Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/crypto/aegis128-neon-inner.c
26131 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright (C) 2019 Linaro, Ltd. <[email protected]>
4
*/
5
6
#ifdef CONFIG_ARM64
7
#include <asm/neon-intrinsics.h>
8
9
#define AES_ROUND "aese %0.16b, %1.16b \n\t aesmc %0.16b, %0.16b"
10
#else
11
#include <arm_neon.h>
12
13
#define AES_ROUND "aese.8 %q0, %q1 \n\t aesmc.8 %q0, %q0"
14
#endif
15
16
#define AEGIS_BLOCK_SIZE 16
17
18
#include <stddef.h>
19
#include "aegis-neon.h"
20
21
extern int aegis128_have_aes_insn;
22
23
void *memcpy(void *dest, const void *src, size_t n);
24
25
struct aegis128_state {
26
uint8x16_t v[5];
27
};
28
29
extern const uint8_t crypto_aes_sbox[];
30
31
static struct aegis128_state aegis128_load_state_neon(const void *state)
32
{
33
return (struct aegis128_state){ {
34
vld1q_u8(state),
35
vld1q_u8(state + 16),
36
vld1q_u8(state + 32),
37
vld1q_u8(state + 48),
38
vld1q_u8(state + 64)
39
} };
40
}
41
42
static void aegis128_save_state_neon(struct aegis128_state st, void *state)
43
{
44
vst1q_u8(state, st.v[0]);
45
vst1q_u8(state + 16, st.v[1]);
46
vst1q_u8(state + 32, st.v[2]);
47
vst1q_u8(state + 48, st.v[3]);
48
vst1q_u8(state + 64, st.v[4]);
49
}
50
51
static inline __attribute__((always_inline))
52
uint8x16_t aegis_aes_round(uint8x16_t w)
53
{
54
uint8x16_t z = {};
55
56
#ifdef CONFIG_ARM64
57
if (!__builtin_expect(aegis128_have_aes_insn, 1)) {
58
static const uint8_t shift_rows[] = {
59
0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
60
0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
61
};
62
static const uint8_t ror32by8[] = {
63
0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
64
0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
65
};
66
uint8x16_t v;
67
68
// shift rows
69
w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
70
71
// sub bytes
72
#ifndef CONFIG_CC_IS_GCC
73
v = vqtbl4q_u8(vld1q_u8_x4(crypto_aes_sbox), w);
74
v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x40), w - 0x40);
75
v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x80), w - 0x80);
76
v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0xc0), w - 0xc0);
77
#else
78
asm("tbl %0.16b, {v16.16b-v19.16b}, %1.16b" : "=w"(v) : "w"(w));
79
w -= 0x40;
80
asm("tbx %0.16b, {v20.16b-v23.16b}, %1.16b" : "+w"(v) : "w"(w));
81
w -= 0x40;
82
asm("tbx %0.16b, {v24.16b-v27.16b}, %1.16b" : "+w"(v) : "w"(w));
83
w -= 0x40;
84
asm("tbx %0.16b, {v28.16b-v31.16b}, %1.16b" : "+w"(v) : "w"(w));
85
#endif
86
87
// mix columns
88
w = (v << 1) ^ (uint8x16_t)(((int8x16_t)v >> 7) & 0x1b);
89
w ^= (uint8x16_t)vrev32q_u16((uint16x8_t)v);
90
w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
91
92
return w;
93
}
94
#endif
95
96
/*
97
* We use inline asm here instead of the vaeseq_u8/vaesmcq_u8 intrinsics
98
* to force the compiler to issue the aese/aesmc instructions in pairs.
99
* This is much faster on many cores, where the instruction pair can
100
* execute in a single cycle.
101
*/
102
asm(AES_ROUND : "+w"(w) : "w"(z));
103
return w;
104
}
105
106
static inline __attribute__((always_inline))
107
struct aegis128_state aegis128_update_neon(struct aegis128_state st,
108
uint8x16_t m)
109
{
110
m ^= aegis_aes_round(st.v[4]);
111
st.v[4] ^= aegis_aes_round(st.v[3]);
112
st.v[3] ^= aegis_aes_round(st.v[2]);
113
st.v[2] ^= aegis_aes_round(st.v[1]);
114
st.v[1] ^= aegis_aes_round(st.v[0]);
115
st.v[0] ^= m;
116
117
return st;
118
}
119
120
static inline __attribute__((always_inline))
121
void preload_sbox(void)
122
{
123
if (!IS_ENABLED(CONFIG_ARM64) ||
124
!IS_ENABLED(CONFIG_CC_IS_GCC) ||
125
__builtin_expect(aegis128_have_aes_insn, 1))
126
return;
127
128
asm("ld1 {v16.16b-v19.16b}, [%0], #64 \n\t"
129
"ld1 {v20.16b-v23.16b}, [%0], #64 \n\t"
130
"ld1 {v24.16b-v27.16b}, [%0], #64 \n\t"
131
"ld1 {v28.16b-v31.16b}, [%0] \n\t"
132
:: "r"(crypto_aes_sbox));
133
}
134
135
void crypto_aegis128_init_neon(void *state, const void *key, const void *iv)
136
{
137
static const uint8_t const0[] = {
138
0x00, 0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d,
139
0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62,
140
};
141
static const uint8_t const1[] = {
142
0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1,
143
0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd,
144
};
145
uint8x16_t k = vld1q_u8(key);
146
uint8x16_t kiv = k ^ vld1q_u8(iv);
147
struct aegis128_state st = {{
148
kiv,
149
vld1q_u8(const1),
150
vld1q_u8(const0),
151
k ^ vld1q_u8(const0),
152
k ^ vld1q_u8(const1),
153
}};
154
int i;
155
156
preload_sbox();
157
158
for (i = 0; i < 5; i++) {
159
st = aegis128_update_neon(st, k);
160
st = aegis128_update_neon(st, kiv);
161
}
162
aegis128_save_state_neon(st, state);
163
}
164
165
void crypto_aegis128_update_neon(void *state, const void *msg)
166
{
167
struct aegis128_state st = aegis128_load_state_neon(state);
168
169
preload_sbox();
170
171
st = aegis128_update_neon(st, vld1q_u8(msg));
172
173
aegis128_save_state_neon(st, state);
174
}
175
176
#ifdef CONFIG_ARM
177
/*
178
* AArch32 does not provide these intrinsics natively because it does not
179
* implement the underlying instructions. AArch32 only provides 64-bit
180
* wide vtbl.8/vtbx.8 instruction, so use those instead.
181
*/
182
static uint8x16_t vqtbl1q_u8(uint8x16_t a, uint8x16_t b)
183
{
184
union {
185
uint8x16_t val;
186
uint8x8x2_t pair;
187
} __a = { a };
188
189
return vcombine_u8(vtbl2_u8(__a.pair, vget_low_u8(b)),
190
vtbl2_u8(__a.pair, vget_high_u8(b)));
191
}
192
193
static uint8x16_t vqtbx1q_u8(uint8x16_t v, uint8x16_t a, uint8x16_t b)
194
{
195
union {
196
uint8x16_t val;
197
uint8x8x2_t pair;
198
} __a = { a };
199
200
return vcombine_u8(vtbx2_u8(vget_low_u8(v), __a.pair, vget_low_u8(b)),
201
vtbx2_u8(vget_high_u8(v), __a.pair, vget_high_u8(b)));
202
}
203
204
static int8_t vminvq_s8(int8x16_t v)
205
{
206
int8x8_t s = vpmin_s8(vget_low_s8(v), vget_high_s8(v));
207
208
s = vpmin_s8(s, s);
209
s = vpmin_s8(s, s);
210
s = vpmin_s8(s, s);
211
212
return vget_lane_s8(s, 0);
213
}
214
#endif
215
216
static const uint8_t permute[] __aligned(64) = {
217
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
218
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
219
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
220
};
221
222
void crypto_aegis128_encrypt_chunk_neon(void *state, void *dst, const void *src,
223
unsigned int size)
224
{
225
struct aegis128_state st = aegis128_load_state_neon(state);
226
const int short_input = size < AEGIS_BLOCK_SIZE;
227
uint8x16_t msg;
228
229
preload_sbox();
230
231
while (size >= AEGIS_BLOCK_SIZE) {
232
uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
233
234
msg = vld1q_u8(src);
235
st = aegis128_update_neon(st, msg);
236
msg ^= s;
237
vst1q_u8(dst, msg);
238
239
size -= AEGIS_BLOCK_SIZE;
240
src += AEGIS_BLOCK_SIZE;
241
dst += AEGIS_BLOCK_SIZE;
242
}
243
244
if (size > 0) {
245
uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
246
uint8_t buf[AEGIS_BLOCK_SIZE];
247
const void *in = src;
248
void *out = dst;
249
uint8x16_t m;
250
251
if (__builtin_expect(short_input, 0))
252
in = out = memcpy(buf + AEGIS_BLOCK_SIZE - size, src, size);
253
254
m = vqtbl1q_u8(vld1q_u8(in + size - AEGIS_BLOCK_SIZE),
255
vld1q_u8(permute + 32 - size));
256
257
st = aegis128_update_neon(st, m);
258
259
vst1q_u8(out + size - AEGIS_BLOCK_SIZE,
260
vqtbl1q_u8(m ^ s, vld1q_u8(permute + size)));
261
262
if (__builtin_expect(short_input, 0))
263
memcpy(dst, out, size);
264
else
265
vst1q_u8(out - AEGIS_BLOCK_SIZE, msg);
266
}
267
268
aegis128_save_state_neon(st, state);
269
}
270
271
void crypto_aegis128_decrypt_chunk_neon(void *state, void *dst, const void *src,
272
unsigned int size)
273
{
274
struct aegis128_state st = aegis128_load_state_neon(state);
275
const int short_input = size < AEGIS_BLOCK_SIZE;
276
uint8x16_t msg;
277
278
preload_sbox();
279
280
while (size >= AEGIS_BLOCK_SIZE) {
281
msg = vld1q_u8(src) ^ st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
282
st = aegis128_update_neon(st, msg);
283
vst1q_u8(dst, msg);
284
285
size -= AEGIS_BLOCK_SIZE;
286
src += AEGIS_BLOCK_SIZE;
287
dst += AEGIS_BLOCK_SIZE;
288
}
289
290
if (size > 0) {
291
uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
292
uint8_t buf[AEGIS_BLOCK_SIZE];
293
const void *in = src;
294
void *out = dst;
295
uint8x16_t m;
296
297
if (__builtin_expect(short_input, 0))
298
in = out = memcpy(buf + AEGIS_BLOCK_SIZE - size, src, size);
299
300
m = s ^ vqtbx1q_u8(s, vld1q_u8(in + size - AEGIS_BLOCK_SIZE),
301
vld1q_u8(permute + 32 - size));
302
303
st = aegis128_update_neon(st, m);
304
305
vst1q_u8(out + size - AEGIS_BLOCK_SIZE,
306
vqtbl1q_u8(m, vld1q_u8(permute + size)));
307
308
if (__builtin_expect(short_input, 0))
309
memcpy(dst, out, size);
310
else
311
vst1q_u8(out - AEGIS_BLOCK_SIZE, msg);
312
}
313
314
aegis128_save_state_neon(st, state);
315
}
316
317
int crypto_aegis128_final_neon(void *state, void *tag_xor,
318
unsigned int assoclen,
319
unsigned int cryptlen,
320
unsigned int authsize)
321
{
322
struct aegis128_state st = aegis128_load_state_neon(state);
323
uint8x16_t v;
324
int i;
325
326
preload_sbox();
327
328
v = st.v[3] ^ (uint8x16_t)vcombine_u64(vmov_n_u64(8ULL * assoclen),
329
vmov_n_u64(8ULL * cryptlen));
330
331
for (i = 0; i < 7; i++)
332
st = aegis128_update_neon(st, v);
333
334
v = st.v[0] ^ st.v[1] ^ st.v[2] ^ st.v[3] ^ st.v[4];
335
336
if (authsize > 0) {
337
v = vqtbl1q_u8(~vceqq_u8(v, vld1q_u8(tag_xor)),
338
vld1q_u8(permute + authsize));
339
340
return vminvq_s8((int8x16_t)v);
341
}
342
343
vst1q_u8(tag_xor, v);
344
return 0;
345
}
346
347