Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/accel/habanalabs/common/debugfs.c
26436 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
/*
4
* Copyright 2016-2021 HabanaLabs, Ltd.
5
* All Rights Reserved.
6
*/
7
8
#include "habanalabs.h"
9
#include "../include/hw_ip/mmu/mmu_general.h"
10
11
#include <linux/pci.h>
12
#include <linux/uaccess.h>
13
#include <linux/vmalloc.h>
14
#include <linux/iommu.h>
15
16
#define MMU_ADDR_BUF_SIZE 40
17
#define MMU_ASID_BUF_SIZE 10
18
#define MMU_KBUF_SIZE (MMU_ADDR_BUF_SIZE + MMU_ASID_BUF_SIZE)
19
#define I2C_MAX_TRANSACTION_LEN 8
20
21
static int hl_debugfs_i2c_read(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr,
22
u8 i2c_reg, u8 i2c_len, u64 *val)
23
{
24
struct cpucp_packet pkt;
25
int rc;
26
27
if (!hl_device_operational(hdev, NULL))
28
return -EBUSY;
29
30
if (i2c_len > I2C_MAX_TRANSACTION_LEN) {
31
dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n",
32
i2c_len, I2C_MAX_TRANSACTION_LEN);
33
return -EINVAL;
34
}
35
36
memset(&pkt, 0, sizeof(pkt));
37
38
pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_RD <<
39
CPUCP_PKT_CTL_OPCODE_SHIFT);
40
pkt.i2c_bus = i2c_bus;
41
pkt.i2c_addr = i2c_addr;
42
pkt.i2c_reg = i2c_reg;
43
pkt.i2c_len = i2c_len;
44
45
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, val);
46
if (rc && rc != -EAGAIN)
47
dev_err(hdev->dev, "Failed to read from I2C, error %d\n", rc);
48
49
return rc;
50
}
51
52
static int hl_debugfs_i2c_write(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr,
53
u8 i2c_reg, u8 i2c_len, u64 val)
54
{
55
struct cpucp_packet pkt;
56
int rc;
57
58
if (!hl_device_operational(hdev, NULL))
59
return -EBUSY;
60
61
if (i2c_len > I2C_MAX_TRANSACTION_LEN) {
62
dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n",
63
i2c_len, I2C_MAX_TRANSACTION_LEN);
64
return -EINVAL;
65
}
66
67
memset(&pkt, 0, sizeof(pkt));
68
69
pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_WR <<
70
CPUCP_PKT_CTL_OPCODE_SHIFT);
71
pkt.i2c_bus = i2c_bus;
72
pkt.i2c_addr = i2c_addr;
73
pkt.i2c_reg = i2c_reg;
74
pkt.i2c_len = i2c_len;
75
pkt.value = cpu_to_le64(val);
76
77
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
78
if (rc && rc != -EAGAIN)
79
dev_err(hdev->dev, "Failed to write to I2C, error %d\n", rc);
80
81
return rc;
82
}
83
84
static void hl_debugfs_led_set(struct hl_device *hdev, u8 led, u8 state)
85
{
86
struct cpucp_packet pkt;
87
int rc;
88
89
if (!hl_device_operational(hdev, NULL))
90
return;
91
92
memset(&pkt, 0, sizeof(pkt));
93
94
pkt.ctl = cpu_to_le32(CPUCP_PACKET_LED_SET <<
95
CPUCP_PKT_CTL_OPCODE_SHIFT);
96
pkt.led_index = cpu_to_le32(led);
97
pkt.value = cpu_to_le64(state);
98
99
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
100
if (rc && rc != -EAGAIN)
101
dev_err(hdev->dev, "Failed to set LED %d, error %d\n", led, rc);
102
}
103
104
static int command_buffers_show(struct seq_file *s, void *data)
105
{
106
struct hl_debugfs_entry *entry = s->private;
107
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
108
struct hl_cb *cb;
109
bool first = true;
110
111
spin_lock(&dev_entry->cb_spinlock);
112
113
list_for_each_entry(cb, &dev_entry->cb_list, debugfs_list) {
114
if (first) {
115
first = false;
116
seq_puts(s, "\n");
117
seq_puts(s, " CB ID CTX ID CB size CB RefCnt mmap? CS counter\n");
118
seq_puts(s, "---------------------------------------------------------------\n");
119
}
120
seq_printf(s,
121
" %03llu %d 0x%08x %d %d %d\n",
122
cb->buf->handle, cb->ctx->asid, cb->size,
123
kref_read(&cb->buf->refcount),
124
atomic_read(&cb->buf->mmap), atomic_read(&cb->cs_cnt));
125
}
126
127
spin_unlock(&dev_entry->cb_spinlock);
128
129
if (!first)
130
seq_puts(s, "\n");
131
132
return 0;
133
}
134
135
static int command_submission_show(struct seq_file *s, void *data)
136
{
137
struct hl_debugfs_entry *entry = s->private;
138
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
139
struct hl_cs *cs;
140
bool first = true;
141
142
spin_lock(&dev_entry->cs_spinlock);
143
144
list_for_each_entry(cs, &dev_entry->cs_list, debugfs_list) {
145
if (first) {
146
first = false;
147
seq_puts(s, "\n");
148
seq_puts(s, " CS ID CS TYPE CTX ASID CS RefCnt Submitted Completed\n");
149
seq_puts(s, "----------------------------------------------------------------\n");
150
}
151
seq_printf(s,
152
" %llu %d %d %d %d %d\n",
153
cs->sequence, cs->type, cs->ctx->asid,
154
kref_read(&cs->refcount),
155
cs->submitted, cs->completed);
156
}
157
158
spin_unlock(&dev_entry->cs_spinlock);
159
160
if (!first)
161
seq_puts(s, "\n");
162
163
return 0;
164
}
165
166
static int command_submission_jobs_show(struct seq_file *s, void *data)
167
{
168
struct hl_debugfs_entry *entry = s->private;
169
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
170
struct hl_cs_job *job;
171
bool first = true;
172
173
spin_lock(&dev_entry->cs_job_spinlock);
174
175
list_for_each_entry(job, &dev_entry->cs_job_list, debugfs_list) {
176
if (first) {
177
first = false;
178
seq_puts(s, "\n");
179
seq_puts(s, " JOB ID CS ID CS TYPE CTX ASID JOB RefCnt H/W Queue\n");
180
seq_puts(s, "---------------------------------------------------------------\n");
181
}
182
if (job->cs)
183
seq_printf(s,
184
" %02d %llu %d %d %d %d\n",
185
job->id, job->cs->sequence, job->cs->type,
186
job->cs->ctx->asid, kref_read(&job->refcount),
187
job->hw_queue_id);
188
else
189
seq_printf(s,
190
" %02d 0 0 %d %d %d\n",
191
job->id, HL_KERNEL_ASID_ID,
192
kref_read(&job->refcount), job->hw_queue_id);
193
}
194
195
spin_unlock(&dev_entry->cs_job_spinlock);
196
197
if (!first)
198
seq_puts(s, "\n");
199
200
return 0;
201
}
202
203
static int userptr_show(struct seq_file *s, void *data)
204
{
205
struct hl_debugfs_entry *entry = s->private;
206
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
207
struct hl_userptr *userptr;
208
char dma_dir[4][30] = {"DMA_BIDIRECTIONAL", "DMA_TO_DEVICE",
209
"DMA_FROM_DEVICE", "DMA_NONE"};
210
bool first = true;
211
212
spin_lock(&dev_entry->userptr_spinlock);
213
214
list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) {
215
if (first) {
216
first = false;
217
seq_puts(s, "\n");
218
seq_puts(s, " pid user virtual address size dma dir\n");
219
seq_puts(s, "----------------------------------------------------------\n");
220
}
221
seq_printf(s, " %-7d 0x%-14llx %-10llu %-30s\n",
222
userptr->pid, userptr->addr, userptr->size,
223
dma_dir[userptr->dir]);
224
}
225
226
spin_unlock(&dev_entry->userptr_spinlock);
227
228
if (!first)
229
seq_puts(s, "\n");
230
231
return 0;
232
}
233
234
static int vm_show(struct seq_file *s, void *data)
235
{
236
struct hl_debugfs_entry *entry = s->private;
237
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
238
struct hl_vm_hw_block_list_node *lnode;
239
struct hl_ctx *ctx;
240
struct hl_vm *vm;
241
struct hl_vm_hash_node *hnode;
242
struct hl_userptr *userptr;
243
struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
244
struct hl_va_range *va_range;
245
struct hl_vm_va_block *va_block;
246
enum vm_type *vm_type;
247
bool once = true;
248
u64 j;
249
int i;
250
251
mutex_lock(&dev_entry->ctx_mem_hash_mutex);
252
253
list_for_each_entry(ctx, &dev_entry->ctx_mem_hash_list, debugfs_list) {
254
once = false;
255
seq_puts(s, "\n\n----------------------------------------------------");
256
seq_puts(s, "\n----------------------------------------------------\n\n");
257
seq_printf(s, "ctx asid: %u\n", ctx->asid);
258
259
seq_puts(s, "\nmappings:\n\n");
260
seq_puts(s, " virtual address size handle\n");
261
seq_puts(s, "----------------------------------------------------\n");
262
mutex_lock(&ctx->mem_hash_lock);
263
hash_for_each(ctx->mem_hash, i, hnode, node) {
264
vm_type = hnode->ptr;
265
266
if (*vm_type == VM_TYPE_USERPTR) {
267
userptr = hnode->ptr;
268
seq_printf(s,
269
" 0x%-14llx %-10llu\n",
270
hnode->vaddr, userptr->size);
271
} else {
272
phys_pg_pack = hnode->ptr;
273
seq_printf(s,
274
" 0x%-14llx %-10llu %-4u\n",
275
hnode->vaddr, phys_pg_pack->total_size,
276
phys_pg_pack->handle);
277
}
278
}
279
mutex_unlock(&ctx->mem_hash_lock);
280
281
if (ctx->asid != HL_KERNEL_ASID_ID &&
282
!list_empty(&ctx->hw_block_mem_list)) {
283
seq_puts(s, "\nhw_block mappings:\n\n");
284
seq_puts(s,
285
" virtual address block size mapped size HW block id\n");
286
seq_puts(s,
287
"---------------------------------------------------------------\n");
288
mutex_lock(&ctx->hw_block_list_lock);
289
list_for_each_entry(lnode, &ctx->hw_block_mem_list, node) {
290
seq_printf(s,
291
" 0x%-14lx %-6u %-6u %-9u\n",
292
lnode->vaddr, lnode->block_size, lnode->mapped_size,
293
lnode->id);
294
}
295
mutex_unlock(&ctx->hw_block_list_lock);
296
}
297
298
vm = &ctx->hdev->vm;
299
spin_lock(&vm->idr_lock);
300
301
if (!idr_is_empty(&vm->phys_pg_pack_handles))
302
seq_puts(s, "\n\nallocations:\n");
303
304
idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_pack, i) {
305
if (phys_pg_pack->asid != ctx->asid)
306
continue;
307
308
seq_printf(s, "\nhandle: %u\n", phys_pg_pack->handle);
309
seq_printf(s, "page size: %u\n\n",
310
phys_pg_pack->page_size);
311
seq_puts(s, " physical address\n");
312
seq_puts(s, "---------------------\n");
313
for (j = 0 ; j < phys_pg_pack->npages ; j++) {
314
seq_printf(s, " 0x%-14llx\n",
315
phys_pg_pack->pages[j]);
316
}
317
}
318
spin_unlock(&vm->idr_lock);
319
320
}
321
322
mutex_unlock(&dev_entry->ctx_mem_hash_mutex);
323
324
ctx = hl_get_compute_ctx(dev_entry->hdev);
325
if (ctx) {
326
seq_puts(s, "\nVA ranges:\n\n");
327
for (i = HL_VA_RANGE_TYPE_HOST ; i < HL_VA_RANGE_TYPE_MAX ; ++i) {
328
va_range = ctx->va_range[i];
329
seq_printf(s, " va_range %d\n", i);
330
seq_puts(s, "---------------------\n");
331
mutex_lock(&va_range->lock);
332
list_for_each_entry(va_block, &va_range->list, node) {
333
seq_printf(s, "%#16llx - %#16llx (%#llx)\n",
334
va_block->start, va_block->end,
335
va_block->size);
336
}
337
mutex_unlock(&va_range->lock);
338
seq_puts(s, "\n");
339
}
340
hl_ctx_put(ctx);
341
}
342
343
if (!once)
344
seq_puts(s, "\n");
345
346
return 0;
347
}
348
349
static int userptr_lookup_show(struct seq_file *s, void *data)
350
{
351
struct hl_debugfs_entry *entry = s->private;
352
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
353
struct scatterlist *sg;
354
struct hl_userptr *userptr;
355
bool first = true;
356
u64 total_npages, npages, sg_start, sg_end;
357
dma_addr_t dma_addr;
358
int i;
359
360
spin_lock(&dev_entry->userptr_spinlock);
361
362
list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) {
363
if (dev_entry->userptr_lookup >= userptr->addr &&
364
dev_entry->userptr_lookup < userptr->addr + userptr->size) {
365
total_npages = 0;
366
for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
367
npages = hl_get_sg_info(sg, &dma_addr);
368
sg_start = userptr->addr +
369
total_npages * PAGE_SIZE;
370
sg_end = userptr->addr +
371
(total_npages + npages) * PAGE_SIZE;
372
373
if (dev_entry->userptr_lookup >= sg_start &&
374
dev_entry->userptr_lookup < sg_end) {
375
dma_addr += (dev_entry->userptr_lookup -
376
sg_start);
377
if (first) {
378
first = false;
379
seq_puts(s, "\n");
380
seq_puts(s, " user virtual address dma address pid region start region size\n");
381
seq_puts(s, "---------------------------------------------------------------------------------------\n");
382
}
383
seq_printf(s, " 0x%-18llx 0x%-16llx %-8u 0x%-16llx %-12llu\n",
384
dev_entry->userptr_lookup,
385
(u64)dma_addr, userptr->pid,
386
userptr->addr, userptr->size);
387
}
388
total_npages += npages;
389
}
390
}
391
}
392
393
spin_unlock(&dev_entry->userptr_spinlock);
394
395
if (!first)
396
seq_puts(s, "\n");
397
398
return 0;
399
}
400
401
static ssize_t userptr_lookup_write(struct file *file, const char __user *buf,
402
size_t count, loff_t *f_pos)
403
{
404
struct seq_file *s = file->private_data;
405
struct hl_debugfs_entry *entry = s->private;
406
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
407
ssize_t rc;
408
u64 value;
409
410
rc = kstrtoull_from_user(buf, count, 16, &value);
411
if (rc)
412
return rc;
413
414
dev_entry->userptr_lookup = value;
415
416
return count;
417
}
418
419
static int mmu_show(struct seq_file *s, void *data)
420
{
421
struct hl_debugfs_entry *entry = s->private;
422
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
423
struct hl_device *hdev = dev_entry->hdev;
424
struct hl_ctx *ctx;
425
struct hl_mmu_hop_info hops_info = {0};
426
u64 virt_addr = dev_entry->mmu_addr, phys_addr;
427
int i;
428
429
if (dev_entry->mmu_asid == HL_KERNEL_ASID_ID)
430
ctx = hdev->kernel_ctx;
431
else
432
ctx = hl_get_compute_ctx(hdev);
433
434
if (!ctx) {
435
dev_err(hdev->dev, "no ctx available\n");
436
return 0;
437
}
438
439
if (hl_mmu_get_tlb_info(ctx, virt_addr, &hops_info)) {
440
dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
441
virt_addr);
442
goto put_ctx;
443
}
444
445
hl_mmu_va_to_pa(ctx, virt_addr, &phys_addr);
446
447
if (hops_info.scrambled_vaddr &&
448
(dev_entry->mmu_addr != hops_info.scrambled_vaddr))
449
seq_printf(s,
450
"asid: %u, virt_addr: 0x%llx, scrambled virt_addr: 0x%llx,\nphys_addr: 0x%llx, scrambled_phys_addr: 0x%llx\n",
451
dev_entry->mmu_asid, dev_entry->mmu_addr,
452
hops_info.scrambled_vaddr,
453
hops_info.unscrambled_paddr, phys_addr);
454
else
455
seq_printf(s,
456
"asid: %u, virt_addr: 0x%llx, phys_addr: 0x%llx\n",
457
dev_entry->mmu_asid, dev_entry->mmu_addr, phys_addr);
458
459
for (i = 0 ; i < hops_info.used_hops ; i++) {
460
seq_printf(s, "hop%d_addr: 0x%llx\n",
461
i, hops_info.hop_info[i].hop_addr);
462
seq_printf(s, "hop%d_pte_addr: 0x%llx\n",
463
i, hops_info.hop_info[i].hop_pte_addr);
464
seq_printf(s, "hop%d_pte: 0x%llx\n",
465
i, hops_info.hop_info[i].hop_pte_val);
466
}
467
468
put_ctx:
469
if (dev_entry->mmu_asid != HL_KERNEL_ASID_ID)
470
hl_ctx_put(ctx);
471
472
return 0;
473
}
474
475
static ssize_t mmu_asid_va_write(struct file *file, const char __user *buf,
476
size_t count, loff_t *f_pos)
477
{
478
struct seq_file *s = file->private_data;
479
struct hl_debugfs_entry *entry = s->private;
480
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
481
struct hl_device *hdev = dev_entry->hdev;
482
char kbuf[MMU_KBUF_SIZE] = {0};
483
char *c;
484
ssize_t rc;
485
486
if (count > sizeof(kbuf) - 1)
487
goto err;
488
if (copy_from_user(kbuf, buf, count))
489
goto err;
490
kbuf[count] = 0;
491
492
c = strchr(kbuf, ' ');
493
if (!c)
494
goto err;
495
*c = '\0';
496
497
rc = kstrtouint(kbuf, 10, &dev_entry->mmu_asid);
498
if (rc)
499
goto err;
500
501
if (strncmp(c+1, "0x", 2))
502
goto err;
503
rc = kstrtoull(c+3, 16, &dev_entry->mmu_addr);
504
if (rc)
505
goto err;
506
507
return count;
508
509
err:
510
dev_err(hdev->dev, "usage: echo <asid> <0xaddr> > mmu\n");
511
512
return -EINVAL;
513
}
514
515
static int mmu_ack_error(struct seq_file *s, void *data)
516
{
517
struct hl_debugfs_entry *entry = s->private;
518
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
519
struct hl_device *hdev = dev_entry->hdev;
520
int rc;
521
522
if (!dev_entry->mmu_cap_mask) {
523
dev_err(hdev->dev, "mmu_cap_mask is not set\n");
524
goto err;
525
}
526
527
rc = hdev->asic_funcs->ack_mmu_errors(hdev, dev_entry->mmu_cap_mask);
528
if (rc)
529
goto err;
530
531
return 0;
532
err:
533
return -EINVAL;
534
}
535
536
static ssize_t mmu_ack_error_value_write(struct file *file,
537
const char __user *buf,
538
size_t count, loff_t *f_pos)
539
{
540
struct seq_file *s = file->private_data;
541
struct hl_debugfs_entry *entry = s->private;
542
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
543
struct hl_device *hdev = dev_entry->hdev;
544
char kbuf[MMU_KBUF_SIZE] = {0};
545
ssize_t rc;
546
547
if (count > sizeof(kbuf) - 1)
548
goto err;
549
550
if (copy_from_user(kbuf, buf, count))
551
goto err;
552
553
kbuf[count] = 0;
554
555
if (strncmp(kbuf, "0x", 2))
556
goto err;
557
558
rc = kstrtoull(kbuf, 16, &dev_entry->mmu_cap_mask);
559
if (rc)
560
goto err;
561
562
return count;
563
err:
564
dev_err(hdev->dev, "usage: echo <0xmmu_cap_mask > > mmu_error\n");
565
566
return -EINVAL;
567
}
568
569
static int engines_show(struct seq_file *s, void *data)
570
{
571
struct hl_debugfs_entry *entry = s->private;
572
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
573
struct hl_device *hdev = dev_entry->hdev;
574
struct engines_data eng_data;
575
576
if (hdev->reset_info.in_reset) {
577
dev_warn_ratelimited(hdev->dev,
578
"Can't check device idle during reset\n");
579
return 0;
580
}
581
582
eng_data.actual_size = 0;
583
eng_data.allocated_buf_size = HL_ENGINES_DATA_MAX_SIZE;
584
eng_data.buf = vmalloc(eng_data.allocated_buf_size);
585
if (!eng_data.buf)
586
return -ENOMEM;
587
588
hdev->asic_funcs->is_device_idle(hdev, NULL, 0, &eng_data);
589
590
if (eng_data.actual_size > eng_data.allocated_buf_size) {
591
dev_err(hdev->dev,
592
"Engines data size (%d Bytes) is bigger than allocated size (%u Bytes)\n",
593
eng_data.actual_size, eng_data.allocated_buf_size);
594
vfree(eng_data.buf);
595
return -ENOMEM;
596
}
597
598
seq_write(s, eng_data.buf, eng_data.actual_size);
599
600
vfree(eng_data.buf);
601
602
return 0;
603
}
604
605
static ssize_t hl_memory_scrub(struct file *f, const char __user *buf,
606
size_t count, loff_t *ppos)
607
{
608
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
609
struct hl_device *hdev = entry->hdev;
610
u64 val = hdev->memory_scrub_val;
611
int rc;
612
613
if (!hl_device_operational(hdev, NULL)) {
614
dev_warn_ratelimited(hdev->dev, "Can't scrub memory, device is not operational\n");
615
return -EIO;
616
}
617
618
mutex_lock(&hdev->fpriv_list_lock);
619
if (hdev->is_compute_ctx_active) {
620
mutex_unlock(&hdev->fpriv_list_lock);
621
dev_err(hdev->dev, "can't scrub dram, context exist\n");
622
return -EBUSY;
623
}
624
hdev->is_in_dram_scrub = true;
625
mutex_unlock(&hdev->fpriv_list_lock);
626
627
rc = hdev->asic_funcs->scrub_device_dram(hdev, val);
628
629
mutex_lock(&hdev->fpriv_list_lock);
630
hdev->is_in_dram_scrub = false;
631
mutex_unlock(&hdev->fpriv_list_lock);
632
633
if (rc)
634
return rc;
635
return count;
636
}
637
638
static bool hl_is_device_va(struct hl_device *hdev, u64 addr)
639
{
640
struct asic_fixed_properties *prop = &hdev->asic_prop;
641
642
if (prop->dram_supports_virtual_memory &&
643
(addr >= prop->dmmu.start_addr && addr < prop->dmmu.end_addr))
644
return true;
645
646
if (addr >= prop->pmmu.start_addr &&
647
addr < prop->pmmu.end_addr)
648
return true;
649
650
if (addr >= prop->pmmu_huge.start_addr &&
651
addr < prop->pmmu_huge.end_addr)
652
return true;
653
654
return false;
655
}
656
657
static bool hl_is_device_internal_memory_va(struct hl_device *hdev, u64 addr,
658
u32 size)
659
{
660
struct asic_fixed_properties *prop = &hdev->asic_prop;
661
u64 dram_start_addr, dram_end_addr;
662
663
if (prop->dram_supports_virtual_memory) {
664
dram_start_addr = prop->dmmu.start_addr;
665
dram_end_addr = prop->dmmu.end_addr;
666
} else {
667
dram_start_addr = prop->dram_base_address;
668
dram_end_addr = prop->dram_end_address;
669
}
670
671
if (hl_mem_area_inside_range(addr, size, dram_start_addr,
672
dram_end_addr))
673
return true;
674
675
if (hl_mem_area_inside_range(addr, size, prop->sram_base_address,
676
prop->sram_end_address))
677
return true;
678
679
return false;
680
}
681
682
static int device_va_to_pa(struct hl_device *hdev, u64 virt_addr, u32 size,
683
u64 *phys_addr)
684
{
685
struct hl_vm_phys_pg_pack *phys_pg_pack;
686
struct hl_ctx *ctx;
687
struct hl_vm_hash_node *hnode;
688
u64 end_address, range_size;
689
struct hl_userptr *userptr;
690
enum vm_type *vm_type;
691
bool valid = false;
692
int i, rc = 0;
693
694
ctx = hl_get_compute_ctx(hdev);
695
696
if (!ctx) {
697
dev_err(hdev->dev, "no ctx available\n");
698
return -EINVAL;
699
}
700
701
/* Verify address is mapped */
702
mutex_lock(&ctx->mem_hash_lock);
703
hash_for_each(ctx->mem_hash, i, hnode, node) {
704
vm_type = hnode->ptr;
705
706
if (*vm_type == VM_TYPE_USERPTR) {
707
userptr = hnode->ptr;
708
range_size = userptr->size;
709
} else {
710
phys_pg_pack = hnode->ptr;
711
range_size = phys_pg_pack->total_size;
712
}
713
714
end_address = virt_addr + size;
715
if ((virt_addr >= hnode->vaddr) &&
716
(end_address <= hnode->vaddr + range_size)) {
717
valid = true;
718
break;
719
}
720
}
721
mutex_unlock(&ctx->mem_hash_lock);
722
723
if (!valid) {
724
dev_err(hdev->dev,
725
"virt addr 0x%llx is not mapped\n",
726
virt_addr);
727
rc = -EINVAL;
728
goto put_ctx;
729
}
730
731
rc = hl_mmu_va_to_pa(ctx, virt_addr, phys_addr);
732
if (rc) {
733
dev_err(hdev->dev,
734
"virt addr 0x%llx is not mapped to phys addr\n",
735
virt_addr);
736
rc = -EINVAL;
737
}
738
739
put_ctx:
740
hl_ctx_put(ctx);
741
742
return rc;
743
}
744
745
static int hl_access_dev_mem_by_region(struct hl_device *hdev, u64 addr,
746
u64 *val, enum debugfs_access_type acc_type, bool *found)
747
{
748
size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ?
749
sizeof(u64) : sizeof(u32);
750
struct pci_mem_region *mem_reg;
751
int i;
752
753
for (i = 0; i < PCI_REGION_NUMBER; i++) {
754
mem_reg = &hdev->pci_mem_region[i];
755
if (!mem_reg->used)
756
continue;
757
if (addr >= mem_reg->region_base &&
758
addr <= mem_reg->region_base + mem_reg->region_size - acc_size) {
759
*found = true;
760
return hdev->asic_funcs->access_dev_mem(hdev, i, addr, val, acc_type);
761
}
762
}
763
return 0;
764
}
765
766
static void hl_access_host_mem(struct hl_device *hdev, u64 addr, u64 *val,
767
enum debugfs_access_type acc_type)
768
{
769
struct asic_fixed_properties *prop = &hdev->asic_prop;
770
u64 offset = prop->device_dma_offset_for_host_access;
771
772
switch (acc_type) {
773
case DEBUGFS_READ32:
774
*val = *(u32 *) phys_to_virt(addr - offset);
775
break;
776
case DEBUGFS_WRITE32:
777
*(u32 *) phys_to_virt(addr - offset) = *val;
778
break;
779
case DEBUGFS_READ64:
780
*val = *(u64 *) phys_to_virt(addr - offset);
781
break;
782
case DEBUGFS_WRITE64:
783
*(u64 *) phys_to_virt(addr - offset) = *val;
784
break;
785
default:
786
dev_err(hdev->dev, "hostmem access-type %d id not supported\n", acc_type);
787
break;
788
}
789
}
790
791
static int hl_access_mem(struct hl_device *hdev, u64 addr, u64 *val,
792
enum debugfs_access_type acc_type)
793
{
794
size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ?
795
sizeof(u64) : sizeof(u32);
796
u64 host_start = hdev->asic_prop.host_base_address;
797
u64 host_end = hdev->asic_prop.host_end_address;
798
bool user_address, found = false;
799
int rc;
800
801
user_address = hl_is_device_va(hdev, addr);
802
if (user_address) {
803
rc = device_va_to_pa(hdev, addr, acc_size, &addr);
804
if (rc)
805
return rc;
806
}
807
808
rc = hl_access_dev_mem_by_region(hdev, addr, val, acc_type, &found);
809
if (rc) {
810
dev_err(hdev->dev,
811
"Failed reading addr %#llx from dev mem (%d)\n",
812
addr, rc);
813
return rc;
814
}
815
816
if (found)
817
return 0;
818
819
if (!user_address || device_iommu_mapped(&hdev->pdev->dev)) {
820
rc = -EINVAL;
821
goto err;
822
}
823
824
if (addr >= host_start && addr <= host_end - acc_size) {
825
hl_access_host_mem(hdev, addr, val, acc_type);
826
} else {
827
rc = -EINVAL;
828
goto err;
829
}
830
831
return 0;
832
err:
833
dev_err(hdev->dev, "invalid addr %#llx\n", addr);
834
return rc;
835
}
836
837
static ssize_t hl_data_read32(struct file *f, char __user *buf,
838
size_t count, loff_t *ppos)
839
{
840
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
841
struct hl_device *hdev = entry->hdev;
842
u64 value64, addr = entry->addr;
843
char tmp_buf[32];
844
ssize_t rc;
845
u32 val;
846
847
if (hdev->reset_info.in_reset) {
848
dev_warn_ratelimited(hdev->dev, "Can't read during reset\n");
849
return 0;
850
}
851
852
if (*ppos)
853
return 0;
854
855
rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_READ32);
856
if (rc)
857
return rc;
858
859
val = value64; /* downcast back to 32 */
860
861
sprintf(tmp_buf, "0x%08x\n", val);
862
return simple_read_from_buffer(buf, count, ppos, tmp_buf,
863
strlen(tmp_buf));
864
}
865
866
static ssize_t hl_data_write32(struct file *f, const char __user *buf,
867
size_t count, loff_t *ppos)
868
{
869
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
870
struct hl_device *hdev = entry->hdev;
871
u64 value64, addr = entry->addr;
872
u32 value;
873
ssize_t rc;
874
875
if (hdev->reset_info.in_reset) {
876
dev_warn_ratelimited(hdev->dev, "Can't write during reset\n");
877
return 0;
878
}
879
880
rc = kstrtouint_from_user(buf, count, 16, &value);
881
if (rc)
882
return rc;
883
884
value64 = value;
885
rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_WRITE32);
886
if (rc)
887
return rc;
888
889
return count;
890
}
891
892
static ssize_t hl_data_read64(struct file *f, char __user *buf,
893
size_t count, loff_t *ppos)
894
{
895
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
896
struct hl_device *hdev = entry->hdev;
897
u64 addr = entry->addr;
898
char tmp_buf[32];
899
ssize_t rc;
900
u64 val;
901
902
if (hdev->reset_info.in_reset) {
903
dev_warn_ratelimited(hdev->dev, "Can't read during reset\n");
904
return 0;
905
}
906
907
if (*ppos)
908
return 0;
909
910
rc = hl_access_mem(hdev, addr, &val, DEBUGFS_READ64);
911
if (rc)
912
return rc;
913
914
sprintf(tmp_buf, "0x%016llx\n", val);
915
return simple_read_from_buffer(buf, count, ppos, tmp_buf,
916
strlen(tmp_buf));
917
}
918
919
static ssize_t hl_data_write64(struct file *f, const char __user *buf,
920
size_t count, loff_t *ppos)
921
{
922
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
923
struct hl_device *hdev = entry->hdev;
924
u64 addr = entry->addr;
925
u64 value;
926
ssize_t rc;
927
928
if (hdev->reset_info.in_reset) {
929
dev_warn_ratelimited(hdev->dev, "Can't write during reset\n");
930
return 0;
931
}
932
933
rc = kstrtoull_from_user(buf, count, 16, &value);
934
if (rc)
935
return rc;
936
937
rc = hl_access_mem(hdev, addr, &value, DEBUGFS_WRITE64);
938
if (rc)
939
return rc;
940
941
return count;
942
}
943
944
static ssize_t hl_dma_size_write(struct file *f, const char __user *buf,
945
size_t count, loff_t *ppos)
946
{
947
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
948
struct hl_device *hdev = entry->hdev;
949
u64 addr = entry->addr;
950
ssize_t rc;
951
u32 size;
952
953
if (hdev->reset_info.in_reset) {
954
dev_warn_ratelimited(hdev->dev, "Can't DMA during reset\n");
955
return 0;
956
}
957
rc = kstrtouint_from_user(buf, count, 16, &size);
958
if (rc)
959
return rc;
960
961
if (!size) {
962
dev_err(hdev->dev, "DMA read failed. size can't be 0\n");
963
return -EINVAL;
964
}
965
966
if (size > SZ_128M) {
967
dev_err(hdev->dev,
968
"DMA read failed. size can't be larger than 128MB\n");
969
return -EINVAL;
970
}
971
972
if (!hl_is_device_internal_memory_va(hdev, addr, size)) {
973
dev_err(hdev->dev,
974
"DMA read failed. Invalid 0x%010llx + 0x%08x\n",
975
addr, size);
976
return -EINVAL;
977
}
978
979
/* Free the previous allocation, if there was any */
980
entry->data_dma_blob_desc.size = 0;
981
vfree(entry->data_dma_blob_desc.data);
982
983
entry->data_dma_blob_desc.data = vmalloc(size);
984
if (!entry->data_dma_blob_desc.data)
985
return -ENOMEM;
986
987
rc = hdev->asic_funcs->debugfs_read_dma(hdev, addr, size,
988
entry->data_dma_blob_desc.data);
989
if (rc) {
990
dev_err(hdev->dev, "Failed to DMA from 0x%010llx\n", addr);
991
vfree(entry->data_dma_blob_desc.data);
992
entry->data_dma_blob_desc.data = NULL;
993
return -EIO;
994
}
995
996
entry->data_dma_blob_desc.size = size;
997
998
return count;
999
}
1000
1001
static ssize_t hl_monitor_dump_trigger(struct file *f, const char __user *buf,
1002
size_t count, loff_t *ppos)
1003
{
1004
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1005
struct hl_device *hdev = entry->hdev;
1006
u32 size, trig;
1007
ssize_t rc;
1008
1009
if (hdev->reset_info.in_reset) {
1010
dev_warn_ratelimited(hdev->dev, "Can't dump monitors during reset\n");
1011
return 0;
1012
}
1013
rc = kstrtouint_from_user(buf, count, 10, &trig);
1014
if (rc)
1015
return rc;
1016
1017
if (trig != 1) {
1018
dev_err(hdev->dev, "Must write 1 to trigger monitor dump\n");
1019
return -EINVAL;
1020
}
1021
1022
size = sizeof(struct cpucp_monitor_dump);
1023
1024
/* Free the previous allocation, if there was any */
1025
entry->mon_dump_blob_desc.size = 0;
1026
vfree(entry->mon_dump_blob_desc.data);
1027
1028
entry->mon_dump_blob_desc.data = vmalloc(size);
1029
if (!entry->mon_dump_blob_desc.data)
1030
return -ENOMEM;
1031
1032
rc = hdev->asic_funcs->get_monitor_dump(hdev, entry->mon_dump_blob_desc.data);
1033
if (rc) {
1034
dev_err(hdev->dev, "Failed to dump monitors\n");
1035
vfree(entry->mon_dump_blob_desc.data);
1036
entry->mon_dump_blob_desc.data = NULL;
1037
return -EIO;
1038
}
1039
1040
entry->mon_dump_blob_desc.size = size;
1041
1042
return count;
1043
}
1044
1045
static ssize_t hl_get_power_state(struct file *f, char __user *buf,
1046
size_t count, loff_t *ppos)
1047
{
1048
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1049
struct hl_device *hdev = entry->hdev;
1050
char tmp_buf[200];
1051
int i;
1052
1053
if (*ppos)
1054
return 0;
1055
1056
if (hdev->pdev->current_state == PCI_D0)
1057
i = 1;
1058
else if (hdev->pdev->current_state == PCI_D3hot)
1059
i = 2;
1060
else
1061
i = 3;
1062
1063
sprintf(tmp_buf,
1064
"current power state: %d\n1 - D0\n2 - D3hot\n3 - Unknown\n", i);
1065
return simple_read_from_buffer(buf, count, ppos, tmp_buf,
1066
strlen(tmp_buf));
1067
}
1068
1069
static ssize_t hl_set_power_state(struct file *f, const char __user *buf,
1070
size_t count, loff_t *ppos)
1071
{
1072
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1073
struct hl_device *hdev = entry->hdev;
1074
u32 value;
1075
ssize_t rc;
1076
1077
rc = kstrtouint_from_user(buf, count, 10, &value);
1078
if (rc)
1079
return rc;
1080
1081
if (value == 1) {
1082
pci_set_power_state(hdev->pdev, PCI_D0);
1083
pci_restore_state(hdev->pdev);
1084
rc = pci_enable_device(hdev->pdev);
1085
if (rc < 0)
1086
return rc;
1087
} else if (value == 2) {
1088
pci_save_state(hdev->pdev);
1089
pci_disable_device(hdev->pdev);
1090
pci_set_power_state(hdev->pdev, PCI_D3hot);
1091
} else {
1092
dev_dbg(hdev->dev, "invalid power state value %u\n", value);
1093
return -EINVAL;
1094
}
1095
1096
return count;
1097
}
1098
1099
static ssize_t hl_i2c_data_read(struct file *f, char __user *buf,
1100
size_t count, loff_t *ppos)
1101
{
1102
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1103
struct hl_device *hdev = entry->hdev;
1104
char tmp_buf[32];
1105
u64 val;
1106
ssize_t rc;
1107
1108
if (*ppos)
1109
return 0;
1110
1111
rc = hl_debugfs_i2c_read(hdev, entry->i2c_bus, entry->i2c_addr,
1112
entry->i2c_reg, entry->i2c_len, &val);
1113
if (rc) {
1114
dev_err(hdev->dev,
1115
"Failed to read from I2C bus %d, addr %d, reg %d, len %d\n",
1116
entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len);
1117
return rc;
1118
}
1119
1120
sprintf(tmp_buf, "%#02llx\n", val);
1121
rc = simple_read_from_buffer(buf, count, ppos, tmp_buf,
1122
strlen(tmp_buf));
1123
1124
return rc;
1125
}
1126
1127
static ssize_t hl_i2c_data_write(struct file *f, const char __user *buf,
1128
size_t count, loff_t *ppos)
1129
{
1130
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1131
struct hl_device *hdev = entry->hdev;
1132
u64 value;
1133
ssize_t rc;
1134
1135
rc = kstrtou64_from_user(buf, count, 16, &value);
1136
if (rc)
1137
return rc;
1138
1139
rc = hl_debugfs_i2c_write(hdev, entry->i2c_bus, entry->i2c_addr,
1140
entry->i2c_reg, entry->i2c_len, value);
1141
if (rc) {
1142
dev_err(hdev->dev,
1143
"Failed to write %#02llx to I2C bus %d, addr %d, reg %d, len %d\n",
1144
value, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len);
1145
return rc;
1146
}
1147
1148
return count;
1149
}
1150
1151
static ssize_t hl_led0_write(struct file *f, const char __user *buf,
1152
size_t count, loff_t *ppos)
1153
{
1154
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1155
struct hl_device *hdev = entry->hdev;
1156
u32 value;
1157
ssize_t rc;
1158
1159
rc = kstrtouint_from_user(buf, count, 10, &value);
1160
if (rc)
1161
return rc;
1162
1163
value = value ? 1 : 0;
1164
1165
hl_debugfs_led_set(hdev, 0, value);
1166
1167
return count;
1168
}
1169
1170
static ssize_t hl_led1_write(struct file *f, const char __user *buf,
1171
size_t count, loff_t *ppos)
1172
{
1173
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1174
struct hl_device *hdev = entry->hdev;
1175
u32 value;
1176
ssize_t rc;
1177
1178
rc = kstrtouint_from_user(buf, count, 10, &value);
1179
if (rc)
1180
return rc;
1181
1182
value = value ? 1 : 0;
1183
1184
hl_debugfs_led_set(hdev, 1, value);
1185
1186
return count;
1187
}
1188
1189
static ssize_t hl_led2_write(struct file *f, const char __user *buf,
1190
size_t count, loff_t *ppos)
1191
{
1192
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1193
struct hl_device *hdev = entry->hdev;
1194
u32 value;
1195
ssize_t rc;
1196
1197
rc = kstrtouint_from_user(buf, count, 10, &value);
1198
if (rc)
1199
return rc;
1200
1201
value = value ? 1 : 0;
1202
1203
hl_debugfs_led_set(hdev, 2, value);
1204
1205
return count;
1206
}
1207
1208
static ssize_t hl_device_read(struct file *f, char __user *buf,
1209
size_t count, loff_t *ppos)
1210
{
1211
static const char *help =
1212
"Valid values: disable, enable, suspend, resume, cpu_timeout\n";
1213
return simple_read_from_buffer(buf, count, ppos, help, strlen(help));
1214
}
1215
1216
static ssize_t hl_device_write(struct file *f, const char __user *buf,
1217
size_t count, loff_t *ppos)
1218
{
1219
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1220
struct hl_device *hdev = entry->hdev;
1221
char data[30] = {0};
1222
1223
/* don't allow partial writes */
1224
if (*ppos != 0)
1225
return 0;
1226
1227
simple_write_to_buffer(data, 29, ppos, buf, count);
1228
1229
if (strncmp("disable", data, strlen("disable")) == 0) {
1230
hdev->disabled = true;
1231
} else if (strncmp("enable", data, strlen("enable")) == 0) {
1232
hdev->disabled = false;
1233
} else if (strncmp("suspend", data, strlen("suspend")) == 0) {
1234
hdev->asic_funcs->suspend(hdev);
1235
} else if (strncmp("resume", data, strlen("resume")) == 0) {
1236
hdev->asic_funcs->resume(hdev);
1237
} else if (strncmp("cpu_timeout", data, strlen("cpu_timeout")) == 0) {
1238
hdev->device_cpu_disabled = true;
1239
} else {
1240
dev_err(hdev->dev,
1241
"Valid values: disable, enable, suspend, resume, cpu_timeout\n");
1242
count = -EINVAL;
1243
}
1244
1245
return count;
1246
}
1247
1248
static ssize_t hl_clk_gate_read(struct file *f, char __user *buf,
1249
size_t count, loff_t *ppos)
1250
{
1251
return 0;
1252
}
1253
1254
static ssize_t hl_clk_gate_write(struct file *f, const char __user *buf,
1255
size_t count, loff_t *ppos)
1256
{
1257
return count;
1258
}
1259
1260
static ssize_t hl_stop_on_err_read(struct file *f, char __user *buf,
1261
size_t count, loff_t *ppos)
1262
{
1263
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1264
struct hl_device *hdev = entry->hdev;
1265
char tmp_buf[200];
1266
ssize_t rc;
1267
1268
if (!hdev->asic_prop.configurable_stop_on_err)
1269
return -EOPNOTSUPP;
1270
1271
if (*ppos)
1272
return 0;
1273
1274
sprintf(tmp_buf, "%d\n", hdev->stop_on_err);
1275
rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf,
1276
strlen(tmp_buf) + 1);
1277
1278
return rc;
1279
}
1280
1281
static ssize_t hl_stop_on_err_write(struct file *f, const char __user *buf,
1282
size_t count, loff_t *ppos)
1283
{
1284
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1285
struct hl_device *hdev = entry->hdev;
1286
u32 value;
1287
ssize_t rc;
1288
1289
if (!hdev->asic_prop.configurable_stop_on_err)
1290
return -EOPNOTSUPP;
1291
1292
if (hdev->reset_info.in_reset) {
1293
dev_warn_ratelimited(hdev->dev,
1294
"Can't change stop on error during reset\n");
1295
return 0;
1296
}
1297
1298
rc = kstrtouint_from_user(buf, count, 10, &value);
1299
if (rc)
1300
return rc;
1301
1302
hdev->stop_on_err = value ? 1 : 0;
1303
1304
hl_device_reset(hdev, 0);
1305
1306
return count;
1307
}
1308
1309
static ssize_t hl_security_violations_read(struct file *f, char __user *buf,
1310
size_t count, loff_t *ppos)
1311
{
1312
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1313
struct hl_device *hdev = entry->hdev;
1314
1315
hdev->asic_funcs->ack_protection_bits_errors(hdev);
1316
1317
return 0;
1318
}
1319
1320
static ssize_t hl_state_dump_read(struct file *f, char __user *buf,
1321
size_t count, loff_t *ppos)
1322
{
1323
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1324
ssize_t rc;
1325
1326
down_read(&entry->state_dump_sem);
1327
if (!entry->state_dump[entry->state_dump_head])
1328
rc = 0;
1329
else
1330
rc = simple_read_from_buffer(
1331
buf, count, ppos,
1332
entry->state_dump[entry->state_dump_head],
1333
strlen(entry->state_dump[entry->state_dump_head]));
1334
up_read(&entry->state_dump_sem);
1335
1336
return rc;
1337
}
1338
1339
static ssize_t hl_state_dump_write(struct file *f, const char __user *buf,
1340
size_t count, loff_t *ppos)
1341
{
1342
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1343
struct hl_device *hdev = entry->hdev;
1344
ssize_t rc;
1345
u32 size;
1346
int i;
1347
1348
rc = kstrtouint_from_user(buf, count, 10, &size);
1349
if (rc)
1350
return rc;
1351
1352
if (size <= 0 || size >= ARRAY_SIZE(entry->state_dump)) {
1353
dev_err(hdev->dev, "Invalid number of dumps to skip\n");
1354
return -EINVAL;
1355
}
1356
1357
if (entry->state_dump[entry->state_dump_head]) {
1358
down_write(&entry->state_dump_sem);
1359
for (i = 0; i < size; ++i) {
1360
vfree(entry->state_dump[entry->state_dump_head]);
1361
entry->state_dump[entry->state_dump_head] = NULL;
1362
if (entry->state_dump_head > 0)
1363
entry->state_dump_head--;
1364
else
1365
entry->state_dump_head =
1366
ARRAY_SIZE(entry->state_dump) - 1;
1367
}
1368
up_write(&entry->state_dump_sem);
1369
}
1370
1371
return count;
1372
}
1373
1374
static ssize_t hl_timeout_locked_read(struct file *f, char __user *buf,
1375
size_t count, loff_t *ppos)
1376
{
1377
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1378
struct hl_device *hdev = entry->hdev;
1379
char tmp_buf[200];
1380
ssize_t rc;
1381
1382
if (*ppos)
1383
return 0;
1384
1385
sprintf(tmp_buf, "%d\n",
1386
jiffies_to_msecs(hdev->timeout_jiffies) / 1000);
1387
rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf,
1388
strlen(tmp_buf) + 1);
1389
1390
return rc;
1391
}
1392
1393
static ssize_t hl_timeout_locked_write(struct file *f, const char __user *buf,
1394
size_t count, loff_t *ppos)
1395
{
1396
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1397
struct hl_device *hdev = entry->hdev;
1398
u32 value;
1399
ssize_t rc;
1400
1401
rc = kstrtouint_from_user(buf, count, 10, &value);
1402
if (rc)
1403
return rc;
1404
1405
if (value)
1406
hdev->timeout_jiffies = secs_to_jiffies(value);
1407
else
1408
hdev->timeout_jiffies = MAX_SCHEDULE_TIMEOUT;
1409
1410
return count;
1411
}
1412
1413
static ssize_t hl_check_razwi_happened(struct file *f, char __user *buf,
1414
size_t count, loff_t *ppos)
1415
{
1416
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1417
struct hl_device *hdev = entry->hdev;
1418
1419
hdev->asic_funcs->check_if_razwi_happened(hdev);
1420
1421
return 0;
1422
}
1423
1424
static const struct file_operations hl_mem_scrub_fops = {
1425
.owner = THIS_MODULE,
1426
.write = hl_memory_scrub,
1427
};
1428
1429
static const struct file_operations hl_data32b_fops = {
1430
.owner = THIS_MODULE,
1431
.read = hl_data_read32,
1432
.write = hl_data_write32
1433
};
1434
1435
static const struct file_operations hl_data64b_fops = {
1436
.owner = THIS_MODULE,
1437
.read = hl_data_read64,
1438
.write = hl_data_write64
1439
};
1440
1441
static const struct file_operations hl_dma_size_fops = {
1442
.owner = THIS_MODULE,
1443
.write = hl_dma_size_write
1444
};
1445
1446
static const struct file_operations hl_monitor_dump_fops = {
1447
.owner = THIS_MODULE,
1448
.write = hl_monitor_dump_trigger
1449
};
1450
1451
static const struct file_operations hl_i2c_data_fops = {
1452
.owner = THIS_MODULE,
1453
.read = hl_i2c_data_read,
1454
.write = hl_i2c_data_write
1455
};
1456
1457
static const struct file_operations hl_power_fops = {
1458
.owner = THIS_MODULE,
1459
.read = hl_get_power_state,
1460
.write = hl_set_power_state
1461
};
1462
1463
static const struct file_operations hl_led0_fops = {
1464
.owner = THIS_MODULE,
1465
.write = hl_led0_write
1466
};
1467
1468
static const struct file_operations hl_led1_fops = {
1469
.owner = THIS_MODULE,
1470
.write = hl_led1_write
1471
};
1472
1473
static const struct file_operations hl_led2_fops = {
1474
.owner = THIS_MODULE,
1475
.write = hl_led2_write
1476
};
1477
1478
static const struct file_operations hl_device_fops = {
1479
.owner = THIS_MODULE,
1480
.read = hl_device_read,
1481
.write = hl_device_write
1482
};
1483
1484
static const struct file_operations hl_clk_gate_fops = {
1485
.owner = THIS_MODULE,
1486
.read = hl_clk_gate_read,
1487
.write = hl_clk_gate_write
1488
};
1489
1490
static const struct file_operations hl_stop_on_err_fops = {
1491
.owner = THIS_MODULE,
1492
.read = hl_stop_on_err_read,
1493
.write = hl_stop_on_err_write
1494
};
1495
1496
static const struct file_operations hl_security_violations_fops = {
1497
.owner = THIS_MODULE,
1498
.read = hl_security_violations_read
1499
};
1500
1501
static const struct file_operations hl_state_dump_fops = {
1502
.owner = THIS_MODULE,
1503
.read = hl_state_dump_read,
1504
.write = hl_state_dump_write
1505
};
1506
1507
static const struct file_operations hl_timeout_locked_fops = {
1508
.owner = THIS_MODULE,
1509
.read = hl_timeout_locked_read,
1510
.write = hl_timeout_locked_write
1511
};
1512
1513
static const struct file_operations hl_razwi_check_fops = {
1514
.owner = THIS_MODULE,
1515
.read = hl_check_razwi_happened
1516
};
1517
1518
static const struct hl_info_list hl_debugfs_list[] = {
1519
{"command_buffers", command_buffers_show, NULL},
1520
{"command_submission", command_submission_show, NULL},
1521
{"command_submission_jobs", command_submission_jobs_show, NULL},
1522
{"userptr", userptr_show, NULL},
1523
{"vm", vm_show, NULL},
1524
{"userptr_lookup", userptr_lookup_show, userptr_lookup_write},
1525
{"mmu", mmu_show, mmu_asid_va_write},
1526
{"mmu_error", mmu_ack_error, mmu_ack_error_value_write},
1527
{"engines", engines_show, NULL},
1528
};
1529
1530
static int hl_debugfs_open(struct inode *inode, struct file *file)
1531
{
1532
struct hl_debugfs_entry *node = inode->i_private;
1533
1534
return single_open(file, node->info_ent->show, node);
1535
}
1536
1537
static ssize_t hl_debugfs_write(struct file *file, const char __user *buf,
1538
size_t count, loff_t *f_pos)
1539
{
1540
struct hl_debugfs_entry *node = file->f_inode->i_private;
1541
1542
if (node->info_ent->write)
1543
return node->info_ent->write(file, buf, count, f_pos);
1544
else
1545
return -EINVAL;
1546
1547
}
1548
1549
static const struct file_operations hl_debugfs_fops = {
1550
.owner = THIS_MODULE,
1551
.open = hl_debugfs_open,
1552
.read = seq_read,
1553
.write = hl_debugfs_write,
1554
.llseek = seq_lseek,
1555
.release = single_release,
1556
};
1557
1558
static void add_secured_nodes(struct hl_dbg_device_entry *dev_entry, struct dentry *root)
1559
{
1560
debugfs_create_u8("i2c_bus",
1561
0644,
1562
root,
1563
&dev_entry->i2c_bus);
1564
1565
debugfs_create_u8("i2c_addr",
1566
0644,
1567
root,
1568
&dev_entry->i2c_addr);
1569
1570
debugfs_create_u8("i2c_reg",
1571
0644,
1572
root,
1573
&dev_entry->i2c_reg);
1574
1575
debugfs_create_u8("i2c_len",
1576
0644,
1577
root,
1578
&dev_entry->i2c_len);
1579
1580
debugfs_create_file("i2c_data",
1581
0644,
1582
root,
1583
dev_entry,
1584
&hl_i2c_data_fops);
1585
1586
debugfs_create_file("led0",
1587
0200,
1588
root,
1589
dev_entry,
1590
&hl_led0_fops);
1591
1592
debugfs_create_file("led1",
1593
0200,
1594
root,
1595
dev_entry,
1596
&hl_led1_fops);
1597
1598
debugfs_create_file("led2",
1599
0200,
1600
root,
1601
dev_entry,
1602
&hl_led2_fops);
1603
}
1604
1605
static void add_files_to_device(struct hl_device *hdev, struct hl_dbg_device_entry *dev_entry,
1606
struct dentry *root)
1607
{
1608
int count = ARRAY_SIZE(hl_debugfs_list);
1609
struct hl_debugfs_entry *entry;
1610
int i;
1611
1612
debugfs_create_x64("memory_scrub_val",
1613
0644,
1614
root,
1615
&hdev->memory_scrub_val);
1616
1617
debugfs_create_file("memory_scrub",
1618
0200,
1619
root,
1620
dev_entry,
1621
&hl_mem_scrub_fops);
1622
1623
debugfs_create_x64("addr",
1624
0644,
1625
root,
1626
&dev_entry->addr);
1627
1628
debugfs_create_file("data32",
1629
0644,
1630
root,
1631
dev_entry,
1632
&hl_data32b_fops);
1633
1634
debugfs_create_file("data64",
1635
0644,
1636
root,
1637
dev_entry,
1638
&hl_data64b_fops);
1639
1640
debugfs_create_file("set_power_state",
1641
0644,
1642
root,
1643
dev_entry,
1644
&hl_power_fops);
1645
1646
debugfs_create_file("device",
1647
0644,
1648
root,
1649
dev_entry,
1650
&hl_device_fops);
1651
1652
debugfs_create_file("clk_gate",
1653
0644,
1654
root,
1655
dev_entry,
1656
&hl_clk_gate_fops);
1657
1658
debugfs_create_file("stop_on_err",
1659
0644,
1660
root,
1661
dev_entry,
1662
&hl_stop_on_err_fops);
1663
1664
debugfs_create_file("dump_security_violations",
1665
0400,
1666
root,
1667
dev_entry,
1668
&hl_security_violations_fops);
1669
1670
debugfs_create_file("dump_razwi_events",
1671
0400,
1672
root,
1673
dev_entry,
1674
&hl_razwi_check_fops);
1675
1676
debugfs_create_file("dma_size",
1677
0200,
1678
root,
1679
dev_entry,
1680
&hl_dma_size_fops);
1681
1682
debugfs_create_blob("data_dma",
1683
0400,
1684
root,
1685
&dev_entry->data_dma_blob_desc);
1686
1687
debugfs_create_file("monitor_dump_trig",
1688
0200,
1689
root,
1690
dev_entry,
1691
&hl_monitor_dump_fops);
1692
1693
debugfs_create_blob("monitor_dump",
1694
0400,
1695
root,
1696
&dev_entry->mon_dump_blob_desc);
1697
1698
debugfs_create_x8("skip_reset_on_timeout",
1699
0644,
1700
root,
1701
&hdev->reset_info.skip_reset_on_timeout);
1702
1703
debugfs_create_file("state_dump",
1704
0644,
1705
root,
1706
dev_entry,
1707
&hl_state_dump_fops);
1708
1709
debugfs_create_file("timeout_locked",
1710
0644,
1711
root,
1712
dev_entry,
1713
&hl_timeout_locked_fops);
1714
1715
debugfs_create_u32("device_release_watchdog_timeout",
1716
0644,
1717
root,
1718
&hdev->device_release_watchdog_timeout_sec);
1719
1720
debugfs_create_u16("server_type",
1721
0444,
1722
root,
1723
&hdev->asic_prop.server_type);
1724
1725
for (i = 0, entry = dev_entry->entry_arr ; i < count ; i++, entry++) {
1726
debugfs_create_file(hl_debugfs_list[i].name,
1727
0644,
1728
root,
1729
entry,
1730
&hl_debugfs_fops);
1731
entry->info_ent = &hl_debugfs_list[i];
1732
entry->dev_entry = dev_entry;
1733
}
1734
}
1735
1736
int hl_debugfs_device_init(struct hl_device *hdev)
1737
{
1738
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1739
int count = ARRAY_SIZE(hl_debugfs_list);
1740
1741
dev_entry->hdev = hdev;
1742
dev_entry->entry_arr = kmalloc_array(count, sizeof(struct hl_debugfs_entry), GFP_KERNEL);
1743
if (!dev_entry->entry_arr)
1744
return -ENOMEM;
1745
1746
dev_entry->data_dma_blob_desc.size = 0;
1747
dev_entry->data_dma_blob_desc.data = NULL;
1748
dev_entry->mon_dump_blob_desc.size = 0;
1749
dev_entry->mon_dump_blob_desc.data = NULL;
1750
1751
INIT_LIST_HEAD(&dev_entry->file_list);
1752
INIT_LIST_HEAD(&dev_entry->cb_list);
1753
INIT_LIST_HEAD(&dev_entry->cs_list);
1754
INIT_LIST_HEAD(&dev_entry->cs_job_list);
1755
INIT_LIST_HEAD(&dev_entry->userptr_list);
1756
INIT_LIST_HEAD(&dev_entry->ctx_mem_hash_list);
1757
mutex_init(&dev_entry->file_mutex);
1758
init_rwsem(&dev_entry->state_dump_sem);
1759
spin_lock_init(&dev_entry->cb_spinlock);
1760
spin_lock_init(&dev_entry->cs_spinlock);
1761
spin_lock_init(&dev_entry->cs_job_spinlock);
1762
spin_lock_init(&dev_entry->userptr_spinlock);
1763
mutex_init(&dev_entry->ctx_mem_hash_mutex);
1764
1765
return 0;
1766
}
1767
1768
void hl_debugfs_device_fini(struct hl_device *hdev)
1769
{
1770
struct hl_dbg_device_entry *entry = &hdev->hl_debugfs;
1771
int i;
1772
1773
mutex_destroy(&entry->ctx_mem_hash_mutex);
1774
mutex_destroy(&entry->file_mutex);
1775
1776
vfree(entry->data_dma_blob_desc.data);
1777
vfree(entry->mon_dump_blob_desc.data);
1778
1779
for (i = 0; i < ARRAY_SIZE(entry->state_dump); ++i)
1780
vfree(entry->state_dump[i]);
1781
1782
kfree(entry->entry_arr);
1783
}
1784
1785
void hl_debugfs_add_device(struct hl_device *hdev)
1786
{
1787
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1788
1789
dev_entry->root = hdev->drm.accel->debugfs_root;
1790
1791
add_files_to_device(hdev, dev_entry, dev_entry->root);
1792
1793
if (!hdev->asic_prop.fw_security_enabled)
1794
add_secured_nodes(dev_entry, dev_entry->root);
1795
}
1796
1797
void hl_debugfs_add_file(struct hl_fpriv *hpriv)
1798
{
1799
struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs;
1800
1801
mutex_lock(&dev_entry->file_mutex);
1802
list_add(&hpriv->debugfs_list, &dev_entry->file_list);
1803
mutex_unlock(&dev_entry->file_mutex);
1804
}
1805
1806
void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
1807
{
1808
struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs;
1809
1810
mutex_lock(&dev_entry->file_mutex);
1811
list_del(&hpriv->debugfs_list);
1812
mutex_unlock(&dev_entry->file_mutex);
1813
}
1814
1815
void hl_debugfs_add_cb(struct hl_cb *cb)
1816
{
1817
struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs;
1818
1819
spin_lock(&dev_entry->cb_spinlock);
1820
list_add(&cb->debugfs_list, &dev_entry->cb_list);
1821
spin_unlock(&dev_entry->cb_spinlock);
1822
}
1823
1824
void hl_debugfs_remove_cb(struct hl_cb *cb)
1825
{
1826
struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs;
1827
1828
spin_lock(&dev_entry->cb_spinlock);
1829
list_del(&cb->debugfs_list);
1830
spin_unlock(&dev_entry->cb_spinlock);
1831
}
1832
1833
void hl_debugfs_add_cs(struct hl_cs *cs)
1834
{
1835
struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs;
1836
1837
spin_lock(&dev_entry->cs_spinlock);
1838
list_add(&cs->debugfs_list, &dev_entry->cs_list);
1839
spin_unlock(&dev_entry->cs_spinlock);
1840
}
1841
1842
void hl_debugfs_remove_cs(struct hl_cs *cs)
1843
{
1844
struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs;
1845
1846
spin_lock(&dev_entry->cs_spinlock);
1847
list_del(&cs->debugfs_list);
1848
spin_unlock(&dev_entry->cs_spinlock);
1849
}
1850
1851
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job)
1852
{
1853
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1854
1855
spin_lock(&dev_entry->cs_job_spinlock);
1856
list_add(&job->debugfs_list, &dev_entry->cs_job_list);
1857
spin_unlock(&dev_entry->cs_job_spinlock);
1858
}
1859
1860
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job)
1861
{
1862
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1863
1864
spin_lock(&dev_entry->cs_job_spinlock);
1865
list_del(&job->debugfs_list);
1866
spin_unlock(&dev_entry->cs_job_spinlock);
1867
}
1868
1869
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr)
1870
{
1871
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1872
1873
spin_lock(&dev_entry->userptr_spinlock);
1874
list_add(&userptr->debugfs_list, &dev_entry->userptr_list);
1875
spin_unlock(&dev_entry->userptr_spinlock);
1876
}
1877
1878
void hl_debugfs_remove_userptr(struct hl_device *hdev,
1879
struct hl_userptr *userptr)
1880
{
1881
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1882
1883
spin_lock(&dev_entry->userptr_spinlock);
1884
list_del(&userptr->debugfs_list);
1885
spin_unlock(&dev_entry->userptr_spinlock);
1886
}
1887
1888
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx)
1889
{
1890
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1891
1892
mutex_lock(&dev_entry->ctx_mem_hash_mutex);
1893
list_add(&ctx->debugfs_list, &dev_entry->ctx_mem_hash_list);
1894
mutex_unlock(&dev_entry->ctx_mem_hash_mutex);
1895
}
1896
1897
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx)
1898
{
1899
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1900
1901
mutex_lock(&dev_entry->ctx_mem_hash_mutex);
1902
list_del(&ctx->debugfs_list);
1903
mutex_unlock(&dev_entry->ctx_mem_hash_mutex);
1904
}
1905
1906
/**
1907
* hl_debugfs_set_state_dump - register state dump making it accessible via
1908
* debugfs
1909
* @hdev: pointer to the device structure
1910
* @data: the actual dump data
1911
* @length: the length of the data
1912
*/
1913
void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
1914
unsigned long length)
1915
{
1916
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1917
1918
down_write(&dev_entry->state_dump_sem);
1919
1920
dev_entry->state_dump_head = (dev_entry->state_dump_head + 1) %
1921
ARRAY_SIZE(dev_entry->state_dump);
1922
vfree(dev_entry->state_dump[dev_entry->state_dump_head]);
1923
dev_entry->state_dump[dev_entry->state_dump_head] = data;
1924
1925
up_write(&dev_entry->state_dump_sem);
1926
}
1927
1928