Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/crypto/crypto_engine.c
26135 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Handle async block request by crypto hardware engine.
4
*
5
* Copyright (C) 2016 Linaro, Inc.
6
*
7
* Author: Baolin Wang <[email protected]>
8
*/
9
10
#include <crypto/internal/aead.h>
11
#include <crypto/internal/akcipher.h>
12
#include <crypto/internal/engine.h>
13
#include <crypto/internal/hash.h>
14
#include <crypto/internal/kpp.h>
15
#include <crypto/internal/skcipher.h>
16
#include <linux/err.h>
17
#include <linux/delay.h>
18
#include <linux/device.h>
19
#include <linux/kernel.h>
20
#include <linux/module.h>
21
#include <uapi/linux/sched/types.h>
22
#include "internal.h"
23
24
#define CRYPTO_ENGINE_MAX_QLEN 10
25
26
struct crypto_engine_alg {
27
struct crypto_alg base;
28
struct crypto_engine_op op;
29
};
30
31
/**
32
* crypto_finalize_request - finalize one request if the request is done
33
* @engine: the hardware engine
34
* @req: the request need to be finalized
35
* @err: error number
36
*/
37
static void crypto_finalize_request(struct crypto_engine *engine,
38
struct crypto_async_request *req, int err)
39
{
40
unsigned long flags;
41
42
/*
43
* If hardware cannot enqueue more requests
44
* and retry mechanism is not supported
45
* make sure we are completing the current request
46
*/
47
if (!engine->retry_support) {
48
spin_lock_irqsave(&engine->queue_lock, flags);
49
if (engine->cur_req == req) {
50
engine->cur_req = NULL;
51
}
52
spin_unlock_irqrestore(&engine->queue_lock, flags);
53
}
54
55
lockdep_assert_in_softirq();
56
crypto_request_complete(req, err);
57
58
kthread_queue_work(engine->kworker, &engine->pump_requests);
59
}
60
61
/**
62
* crypto_pump_requests - dequeue one request from engine queue to process
63
* @engine: the hardware engine
64
* @in_kthread: true if we are in the context of the request pump thread
65
*
66
* This function checks if there is any request in the engine queue that
67
* needs processing and if so call out to the driver to initialize hardware
68
* and handle each request.
69
*/
70
static void crypto_pump_requests(struct crypto_engine *engine,
71
bool in_kthread)
72
{
73
struct crypto_async_request *async_req, *backlog;
74
struct crypto_engine_alg *alg;
75
struct crypto_engine_op *op;
76
unsigned long flags;
77
int ret;
78
79
spin_lock_irqsave(&engine->queue_lock, flags);
80
81
/* Make sure we are not already running a request */
82
if (!engine->retry_support && engine->cur_req)
83
goto out;
84
85
/* Check if the engine queue is idle */
86
if (!crypto_queue_len(&engine->queue) || !engine->running) {
87
if (!engine->busy)
88
goto out;
89
90
/* Only do teardown in the thread */
91
if (!in_kthread) {
92
kthread_queue_work(engine->kworker,
93
&engine->pump_requests);
94
goto out;
95
}
96
97
engine->busy = false;
98
goto out;
99
}
100
101
start_request:
102
/* Get the fist request from the engine queue to handle */
103
backlog = crypto_get_backlog(&engine->queue);
104
async_req = crypto_dequeue_request(&engine->queue);
105
if (!async_req)
106
goto out;
107
108
/*
109
* If hardware doesn't support the retry mechanism,
110
* keep track of the request we are processing now.
111
* We'll need it on completion (crypto_finalize_request).
112
*/
113
if (!engine->retry_support)
114
engine->cur_req = async_req;
115
116
if (!engine->busy)
117
engine->busy = true;
118
119
spin_unlock_irqrestore(&engine->queue_lock, flags);
120
121
alg = container_of(async_req->tfm->__crt_alg,
122
struct crypto_engine_alg, base);
123
op = &alg->op;
124
ret = op->do_one_request(engine, async_req);
125
126
/* Request unsuccessfully executed by hardware */
127
if (ret < 0) {
128
/*
129
* If hardware queue is full (-ENOSPC), requeue request
130
* regardless of backlog flag.
131
* Otherwise, unprepare and complete the request.
132
*/
133
if (!engine->retry_support ||
134
(ret != -ENOSPC)) {
135
dev_err(engine->dev,
136
"Failed to do one request from queue: %d\n",
137
ret);
138
goto req_err_1;
139
}
140
spin_lock_irqsave(&engine->queue_lock, flags);
141
/*
142
* If hardware was unable to execute request, enqueue it
143
* back in front of crypto-engine queue, to keep the order
144
* of requests.
145
*/
146
crypto_enqueue_request_head(&engine->queue, async_req);
147
148
kthread_queue_work(engine->kworker, &engine->pump_requests);
149
goto out;
150
}
151
152
goto retry;
153
154
req_err_1:
155
crypto_request_complete(async_req, ret);
156
157
retry:
158
if (backlog)
159
crypto_request_complete(backlog, -EINPROGRESS);
160
161
/* If retry mechanism is supported, send new requests to engine */
162
if (engine->retry_support) {
163
spin_lock_irqsave(&engine->queue_lock, flags);
164
goto start_request;
165
}
166
return;
167
168
out:
169
spin_unlock_irqrestore(&engine->queue_lock, flags);
170
171
return;
172
}
173
174
static void crypto_pump_work(struct kthread_work *work)
175
{
176
struct crypto_engine *engine =
177
container_of(work, struct crypto_engine, pump_requests);
178
179
crypto_pump_requests(engine, true);
180
}
181
182
/**
183
* crypto_transfer_request - transfer the new request into the engine queue
184
* @engine: the hardware engine
185
* @req: the request need to be listed into the engine queue
186
* @need_pump: indicates whether queue the pump of request to kthread_work
187
*/
188
static int crypto_transfer_request(struct crypto_engine *engine,
189
struct crypto_async_request *req,
190
bool need_pump)
191
{
192
unsigned long flags;
193
int ret;
194
195
spin_lock_irqsave(&engine->queue_lock, flags);
196
197
if (!engine->running) {
198
spin_unlock_irqrestore(&engine->queue_lock, flags);
199
return -ESHUTDOWN;
200
}
201
202
ret = crypto_enqueue_request(&engine->queue, req);
203
204
if (!engine->busy && need_pump)
205
kthread_queue_work(engine->kworker, &engine->pump_requests);
206
207
spin_unlock_irqrestore(&engine->queue_lock, flags);
208
return ret;
209
}
210
211
/**
212
* crypto_transfer_request_to_engine - transfer one request to list
213
* into the engine queue
214
* @engine: the hardware engine
215
* @req: the request need to be listed into the engine queue
216
*/
217
static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
218
struct crypto_async_request *req)
219
{
220
return crypto_transfer_request(engine, req, true);
221
}
222
223
/**
224
* crypto_transfer_aead_request_to_engine - transfer one aead_request
225
* to list into the engine queue
226
* @engine: the hardware engine
227
* @req: the request need to be listed into the engine queue
228
*/
229
int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
230
struct aead_request *req)
231
{
232
return crypto_transfer_request_to_engine(engine, &req->base);
233
}
234
EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
235
236
/**
237
* crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
238
* to list into the engine queue
239
* @engine: the hardware engine
240
* @req: the request need to be listed into the engine queue
241
*/
242
int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
243
struct akcipher_request *req)
244
{
245
return crypto_transfer_request_to_engine(engine, &req->base);
246
}
247
EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
248
249
/**
250
* crypto_transfer_hash_request_to_engine - transfer one ahash_request
251
* to list into the engine queue
252
* @engine: the hardware engine
253
* @req: the request need to be listed into the engine queue
254
*/
255
int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
256
struct ahash_request *req)
257
{
258
return crypto_transfer_request_to_engine(engine, &req->base);
259
}
260
EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
261
262
/**
263
* crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list
264
* into the engine queue
265
* @engine: the hardware engine
266
* @req: the request need to be listed into the engine queue
267
*/
268
int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine,
269
struct kpp_request *req)
270
{
271
return crypto_transfer_request_to_engine(engine, &req->base);
272
}
273
EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine);
274
275
/**
276
* crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
277
* to list into the engine queue
278
* @engine: the hardware engine
279
* @req: the request need to be listed into the engine queue
280
*/
281
int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
282
struct skcipher_request *req)
283
{
284
return crypto_transfer_request_to_engine(engine, &req->base);
285
}
286
EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
287
288
/**
289
* crypto_finalize_aead_request - finalize one aead_request if
290
* the request is done
291
* @engine: the hardware engine
292
* @req: the request need to be finalized
293
* @err: error number
294
*/
295
void crypto_finalize_aead_request(struct crypto_engine *engine,
296
struct aead_request *req, int err)
297
{
298
return crypto_finalize_request(engine, &req->base, err);
299
}
300
EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
301
302
/**
303
* crypto_finalize_akcipher_request - finalize one akcipher_request if
304
* the request is done
305
* @engine: the hardware engine
306
* @req: the request need to be finalized
307
* @err: error number
308
*/
309
void crypto_finalize_akcipher_request(struct crypto_engine *engine,
310
struct akcipher_request *req, int err)
311
{
312
return crypto_finalize_request(engine, &req->base, err);
313
}
314
EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
315
316
/**
317
* crypto_finalize_hash_request - finalize one ahash_request if
318
* the request is done
319
* @engine: the hardware engine
320
* @req: the request need to be finalized
321
* @err: error number
322
*/
323
void crypto_finalize_hash_request(struct crypto_engine *engine,
324
struct ahash_request *req, int err)
325
{
326
return crypto_finalize_request(engine, &req->base, err);
327
}
328
EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
329
330
/**
331
* crypto_finalize_kpp_request - finalize one kpp_request if the request is done
332
* @engine: the hardware engine
333
* @req: the request need to be finalized
334
* @err: error number
335
*/
336
void crypto_finalize_kpp_request(struct crypto_engine *engine,
337
struct kpp_request *req, int err)
338
{
339
return crypto_finalize_request(engine, &req->base, err);
340
}
341
EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request);
342
343
/**
344
* crypto_finalize_skcipher_request - finalize one skcipher_request if
345
* the request is done
346
* @engine: the hardware engine
347
* @req: the request need to be finalized
348
* @err: error number
349
*/
350
void crypto_finalize_skcipher_request(struct crypto_engine *engine,
351
struct skcipher_request *req, int err)
352
{
353
return crypto_finalize_request(engine, &req->base, err);
354
}
355
EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
356
357
/**
358
* crypto_engine_start - start the hardware engine
359
* @engine: the hardware engine need to be started
360
*
361
* Return 0 on success, else on fail.
362
*/
363
int crypto_engine_start(struct crypto_engine *engine)
364
{
365
unsigned long flags;
366
367
spin_lock_irqsave(&engine->queue_lock, flags);
368
369
if (engine->running || engine->busy) {
370
spin_unlock_irqrestore(&engine->queue_lock, flags);
371
return -EBUSY;
372
}
373
374
engine->running = true;
375
spin_unlock_irqrestore(&engine->queue_lock, flags);
376
377
kthread_queue_work(engine->kworker, &engine->pump_requests);
378
379
return 0;
380
}
381
EXPORT_SYMBOL_GPL(crypto_engine_start);
382
383
/**
384
* crypto_engine_stop - stop the hardware engine
385
* @engine: the hardware engine need to be stopped
386
*
387
* Return 0 on success, else on fail.
388
*/
389
int crypto_engine_stop(struct crypto_engine *engine)
390
{
391
unsigned long flags;
392
unsigned int limit = 500;
393
int ret = 0;
394
395
spin_lock_irqsave(&engine->queue_lock, flags);
396
397
/*
398
* If the engine queue is not empty or the engine is on busy state,
399
* we need to wait for a while to pump the requests of engine queue.
400
*/
401
while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
402
spin_unlock_irqrestore(&engine->queue_lock, flags);
403
msleep(20);
404
spin_lock_irqsave(&engine->queue_lock, flags);
405
}
406
407
if (crypto_queue_len(&engine->queue) || engine->busy)
408
ret = -EBUSY;
409
else
410
engine->running = false;
411
412
spin_unlock_irqrestore(&engine->queue_lock, flags);
413
414
if (ret)
415
dev_warn(engine->dev, "could not stop engine\n");
416
417
return ret;
418
}
419
EXPORT_SYMBOL_GPL(crypto_engine_stop);
420
421
/**
422
* crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
423
* and initialize it by setting the maximum number of entries in the software
424
* crypto-engine queue.
425
* @dev: the device attached with one hardware engine
426
* @retry_support: whether hardware has support for retry mechanism
427
* @rt: whether this queue is set to run as a realtime task
428
* @qlen: maximum size of the crypto-engine queue
429
*
430
* This must be called from context that can sleep.
431
* Return: the crypto engine structure on success, else NULL.
432
*/
433
struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
434
bool retry_support,
435
bool rt, int qlen)
436
{
437
struct crypto_engine *engine;
438
439
if (!dev)
440
return NULL;
441
442
engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
443
if (!engine)
444
return NULL;
445
446
engine->dev = dev;
447
engine->rt = rt;
448
engine->running = false;
449
engine->busy = false;
450
engine->retry_support = retry_support;
451
engine->priv_data = dev;
452
453
snprintf(engine->name, sizeof(engine->name),
454
"%s-engine", dev_name(dev));
455
456
crypto_init_queue(&engine->queue, qlen);
457
spin_lock_init(&engine->queue_lock);
458
459
engine->kworker = kthread_run_worker(0, "%s", engine->name);
460
if (IS_ERR(engine->kworker)) {
461
dev_err(dev, "failed to create crypto request pump task\n");
462
return NULL;
463
}
464
kthread_init_work(&engine->pump_requests, crypto_pump_work);
465
466
if (engine->rt) {
467
dev_info(dev, "will run requests pump with realtime priority\n");
468
sched_set_fifo(engine->kworker->task);
469
}
470
471
return engine;
472
}
473
EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
474
475
/**
476
* crypto_engine_alloc_init - allocate crypto hardware engine structure and
477
* initialize it.
478
* @dev: the device attached with one hardware engine
479
* @rt: whether this queue is set to run as a realtime task
480
*
481
* This must be called from context that can sleep.
482
* Return: the crypto engine structure on success, else NULL.
483
*/
484
struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
485
{
486
return crypto_engine_alloc_init_and_set(dev, false, rt,
487
CRYPTO_ENGINE_MAX_QLEN);
488
}
489
EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
490
491
/**
492
* crypto_engine_exit - free the resources of hardware engine when exit
493
* @engine: the hardware engine need to be freed
494
*/
495
void crypto_engine_exit(struct crypto_engine *engine)
496
{
497
int ret;
498
499
ret = crypto_engine_stop(engine);
500
if (ret)
501
return;
502
503
kthread_destroy_worker(engine->kworker);
504
}
505
EXPORT_SYMBOL_GPL(crypto_engine_exit);
506
507
int crypto_engine_register_aead(struct aead_engine_alg *alg)
508
{
509
if (!alg->op.do_one_request)
510
return -EINVAL;
511
return crypto_register_aead(&alg->base);
512
}
513
EXPORT_SYMBOL_GPL(crypto_engine_register_aead);
514
515
void crypto_engine_unregister_aead(struct aead_engine_alg *alg)
516
{
517
crypto_unregister_aead(&alg->base);
518
}
519
EXPORT_SYMBOL_GPL(crypto_engine_unregister_aead);
520
521
int crypto_engine_register_aeads(struct aead_engine_alg *algs, int count)
522
{
523
int i, ret;
524
525
for (i = 0; i < count; i++) {
526
ret = crypto_engine_register_aead(&algs[i]);
527
if (ret)
528
goto err;
529
}
530
531
return 0;
532
533
err:
534
crypto_engine_unregister_aeads(algs, i);
535
536
return ret;
537
}
538
EXPORT_SYMBOL_GPL(crypto_engine_register_aeads);
539
540
void crypto_engine_unregister_aeads(struct aead_engine_alg *algs, int count)
541
{
542
int i;
543
544
for (i = count - 1; i >= 0; --i)
545
crypto_engine_unregister_aead(&algs[i]);
546
}
547
EXPORT_SYMBOL_GPL(crypto_engine_unregister_aeads);
548
549
int crypto_engine_register_ahash(struct ahash_engine_alg *alg)
550
{
551
if (!alg->op.do_one_request)
552
return -EINVAL;
553
return crypto_register_ahash(&alg->base);
554
}
555
EXPORT_SYMBOL_GPL(crypto_engine_register_ahash);
556
557
void crypto_engine_unregister_ahash(struct ahash_engine_alg *alg)
558
{
559
crypto_unregister_ahash(&alg->base);
560
}
561
EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahash);
562
563
int crypto_engine_register_ahashes(struct ahash_engine_alg *algs, int count)
564
{
565
int i, ret;
566
567
for (i = 0; i < count; i++) {
568
ret = crypto_engine_register_ahash(&algs[i]);
569
if (ret)
570
goto err;
571
}
572
573
return 0;
574
575
err:
576
crypto_engine_unregister_ahashes(algs, i);
577
578
return ret;
579
}
580
EXPORT_SYMBOL_GPL(crypto_engine_register_ahashes);
581
582
void crypto_engine_unregister_ahashes(struct ahash_engine_alg *algs,
583
int count)
584
{
585
int i;
586
587
for (i = count - 1; i >= 0; --i)
588
crypto_engine_unregister_ahash(&algs[i]);
589
}
590
EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahashes);
591
592
int crypto_engine_register_akcipher(struct akcipher_engine_alg *alg)
593
{
594
if (!alg->op.do_one_request)
595
return -EINVAL;
596
return crypto_register_akcipher(&alg->base);
597
}
598
EXPORT_SYMBOL_GPL(crypto_engine_register_akcipher);
599
600
void crypto_engine_unregister_akcipher(struct akcipher_engine_alg *alg)
601
{
602
crypto_unregister_akcipher(&alg->base);
603
}
604
EXPORT_SYMBOL_GPL(crypto_engine_unregister_akcipher);
605
606
int crypto_engine_register_kpp(struct kpp_engine_alg *alg)
607
{
608
if (!alg->op.do_one_request)
609
return -EINVAL;
610
return crypto_register_kpp(&alg->base);
611
}
612
EXPORT_SYMBOL_GPL(crypto_engine_register_kpp);
613
614
void crypto_engine_unregister_kpp(struct kpp_engine_alg *alg)
615
{
616
crypto_unregister_kpp(&alg->base);
617
}
618
EXPORT_SYMBOL_GPL(crypto_engine_unregister_kpp);
619
620
int crypto_engine_register_skcipher(struct skcipher_engine_alg *alg)
621
{
622
if (!alg->op.do_one_request)
623
return -EINVAL;
624
return crypto_register_skcipher(&alg->base);
625
}
626
EXPORT_SYMBOL_GPL(crypto_engine_register_skcipher);
627
628
void crypto_engine_unregister_skcipher(struct skcipher_engine_alg *alg)
629
{
630
return crypto_unregister_skcipher(&alg->base);
631
}
632
EXPORT_SYMBOL_GPL(crypto_engine_unregister_skcipher);
633
634
int crypto_engine_register_skciphers(struct skcipher_engine_alg *algs,
635
int count)
636
{
637
int i, ret;
638
639
for (i = 0; i < count; i++) {
640
ret = crypto_engine_register_skcipher(&algs[i]);
641
if (ret)
642
goto err;
643
}
644
645
return 0;
646
647
err:
648
crypto_engine_unregister_skciphers(algs, i);
649
650
return ret;
651
}
652
EXPORT_SYMBOL_GPL(crypto_engine_register_skciphers);
653
654
void crypto_engine_unregister_skciphers(struct skcipher_engine_alg *algs,
655
int count)
656
{
657
int i;
658
659
for (i = count - 1; i >= 0; --i)
660
crypto_engine_unregister_skcipher(&algs[i]);
661
}
662
EXPORT_SYMBOL_GPL(crypto_engine_unregister_skciphers);
663
664
MODULE_LICENSE("GPL");
665
MODULE_DESCRIPTION("Crypto hardware engine framework");
666
667