Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-mq.h
26242 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef INT_BLK_MQ_H
3
#define INT_BLK_MQ_H
4
5
#include <linux/blk-mq.h>
6
#include "blk-stat.h"
7
8
struct blk_mq_tag_set;
9
10
struct blk_mq_ctxs {
11
struct kobject kobj;
12
struct blk_mq_ctx __percpu *queue_ctx;
13
};
14
15
/**
16
* struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17
*/
18
struct blk_mq_ctx {
19
struct {
20
spinlock_t lock;
21
struct list_head rq_lists[HCTX_MAX_TYPES];
22
} ____cacheline_aligned_in_smp;
23
24
unsigned int cpu;
25
unsigned short index_hw[HCTX_MAX_TYPES];
26
struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
27
28
struct request_queue *queue;
29
struct blk_mq_ctxs *ctxs;
30
struct kobject kobj;
31
} ____cacheline_aligned_in_smp;
32
33
enum {
34
BLK_MQ_NO_TAG = -1U,
35
BLK_MQ_TAG_MIN = 1,
36
BLK_MQ_TAG_MAX = BLK_MQ_NO_TAG - 1,
37
};
38
39
#define BLK_MQ_CPU_WORK_BATCH (8)
40
41
typedef unsigned int __bitwise blk_insert_t;
42
#define BLK_MQ_INSERT_AT_HEAD ((__force blk_insert_t)0x01)
43
44
void blk_mq_submit_bio(struct bio *bio);
45
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
46
unsigned int flags);
47
void blk_mq_exit_queue(struct request_queue *q);
48
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
49
void blk_mq_wake_waiters(struct request_queue *q);
50
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
51
bool);
52
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
53
struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
54
struct blk_mq_ctx *start);
55
void blk_mq_put_rq_ref(struct request *rq);
56
57
/*
58
* Internal helpers for allocating/freeing the request map
59
*/
60
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
61
unsigned int hctx_idx);
62
void blk_mq_free_rq_map(struct blk_mq_tags *tags);
63
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
64
unsigned int hctx_idx, unsigned int depth);
65
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
66
struct blk_mq_tags *tags,
67
unsigned int hctx_idx);
68
69
/*
70
* CPU -> queue mappings
71
*/
72
extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
73
74
/*
75
* blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
76
* @q: request queue
77
* @type: the hctx type index
78
* @cpu: CPU
79
*/
80
static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
81
enum hctx_type type,
82
unsigned int cpu)
83
{
84
return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]);
85
}
86
87
static inline enum hctx_type blk_mq_get_hctx_type(blk_opf_t opf)
88
{
89
enum hctx_type type = HCTX_TYPE_DEFAULT;
90
91
/*
92
* The caller ensure that if REQ_POLLED, poll must be enabled.
93
*/
94
if (opf & REQ_POLLED)
95
type = HCTX_TYPE_POLL;
96
else if ((opf & REQ_OP_MASK) == REQ_OP_READ)
97
type = HCTX_TYPE_READ;
98
return type;
99
}
100
101
/*
102
* blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
103
* @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED).
104
* @ctx: software queue cpu ctx
105
*/
106
static inline struct blk_mq_hw_ctx *blk_mq_map_queue(blk_opf_t opf,
107
struct blk_mq_ctx *ctx)
108
{
109
return ctx->hctxs[blk_mq_get_hctx_type(opf)];
110
}
111
112
/*
113
* sysfs helpers
114
*/
115
extern void blk_mq_sysfs_init(struct request_queue *q);
116
extern void blk_mq_sysfs_deinit(struct request_queue *q);
117
int blk_mq_sysfs_register(struct gendisk *disk);
118
void blk_mq_sysfs_unregister(struct gendisk *disk);
119
int blk_mq_sysfs_register_hctxs(struct request_queue *q);
120
void blk_mq_sysfs_unregister_hctxs(struct request_queue *q);
121
extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
122
void blk_mq_free_plug_rqs(struct blk_plug *plug);
123
void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
124
125
void blk_mq_cancel_work_sync(struct request_queue *q);
126
127
void blk_mq_release(struct request_queue *q);
128
129
static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
130
unsigned int cpu)
131
{
132
return per_cpu_ptr(q->queue_ctx, cpu);
133
}
134
135
/*
136
* This assumes per-cpu software queueing queues. They could be per-node
137
* as well, for instance. For now this is hardcoded as-is. Note that we don't
138
* care about preemption, since we know the ctx's are persistent. This does
139
* mean that we can't rely on ctx always matching the currently running CPU.
140
*/
141
static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
142
{
143
return __blk_mq_get_ctx(q, raw_smp_processor_id());
144
}
145
146
struct blk_mq_alloc_data {
147
/* input parameter */
148
struct request_queue *q;
149
blk_mq_req_flags_t flags;
150
unsigned int shallow_depth;
151
blk_opf_t cmd_flags;
152
req_flags_t rq_flags;
153
154
/* allocate multiple requests/tags in one go */
155
unsigned int nr_tags;
156
struct rq_list *cached_rqs;
157
158
/* input & output parameter */
159
struct blk_mq_ctx *ctx;
160
struct blk_mq_hw_ctx *hctx;
161
};
162
163
struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags,
164
unsigned int reserved_tags, unsigned int flags, int node);
165
void blk_mq_free_tags(struct blk_mq_tags *tags);
166
167
unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data);
168
unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
169
unsigned int *offset);
170
void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
171
unsigned int tag);
172
void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags);
173
int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
174
struct blk_mq_tags **tags, unsigned int depth, bool can_grow);
175
void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set,
176
unsigned int size);
177
void blk_mq_tag_update_sched_shared_tags(struct request_queue *q);
178
179
void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool);
180
void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
181
void *priv);
182
void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
183
void *priv);
184
185
static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt,
186
struct blk_mq_hw_ctx *hctx)
187
{
188
if (!hctx)
189
return &bt->ws[0];
190
return sbq_wait_ptr(bt, &hctx->wait_index);
191
}
192
193
void __blk_mq_tag_busy(struct blk_mq_hw_ctx *);
194
void __blk_mq_tag_idle(struct blk_mq_hw_ctx *);
195
196
static inline void blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
197
{
198
if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
199
__blk_mq_tag_busy(hctx);
200
}
201
202
static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
203
{
204
if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
205
__blk_mq_tag_idle(hctx);
206
}
207
208
static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags,
209
unsigned int tag)
210
{
211
return tag < tags->nr_reserved_tags;
212
}
213
214
static inline bool blk_mq_is_shared_tags(unsigned int flags)
215
{
216
return flags & BLK_MQ_F_TAG_HCTX_SHARED;
217
}
218
219
static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
220
{
221
if (data->rq_flags & RQF_SCHED_TAGS)
222
return data->hctx->sched_tags;
223
return data->hctx->tags;
224
}
225
226
static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
227
{
228
/* Fast path: hardware queue is not stopped most of the time. */
229
if (likely(!test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
230
return false;
231
232
/*
233
* This barrier is used to order adding of dispatch list before and
234
* the test of BLK_MQ_S_STOPPED below. Pairs with the memory barrier
235
* in blk_mq_start_stopped_hw_queue() so that dispatch code could
236
* either see BLK_MQ_S_STOPPED is cleared or dispatch list is not
237
* empty to avoid missing dispatching requests.
238
*/
239
smp_mb();
240
241
return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
242
}
243
244
static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
245
{
246
return hctx->nr_ctx && hctx->tags;
247
}
248
249
void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2]);
250
251
static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
252
int budget_token)
253
{
254
if (q->mq_ops->put_budget)
255
q->mq_ops->put_budget(q, budget_token);
256
}
257
258
static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
259
{
260
if (q->mq_ops->get_budget)
261
return q->mq_ops->get_budget(q);
262
return 0;
263
}
264
265
static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
266
{
267
if (token < 0)
268
return;
269
270
if (rq->q->mq_ops->set_rq_budget_token)
271
rq->q->mq_ops->set_rq_budget_token(rq, token);
272
}
273
274
static inline int blk_mq_get_rq_budget_token(struct request *rq)
275
{
276
if (rq->q->mq_ops->get_rq_budget_token)
277
return rq->q->mq_ops->get_rq_budget_token(rq);
278
return -1;
279
}
280
281
static inline void __blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
282
int val)
283
{
284
if (blk_mq_is_shared_tags(hctx->flags))
285
atomic_add(val, &hctx->queue->nr_active_requests_shared_tags);
286
else
287
atomic_add(val, &hctx->nr_active);
288
}
289
290
static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
291
{
292
__blk_mq_add_active_requests(hctx, 1);
293
}
294
295
static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
296
int val)
297
{
298
if (blk_mq_is_shared_tags(hctx->flags))
299
atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags);
300
else
301
atomic_sub(val, &hctx->nr_active);
302
}
303
304
static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
305
{
306
__blk_mq_sub_active_requests(hctx, 1);
307
}
308
309
static inline void blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
310
int val)
311
{
312
if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
313
__blk_mq_add_active_requests(hctx, val);
314
}
315
316
static inline void blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
317
{
318
if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
319
__blk_mq_inc_active_requests(hctx);
320
}
321
322
static inline void blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
323
int val)
324
{
325
if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
326
__blk_mq_sub_active_requests(hctx, val);
327
}
328
329
static inline void blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
330
{
331
if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
332
__blk_mq_dec_active_requests(hctx);
333
}
334
335
static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
336
{
337
if (blk_mq_is_shared_tags(hctx->flags))
338
return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
339
return atomic_read(&hctx->nr_active);
340
}
341
static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
342
struct request *rq)
343
{
344
blk_mq_dec_active_requests(hctx);
345
blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
346
rq->tag = BLK_MQ_NO_TAG;
347
}
348
349
static inline void blk_mq_put_driver_tag(struct request *rq)
350
{
351
if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
352
return;
353
354
__blk_mq_put_driver_tag(rq->mq_hctx, rq);
355
}
356
357
bool __blk_mq_alloc_driver_tag(struct request *rq);
358
359
static inline bool blk_mq_get_driver_tag(struct request *rq)
360
{
361
if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
362
return false;
363
364
return true;
365
}
366
367
static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
368
{
369
int cpu;
370
371
for_each_possible_cpu(cpu)
372
qmap->mq_map[cpu] = 0;
373
}
374
375
/* Free all requests on the list */
376
static inline void blk_mq_free_requests(struct list_head *list)
377
{
378
while (!list_empty(list)) {
379
struct request *rq = list_entry_rq(list->next);
380
381
list_del_init(&rq->queuelist);
382
blk_mq_free_request(rq);
383
}
384
}
385
386
/*
387
* For shared tag users, we track the number of currently active users
388
* and attempt to provide a fair share of the tag depth for each of them.
389
*/
390
static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
391
struct sbitmap_queue *bt)
392
{
393
unsigned int depth, users;
394
395
if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
396
return true;
397
398
/*
399
* Don't try dividing an ant
400
*/
401
if (bt->sb.depth == 1)
402
return true;
403
404
if (blk_mq_is_shared_tags(hctx->flags)) {
405
struct request_queue *q = hctx->queue;
406
407
if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
408
return true;
409
} else {
410
if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
411
return true;
412
}
413
414
users = READ_ONCE(hctx->tags->active_queues);
415
if (!users)
416
return true;
417
418
/*
419
* Allow at least some tags
420
*/
421
depth = max((bt->sb.depth + users - 1) / users, 4U);
422
return __blk_mq_active_requests(hctx) < depth;
423
}
424
425
/* run the code block in @dispatch_ops with rcu/srcu read lock held */
426
#define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops) \
427
do { \
428
if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) { \
429
struct blk_mq_tag_set *__tag_set = (q)->tag_set; \
430
int srcu_idx; \
431
\
432
might_sleep_if(check_sleep); \
433
srcu_idx = srcu_read_lock(__tag_set->srcu); \
434
(dispatch_ops); \
435
srcu_read_unlock(__tag_set->srcu, srcu_idx); \
436
} else { \
437
rcu_read_lock(); \
438
(dispatch_ops); \
439
rcu_read_unlock(); \
440
} \
441
} while (0)
442
443
#define blk_mq_run_dispatch_ops(q, dispatch_ops) \
444
__blk_mq_run_dispatch_ops(q, true, dispatch_ops) \
445
446
static inline bool blk_mq_can_poll(struct request_queue *q)
447
{
448
return (q->limits.features & BLK_FEAT_POLL) &&
449
q->tag_set->map[HCTX_TYPE_POLL].nr_queues;
450
}
451
452
#endif
453
454