void blk_mq_init_cpu_queues(struct request_queue *q,
4078
unsigned int nr_hw_queues)
4079
{
4080
struct blk_mq_tag_set *set = q->tag_set;
4081
unsigned int i, j;
4082
4083
for_each_possible_cpu(i) {
4084
struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4085
struct blk_mq_hw_ctx *hctx;
4086
int k;
4087
4088
__ctx->cpu = i;
4089
spin_lock_init(&__ctx->lock);
4090
for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4091
INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4092
4093
__ctx->queue = q;
4094
4095
/*
4096
* Set local node, IFF we have more than one hw queue. If
4097
* not, we remain on the home node of the device
4098
*/
4099
for (j = 0; j < set->nr_maps; j++) {
4100
hctx = blk_mq_map_queue_type(q, j, i);
4101
if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4102
hctx->numa_node = cpu_to_node(i);
4103
}
4104
}
4105
}
4106
4107
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4108
unsigned int hctx_idx,
4109
unsigned int depth)
4110
{
4111
struct blk_mq_tags *tags;
4112
int ret;
4113
4114
tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4115
if (!tags)
4116
return NULL;
4117
4118
ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4119
if (ret) {
4120
blk_mq_free_rq_map(set, tags);
4121
return NULL;
4122
}
4123
4124
return tags;
4125
}
4126
4127
static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4128
int hctx_idx)
4129
{
4130
if (blk_mq_is_shared_tags(set->flags)) {
4131
set->tags[hctx_idx] = set->shared_tags;
4132
4133
return true;
4134
}
4135
4136
set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4137
set->queue_depth);
4138
4139
return set->tags[hctx_idx];
4140
}
4141
4142
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4143
struct blk_mq_tags *tags,
4144
unsigned int hctx_idx)
4145
{
4146
if (tags) {
4147
blk_mq_free_rqs(set, tags, hctx_idx);
4148
blk_mq_free_rq_map(set, tags);
4149
}
4150
}
4151
4152
static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4153
unsigned int hctx_idx)
4154
{
4155
if (!blk_mq_is_shared_tags(set->flags))
4156
blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4157
4158
set->tags[hctx_idx] = NULL;
4159
}
4160
4161
static void blk_mq_map_swqueue(struct request_queue *q)
4162
{
4163
unsigned int j, hctx_idx;
4164
unsigned long i;
4165
struct blk_mq_hw_ctx *hctx;
4166
struct blk_mq_ctx *ctx;
4167
struct blk_mq_tag_set *set = q->tag_set;
4168
4169
queue_for_each_hw_ctx(q, hctx, i) {
4170
cpumask_clear(hctx->cpumask);
4171
hctx->nr_ctx = 0;
4172
hctx->dispatch_from = NULL;
4173
}
4174
4175
/*
4176
* Map software to hardware queues.
4177
*
4178
* If the cpu isn't present, the cpu is mapped to first hctx.
4179
*/
4180
for_each_possible_cpu(i) {
4181
4182
ctx = per_cpu_ptr(q->queue_ctx, i);
4183
for (j = 0; j < set->nr_maps; j++) {
4184
if (!set->map[j].nr_queues) {
4185
ctx->hctxs[j] = blk_mq_map_queue_type(q,
4186
HCTX_TYPE_DEFAULT, i);
4187
continue;
4188
}
4189
hctx_idx = set->map[j].mq_map[i];
4190
/* unmapped hw queue can be remapped after CPU topo changed */
4191
if (!set->tags[hctx_idx] &&
4192
!__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4193
/*
4194
* If tags initialization fail for some hctx,
4195
* that hctx won't be brought online. In this
4196
* case, remap the current ctx to hctx[0] which
4197
* is guaranteed to always have tags allocated
4198
*/
4199
set->map[j].mq_map[i] = 0;
4200
}
4201
4202
hctx = blk_mq_map_queue_type(q, j, i);
4203
ctx->hctxs[j] = hctx;
4204
/*
4205
* If the CPU is already set in the mask, then we've
4206
* mapped this one already. This can happen if
4207
* devices share queues across queue maps.
4208
*/
4209
if (cpumask_test_cpu(i, hctx->cpumask))
4210
continue;
4211
4212
cpumask_set_cpu(i, hctx->cpumask);
4213
hctx->type = j;
4214
ctx->index_hw[hctx->type] = hctx->nr_ctx;
4215
hctx->ctxs[hctx->nr_ctx++] = ctx;
4216
4217
/*
4218
* If the nr_ctx type overflows, we have exceeded the
4219
* amount of sw queues we can support.
4220
*/
4221
BUG_ON(!hctx->nr_ctx);
4222
}
4223
4224
for (; j < HCTX_MAX_TYPES; j++)
4225
ctx->hctxs[j] = blk_mq_map_queue_type(q,
4226
HCTX_TYPE_DEFAULT, i);
4227
}
4228
4229
queue_for_each_hw_ctx(q, hctx, i) {
4230
int cpu;
4231
4232
/*
4233
* If no software queues are mapped to this hardware queue,
4234
* disable it and free the request entries.
4235
*/
4236
if (!hctx->nr_ctx) {
4237
/* Never unmap queue 0. We need it as a
4238
* fallback in case of a new remap fails
4239
* allocation
4240
*/
4241
if (i)
4242
__blk_mq_free_map_and_rqs(set, i);
4243
4244
hctx->tags = NULL;
4245
continue;
4246
}
4247
4248
hctx->tags = set->tags[i];
4249
WARN_ON(!hctx->tags);
4250
4251
/*
4252
* Set the map size to the number of mapped software queues.
4253
* This is more accurate and more efficient than looping
4254
* over all possibly mapped software queues.
4255
*/
4256
sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4257
4258
/*
4259
* Rule out isolated CPUs from hctx->cpumask to avoid
4260
* running block kworker on isolated CPUs
4261
*/
4262
for_each_cpu(cpu, hctx->cpumask) {
4263
if (cpu_is_isolated(cpu))
4264
cpumask_clear_cpu(cpu, hctx->cpumask);
4265
}
4266
4267
/*
4268
* Initialize batch roundrobin counts
4269
*/
4270
hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4271
hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4272
}
4273
}
4274
4275
/*
4276
* Caller needs to ensure that we're either frozen/quiesced, or that
4277
* the queue isn't live yet.
4278
*/
4279
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4280
{
4281
struct blk_mq_hw_ctx *hctx;
4282
unsigned long i;
4283
4284
queue_for_each_hw_ctx(q, hctx, i) {
4285
if (shared) {
4286
hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4287
} else {
4288
blk_mq_tag_idle(hctx);
4289
hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4290
}
4291
}
4292
}
4293
4294
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4295
bool shared)
4296
{
4297
struct request_queue *q;
4298
unsigned int memflags;
4299
4300
lockdep_assert_held(&set->tag_list_lock);
4301
4302
list_for_each_entry(q, &set->tag_list, tag_set_list) {
4303
memflags = blk_mq_freeze_queue(q);
4304
queue_set_hctx_shared(q, shared);
4305
blk_mq_unfreeze_queue(q, memflags);
4306
}
4307
}
4308
4309
static void blk_mq_del_queue_tag_set(struct request_queue *q)
4310
{
4311
struct blk_mq_tag_set *set = q->tag_set;
4312
4313
mutex_lock(&set->tag_list_lock);
4314
list_del_rcu(&q->tag_set_list);
4315
if (list_is_singular(&set->tag_list)) {
4316
/* just transitioned to unshared */
4317
set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4318
/* update existing queue */
4319
blk_mq_update_tag_set_shared(set, false);
4320
}
4321
mutex_unlock(&set->tag_list_lock);
4322
}
4323
4324
static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4325
struct request_queue *q)
4326
{
4327
mutex_lock(&set->tag_list_lock);
4328
4329
/*
4330
* Check to see if we're transitioning to shared (from 1 to 2 queues).
4331
*/
4332
if (!list_empty(&set->tag_list) &&
4333
!(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4334
set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4335
/* update existing queue */
4336
blk_mq_update_tag_set_shared(set, true);
4337
}
4338
if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4339
queue_set_hctx_shared(q, true);
4340
list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
4341
4342
mutex_unlock(&set->tag_list_lock);
4343
}
4344
4345
/* All allocations will be freed in release handler of q->mq_kobj */
4346
static int blk_mq_alloc_ctxs(struct request_queue *q)
4347
{
4348
struct blk_mq_ctxs *ctxs;
4349
int cpu;
4350
4351
ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4352
if (!ctxs)
4353
return -ENOMEM;
4354
4355
ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4356
if (!ctxs->queue_ctx)
4357
goto fail;
4358
4359
for_each_possible_cpu(cpu) {
4360
struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4361
ctx->ctxs = ctxs;
4362
}
4363
4364
q->mq_kobj = &ctxs->kobj;
4365
q->queue_ctx = ctxs->queue_ctx;
4366
4367
return 0;
4368
fail:
4369
kfree(ctxs);
4370
return -ENOMEM;
4371
}
4372
4373
/*
4374
* It is the actual release handler for mq, but we do it from
4375
* request queue's release handler for avoiding use-after-free
4376
* and headache because q->mq_kobj shouldn't have been introduced,
4377
* but we can't group ctx/kctx kobj without it.
4378
*/
4379
void blk_mq_release(struct request_queue *q)
4380
{
4381
struct blk_mq_hw_ctx *hctx, *next;
4382
unsigned long i;
4383
4384
queue_for_each_hw_ctx(q, hctx, i)
4385
WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4386
4387
/* all hctx are in .unused_hctx_list now */
4388
list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4389
list_del_init(&hctx->hctx_list);
4390
kobject_put(&hctx->kobj);
4391
}
4392
4393
kfree(q->queue_hw_ctx);
4394
4395
/*
4396
* release .mq_kobj and sw queue's kobject now because
4397
* both share lifetime with request queue.
4398
*/
4399
blk_mq_sysfs_deinit(q);
4400
}
4401
4402
struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4403
struct queue_limits *lim, void *queuedata)
4404
{
4405
struct queue_limits default_lim = { };
4406
struct request_queue *q;
4407
int ret;
4408
4409
if (!lim)
4410
lim = &default_lim;
4411
lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4412
if (set->nr_maps > HCTX_TYPE_POLL)
4413
lim->features |= BLK_FEAT_POLL;
4414
4415
q = blk_alloc_queue(lim, set->numa_node);
4416
if (IS_ERR(q))
4417
return q;
4418
q->queuedata = queuedata;
4419
ret = blk_mq_init_allocated_queue(set, q);
4420
if (ret) {
4421
blk_put_queue(q);
4422
return ERR_PTR(ret);
4423
}
4424
return q;
4425
}
4426
EXPORT_SYMBOL(blk_mq_alloc_queue);
4427
4428
/**
4429
* blk_mq_destroy_queue - shutdown a request queue
4430
* @q: request queue to shutdown
4431
*
4432
* This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4433
* requests will be failed with -ENODEV. The caller is responsible for dropping
4434
* the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4435
*
4436
* Context: can sleep
4437
*/
4438
void blk_mq_destroy_queue(struct request_queue *q)
4439
{
4440
WARN_ON_ONCE(!queue_is_mq(q));
4441
WARN_ON_ONCE(blk_queue_registered(q));
4442
4443
might_sleep();
4444
4445
blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4446
blk_queue_start_drain(q);
4447
blk_mq_freeze_queue_wait(q);
4448
4449
blk_sync_queue(q);
4450
blk_mq_cancel_work_sync(q);
4451
blk_mq_exit_queue(q);
4452
}
4453
EXPORT_SYMBOL(blk_mq_destroy_queue);
4454
4455
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4456
struct queue_limits *lim, void *queuedata,
4457
struct lock_class_key *lkclass)
4458
{
4459
struct request_queue *q;
4460
struct gendisk *disk;
4461
4462
q = blk_mq_alloc_queue(set, lim, queuedata);
4463
if (IS_ERR(q))
4464
return ERR_CAST(q);
4465
4466
disk = __alloc_disk_node(q, set->numa_node, lkclass);
4467
if (!disk) {
4468
blk_mq_destroy_queue(q);
4469
blk_put_queue(q);
4470
return ERR_PTR(-ENOMEM);
4471
}
4472
set_bit(GD_OWNS_QUEUE, &disk->state);
4473
return disk;
4474
}
4475
EXPORT_SYMBOL(__blk_mq_alloc_disk);
4476
4477
struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4478
struct lock_class_key *lkclass)
4479
{
4480
struct gendisk *disk;
4481
4482
if (!blk_get_queue(q))
4483
return NULL;
4484
disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4485
if (!disk)
4486
blk_put_queue(q);
4487
return disk;
4488
}
4489
EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4490
4491
/*
4492
* Only hctx removed from cpuhp list can be reused
4493
*/
4494
static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4495
{
4496
return hlist_unhashed(&hctx->cpuhp_online) &&
4497
hlist_unhashed(&hctx->cpuhp_dead);
4498
}
4499
4500
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4501
struct blk_mq_tag_set *set, struct request_queue *q,
4502
int hctx_idx, int node)
4503
{
4504
struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4505
4506
/* reuse dead hctx first */
4507
spin_lock(&q->unused_hctx_lock);
4508
list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4509
if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4510
hctx = tmp;
4511
break;
4512
}
4513
}
4514
if (hctx)
4515
list_del_init(&hctx->hctx_list);
4516
spin_unlock(&q->unused_hctx_lock);
4517
4518
if (!hctx)
4519
hctx = blk_mq_alloc_hctx(q, set, node);
4520
if (!hctx)
4521
goto fail;
4522
4523
if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4524
goto free_hctx;
4525
4526
return hctx;
4527
4528
free_hctx:
4529
kobject_put(&hctx->kobj);
4530
fail:
4531
return NULL;
4532
}
4533
4534
static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4535
struct request_queue *q)
4536
{
4537
int i, j, end;
4538
struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
4539
4540
if (q->nr_hw_queues < set->nr_hw_queues) {
4541
struct blk_mq_hw_ctx **new_hctxs;
4542
4543
new_hctxs = kcalloc_node(set->nr_hw_queues,
4544
sizeof(*new_hctxs), GFP_KERNEL,
4545
set->numa_node);
4546
if (!new_hctxs)
4547
return;
4548
if (hctxs)
4549
memcpy(new_hctxs, hctxs, q->nr_hw_queues *
4550
sizeof(*hctxs));
4551
rcu_assign_pointer(q->queue_hw_ctx, new_hctxs);
4552
/*
4553
* Make sure reading the old queue_hw_ctx from other
4554
* context concurrently won't trigger uaf.
4555
*/
4556
kfree_rcu_mightsleep(hctxs);
4557
hctxs = new_hctxs;
4558
}
4559
4560
for (i = 0; i < set->nr_hw_queues; i++) {
4561
int old_node;
4562
int node = blk_mq_get_hctx_node(set, i);
4563
struct blk_mq_hw_ctx *old_hctx = hctxs[i];
4564
4565
if (old_hctx) {
4566
old_node = old_hctx->numa_node;
4567
blk_mq_exit_hctx(q, set, old_hctx, i);
4568
}
4569
4570
hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i, node);
4571
if (!hctxs[i]) {
4572
if (!old_hctx)
4573
break;
4574
pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4575
node, old_node);
4576
hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i,
4577
old_node);
4578
WARN_ON_ONCE(!hctxs[i]);
4579
}
4580
}
4581
/*
4582
* Increasing nr_hw_queues fails. Free the newly allocated
4583
* hctxs and keep the previous q->nr_hw_queues.
4584
*/
4585
if (i != set->nr_hw_queues) {
4586
j = q->nr_hw_queues;
4587
end = i;
4588
} else {
4589
j = i;
4590
end = q->nr_hw_queues;
4591
q->nr_hw_queues = set->nr_hw_queues;
4592
}
4593
4594
for (; j < end; j++) {
4595
struct blk_mq_hw_ctx *hctx = hctxs[j];
4596
4597
if (hctx) {
4598
blk_mq_exit_hctx(q, set, hctx, j);
4599
hctxs[j] = NULL;
4600
}
4601
}
4602
}
4603
4604
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4605
struct request_queue *q)
4606
{
4607
__blk_mq_realloc_hw_ctxs(set, q);
4608
4609
/* unregister cpuhp callbacks for exited hctxs */
4610
blk_mq_remove_hw_queues_cpuhp(q);
4611
4612
/* register cpuhp for new initialized hctxs */
4613
blk_mq_add_hw_queues_cpuhp(q);
4614
}
4615
4616
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4617
struct request_queue *q)
4618
{
4619
/* mark the queue as mq asap */
4620
q->mq_ops = set->ops;
4621
4622
/*
4623
* ->tag_set has to be setup before initialize hctx, which cpuphp
4624
* handler needs it for checking queue mapping
4625
*/
4626
q->tag_set = set;
4627
4628
if (blk_mq_alloc_ctxs(q))
4629
goto err_exit;
4630
4631
/* init q->mq_kobj and sw queues' kobjects */
4632
blk_mq_sysfs_init(q);
4633
4634
INIT_LIST_HEAD(&q->unused_hctx_list);
4635
spin_lock_init(&q->unused_hctx_lock);
4636
4637
blk_mq_realloc_hw_ctxs(set, q);
4638
if (!q->nr_hw_queues)
4639
goto err_hctxs;
4640
4641
INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4642
blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4643
4644
q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4645
4646
INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4647
INIT_LIST_HEAD(&q->flush_list);
4648
INIT_LIST_HEAD(&q->requeue_list);
4649
spin_lock_init(&q->requeue_lock);
4650
4651
q->nr_requests = set->queue_depth;
4652
4653
blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4654
blk_mq_map_swqueue(q);
4655
blk_mq_add_queue_tag_set(set, q);
4656
return 0;
4657
4658
err_hctxs:
4659
blk_mq_release(q);
4660
err_exit:
4661
q->mq_ops = NULL;
4662
return -ENOMEM;
4663
}
4664
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4665
4666
/* tags can _not_ be used after returning from blk_mq_exit_queue */
4667
void blk_mq_exit_queue(struct request_queue *q)
4668
{
4669
struct blk_mq_tag_set *set = q->tag_set;
4670
4671
/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4672
blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4673
/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4674
blk_mq_del_queue_tag_set(q);
4675
}
4676
4677
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4678
{
4679
int i;
4680
4681
if (blk_mq_is_shared_tags(set->flags)) {
4682
set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4683
BLK_MQ_NO_HCTX_IDX,
4684
set->queue_depth);
4685
if (!set->shared_tags)
4686
return -ENOMEM;
4687
}
4688
4689
for (i = 0; i < set->nr_hw_queues; i++) {
4690
if (!__blk_mq_alloc_map_and_rqs(set, i))
4691
goto out_unwind;
4692
cond_resched();
4693
}
4694
4695
return 0;
4696
4697
out_unwind:
4698
while (--i >= 0)
4699
__blk_mq_free_map_and_rqs(set, i);
4700
4701
if (blk_mq_is_shared_tags(set->flags)) {
4702
blk_mq_free_map_and_rqs(set, set->shared_tags,
4703
BLK_MQ_NO_HCTX_IDX);
4704
}
4705
4706
return -ENOMEM;
4707
}
4708
4709
/*
4710
* Allocate the request maps associated with this tag_set. Note that this
4711
* may reduce the depth asked for, if memory is tight. set->queue_depth
4712
* will be updated to reflect the allocated depth.
4713
*/
4714
static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4715
{
4716
unsigned int depth;
4717
int err;
4718
4719
depth = set->queue_depth;
4720
do {
4721
err = __blk_mq_alloc_rq_maps(set);
4722
if (!err)
4723
break;
4724
4725
set->queue_depth >>= 1;
4726
if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4727
err = -ENOMEM;
4728
break;
4729
}
4730
} while (set->queue_depth);
4731
4732
if (!set->queue_depth || err) {
4733
pr_err("blk-mq: failed to allocate request map\n");
4734
return -ENOMEM;
4735
}
4736
4737
if (depth != set->queue_depth)
4738
pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4739
depth, set->queue_depth);
4740
4741
return 0;
4742
}
4743
4744
static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4745
{
4746
/*
4747
* blk_mq_map_queues() and multiple .map_queues() implementations
4748
* expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4749
* number of hardware queues.
4750
*/
4751
if (set->nr_maps == 1)
4752
set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4753
4754
if (set->ops->map_queues) {
4755
int i;
4756
4757
/*
4758
* transport .map_queues is usually done in the following
4759
* way:
4760
*
4761
* for (queue = 0; queue < set->nr_hw_queues; queue++) {
4762
* mask = get_cpu_mask(queue)
4763
* for_each_cpu(cpu, mask)
4764
* set->map[x].mq_map[cpu] = queue;
4765
* }
4766
*
4767
* When we need to remap, the table has to be cleared for
4768
* killing stale mapping since one CPU may not be mapped
4769
* to any hw queue.
4770
*/
4771
for (i = 0; i < set->nr_maps; i++)
4772
blk_mq_clear_mq_map(&set->map[i]);
4773
4774
set->ops->map_queues(set);
4775
} else {
4776
BUG_ON(set->nr_maps > 1);
4777
blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4778
}
4779
}
4780
4781
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4782
int new_nr_hw_queues)
4783
{
4784
struct blk_mq_tags **new_tags;
4785
int i;
4786
4787
if (set->nr_hw_queues >= new_nr_hw_queues)
4788
goto done;
4789
4790
new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4791
GFP_KERNEL, set->numa_node);
4792
if (!new_tags)
4793
return -ENOMEM;
4794
4795
if (set->tags)
4796
memcpy(new_tags, set->tags, set->nr_hw_queues *
4797
sizeof(*set->tags));
4798
kfree(set->tags);
4799
set->tags = new_tags;
4800
4801
for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4802
if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4803
while (--i >= set->nr_hw_queues)
4804
__blk_mq_free_map_and_rqs(set, i);
4805
return -ENOMEM;
4806
}
4807
cond_resched();
4808
}
4809
4810
done:
4811
set->nr_hw_queues = new_nr_hw_queues;
4812
return 0;
4813
}
4814
4815
/*
4816
* Alloc a tag set to be associated with one or more request queues.
4817
* May fail with EINVAL for various error conditions. May adjust the
4818
* requested depth down, if it's too large. In that case, the set
4819
* value will be stored in set->queue_depth.
4820
*/
4821
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4822
{
4823
int i, ret;
4824
4825
BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4826
4827
if (!set->nr_hw_queues)
4828
return -EINVAL;
4829
if (!set->queue_depth)
4830
return -EINVAL;
4831
if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4832
return -EINVAL;
4833
4834
if (!set->ops->queue_rq)
4835
return -EINVAL;
4836
4837
if (!set->ops->get_budget ^ !set->ops->put_budget)
4838
return -EINVAL;
4839
4840
if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4841
pr_info("blk-mq: reduced tag depth to %u\n",
4842
BLK_MQ_MAX_DEPTH);
4843
set->queue_depth = BLK_MQ_MAX_DEPTH;
4844
}
4845
4846
if (!set->nr_maps)
4847
set->nr_maps = 1;
4848
else if (set->nr_maps > HCTX_MAX_TYPES)
4849
return -EINVAL;
4850
4851
/*
4852
* If a crashdump is active, then we are potentially in a very
4853
* memory constrained environment. Limit us to 64 tags to prevent
4854
* using too much memory.
4855
*/
4856
if (is_kdump_kernel())
4857
set->queue_depth = min(64U, set->queue_depth);
4858
4859
/*
4860
* There is no use for more h/w queues than cpus if we just have
4861
* a single map
4862
*/
4863
if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4864
set->nr_hw_queues = nr_cpu_ids;
4865
4866
if (set->flags & BLK_MQ_F_BLOCKING) {
4867
set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4868
if (!set->srcu)
4869
return -ENOMEM;
4870
ret = init_srcu_struct(set->srcu);
4871
if (ret)
4872
goto out_free_srcu;
4873
}
4874
ret = init_srcu_struct(&set->tags_srcu);
4875
if (ret)
4876
goto out_cleanup_srcu;
4877
4878
init_rwsem(&set->update_nr_hwq_lock);
4879
4880
ret = -ENOMEM;
4881
set->tags = kcalloc_node(set->nr_hw_queues,
4882
sizeof(struct blk_mq_tags *), GFP_KERNEL,
4883
set->numa_node);
4884
if (!set->tags)
4885
goto out_cleanup_tags_srcu;
4886
4887
for (i = 0; i < set->nr_maps; i++) {
4888
set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4889
sizeof(set->map[i].mq_map[0]),
4890
GFP_KERNEL, set->numa_node);
4891
if (!set->map[i].mq_map)
4892
goto out_free_mq_map;
4893
set->map[i].nr_queues = set->nr_hw_queues;
4894
}
4895
4896
blk_mq_update_queue_map(set);
4897
4898
ret = blk_mq_alloc_set_map_and_rqs(set);
4899
if (ret)
4900
goto out_free_mq_map;
4901
4902
mutex_init(&set->tag_list_lock);
4903
INIT_LIST_HEAD(&set->tag_list);
4904
4905
return 0;
4906
4907
out_free_mq_map:
4908
for (i = 0; i < set->nr_maps; i++) {
4909
kfree(set->map[i].mq_map);
4910
set->map[i].mq_map = NULL;
4911
}
4912
kfree(set->tags);
4913
set->tags = NULL;
4914
out_cleanup_tags_srcu:
4915
cleanup_srcu_struct(&set->tags_srcu);
4916
out_cleanup_srcu:
4917
if (set->flags & BLK_MQ_F_BLOCKING)
4918
cleanup_srcu_struct(set->srcu);
4919
out_free_srcu:
4920
if (set->flags & BLK_MQ_F_BLOCKING)
4921
kfree(set->srcu);
4922
return ret;
4923
}
4924
EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4925
4926
/* allocate and initialize a tagset for a simple single-queue device */
4927
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4928
const struct blk_mq_ops *ops, unsigned int queue_depth,
4929
unsigned int set_flags)
4930
{
4931
memset(set, 0, sizeof(*set));
4932
set->ops = ops;
4933
set->nr_hw_queues = 1;
4934
set->nr_maps = 1;
4935
set->queue_depth = queue_depth;
4936
set->numa_node = NUMA_NO_NODE;
4937
set->flags = set_flags;
4938
return blk_mq_alloc_tag_set(set);
4939
}
4940
EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4941
4942
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4943
{
4944
int i, j;
4945
4946
for (i = 0; i < set->nr_hw_queues; i++)
4947
__blk_mq_free_map_and_rqs(set, i);
4948
4949
if (blk_mq_is_shared_tags(set->flags)) {
4950
blk_mq_free_map_and_rqs(set, set->shared_tags,
4951
BLK_MQ_NO_HCTX_IDX);
4952
}
4953
4954
for (j = 0; j < set->nr_maps; j++) {
4955
kfree(set->map[j].mq_map);
4956
set->map[j].mq_map = NULL;
4957
}
4958
4959
kfree(set->tags);
4960
set->tags = NULL;
4961
4962
srcu_barrier(&set->tags_srcu);
4963
cleanup_srcu_struct(&set->tags_srcu);
4964
if (set->flags & BLK_MQ_F_BLOCKING) {
4965
cleanup_srcu_struct(set->srcu);
4966
kfree(set->srcu);
4967
}
4968
}
4969
EXPORT_SYMBOL(blk_mq_free_tag_set);
4970
4971
struct elevator_tags *blk_mq_update_nr_requests(struct request_queue *q,
4972
struct elevator_tags *et,
4973
unsigned int nr)
4974
{
4975
struct blk_mq_tag_set *set = q->tag_set;
4976
struct elevator_tags *old_et = NULL;
4977
struct blk_mq_hw_ctx *hctx;
4978
unsigned long i;
4979
4980
blk_mq_quiesce_queue(q);
4981
4982
if (blk_mq_is_shared_tags(set->flags)) {
4983
/*
4984
* Shared tags, for sched tags, we allocate max initially hence
4985
* tags can't grow, see blk_mq_alloc_sched_tags().
4986
*/
4987
if (q->elevator)
4988
blk_mq_tag_update_sched_shared_tags(q, nr);
4989
else
4990
blk_mq_tag_resize_shared_tags(set, nr);
4991
} else if (!q->elevator) {
4992
/*
4993
* Non-shared hardware tags, nr is already checked from
4994
* queue_requests_store() and tags can't grow.
4995
*/
4996
queue_for_each_hw_ctx(q, hctx, i) {
4997
if (!hctx->tags)
4998
continue;
4999
sbitmap_queue_resize(&hctx->tags->bitmap_tags,
5000
nr - hctx->tags->nr_reserved_tags);
5001
}
5002
} else if (nr <= q->elevator->et->nr_requests) {
5003
/* Non-shared sched tags, and tags don't grow. */
5004
queue_for_each_hw_ctx(q, hctx, i) {
5005
if (!hctx->sched_tags)
5006
continue;
5007
sbitmap_queue_resize(&hctx->sched_tags->bitmap_tags,
5008
nr - hctx->sched_tags->nr_reserved_tags);
5009
}
5010
} else {
5011
/* Non-shared sched tags, and tags grow */
5012
queue_for_each_hw_ctx(q, hctx, i)
5013
hctx->sched_tags = et->tags[i];
5014
old_et = q->elevator->et;
5015
q->elevator->et = et;
5016
}
5017
5018
q->nr_requests = nr;
5019
if (q->elevator && q->elevator->type->ops.depth_updated)
5020
q->elevator->type->ops.depth_updated(q);
5021
5022
blk_mq_unquiesce_queue(q);
5023
return old_et;
5024
}
5025
5026
/*
5027
* Switch back to the elevator type stored in the xarray.
5028
*/
5029
static void blk_mq_elv_switch_back(struct request_queue *q,
5030
struct xarray *elv_tbl)
5031
{
5032
struct elv_change_ctx *ctx = xa_load(elv_tbl, q->id);
5033
5034
if (WARN_ON_ONCE(!ctx))
5035
return;
5036
5037
/* The elv_update_nr_hw_queues unfreezes the queue. */
5038
elv_update_nr_hw_queues(q, ctx);
5039
5040
/* Drop the reference acquired in blk_mq_elv_switch_none. */
5041
if (ctx->type)
5042
elevator_put(ctx->type);
5043
}
5044
5045
/*
5046
* Stores elevator name and type in ctx and set current elevator to none.
5047
*/
5048
static int blk_mq_elv_switch_none(struct request_queue *q,
5049
struct xarray *elv_tbl)
5050
{
5051
struct elv_change_ctx *ctx;
5052
5053
lockdep_assert_held_write(&q->tag_set->update_nr_hwq_lock);
5054
5055
/*
5056
* Accessing q->elevator without holding q->elevator_lock is safe here
5057
* because we're called from nr_hw_queue update which is protected by
5058
* set->update_nr_hwq_lock in the writer context. So, scheduler update/
5059
* switch code (which acquires the same lock in the reader context)
5060
* can't run concurrently.
5061
*/
5062
if (q->elevator) {
5063
ctx = xa_load(elv_tbl, q->id);
5064
if (WARN_ON_ONCE(!ctx))
5065
return -ENOENT;
5066
5067
ctx->name = q->elevator->type->elevator_name;
5068
5069
/*
5070
* Before we switch elevator to 'none', take a reference to
5071
* the elevator module so that while nr_hw_queue update is
5072
* running, no one can remove elevator module. We'd put the
5073
* reference to elevator module later when we switch back
5074
* elevator.
5075
*/
5076
__elevator_get(q->elevator->type);
5077
5078
/*
5079
* Store elevator type so that we can release the reference
5080
* taken above later.
5081
*/
5082
ctx->type = q->elevator->type;
5083
elevator_set_none(q);
5084
}
5085
return 0;
5086
}
5087
5088
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
5089
int nr_hw_queues)
5090
{
5091
struct request_queue *q;
5092
int prev_nr_hw_queues = set->nr_hw_queues;
5093
unsigned int memflags;
5094
int i;
5095
struct xarray elv_tbl;
5096
bool queues_frozen = false;
5097
5098
lockdep_assert_held(&set->tag_list_lock);
5099
5100
if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
5101
nr_hw_queues = nr_cpu_ids;
5102
if (nr_hw_queues < 1)
5103
return;
5104
if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
5105
return;
5106
5107
memflags = memalloc_noio_save();
5108
5109
xa_init(&elv_tbl);
5110
if (blk_mq_alloc_sched_ctx_batch(&elv_tbl, set) < 0)
5111
goto out_free_ctx;
5112
5113
if (blk_mq_alloc_sched_res_batch(&elv_tbl, set, nr_hw_queues) < 0)
5114
goto out_free_ctx;
5115
5116
list_for_each_entry(q, &set->tag_list, tag_set_list) {
5117
blk_mq_debugfs_unregister_hctxs(q);
5118
blk_mq_sysfs_unregister_hctxs(q);
5119
}
5120
5121
/*
5122
* Switch IO scheduler to 'none', cleaning up the data associated
5123
* with the previous scheduler. We will switch back once we are done
5124
* updating the new sw to hw queue mappings.
5125
*/
5126
list_for_each_entry(q, &set->tag_list, tag_set_list)
5127
if (blk_mq_elv_switch_none(q, &elv_tbl))
5128
goto switch_back;
5129
5130
list_for_each_entry(q, &set->tag_list, tag_set_list)
5131
blk_mq_freeze_queue_nomemsave(q);
5132
queues_frozen = true;
5133
if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5134
goto switch_back;
5135
5136
fallback:
5137
blk_mq_update_queue_map(set);
5138
list_for_each_entry(q, &set->tag_list, tag_set_list) {
5139
__blk_mq_realloc_hw_ctxs(set, q);
5140
5141
if (q->nr_hw_queues != set->nr_hw_queues) {
5142
int i = prev_nr_hw_queues;
5143
5144
pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5145
nr_hw_queues, prev_nr_hw_queues);
5146
for (; i < set->nr_hw_queues; i++)
5147
__blk_mq_free_map_and_rqs(set, i);
5148
5149
set->nr_hw_queues = prev_nr_hw_queues;
5150
goto fallback;
5151
}
5152
blk_mq_map_swqueue(q);
5153
}
5154
switch_back:
5155
/* The blk_mq_elv_switch_back unfreezes queue for us. */
5156
list_for_each_entry(q, &set->tag_list, tag_set_list) {
5157
/* switch_back expects queue to be frozen */
5158
if (!queues_frozen)
5159
blk_mq_freeze_queue_nomemsave(q);
5160
blk_mq_elv_switch_back(q, &elv_tbl);
5161
}
5162
5163
list_for_each_entry(q, &set->tag_list, tag_set_list) {
5164
blk_mq_sysfs_register_hctxs(q);
5165
blk_mq_debugfs_register_hctxs(q);
5166
5167
blk_mq_remove_hw_queues_cpuhp(q);
5168
blk_mq_add_hw_queues_cpuhp(q);
5169
}
5170
5171
out_free_ctx:
5172
blk_mq_free_sched_ctx_batch(&elv_tbl);
5173
xa_destroy(&elv_tbl);
5174
memalloc_noio_restore(memflags);
5175
5176
/* Free the excess tags when nr_hw_queues shrink. */
5177
for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5178
__blk_mq_free_map_and_rqs(set, i);
5179
}
5180
5181
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5182
{
5183
down_write(&set->update_nr_hwq_lock);
5184
mutex_lock(&set->tag_list_lock);
5185
__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5186
mutex_unlock(&set->tag_list_lock);
5187
up_write(&set->update_nr_hwq_lock);
5188
}
5189
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5190
5191
static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5192
struct io_comp_batch *iob, unsigned int flags)
5193
{
5194
int ret;
5195
5196
do {
5197
ret = q->mq_ops->poll(hctx, iob);
5198
if (ret > 0)
5199
return ret;
5200
if (task_sigpending(current))
5201
return 1;
5202
if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5203
break;
5204
cpu_relax();
5205
} while (!need_resched());
5206
5207
return 0;
5208
}
5209
5210
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5211
struct io_comp_batch *iob, unsigned int flags)
5212
{
5213
if (!blk_mq_can_poll(q))
5214
return 0;
5215
return blk_hctx_poll(q, q->queue_hw_ctx[cookie], iob, flags);
5216
}
5217
5218
int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5219
unsigned int poll_flags)
5220
{
5221
struct request_queue *q = rq->q;
5222
int ret;
5223
5224
if (!blk_rq_is_poll(rq))
5225
return 0;
5226
if (!percpu_ref_tryget(&q->q_usage_counter))
5227
return 0;
5228
5229
ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5230
blk_queue_exit(q);
5231
5232
return ret;
5233
}
5234
EXPORT_SYMBOL_GPL(blk_rq_poll);
5235
5236
unsigned int blk_mq_rq_cpu(struct request *rq)
5237
{
5238
return rq->mq_ctx->cpu;
5239
}
5240
EXPORT_SYMBOL(blk_mq_rq_cpu);
5241
5242
void blk_mq_cancel_work_sync(struct request_queue *q)
5243
{
5244
struct blk_mq_hw_ctx *hctx;
5245
unsigned long i;
5246
5247
cancel_delayed_work_sync(&q->requeue_work);
5248
5249
queue_for_each_hw_ctx(q, hctx, i)
5250
cancel_delayed_work_sync(&hctx->run_work);
5251
}
5252
5253
static int __init blk_mq_init(void)
5254
{
5255
int i;
5256
5257
for_each_possible_cpu(i)
5258
init_llist_head(&per_cpu(blk_cpu_done, i));
5259
for_each_possible_cpu(i)
5260
INIT_CSD(&per_cpu(blk_cpu_csd, i),
5261
__blk_mq_complete_request_remote, NULL);
5262
open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5263
5264
cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5265
"block/softirq:dead", NULL,
5266
blk_softirq_cpu_dead);
5267
cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5268
blk_mq_hctx_notify_dead);
5269
cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5270
blk_mq_hctx_notify_online,
5271
blk_mq_hctx_notify_offline);
5272
return 0;
5273
}
5274
subsys_initcall(blk_mq_init);
5275
5276