Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/accel/habanalabs/common/context.c
26436 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
/*
4
* Copyright 2016-2021 HabanaLabs, Ltd.
5
* All Rights Reserved.
6
*/
7
8
#include "habanalabs.h"
9
10
#include <linux/slab.h>
11
12
static void encaps_handle_do_release(struct hl_cs_encaps_sig_handle *handle, bool put_hw_sob,
13
bool put_ctx)
14
{
15
struct hl_encaps_signals_mgr *mgr = &handle->ctx->sig_mgr;
16
17
if (put_hw_sob)
18
hw_sob_put(handle->hw_sob);
19
20
spin_lock(&mgr->lock);
21
idr_remove(&mgr->handles, handle->id);
22
spin_unlock(&mgr->lock);
23
24
if (put_ctx)
25
hl_ctx_put(handle->ctx);
26
27
kfree(handle);
28
}
29
30
void hl_encaps_release_handle_and_put_ctx(struct kref *ref)
31
{
32
struct hl_cs_encaps_sig_handle *handle =
33
container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
34
35
encaps_handle_do_release(handle, false, true);
36
}
37
38
static void hl_encaps_release_handle_and_put_sob(struct kref *ref)
39
{
40
struct hl_cs_encaps_sig_handle *handle =
41
container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
42
43
encaps_handle_do_release(handle, true, false);
44
}
45
46
void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref)
47
{
48
struct hl_cs_encaps_sig_handle *handle =
49
container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
50
51
encaps_handle_do_release(handle, true, true);
52
}
53
54
static void hl_encaps_sig_mgr_init(struct hl_encaps_signals_mgr *mgr)
55
{
56
spin_lock_init(&mgr->lock);
57
idr_init(&mgr->handles);
58
}
59
60
static void hl_encaps_sig_mgr_fini(struct hl_device *hdev, struct hl_encaps_signals_mgr *mgr)
61
{
62
struct hl_cs_encaps_sig_handle *handle;
63
struct idr *idp;
64
u32 id;
65
66
idp = &mgr->handles;
67
68
/* The IDR is expected to be empty at this stage, because any left signal should have been
69
* released as part of CS roll-back.
70
*/
71
if (!idr_is_empty(idp)) {
72
dev_warn(hdev->dev,
73
"device released while some encaps signals handles are still allocated\n");
74
idr_for_each_entry(idp, handle, id)
75
kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob);
76
}
77
78
idr_destroy(&mgr->handles);
79
}
80
81
static void hl_ctx_fini(struct hl_ctx *ctx)
82
{
83
struct hl_device *hdev = ctx->hdev;
84
int i;
85
86
/* Release all allocated HW block mapped list entries and destroy
87
* the mutex.
88
*/
89
hl_hw_block_mem_fini(ctx);
90
91
/*
92
* If we arrived here, there are no jobs waiting for this context
93
* on its queues so we can safely remove it.
94
* This is because for each CS, we increment the ref count and for
95
* every CS that was finished we decrement it and we won't arrive
96
* to this function unless the ref count is 0
97
*/
98
99
for (i = 0 ; i < hdev->asic_prop.max_pending_cs ; i++)
100
hl_fence_put(ctx->cs_pending[i]);
101
102
kfree(ctx->cs_pending);
103
104
if (ctx->asid != HL_KERNEL_ASID_ID) {
105
dev_dbg(hdev->dev, "closing user context, asid=%u\n", ctx->asid);
106
107
/* The engines are stopped as there is no executing CS, but the
108
* Coresight might be still working by accessing addresses
109
* related to the stopped engines. Hence stop it explicitly.
110
*/
111
if (hdev->in_debug)
112
hl_device_set_debug_mode(hdev, ctx, false);
113
114
hdev->asic_funcs->ctx_fini(ctx);
115
116
hl_dec_ctx_fini(ctx);
117
118
hl_cb_va_pool_fini(ctx);
119
hl_vm_ctx_fini(ctx);
120
hl_asid_free(hdev, ctx->asid);
121
hl_encaps_sig_mgr_fini(hdev, &ctx->sig_mgr);
122
mutex_destroy(&ctx->ts_reg_lock);
123
} else {
124
dev_dbg(hdev->dev, "closing kernel context\n");
125
hdev->asic_funcs->ctx_fini(ctx);
126
hl_vm_ctx_fini(ctx);
127
hl_mmu_ctx_fini(ctx);
128
}
129
}
130
131
void hl_ctx_do_release(struct kref *ref)
132
{
133
struct hl_ctx *ctx;
134
135
ctx = container_of(ref, struct hl_ctx, refcount);
136
137
hl_ctx_fini(ctx);
138
139
if (ctx->hpriv) {
140
struct hl_fpriv *hpriv = ctx->hpriv;
141
142
mutex_lock(&hpriv->ctx_lock);
143
hpriv->ctx = NULL;
144
mutex_unlock(&hpriv->ctx_lock);
145
146
hl_hpriv_put(hpriv);
147
}
148
149
kfree(ctx);
150
}
151
152
int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv)
153
{
154
struct hl_ctx_mgr *ctx_mgr = &hpriv->ctx_mgr;
155
struct hl_ctx *ctx;
156
int rc;
157
158
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
159
if (!ctx) {
160
rc = -ENOMEM;
161
goto out_err;
162
}
163
164
mutex_lock(&ctx_mgr->lock);
165
rc = idr_alloc(&ctx_mgr->handles, ctx, 1, 0, GFP_KERNEL);
166
mutex_unlock(&ctx_mgr->lock);
167
168
if (rc < 0) {
169
dev_err(hdev->dev, "Failed to allocate IDR for a new CTX\n");
170
goto free_ctx;
171
}
172
173
ctx->handle = rc;
174
175
rc = hl_ctx_init(hdev, ctx, false);
176
if (rc)
177
goto remove_from_idr;
178
179
hl_hpriv_get(hpriv);
180
ctx->hpriv = hpriv;
181
182
/* TODO: remove for multiple contexts per process */
183
hpriv->ctx = ctx;
184
185
/* TODO: remove the following line for multiple process support */
186
hdev->is_compute_ctx_active = true;
187
188
return 0;
189
190
remove_from_idr:
191
mutex_lock(&ctx_mgr->lock);
192
idr_remove(&ctx_mgr->handles, ctx->handle);
193
mutex_unlock(&ctx_mgr->lock);
194
free_ctx:
195
kfree(ctx);
196
out_err:
197
return rc;
198
}
199
200
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx)
201
{
202
int rc = 0, i;
203
204
ctx->hdev = hdev;
205
206
kref_init(&ctx->refcount);
207
208
ctx->cs_sequence = 1;
209
spin_lock_init(&ctx->cs_lock);
210
atomic_set(&ctx->thread_ctx_switch_token, 1);
211
ctx->thread_ctx_switch_wait_token = 0;
212
ctx->cs_pending = kcalloc(hdev->asic_prop.max_pending_cs,
213
sizeof(struct hl_fence *),
214
GFP_KERNEL);
215
if (!ctx->cs_pending)
216
return -ENOMEM;
217
218
INIT_LIST_HEAD(&ctx->outcome_store.used_list);
219
INIT_LIST_HEAD(&ctx->outcome_store.free_list);
220
hash_init(ctx->outcome_store.outcome_map);
221
for (i = 0; i < ARRAY_SIZE(ctx->outcome_store.nodes_pool); ++i)
222
list_add(&ctx->outcome_store.nodes_pool[i].list_link,
223
&ctx->outcome_store.free_list);
224
225
hl_hw_block_mem_init(ctx);
226
227
if (is_kernel_ctx) {
228
ctx->asid = HL_KERNEL_ASID_ID; /* Kernel driver gets ASID 0 */
229
rc = hl_vm_ctx_init(ctx);
230
if (rc) {
231
dev_err(hdev->dev, "Failed to init mem ctx module\n");
232
rc = -ENOMEM;
233
goto err_hw_block_mem_fini;
234
}
235
236
rc = hdev->asic_funcs->ctx_init(ctx);
237
if (rc) {
238
dev_err(hdev->dev, "ctx_init failed\n");
239
goto err_vm_ctx_fini;
240
}
241
} else {
242
ctx->asid = hl_asid_alloc(hdev);
243
if (!ctx->asid) {
244
dev_err(hdev->dev, "No free ASID, failed to create context\n");
245
rc = -ENOMEM;
246
goto err_hw_block_mem_fini;
247
}
248
249
rc = hl_vm_ctx_init(ctx);
250
if (rc) {
251
dev_err(hdev->dev, "Failed to init mem ctx module\n");
252
rc = -ENOMEM;
253
goto err_asid_free;
254
}
255
256
rc = hl_cb_va_pool_init(ctx);
257
if (rc) {
258
dev_err(hdev->dev,
259
"Failed to init VA pool for mapped CB\n");
260
goto err_vm_ctx_fini;
261
}
262
263
rc = hdev->asic_funcs->ctx_init(ctx);
264
if (rc) {
265
dev_err(hdev->dev, "ctx_init failed\n");
266
goto err_cb_va_pool_fini;
267
}
268
269
hl_encaps_sig_mgr_init(&ctx->sig_mgr);
270
271
mutex_init(&ctx->ts_reg_lock);
272
273
dev_dbg(hdev->dev, "create user context, comm=\"%s\", asid=%u\n",
274
current->comm, ctx->asid);
275
}
276
277
return 0;
278
279
err_cb_va_pool_fini:
280
hl_cb_va_pool_fini(ctx);
281
err_vm_ctx_fini:
282
hl_vm_ctx_fini(ctx);
283
err_asid_free:
284
if (ctx->asid != HL_KERNEL_ASID_ID)
285
hl_asid_free(hdev, ctx->asid);
286
err_hw_block_mem_fini:
287
hl_hw_block_mem_fini(ctx);
288
kfree(ctx->cs_pending);
289
290
return rc;
291
}
292
293
static int hl_ctx_get_unless_zero(struct hl_ctx *ctx)
294
{
295
return kref_get_unless_zero(&ctx->refcount);
296
}
297
298
void hl_ctx_get(struct hl_ctx *ctx)
299
{
300
kref_get(&ctx->refcount);
301
}
302
303
int hl_ctx_put(struct hl_ctx *ctx)
304
{
305
return kref_put(&ctx->refcount, hl_ctx_do_release);
306
}
307
308
struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev)
309
{
310
struct hl_ctx *ctx = NULL;
311
struct hl_fpriv *hpriv;
312
313
mutex_lock(&hdev->fpriv_list_lock);
314
315
list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node) {
316
mutex_lock(&hpriv->ctx_lock);
317
ctx = hpriv->ctx;
318
if (ctx && !hl_ctx_get_unless_zero(ctx))
319
ctx = NULL;
320
mutex_unlock(&hpriv->ctx_lock);
321
322
/* There can only be a single user which has opened the compute device, so exit
323
* immediately once we find its context or if we see that it has been released
324
*/
325
break;
326
}
327
328
mutex_unlock(&hdev->fpriv_list_lock);
329
330
return ctx;
331
}
332
333
/*
334
* hl_ctx_get_fence_locked - get CS fence under CS lock
335
*
336
* @ctx: pointer to the context structure.
337
* @seq: CS sequences number
338
*
339
* @return valid fence pointer on success, NULL if fence is gone, otherwise
340
* error pointer.
341
*
342
* NOTE: this function shall be called with cs_lock locked
343
*/
344
static struct hl_fence *hl_ctx_get_fence_locked(struct hl_ctx *ctx, u64 seq)
345
{
346
struct asic_fixed_properties *asic_prop = &ctx->hdev->asic_prop;
347
struct hl_fence *fence;
348
349
if (seq >= ctx->cs_sequence)
350
return ERR_PTR(-EINVAL);
351
352
if (seq + asic_prop->max_pending_cs < ctx->cs_sequence)
353
return NULL;
354
355
fence = ctx->cs_pending[seq & (asic_prop->max_pending_cs - 1)];
356
hl_fence_get(fence);
357
return fence;
358
}
359
360
struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq)
361
{
362
struct hl_fence *fence;
363
364
spin_lock(&ctx->cs_lock);
365
366
fence = hl_ctx_get_fence_locked(ctx, seq);
367
368
spin_unlock(&ctx->cs_lock);
369
370
return fence;
371
}
372
373
/*
374
* hl_ctx_get_fences - get multiple CS fences under the same CS lock
375
*
376
* @ctx: pointer to the context structure.
377
* @seq_arr: array of CS sequences to wait for
378
* @fence: fence array to store the CS fences
379
* @arr_len: length of seq_arr and fence_arr
380
*
381
* @return 0 on success, otherwise non 0 error code
382
*/
383
int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
384
struct hl_fence **fence, u32 arr_len)
385
{
386
struct hl_fence **fence_arr_base = fence;
387
int i, rc = 0;
388
389
spin_lock(&ctx->cs_lock);
390
391
for (i = 0; i < arr_len; i++, fence++) {
392
u64 seq = seq_arr[i];
393
394
*fence = hl_ctx_get_fence_locked(ctx, seq);
395
396
if (IS_ERR(*fence)) {
397
dev_err(ctx->hdev->dev,
398
"Failed to get fence for CS with seq 0x%llx\n",
399
seq);
400
rc = PTR_ERR(*fence);
401
break;
402
}
403
}
404
405
spin_unlock(&ctx->cs_lock);
406
407
if (rc)
408
hl_fences_put(fence_arr_base, i);
409
410
return rc;
411
}
412
413
/*
414
* hl_ctx_mgr_init - initialize the context manager
415
*
416
* @ctx_mgr: pointer to context manager structure
417
*
418
* This manager is an object inside the hpriv object of the user process.
419
* The function is called when a user process opens the FD.
420
*/
421
void hl_ctx_mgr_init(struct hl_ctx_mgr *ctx_mgr)
422
{
423
mutex_init(&ctx_mgr->lock);
424
idr_init(&ctx_mgr->handles);
425
}
426
427
/*
428
* hl_ctx_mgr_fini - finalize the context manager
429
*
430
* @hdev: pointer to device structure
431
* @ctx_mgr: pointer to context manager structure
432
*
433
* This function goes over all the contexts in the manager and frees them.
434
* It is called when a process closes the FD.
435
*/
436
void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *ctx_mgr)
437
{
438
struct hl_ctx *ctx;
439
struct idr *idp;
440
u32 id;
441
442
idp = &ctx_mgr->handles;
443
444
idr_for_each_entry(idp, ctx, id)
445
kref_put(&ctx->refcount, hl_ctx_do_release);
446
447
idr_destroy(&ctx_mgr->handles);
448
mutex_destroy(&ctx_mgr->lock);
449
}
450
451